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ABSTRACT 

Traditional means of on-farm weed control mostly rely on manual labor. This process 

is time-consuming, costly, and contributes to major yield losses. Further, the conventional 

application of chemical weed control can be economically and environmentally inefficient. 

Site-specific weed management (SSWM) counteracts this by reducing the amount of chemical 

application with localized spraying of weed species.  

To solve this using computer vision, precision agriculture researchers have used remote 

sensing weed maps, but this has been largely ineffective for early season weed control due to 

problems such as solar reflectance and cloud cover in satellite imagery. With the current 

advances in artificial intelligence, past research on weed detection in SSWM has used a large 

deep convolutional neural network (DCNN) for weed detection. These models are, however, 

computationally expensive and prone to overfitting on smaller datasets. Consequently, although 

DCNNs have shown continuous accuracy improvements in research settings, they remain 

relatively unused for practical purposes in precision agriculture due to their large number of 

parameters and the difficulty to implement on resource-constrained devices.  

Accordingly, this research investigated the use of model compression to reduce 

complexity and increase the efficiency of DCNNs in low-resource conditions. The proposed 

approach involves stacking two pre-trained DCNN models – Xception and DenseNet – to 

reduce the effect of performance degradation during the model compression process. A 

performance evaluation of the resulting XD-Ensemble indicated that the model outperformed 

both state-of-the-art DCNNs and a lightweight EfficientNet-B1 model in a resource-constrained 

environment in terms of prediction accuracy, model size, and inference speed. The current study 
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contributes to enhancing viability while minimizing the environmental footprint of agricultural 

technologies as well as maximizing their production efficiency.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Problem 

Early season plant growth is essential to agronomic production (López-Granados, 2011). 

The first few weeks of cropping are the most important time to eliminate competition between 

food crops and weeds for water and nutrients. Research shows that effective weed control at this 

stage is essential to increased yield in some crops (Patel et al., 2018). Traditionally, weed control 

has been done using manual labor, a process that has proven to be time-consuming, costly, and a 

major contributor to yield losses (Gianessi, 2009).  

The preferred method for managing weeds in the last 50 years has been chemical weed 

killers, such as herbicides and pesticides, as they can kill up to 99% of targeted weeds (Bastiaans 

et al., 2008; H. Wang et al., 2018). However, the continuous employment of chemical weed killers 

undermines the United Nations’ Sustainable Development Goals (SDG). Specifically, Goal 12 

targets sound management of chemical release to the environment and harnessing technology for 

more sustainable production (UN, 2015). Often, the drawback and most criticized aspect of 

chemical weed control as a current cropping practice is their apparent harmfulness to the 

environment. Chemicals like alachlor, ametryn, and atrazine used in commercial pesticide 

products have been found near and in water resources adjacent to cropping areas due to their 

persistence and low biodegradability (Furtado et al., 2019; Moura et al., 2018; Tian et al., 1999). 

As a result, there are strong reasons to demand safer cropping systems with minimal environmental 

consequences. 
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In the last few decades, gains made to reduce the environmental effect of cropping systems 

have resulted in a substantial acceptance of agricultural information technology (AIT) – sometimes 

called smart farm technology (SFT) or variable rate technology (VRT) – as part of everyday 

agricultural practices (Balafoutis et al., 2017; Kernecker et al., 2020; Y. Wang et al., 2019; Wolfert 

et al., 2014a). These technologies have resulted in an agricultural paradigm known as Precision 

Agriculture (PA). Since its introduction in the 1980s, PA – defined as a practice that manages the 

spatial and temporal variability associated with agricultural soil, crops, and livestock for improved 

performance and sustainability with the aid of technology and green information systems 

(Balafoutis et al., 2017; Dedrick, 2010; Kernecker et al., 2020; Y. Wang et al., 2019; Wolfert et 

al., 2014b) – has made significant progress towards improving the sustainability of agriculture 

(Robert, 2002). Using methods such as site-specific weed management (SSWM), the practice can 

reduce the environmental impact of weed management through precise weed treatments that 

follow a four-step cyclical process consisting of 1) weed monitoring or detection, 2) management 

planning for action on weeding, 3) execution of the weed control method and 4) evaluation of 

performance (López-Granados, 2011). Therefore, as the foundation and precondition for SSWM, 

the importance of weed detection to the practice cannot be understated. 

