
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

July 2022

DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE

ON HAZELCAST CLUSTER ON HAZELCAST CLUSTER

Neeraj Deshmukh
Visa

Rohit Kesarwani
Visa

Aarushi Gupta
Visa

Prabu Kadapenthangal Venkatesan
Visa

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Deshmukh, Neeraj; Kesarwani, Rohit; Gupta, Aarushi; and Venkatesan, Prabu Kadapenthangal, "DYNAMIC
ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLUSTER", Technical Disclosure
Commons, (July 06, 2022)
https://www.tdcommons.org/dpubs_series/5245

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5245?utm_source=www.tdcommons.org%2Fdpubs_series%2F5245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

TITLE OF THE INVENTION

“DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON

HAZELCAST CLUSTER ”

2

Deshmukh et al.: DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLU

Published by Technical Disclosure Commons, 2022

Field of the Invention:

The present invention relates to creation and deployment of data structure on Hazelcast cluster

more particularly to a method of dynamic onboarding process of map data structure on

Hazelcast cluster.

Background:

Hazelcast is a distributed computation and storage platform for consistently low-latency

querying, aggregation and stateful computation against event streams and traditional data

sources. Hazelcast can process data on a set of networked and clustered computers that pool

together their random access memories (RAM) to let applications share data with other

applications running in the cluster. Using Hazelcast, you can store and process your data in

RAM, spread and replicate it across a cluster of machines.

In Hazelcast, whenever a new onboarding or change in existing map configuration is required,

the Hazelcast service should get restart to reflect the changes. hazelcast.xml file is used to

deploy the map configuration on Hazelcast cluster. This file is maintained and managed by

Application Support Engineer (ASE) team. Application team collaborates with ASE team to

add or modify map configuration in hazelcast.xml file. The platform team reviews the

modifications and participates in Production deployment. Once the production deployment is

started, the VOCC team takes care of switching data center traffic in the production. The

Middleware team implements the changes in Production. The Application Operations team

performs the post validation in Production. Therefore, updating a map configuration requires a

traffic switch along with support from multiple teams. Further, the middleware team takes

about 2 to 3 hours to implement and validate the change in Production environment for each

datacenter. Hence, there is a need for a system that can reduce the dependency on multiple

teams and traffic switch to create / update a map configuration on Hazelcast cluster.

 Summary:

In order to solve the above problems, the present invention provides a method to dynamically

onboard the map data structure on Hazelcast cluster. To reduce the dependency on multiple

teams for onboarding process of a map data structure, the present invention creates a repository

3

Defensive Publications Series, Art. 5245 [2022]

https://www.tdcommons.org/dpubs_series/5245

and maintains the hazelcast.xml file. The application team can add or modify the hazelcast.xml

for new map onboarding or existing map configuration. Once the changes are done, the

application team generates the RPM build. The platform team reviews the changes and deploy

the RPM build in Hazelcast cluster. The dynamic onboarding of map on Hazelcast cluster starts

upon installing the RPM build. In this way the present invention reduces dependency on

multiple teams for new onboarding of a data structure in Hazelcast cluster .

The foregoing summary is illustrative only and is not intended to be in any way limiting. In

addition to the illustrative aspects, embodiments, and features described above, further aspects,

embodiments, and features will become apparent by reference to the drawings and the

following detailed description.

Description of Drawings:

The accompanying drawings, which are incorporated in and constitute a part of this disclosure,

illustrate exemplary embodiments and together with the description, serve to explain the

disclosed principles. In the figures, the left-most digit(s) of a reference number identifies the

figure in which the reference number first appears. The same numbers are used throughout the

figures to reference like features and components. Some embodiments of device and/or

methods in accordance with embodiments of the present subject matter are now described

below, by way of example only, and with reference to the accompanying figures.

Figure 1 illustrates the basic working of Hazelcast cluster in accordance with some

embodiments of the present invention.

Figure 2 illustrates the method for new onboarding the map data structure dynamically on

Hazelcast cluster in accordance with some embodiments of the present invention.

