
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

July 2022

SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR

COMMUNICATION AND COLLABORATION PLATFORMS COMMUNICATION AND COLLABORATION PLATFORMS

Deepesh Arora

Sreekanth Narayanan

Priya Kesari

Keerthana S

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Arora, Deepesh; Narayanan, Sreekanth; Kesari, Priya; and S, Keerthana, "SCROLLING AND RESIZING-
AWARE ANNOTATION FEATURE FOR COMMUNICATION AND COLLABORATION PLATFORMS", Technical
Disclosure Commons, (July 10, 2022)
https://www.tdcommons.org/dpubs_series/5251

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5251?utm_source=www.tdcommons.org%2Fdpubs_series%2F5251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6775

SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR
COMMUNICATION AND COLLABORATION PLATFORMS

AUTHORS:
Deepesh Arora

Sreekanth Narayanan
Priya Kesari
Keerthana S

ABSTRACT

In communication and collaboration platforms (which may support, among other

things, video conferencing, online meetings, screen sharing, webinars, etc.), annotation is

a critical feature. That feature is playing a very important role during the Coronavirus

Disease 2019 (COVID-19) period where, for example, universities and companies are

relying heavily upon online meeting experiences to seamlessly deliver classes, sessions,

presentations, etc. However, current annotation capabilities are not able to adapt to the

dynamic nature of a screen share. To address such a challenge, techniques are presented

herein that enhance scrolling within or the resizing of an underlying application. Aspects

of the presented techniques encompass the binding of a scroll position to drawn annotations,

the establishment of a relationship between annotations and application size, the automatic

adjustment of pixel density following the resizing of an application, and the normalizing

of a pixel's density.

DETAILED DESCRIPTION

In communication and collaboration platforms (which may support, among other

things, video conferencing, online meetings, screen sharing, webinars, etc.), annotation is

a critical feature that is playing an important role during the Coronavirus Disease 2019

(COVID-19) period during which many universities and companies are relying heavily

upon online meeting experiences with, respectively, students and clients or employees.

However, a problem exists with current annotation capabilities. Consider a scenario

in which a university wishes to offer remote online education to its students during the

COVID-19 period. In this scenario, consider that a professor “Bob” is a lecturer at the

2

Arora et al.: SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION

Published by Technical Disclosure Commons, 2022

 2 6775

university and is looking forward to delivering online lectures to students who physically

are in remote locations. During one of his lectures, he teaches his students how to use a

communication and collaboration platform and while doing so he believes using

annotations will help the students to better understand.

In a first scenario under the instant hypothetical example, professor Bob highlights

the phrase "Personal Room name" in a line of text as illustrated in Figure 1, below.

Figure 1: Exemplary Annotation

After the professor completes the above-described annotation, he scrolls up on the

website. Following that scrolling, the professor is disappointed to see that his annotation

(as depicted in Figure 1, above) is no longer located over the text "Personal Room Name."

Instead, the highlighted portion is now pointing to an empty space, as depicted in Figure 2,

below, resulting in unnecessary confusion for his students.

3

Defensive Publications Series, Art. 5251 [2022]

https://www.tdcommons.org/dpubs_series/5251

 3 6775

Figure 2: Exemplary Annotation After Scrolling

In a second scenario under the instant hypothetical example, professor Bob shares

a browser window with his students and, for any number of reasons, he wishes to open

another application on his desktop for which he must change the size of the browser

window to create additional room for the other application. Figure 3, below, illustrates

elements of an exemplary desktop before the browser window is resized.

Figure 3: Exemplary Desktop Before Window Resizing

4

Arora et al.: SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION

Published by Technical Disclosure Commons, 2022

 4 6775

Figure 4, below, illustrates elements of the exemplary desktop from Figure 3, above,

after the browser window is resized.

Figure 4: Exemplary Desktop After Window Resizing

Following his resizing of the browser window, professor Bob observes that the

annotation that he made earlier (as depicted in Figure 3, above) is no longer at the correct

location. As shown in Figure 4, above, the highlighted section is now located at a text box

instead of over the text "Personal Room Name" which, again, has the potential to confuse

his students.

As described and illustrated above, it is clear that current annotation capabilities are

not able to adapt to the dynamic nature of a screen share. Techniques are presented herein,

which will be described and illustrated in the below narrative, that address such a problem.

Aspects of the presented techniques build upon certain existing capabilities and make them

more robust.

The next portion of the instant narrative describes and illustrates how aspects of the

techniques presented herein may be applied within a Microsoft Windows (i.e., Windows)

5

Defensive Publications Series, Art. 5251 [2022]

https://www.tdcommons.org/dpubs_series/5251

 5 6775

operating system (OS) to address the scrolling challenge under the first scenario that was

detailed above.

In any Windows application which supports scrolling (whether horizontal, vertical,

or both), WM_VSCROLL and WM_HSROLL messages are sent to the application when a scroll

event occurs in, respectively, the window's standard vertical and horizontal scrollbar.

