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Abstract – This work proposes a new estimation technique for the doubly-fed induction 

generator (DFIG) variables. Researchers have designed numerous sensorless control strategies 

for the DFIG used either for mechanical speed, electromagnetic torque, or rotor position 

estimation. In this paper, an analysis of an Unscented Kalman Filter (UKF) will be presented as 

an observer for both rotor and stator currents, and mechanical speed, which are key information 

in DFIG control. The performance of the proposed observer has been validated in a 9 MW wind 

turbine under MATLAB/Simulink. Based on the results obtained, UKF is safely able to replace 

mechanically coupled sensors which have many disadvantages such as high cost, maintenance, 

and cabling requirements. 

 

Keywords: Sensorless control, Wind energy, DFIG, Observers, Mechanical speed estimation. 

 

Received: 31/05/2022 – Revised: 20/06/2022 – Accepted: 25/06/2022 

 

I. Introduction 

The exploitation of various types of renewable energy 

sources (solar energy, wind energy, geothermal energy, 

biomass energy, hydropower) is a particularly viable 

solution to get rid of dependence on fossil energy sources 

[1-4]. Regarding wind energy, it has presented itself for 

the last few years as one of the most reliable and 

promising renewable energy sources, which can 

successfully replace fossil energy sources in electricity 

generation [5-7]. Accordingly, a lot of research activity 

has been dedicated recently to the problems of control 

and optimization of renewable energy conversion 

systems. When it comes to wind energy harvesting, the 

Doubly-Fed Induction Generator (DFIG) has been widely 

used in recent years because of its high performance, and 

its capability to operate under variable wind speeds [8-

10]. Furthermore, its rotor power converters are sized to 

transfer only 30% of the total generated power, which is 

very eye-catching from a cost-effective point of view 

[11-13]. However, from a control point of view, the 

DFIG is still challenging. Many control strategies have 

been proposed for the DFIG in Wind Energy Conversion 

System (WECS) such as Stator Voltage Orientation 

(SVO) and Field Oriented Control (FOC) [14, 15]. The 

sliding mode control was been presented to overcome the 

nonlinearity of the system and parameter uncertainties 

[16, 17]. Backstepping control was also used. However, 

all of those control strategies require exact knowledge of 

several DFIG parameters, and variables such as rotor 

position and speed, electromagnetic flux, and wind 

speed. Those variables can be obtained by numerous 

methods such as observers and sensors. Nevertheless, the 

use of sensors has some drawbacks such as the high cost 

of cables and sensors and the mechanical coupling 

problems, as well as the high failure rate, which is due to 

the use of sensors as tools for data acquisition. As an 

alternative, the sensorless control of the DFIG using 

observers is gaining a lot of interest in the last few years 

[18]. 

In this regard, several observers have been proposed in 
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the literature for DFIG parameters estimation, including 

mechanical speed, rotor position, electromagnetic flux, 

and wind speed [19-21]. The Model Reference Adaptive 

System (MRAS) based observer and an MRAS based 

fuzzy logic technique were used for mechanical speed 

and rotor position estimation. But because the 

effectiveness of an MRAS is highly sensitive to the 

inductance value, recursive techniques like Kalman 

filters are increasingly being utilized in its place. [22-24]. 

An Extended Kalman Filter (EKF) was adopted as an 

observer for the mechanical speed. Nevertheless, this 

method has some drawbacks including the complexity of 

the linearization process. As a result, this paper proposes 

as an alternative observer the Unscented Kalman filter 

(UKF) to ensure an accurate estimation of the DFIG 

variables [25, 26]. 

In this paper, the focus will be on the mechanical 

speed and both stator and rotor currents because of their 

significance in the DFIG control. To obtain the values of 

these parameters an accurate observer is inevitable 

 

II. WECS Modeling 

II.1. DFIG Modeling 

 

In the literature, there is no specific and unique model 

of WECS based on the DFIG as shown in Figure 1 [27], 

since the model depends on the adopted control strategy. 

In general, a DFIG based grid-connected WECS consists 

of a doubly-fed induction generator coupled to the wind 

turbine through a gear and a shaft. The stator winding of 

the DFIG is directly connected to the utility grid, and the 

rotor winding is indirectly connected to the grid through 

a back-to-back voltage source converter and a 

transformer. Filters and physical components are also 

utilized as extra components to control the DFIG during 

grid faults. 

 

 
Figure 1. Wind turbine based on the DFIG connected to the grid  

Based on the electrical differential equations of both 

the rotor and the stator, which are converted to direct and 

quadratic reference with the help of Park transformation, 

the d-q components of the rotor and the stator voltage 

equations are expressed in Eq. (1). These currents are 

expressed as a function of the stator flux linkages (𝜑�𝑠�𝑑�, 

𝜑�𝑠�𝑞�), stator resistance 𝑅�𝑠�, stator currents (𝑖�𝑠�𝑑�, 𝑖�𝑠�𝑞�), 

stator angular velocity 𝜔�𝑠�, rotor flux linkages (𝜑�𝑟�𝑑�, 

𝜑�𝑟�𝑞�), rotor resistance 𝑅�𝑟�, rotor currents (𝑖�𝑟�𝑑�, 𝑖�𝑟�𝑞�), and 

the slip angular velocity 𝜔�𝑟�.  
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The equations for the rotor and stator flux linkages are 

provided in Eq. (3), where M is the mutual inductance 

and Lr and Ls, respectively, stand in for the rotor and 

stator self-inductances. 
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According to the electrical equations of the DFIG, the 

stator and rotor active and reactive powers are given in 

Eq. (4). 
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One of the most crucial parameters for mechanical 

speed estimation is the electromagnetic torque which is 

expressed in Eq. (5), as a function of the rotor’s current, 

stator flux, and both mutual inductance and stator self-

inductances, as well as the number of pair of machine 

poles. 