Figure 3 illustrates the workflow process of onboarded map data structure on Hazelcast cluster

in accordance with some embodiments of the present invention.

It should be appreciated by those skilled in the art that any block diagrams herein represent

conceptual views of illustrative systems embodying the principles of the present subject matter.

Similarly, it will be appreciated that any flowcharts, flow diagrams, state transition diagrams,

pseudo code, and the like represent various processes which may be substantially represented

4

Deshmukh et al.: DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLU

Published by Technical Disclosure Commons, 2022

in computer readable medium and executed by a computer or processor, whether or not such

computer or processor is explicitly shown.

Detailed Description:

In the present document, the word "exemplary" is used herein to mean "serving as an example,

instance, or illustration." Any embodiment or implementation of the present subject matter

described herein as "exemplary" is not necessarily to be construed as preferred or advantageous

over other embodiments.

While the disclosure is susceptible to various modifications and alternative forms, specific

embodiment thereof has been shown by way of example in the drawings and will be described

in detail below. It should be understood, however that it is not intended to limit the disclosure

to the particular forms disclosed, but on the contrary, the disclosure is to cover all

modifications, equivalents, and alternatives falling within the scope of the disclosure.

The terms “comprises”, “comprising”, or any other variations thereof, are intended to cover a

non-exclusive inclusion, such that a setup, device, or method that comprises a list of

components or steps does not include only those components or steps but may include other

components or steps not expressly listed or inherent to such setup or device or method. In other

words, one or more elements in a system or apparatus proceeded by “comprises… a” does not,

without more constraints, preclude the existence of other elements or additional elements in

the system or method.

In the following detailed description of the embodiments of the disclosure, reference is made

to the accompanying drawings that form a part hereof, and in which are shown by way of

illustration specific embodiments in which the disclosure may be practiced. These

embodiments are described in sufficient detail to enable those skilled in the art to practice the

disclosure, and it is to be understood that other embodiments may be utilized and that changes

may be made without departing from the scope of the present disclosure. The following

description is, therefore, not to be taken in a limiting sense.

Embodiments of the present invention are directed to methods for dynamically onboard the

map data structure on Hazelcast cluster. The method includes creating the repository for xml

file. The method also includes creating/updating the map xml and generating feature branch

5

Defensive Publications Series, Art. 5245 [2022]

https://www.tdcommons.org/dpubs_series/5245

RPM build for the xml file. The method further includes installing the feature branch RPM

build in Hazelcast Develop cluster to onboard the map dynamically.

Figure 1 illustrates the basic working of Hazelcast cluster in accordance with some

embodiments of the present invention. Figure 1 comprises of multiple servers (101a, 101b,

101c) each containing an application (102a,1012b, 102c). A database (104) stores the data

used by the multiple applications present in the multiple servers. The applications (102a,1012b,

102c) retrieve the data from the Hazelcast (103). The Hazelcast (103) is a distributed memory

cache that is present in the memory of a system. The working principle of Hazelcast (103) is

similar to cache which stores the data for quick retrieval.

In an embodiment, the working principle of Hazelcast is explained through an example. The

application (102a) retrieves the data (A) from the database (104). The data (A) is stored in the

Hazelcast (103), and same data (A) can be accessed by the application (102b) and application

(102c) without accessing the database for retrieval of data (A). The Hazelcast (103) provides

distributed data along the applications for quick retrieval of data.

Figure 2 illustrates the method for new onboarding the map data structure dynamically on

Hazelcast cluster in accordance with some embodiments of the present invention. The method

includes creating a repository for hazelcast xml file at step (201), creating or updating map

configuration in xml file at step (202), generating the rpm build for xml file at step (203),

installing the rpm build in the Hazelcast cluster at step (204), performing the sanity test at step

(205) and merging the changes and releasing the build of the xml file at step (206).

In an embodiment, the steps (201) – (205) are performed by the application team. The step

(206) is performed by the platform team.