Commercial producers and researchers of SSWM equipment have sought methods to 

minimize the environmental effects of herbicide applications by prescribing weed killers according 

to their density and species. SSWM relies on several sensing technologies for weed detection. The 

most effective ones can be grouped into two main categories: aerial remote sensing and ground-

based methods (López-Granados, 2011; Wang et al., 2019). While the aerial methods are effective 

for map-based SSWM in large areas (Wang et al., 2019), they suffer from several drawbacks such 

as their inability to detect small variations in reflectivity of seedlings, the need for higher resolution 
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images when weeds are distributed in small patches, the interference in detection caused by the 

reflectivity of soil background, and the fact that they are largely non-real-time (López-Granados, 

2011; Thorp & Tian, 2004; Wang et al., 2019).  

In this sense, proximal sensing has been posited as the best method for site-specific weed 

control especially ones that rely on ground-based computer vision (Gerhards, 2010). Even then, 

the problem for such systems is that at the early stages of plant growth, crops and weeds are almost 

indistinguishable in traditional pixel-based classification systems, and as such, rule-based methods 

that rely on edge detection for leaf shape and texture recognition are used (Golzarian & Frick, 

2011). Feature extraction in such systems is also not robust enough to be generalized to different 

farming scenarios. 

The recent resurgence of artificial intelligence (AI) and machine learning (ML) has resulted 

in phenomenal results in various problem domains. An ML technique known as deep convolutional 

neural networks (DCNN) has been successful because they learn to distinguish complex inherent 

patterns within images often difficult to observe otherwise (Simonyan & Zisserman, 2014). The 

success of the AlexNet in the ImageNet Large Scale Visual Recognition Challenge 2012 – 

achieving a top-5 test error rate of 15.3% as compared to 26.2% achieved by the second-best entry 

(Krizhevsky et al., 2012) –has resulted in a substantial increase in the body of research that 

employs DCNNs across several disciplines and industries. For SSWM, past research has 

successfully employed DCNNs to distinguish various crops in different growth stages using 

different DCNN models and methods (Ashqar et al., 2019; Dyrmann et al., 2016; Milioto et al., 

2017; Pantazi et al., 2017; Sørensen et al., 2017; Xinshao & Cheng, 2015). 
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1.2 Statement of the Problem 

Although the acceptance of technology in farming has been promising, PA suffers from a 

slow adoption rate (Lowenberg-DeBoer & Erickson, 2019). Failure to adopt agricultural 

technology has been attributed to concerns about complexity and high investment costs (Kernecker 

et al., 2020). Especially for most rural dwellers and small-scale farmers, the cost of buying and 

servicing both hardware and software can be a significant challenge that hampers adoption (Misaki 

et al., 2018; Saidu et al., 2017). Sustainable technology adoption must not affect farm profitability 

and efficiency (Tey & Brindal, 2012; Wolfert et al., 2017). As such, there is a persistent need to 

pursue definitive ways to maintain or lower costs associated with improving current systems with 

new technology. 

While DCNNs are a good solution to increasing the accuracy of SSWM equipment, they 

fall short in terms of sustainability. They are complex and have high computational and energy 

demands. Increasingly powerful hardware systems are being developed to aid DCNN 

implementation but contribute to the cost of their commercial acceptance and use. The type of 

weed control systems used by these practices are often resource-constrained (Steward et al., 2019). 