    
 

 
                      (5) 
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II.2. Wind Turbine Model 

The turbine represents the organ responsible for 

transforming the kinetic energy of the wind into a 

mechanical power given in Eq. (6). 

   
 

 
              � (6) 

Where   is the air density,    π  2  , S is the total area 

swept by the turbine blades and  R is the radius of the 

blades.        is the coefficient of power which is the 

fraction between the kinetic energy of the wind and  

mechanical power extracted by the turbine. Concerning 

       given in Eq. (7), it is a function that depends on 

the pitch angle     and the tip speed ratio (λ) gave by Eq. 

(8). 
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The basic dynamic equation of the mechanical system 

provides an explanation for the change of mechanical 

speed. 

  
     

  
                                                          (9) 

Where Tmec is the mechanical torque, JT is the moment of 

inertia, and 𝑓� is the viscous friction coefficient. 

II.3. DFIG State-space model  

One of the requirements in the design of the 

Unscented Kalman Filter is a nonlinear state-space model 

of the DFIG. Therefore, Based on the basic mechanical 

system dynamic equation "Eq. (9), , as well as the 

differential electrical equations of the DFIG previously 

presented in Eqs. (1-5), a state-space model of the DFIG 

is given in Eqs. (10) and (11). 
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Where x is the stat variable, y is the output 

(measurement) vector, and u is the input vector. 
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III. Unscented Kalman Filter  

III.1. Unscented Transformation  

 

Kalman Filters are one of the most powerful 

algorithms for solving estimation problems. Accordingly, 

an Unscented Kalman Filter (UKF) has been adopted in 

this work. The Unscented Transformation (UT) of non-

linear systems serves as the foundation for the UKF. In 

order to deal with any nonlinearity in the system, this 

novel approach is based on computing the statistic mean 
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and covariance of a random variable that goes through 

the nonlinear transformation Y=f(x). Figure 2 depicts the 

technique's working principal. 

 

 
Figure 2. Unscented Transformation (UT) 

The UT procedure: 

 Compute a set of Sigma points 

 ̃    ̅̅ ̅     

 ̃          ̅     
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  is the scaling parameter. 
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While (α) defines the range of sigma points surrounding 

the mean X value. In most cases, has a value between 0 

and 1 ( [0,1]) [26]. The system's dimension is represented 

by n. The second scaling factor, k, is frequently set to 

K=3-n.    and  ̅ are the covariance matrix and X's mean, 

respectively. The weight assigned to each sigma point is 

as follows: 

      �      ⁄

      �          2    

            �          ⁄

                                  (19) 

 

As a constraint, the weights must sum up to 1. 

∑     2 
   �     �                                          (20) 

 

Where   is an additional scaling parameter that takes into 

account knowledge about the distribution of X from the 

past. The best option in the case of a Gaussian 

distribution is   =2. The terms mean and covariance are 

denoted by the symbols (m) and (c). 

 

 Use the nonlinear function to propagate each sigma 

point and produce a series of altered samples. 
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 Utilizing the weighted mean  ̅ and covariance of the 

prior samples, compute the mean Y and covariance 

matrix for Y. 
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III.2. The Unscented Kalman filter 

In this section, an Unscented Kalman Filter (UKF) is 

adopted for estimating DFIG system variables, given that 

the adopted UKF is a derivative-free filtering algorithm. 

Therefore, as shown in references [26-29], the UKF 

algorithm for background theory is presented as follows: 

 

 Step 1. Initialization 
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Where Q(k) and R(k) are diagonal matrices that represent 

respectively the process noise covariance and the 

observation noise covariance. 

 

 Step 2. Compute Sigma points  

From Eq. (17), sigma points can be calculated. 
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 Step 3. Prediction phase 

The propagation of the sigma points through the 

system/state equation is given by: 

      
   

       
                                    (28) 

 

The following is a formula for calculating propagated 

mean and covariance: 

 ̅      ∑    2 
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The new sigma points matrix using is given by: 
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The propagation of the new sigma point through the 

nonlinear function is given by: 
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a) Calculate the mean of the output variable. 
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, for i=1,…,2n (33) 

 

 Step 4. Measurement update  

The covariance between the measurement vector and 

the cross-covariance is calculated as: 
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Kalman gain is given by: 
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The state estimate update and the covariance estimate 

update are presented as follows: 
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IV. Results and Discussion 

Simulation and tests were conducted to verify the 

robustness of the proposed observer for parameter 

estimation relying on a 9 MW model of WTS based on 

DFIG implemented in MATLAB/Simulink. The WTS 

parameters used for simulations are given in Table 1. 