In another embodiment, the application team maintains the xml file in the created repository at

step (201). In another embodiment, the application team creates a new map configuration of

the xml file / modifies the existing map configuration of the xml file.

In another embodiment, the RPM build is generated for the created/modified xml file. The

RPM build is a command-line driven package management system that install, uninstall, verify,

query, and update the software packages.

6

Deshmukh et al.: DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLU

Published by Technical Disclosure Commons, 2022

In another embodiment, the rpm build is installed in the Hazelcast cluster and performs the

sanity test. The sanity test is performed to check whether the changes / modification made in

the code are working as expected or not. Once the sanity test is cleared, the modifications made

are merged and build of the build new configured map is released.

In another embodiment, the released build is installed on the managed environment with the

help of ASE team and the Middleware team.

Figure 3 illustrates the workflow process of onboarded map data structure on Hazelcast cluster

in accordance with some embodiments of the present invention. The client (301) accesses the

map using an application id. When the Hazelcast cluster (302) receives the request of accessing

the map from a client (301), the hazelcast cluster (302) checks the map permission associated

with the application id at the database (303) and returns the permission of access associated

with the requested application id to the hazelcast cluster (302). If the map permission is

associated with the application id in the hazelcast cluster (302) then the client (301) is

authorized to perform the map operation. The Hazelcast cluster (302) creates a session for the

client and sets the map permission at cluster level for the requested application id.

In another embodiment, the hazelcast cluster (302) onboards the map dynamically using App

onboard rpm. In another embodiment, the application id is uploaded in the database (303) using

credential uploader rpm.

Therefore, in this way even when a map configuration is updated, the app on board rpm

dynamically onboards the updated map configuration on the Hazelcast cluster without restart

of the cluster.

Advantages:

 By creating the repository for maintaining the xml file, the multiple team efforts,

manual changes, and traffic switch are avoided in Production. Further application team

can create or modify the xml file without depending on the ASE team.

 The cluster restart is not required upon each new map configuration by building the

rpm for xml file.

7

Defensive Publications Series, Art. 5245 [2022]

https://www.tdcommons.org/dpubs_series/5245

Abstract:

The present invention provides a method to dynamically onboard the map data structure on

Hazelcast cluster. To reduce the dependency on multiple teams for onboarding process of a

map data structure, the present invention creates a repository for the xml file. The application

team can create or modify the xml file for new map onboarding or existing map configuration.

Once the changes are made, the application team generates the RPM build for the xml file. The

platform team reviews the changes and deploy the RPM build in Hazelcast cluster. The

dynamic onboarding of map on Hazelcast cluster starts upon installing the RPM build. In this

way the present invention reduces dependency on multiple teams for new onboarding of a data

structure in Hazelcast cluster.

�

8

Deshmukh et al.: DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLU

Published by Technical Disclosure Commons, 2022

Server 2 (101b) Server 3 (101c) Server 1 (101a)

Application 1

(102a)

Application 2

(102b)

Application 3

(102c)

Database

(104)

Hazelcast (103)

Figure 1

9

Defensive Publications Series, Art. 5245 [2022]

https://www.tdcommons.org/dpubs_series/5245

Creating repository

Creating/modifying map xml file

Generating RPM build

Installing RPM build in Hazelcast cluster

Merging the changes and providing the release build

Performing the sanity test

Figure 2

201

202

203

204

205

206

10

Deshmukh et al.: DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLU

Published by Technical Disclosure Commons, 2022

Client

(301)

Database

(303)

Hazelcast

Cluster

(302)

App

onboard

rpm

Hazelcast

app

credential

uploader rpm

Figure 3

11

Defensive Publications Series, Art. 5245 [2022]

https://www.tdcommons.org/dpubs_series/5245

	DYNAMIC ONBOARDING PROCESS OF MAP DATA STRUCTURE ON HAZELCAST CLUSTER
	Recommended Citation

	IP65413_ 6237_ Specification
	IP65413_ 6237_ Drawings