Hence, the cost of replacing smaller edge, mobile, and resource-constrained devices with powerful 

hardware could be a barrier to their adoption and has profound implications for practice (Santos et 

al., 2020; A. Wang et al., 2019). 

Consequently, a new set of mobile-sized models have been developed specifically for 

resource-limited systems and inference on the edge. Lightweight models such as the MobileNet, 

ShuffleNet, ANTNets, and some versions of the EfficientNets were developed specifically to 

address the issue of power efficiency and portability of DCNNs for embedded platforms (Khan et 

al., 2019). However, as Table 1 indicates, a comparison of these lightweight models with state-of-
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the-art large DCNN models shows a lower performance as compared to the larger models; with 

very few exceptions including the much older VGGs 16 and 19 DCNNs. For example, the 

EfficientNets study which investigated how scaling network depth, width, and resolution affects 

model performance demonstrated that scaling some or all of these parameters resulted in 

exponentially better performance by compromising the model size and number of parameters (Tan 

& Le, 2019). According to Tan & Le (2019), the Efficietnets B0 and B1 at 29MB and 31MB 

achieve 77.3% and 79.2% Top-1 classification accuracy (CA) on the ImageNet dataset: a result 

that is close or better than some versions of the ResNet and DenseNet state-of-the-art models. 

However, that result also pales in comparison to the 84.3% and 84.4% Top-1 CA of the 

EfficientNet-B6 (166MB) and the EfficientNet-B7 (256MB) respectively. 

An approach known as model compression can reduce the complexity and size of a DCNN 

to just a fraction of the original model. Techniques such as weight pruning in model compression 

can effectively scale down the resource requirements of DCNN models. The caveat is, in some 

instances, there is a performance degradation in the resulting less complex model (S. Han et al., 

2016; Lammie et al., 2019; McCool et al., 2017).  

1.3 Objectives of the Project 

This study proposes a method of increasing the resource efficiency of DCNN models for 

ground-based plant classification systems. Using three different publicly available plant datasets 

in various phenological growth stages, the specific objectives of the current study are to: 

1) Explore the potential of state-of-the-art DCNN architectures and transfer learning for weed 

detection. 

2) Propose stacking two pre-trained DCNN models to reduce the effect of performance 

degradation in model compression. 
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3) Investigate the use of model compression to iteratively prune insignificant model weights 

and reduce computational cost and increase efficiency in low-resource conditions. 

4) Evaluate how the proposed method compares to state-of-the-art DCNNs in a resource-

constrained environment. 

Table 1. Examples of state-of-the-art DCNNs and their performance on the ImageNet dataseta  

Model Top-1 Accuracy Size (MB) 
Time (ms) per 

inference step (CPU) 

Time (ms) per 

inference step (GPU) 

NASNetLarge 0.825 343 344.51 19.96 

Xception 0.79 88 109.42 8.06 

ResNet152V2 0.78 232 107.5 6.64 

InceptionV3 0.779 92 42.25 6.86 

DenseNet201 0.773 80 127.24 6.67 

ResNet152 0.766 232 127.43 6.54 

ResNet101 0.764 171 89.59 5.19 

DenseNet169 0.762 57 96.4 6.28 

ResNet50V2 0.76 98 45.63 4.42 

DenseNet121 0.75 33 77.14 5.38 

ResNet50 0.749 98 58.2 4.55 

NASNetMobile 0.744 23 27.04 6.7 

VGG19 0.713 549 84.75 4.38 

VGG16 0.713 528 69.5 4.16 

MobileNetV2 0.713 14 25.9 3.83 

MobileNet 0.704 16 22.6 3.44 

EfficientNetB7 - 256 1578.9 61.62 

EfficientNetB6 - 166 958.12 40.45 

EfficientNetB5 - 118 579.18 25.29 

EfficientNetB4 - 75 308.33 15.12 

EfficientNetB3 - 48 139.97 8.77 

EfficientNetB2 - 36 80.79 6.5 

EfficientNetB1 - 31 60.2 5.55 

EfficientNetB0 - 29 46 4.91 
a Source: https://keras.io/api/applications/; Excludes performance accuracy of EfficientNets which have been 

evaluated under different conditions in (Tan & Le, 2019);   