While processing such events, the application may call the Windows function

GetScrollInfo to retrieve further information about the scrolling.

Through the Windows-supplied application programming interface (API), the

GetScrollInfo function accepts three input parameters:

• hwnd. A handle to the window (e.g., a browser window in the instant first

scenario) for which information is to be gathered. Note that it is possible to

easily iterate through all of the open applications in a system and provide the

appropriate handle to this API call.

• nBar. The constant SB_CTL for controlling the scroll bar, the constant SB_HORZ

for obtaining the parameters for the horizontal scroll bar of the window, or the

constant SB_VERT for obtaining the parameters for the vertical scroll bar of the

window.

• lpsi. A pointer to a SCROLLINFO structure (as described below).

The SCROLLINFO structure contains the following elements:
{
UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;
} SCROLLINFO, *LPSCROLLINFO;

where a number of those elements are of interest and note, including:

• fMask. This value may be the constant SIF_TRACKPOS in which case the

nTrackPos member contains the current position of the scroll box while the

user is dragging it.

• nMin. The minimum scrolling position.

• nMax. The maximum scrolling position.

• nPage. The page size in device units.

6

Arora et al.: SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION

Published by Technical Disclosure Commons, 2022

 6 6775

• nTrackPos. The immediate position of the scroll box that the user is dragging.

This value provides a real-time position of the scroll box.

As described above, a SCROLLINFO structure may be populated through a call to the

GetScrollInfo function.

Figure 5, below, presents the anatomy of an exemplary scrollbar highlighting

various of the structure elements that were described above.

Figure 5: Anatomy of a Scrollbar

Aspects of the techniques presented herein leverage all of the scrolling-related data

that was described above to dynamically adjust the positions of any annotations that may

appear on a screen (so as to address the first scenario that was detailed above). The steps

that are associated with such dynamic adjustments are described below.

Under a first step, the value of the structure element nTrackPos contains the

position of the thumb when it is currently being dragged to a new position. This value is

read-only and it cannot be directly changed programmatically. It is possible to leverage

nTrackPos to track the movement of the scroll bar, since for every scroll event WM_VSCROLL

or WM_HSCROLL messages we will be received. Inside of those messages it is possible to

keep track of the thumb position as a user drags it.

During a second step, the previous position and the current position of a scroll bar

may be tracked so that it is possible to determine the delta by which it has been moved

either horizontally or vertically. Then, at a third step, on every scroll event (as described

above) a delta value may be determined.

7

Defensive Publications Series, Art. 5251 [2022]

https://www.tdcommons.org/dpubs_series/5251

 7 6775

Under a fourth step, annotation data may be stored in the form of pixels where each

pixel corresponds to the (x, y) coordinates relative to the entire screen. Consequently, a

delta value (as described above) will also be in form of an (x, y) pair where a change in

just an x value will indicate that the screen has been moved horizontally and, similarly, a

change in just a y value will indicate that the screen has been moved vertically.

During a fifth step, by using all of the metadata the annotation figures may be

shifted to their new position. For example, consider a single pixel whose initial position is

the pair (X: 35, Y:150) and the delta value that was retrieved from handling scroll events

is the pair (dX: 0, dY: 50). The delta value indicates that scrolling was done vertically and,

since the value dY is greater than zero, the scroll bar moved downwards (i.e., the content

moved upwards). Therefore, the annotation pixels also need to be shifted upwards as they

need to be kept intact with the underlying region of the application where they were drawn.

The new coordinates of the instant pixel thus become (X1: 35, Y1: 150 - 50 = 100) or the

(x, y) coordinate pair (35, 100).

For simplicity of exposition, the techniques presented herein were described and

illustrated in the above narrative in connection with a Windows-based solution to the

previously-described first scenario. However, it is important to note that the presented

techniques are equally applicable to other OSs. For example, helper APIs are available

under the Apple macOS OS and offer the function NSScrollView as an equivalent to the

Windows function GetScrollInfo.

The next portion of the instant narrative describes how aspects of the techniques

presented herein may be applied within a Windows OS to address the resizing challenge

under the second scenario that was detailed above. The steps that are associated with such

activity are described below.

Under a first step, the Windows-supplied API offers the function GetWindowRect

to which may be passed the handle of the application which is being queried. A call to that

function will return a RECT structure that receives the screen coordinates of the upper-left

hand and the lower-right hand corners of the window.

During a second step, the changes in a window’s size may be obtained through

either polling or the registration of certain callback events (such as with scrolling and

receipt of WM_VSCROLL and WM_HSROLL messages).

8

Arora et al.: SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION

Published by Technical Disclosure Commons, 2022

 8 6775

Under a third step, for two consecutive events it is possible to calculate the delta

value for both of the coordinates of an application's rectangular frame (i.e., the upper-left

hand and the lower-right hand corners). By processing those delta values, it is possible to

estimate by how much margin or proportion the size of a window has become either smaller

or larger.

A fourth step leverages the fact that an annotation is simply a collection of pixels.