 

Table 1. Parameters used in the simulation 

Name Symbol Value 

DFIG rated power (base power) Pnom 9Mw 

Stator voltage (base voltage) Unom stator 400V 

Rotor voltage (base voltage) Unom rotor 1975V 

Grid frequency f0 50Hz 

Number of pair poles P 3 

Stator resistance Rs 0.023(Pu) 

Rotor resistance Rr 0.016(Pu) 

Stator inductance Ls 0.18(Pu) 

Rotor inductance Lr 0.16(Pu) 

Mutual inductance M 2.9(Pu) 

 

Figures 3 to 6 exhibit the measured and estimated 

stator and rotor currents, respectively. The simulation 

results reveal that the proposed observer UKF works very 

well in estimating the stator and rotor currents.  

The simulation results shown in Figure 3 show that 

the UKF performs the estimation of direct and quadratic 

stator currents. Based on these results, it is clear that the 

tracking performance and convergence velocity of UKF 

are satisfactory regardless of the rapid differences in 

currents observed at the start of the simulation. 

Moreover, the rated stator currents given in red are 

almost identical to the real currents given in red with a 

maximum error of 1%, which displays the accuracy of 

the UKF. 

The results of Figures 4 and 5 also show the 

estimation for the direct and quadratic components of the 

rotor current. Similar to the case of the stator, the rated 

rotating currents given in blue converge instantly towards 

the real currents given in red, further illustrating the 

efficiency of the UKF. 

Figure 6 shows the dynamic response and tracking 

performance of the UKF for the DFIG mechanical 

velocity estimation, where it is clear that the rated 

velocity given in red was able to follow the measured 

velocity with great accuracy of max 1.3%. This confirms 

and verifies the robustness of the proposed controller and 

its ability to replace the mechanically coupled sensor. 

As shown in Figures (3-6), the estimated currents 

converge towards the measured currents instantly and 

with great accuracy. This reflects the convergence speed 

of the observer as well as its accuracy.  

Furthermore, based on the results presented in Figure 

7, it is clear that the estimated velocity of the rotor 

follows with great accuracy the measured velocity, which 
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confirms and verifies the robustness of the proposed 

observer, and its capability to replace the mechanically 

coupled sensor. 

 
Figure 3. Estimated and real currents of DFIG stator 

 
Figure 4. Estimated and real quadratic currents of DFIG stator 

 
Figure 5. Estimated and real direct current of the DFIG rotor 

 
Figure 6. The estimated and real quadratic current of the DFIG rotor. 
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Figure 7. Real and estimated speed of the rotor 

 

 

 

Since the performance of the observer is measured 

based on the speed and accuracy of convergence, in this 

section the efficiency of the UKF has been compared 

with other strategies adopted in the literature for 

estimating the mechanical velocity of DFIG. This 

includes the High-Order Sliding Mode Observer 

(HOSMO), which has been studied in study [30]. 

Although HOSMO was able to get close to its true rotor 

speed, it suffers from a collapsing phenomenon that 

affects the accuracy of the results. Moreover, the 

convergence velocity of HOSMO is relatively slow 0.5 

seconds compared to that of the UKF which was almost 

instantaneous. In another study, compared to the MRAS 

monitor examined in the study [22], the UKF is also 

superior in terms of convergence velocity, with the 

authors stating that MRAS converges after 18 seconds, 

while in this paper the UKF took less than 0.1 seconds. 

For rotor velocity estimation, a second-order generalized 

integrator is used; however, because the system needs 

two synchronization cycles, as stated by the authors [31], 

its convergence velocity is slower than that of the UKF. 

Based on the above results, it can be asserted that 

UKF is safely able to replace the mechanically coupled 

sensor as it suffers from several disadvantages including 

high cost and maintenance, and cabling requirements 

[32]. Furthermore, since the UKF was able to accurately 

estimate both the direct and quadratic components of the 

stator and rotor currents, it is possible to rely only on 

these rated currents rather than the measured currents to 

control the active and reactive forces of the stator and 

rotor using Eq. (4), as this can help overcome the added 

noise of existing sensors during power calculation and 

control. 

     

V. Conclusion  

 

Since wind energy has emerged as one of the most 

dependable and promising renewable energy sources, 

there has been a lot of interest in trying to improve the 

efficiency of its conversion systems recently. In this 

regard, this paper investigated the performances of an 

Unscented Kalman filter which is proposed as an 

alternative for mechanical sensors in speed measurement, 

whereas, simulations and tests were carried out to verify 

the robustness of the proposed observer for parameter 

estimation based on the 9MW model of WTS based on 

DFIG applied in MATLAB/Simulink. The obtained 

results have shown that the UKF was able to track the 

rotor’s speed with high accuracy and impressive 

convergence time, which confirms the robustness of the 

UKF and its suitability for such tasks. Therefore, UKF is 

safely able to replace mechanically coupled sensors 

which have many disadvantages such as high cost, 

maintenance, and cabling requirements. 
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