1.4 Outline of the dissertation 

This dissertation is organized as follows. Chapter 1 presents a general introduction, states 

the specific problem, introduces the objective, and presents the research approach employed in this 

https://keras.io/api/applications/
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dissertation. Chapter 2 discusses the background of the study and provides a comprehensive survey 

of pertinent literature. Chapter 3 presents the design science methodology, presents the proposed 

approach, and the expected evaluation criteria.  

The results and discussion are presented in Chapters 4 and 5, respectively. Chapter 6 

concludes the dissertation. In these chapters, the dissertation will emphasize the contribution of 

the findings, implications for the use of information systems in fostering sustainable development 

and will provide suggestions for future research. Figure 1 below demonstrates the flow of the 

research. Solid arrows depict the normal flow and dotted red arrows show an alternative flow for 

readers familiar with the foundational concepts used in this study. 

 

Figure 1. The flow of the dissertation  
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CHAPTER 2  

LITERATURE REVIEW 

This chapter presents foundational information for the approach used in this dissertation, 

as well as a summary and understanding of relevant literature. The chapter starts with an 

introduction of the PA management practices; establishes the basic concepts governing artificial 

intelligence; and concludes with the related works that employ DCNN for PA.  

2.1 Precision Agriculture 

Agriculture has grown from the labor-intensive manual practice of the past to a technology-

friendly one that employs satellite technology, drones, robotics, big data, artificial intelligence, 

and other modern technology to provide selective rather than homogenous treatment for farm 

management (Aubert et al., 2012). A definition for PA, as used in this dissertation has been 

established in the prior section, but it should be noted that  PA has been defined in several ways 

since its inception. Some of these definitions have been summarized in Table 2 below.  

The practice has been established in the literature as inextricably linked to sustainability. 

Bongiovanni and Lowenberg-Deboer (2004) in their review discuss this relationship at length and 

show that spatial management employed in PA can reduce environmental impact on sensitive areas 

while still maintaining profitability. In past research, this idea of profitability has been touted as a 

major pull factor for farmers to adopt PA (Wolfert et al., 2017). Even though some AITs in PA 

have been adopted just as fast as any other technology in history and provide the best sustainability 

gains, their use has rarely exceeded 20% of farms (Lowenberg-DeBoer & Erickson, 2019). The 

criticism is that farmers may be convinced of the idea of AITs but not their value. However, PA, 
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associated technologies, and their role in sustainability and climate change remain a recurrent 

theme in news and social media (Lakshmi & Corbett, 2020), and could be key to meeting future 

food demands and ensuring sustainable agriculture (Clercq et al., 2018; Walter et al., 2017; Wolfert 

et al., 2014a). Therefore, it is important to continuously improve these technologies and enhance 

their value. 

Table 2. Precision agriculture definitions over the years 

Reference Definition 

(Pierce et al., 1994) Involves the variable management of soils and crops according to localized 

conditions within a field. 

(Robert et al., 1995) Information and technology-based agricultural management system to 

identify, analyze, and manage site-soil spatial and temporal variability within 

fields for optimum profitability, sustainability, and protection of the 

environment. 

(Stafford, 1996) Targeting of inputs to arable crop production according to crop requirements 

on a localized basis. 

(Lowenberg-DeBoer & Swinton, 

1997) 

Information technology applied to agriculture. 

(Olson, 1998) The application of a holistic management strategy that uses information 

technology to bring data from multiple sources to bear on decisions 

associated with agricultural production, marketing, finance, and personnel. 