The particulars of this step may be understood through an illustrative example.

Consider the change in position of a single pixel on an event as described above for

the TextPad application where the initial positions that were returned in a RECT structure

are (left: 10, top: 800, right: 600, bottom: 75) and the positions that were returned in a RECT

structure following resizing are (left: 10, top: 800, right: 800, bottom: 125). Assume that

the initial position of an annotation pixel that is under consideration in this example is (120,

330) – i.e., somewhere within the rectangle of that application. The returned values indicate

that the application was (1) expanded horizontally but (2) shrunk vertically. The handling

of each of those two cases will be described below.

A first case encompasses horizontal expansion. As indicated above, the x-

coordinates changed from (L:10, R:600) to (L:10, R:800). This indicates that the expansion

was towards the right by a proportion of 4/3 (i.e., 800/600). As noted previously, the x-

coordinate of the pixel that is under consideration is 120.

Since the area of the application has increased, that change must be accounted for

by having more pixels within the same area. The density of the pixels (i.e., the number of

pixels per inch (PPI)) needs to be kept in mind while considering such a change. Modern

systems generally have high PPI values. Therefore, through a proportionality rule (which

will be described below) the density of the pixels may also be automatically adjusted.

Despite the pixels moving away from each other, the PPI is large enough for the distance

to be unobservable. However, in the case of an expansion that results in the pixels being

too far apart (yielding a distorted figure) extrapolation may be leveraged to fill the void

between the pixels.

Since it is necessary to keep the density of the pixels proportionate with the new

area that is covered by the application, this requires finding the new spot for the pixels

9

Defensive Publications Series, Art. 5251 [2022]

https://www.tdcommons.org/dpubs_series/5251

 9 6775

using the ratio of the change. The following formula may be leveraged to calculate such a

new position:

(old X Position of Pixel - Left value of RECT) /

 (old Right value of RECT - old X Position of Pixel) =

(new X Position of Pixel - Left value of RECT) /

 (new Right value of RECT - new X Position of Pixel)

The above approach maintains the density of the pixels proportionate to the

expanded area. In the instant example, the expansion ratio is approximately 1.33. This

implies that if 10 pixels were previously covering 3 units of an area, those pixels should

now cover 4 units of the area. Through the techniques presented herein, as described above,

the new position (X) of the pixel that is under consideration may be calculated as (120-

10)/(600-120) = (X-10)/(800-X) resulting in X being equal to 157.

A second case encompasses vertical contraction. As indicated above, the y-

coordinates changed from (B:75, T:800) to (B:125, T:800). This indicates that the

contraction was downwards by a proportion of 3/5 (i.e., 75/125). Consequently, the pixel

that is under consideration (which, as noted above, has a y-coordinate of 330) should move

upwards. The following formula may be leveraged to calculate such a new position:

(new Y Position of Pixel - New Bottom value of RECT) /

 (Old Top value of RECT - new Y Position of Pixel) =

(Old Y Position of Pixel - Old Bottom value of RECT) /

 (Old Top value of RECT - old Y Position of Pixel)

Through the techniques presented herein, as described above, the new position (Y)

of the pixel that is under consideration may be calculated as (Y - 125)/(800 - Y) = (330 -

75)/(800 - 330) resulting in Y being equal to 362.

By combining all of the above, the fourth step may develop a new position for the

collection of pixels that encompass an annotation. In the instant example, the new position

of the pixel that is under consideration is the (x, y) coordinate pair (157, 362).

The techniques presented herein offer a number of innovative capabilities or

features. A first feature encompasses the binding of a scroll position to drawn annotations.

Once the relationship between annotation pixels and a scroll position is established, those

artifacts will always be synchronized and thus will provide a much smoother experience to

10

Arora et al.: SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION

Published by Technical Disclosure Commons, 2022

 10 6775

an end user. A second feature encompasses the establishment of a relationship between

annotations and application size. This allows a user to have an enhanced experience while

drawing annotations and resizing windows without bothering with any distortion of the

drawn annotations.

A third feature encompasses the automatic adjustment of pixel density following

the resizing of an application. Through a proportionality rule (as described above), pixels

will either move away from each other (making a figure look bigger) or they will overlap

each other (making the figure look smaller). Further, a fourth feature encompasses the

normalizing of a pixel's density. If pixels are too far apart, new pixels may be added

between such pixels using extrapolation.

In summary, techniques have been presented that enhance scrolling within or the

resizing of an underlying application. Aspects of the presented techniques encompass the

binding of a scroll position to drawn annotations, the establishment of a relationship

between annotations and application size, the automatic adjustment of pixel density

following the resizing of an application, and the normalizing of a pixel's density.

11

Defensive Publications Series, Art. 5251 [2022]

https://www.tdcommons.org/dpubs_series/5251

	SCROLLING AND RESIZING-AWARE ANNOTATION FEATURE FOR COMMUNICATION AND COLLABORATION PLATFORMS
	Recommended Citation

	tmp.1657298101.pdf.8kPJP