(Pierce & Nowak, 1999) The application of technologies and principles to manage spatial and 

temporal variability associated with all aspects of agricultural production for 

the purpose of improving crop performance and environmental quality. 
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(Robert, 2000) It is rather an information revolution, made possible by new technologies 

that result in a higher level, a more precise farm management system. 

(Plant, 2001) Is the management of agricultural crops at a spatial scale smaller than that of 

the whole field. 

2.2 Artificial Intelligence 

The concept and real-world application of artificial intelligence have existed since circa 

1950. The concern for AI has been developing systems that act as rational agents taking the best 

possible action in any given situation (Russell & Norvig, 2010). Cockburn et al. (2018) groups AI 

applications into three interrelated separate streams: symbolic systems such as natural language 

processing and image recognition: have been successfully applied at various levels but also been 

criticized for their inability to be scaled towards commercial solutions; robotics: used heavily for 

industrial automation; and the learning approach: that given some inputs can predict the presence 

of particular physical or logical events. These streams are not so far from the sub-specialties 

proposed by Michael Mills of Neota Logic (Martin, 2016). Similar to the streams proposed by 

Cockburn et al. (2018), AI is divided into robotics, cognition tools such as Natural Language 

Processing, and Vision systems used to capture and synthesize text, voice, and images. ML is a 

subset of AI consisting of several different techniques such as neural networks (NN) and deep 

learning (DL) used to find previously unknown relationships in data (Cai et al., 2020). Figure 2 

shows the relations between AI, ML, NN, and DL. 

By employing ML techniques, AI provides the needed analytic capabilities that support 

Data-Driven Decisions (DDD) (Bengio, 2009, 2013; Najafabadi et al., 2015). As the name implies, 

a data-driven decision is one made by using up-to-date data to analyze the facts in data and draw 

conclusions.  



11 

 

 

Figure 2. Relationship between artificial intelligence (AI) and its subfields. Source: Cai 

et al. (2020)  

2.2.1 Machine Learning, Neural Networks, and Deep Learning 

Machine Learning (ML) methods are a class of AI algorithms that allow computers to learn 

without being explicitly programmed. Several ML algorithms have been developed in the past. 

They can be grouped by their learning styles into supervised, unsupervised, semi-supervised, or 

reinforcement learning algorithms. They could also be categorized based on their similarity to each 

other in task performance such as instance-based (e.g. k-Nearest and Support Vector Machines), 

regression (e.g. Linear and Logistic regressions), decision trees (e.g. Classification and Regression 

Tree and Random Forests), clustering (such as k-Means and Expectation Maximization), Neural 

Networks (e.g. Multilayer Perceptron and Back-Propagation) or Deep Learning (e.g. Recurrent 

Neural Networks and Convolutional Neural Network) (Alpaydin, 2004; Bishop, 2006; Liakos et al., 

2018; Mohri et al., 2018). 

The outcome of ML is often to assist and/or emulate human decision-making. Earlier ML 

research for computer vision tasks centered around the development of improved features to be 
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fed into ML models. For instance, one of the most common approaches for object detection was 

to craft features using edge or gradient orientation approaches such as the Histogram of Oriented 

Gradients (HOG) (Dalal & Triggs, 2005). The resulting feature vector is then fed into a Support 

Vector Machine (SVM) algorithm to enable accurate classification. 

Neural Networks (NN) refer to the ML algorithms modeled after the human brain to 

recognize patterns in data. Figure 3 shows a simple structure of a fully connected neural network. 

Neural networks learn by processing labeled input data supplied during training into feature 

vectors needed to return the correct output. When supplied with enough labeled training data, a 

NN model can process new and unseen inputs and successfully predict accurate results. This 

process is facilitated by hidden layers – a set of mathematical functions designed to produce an 

output specific to an intended result –located between the input and output of the algorithm which 

applies weights to the inputs and directs them through an activation function as an output. There 

are several types of NNs: feed-forward neural networks, recurrent neural networks, convolutional 

neural networks (CNN),  etc. This study focuses on the application of CNNs which is explained in 

the ensuing section.  

 

Figure 3. Structure of a simple neural network. Source: DeepAI.com  
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Deep learning (DL) refers to deep NN algorithms designed to exploit unknown structures 

that exist in data. As demonstrated in Figure 5, they are unlike the traditional ML that requires 

hand-crafted features based on human analysis to be fed into a generic ML algorithm classification. 

DL algorithms are designed to automatically learn multiple levels of representation (Bengio, 

2012). In this way, DL algorithms uncover representations at multiple levels, with higher-level 

learned features expressed in terms of lower-level features (Bengio, 2013). That is to say, DL 

learns by abstracting features across hidden layers starting from low-level features (such as corners 

and edges) to high-level features (such as textures and shapes) allowing the mapping of input unto 

some output classification. While experts have not agreed on where shallow learning ends and 

deep learning begins (Schmidhuber, 2015), it is generally accepted that an ML model such as a 

CNN is considered deep if there is at least one hidden layer between the input and output layer. 

 

Figure 4. Comparing (a) traditional machine learning and (b) deep learning (J. Wang et 

al., 2018) 

2.2.2 Convolutional Neural Networks  

A CNN refers to a type of feed-forward back-propagation neural network aimed at 

processing data in the form of multiple arrays (LeCun et al., 2015). Data that CNNs process 

exceptionally well includes audio (1D), image (2D), and video (3D) data types. Images, for 

example, are mostly composed of three 2D arrays that represent the pixel intensities of the color 
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channels present in an RGB color image. Therefore, CNNs learn from image data by expanding 

them into arrays represented by the pixel intensities (0 to 255) of each point in the image, and 

through the process of deconvolution, separates the image into thousands of relevant features 

which are selected and aggregated into recognizable patterns viable for distinguishing new and 

unseen images. A structure of a simple CNN is depicted in Figure 5 using the AlexNet CNN 

architecture. 

 

Figure 5. Structure of the AlexNet CNN. Source: (X. Han et al., 2017)  

2.2.3 State-of-the-Art Model Architectures 

As indicated earlier in Table 1, several DCNN models have been developed in the 

literature. Khan et al. (2019) summarized some of these DCNNs according to their architectural 

properties:  

Spatial Exploitation Based – These kinds of networks take advantage of spatial filters to 

improve the performance of the network. The VGG is a popular DCNN network that replaced 

previous large filters with a smaller set of 3x3 filters and pushing depth to 16 and 19 layers will be 

used (Simonyan & Zisserman, 2014). The VGG won second place in the ImageNet Challenge 

2014 classification track.  

Depth Based – The basic assumption for these networks is that the deeper the network, the 

better it performs as it improves feature representations. Inception is a model introduced to 
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increase the depth and width of a network while ensuring computational cost remains low 

(Szegedy, Vanhoucke, et al., 2015; Szegedy, Wei Liu, et al., 2015). The InceptionV3 was the 1st 

runner-up of the 2015 ImageNet image classification challenge.  

Width Based Multi-Connection – Instead of the traditional focus on the depth of a 

network, these models increase the width to improve learning. The Xception network introduced 

by Chollet (2017) does this by using depth-wise separable convolutions. It is an extreme version 

of the Inception network that maps the spatial correlations for each output channel separately, and 

then performs a pointwise convolution (1x1) to capture cross-channel correlation. The Xception is 

known to perform better than the Inception on ImageNet. 

Depth and Multi-Path Based – The ResNet which won the ImageNet 2015 challenge in 

image classification, detection, and localization, as well as Winner of MS COCO 2015 detection, 

and segmentation uses both depth and multiple connections (He et al., 2015). It is a very deep 

network that learns the residual representation functions instead of learning the signal 

representations directly.  

Multi-Path Based – To reduce the problem of performance degradation, gradient 

vanishing, or explosion problems, these networks connect one layer to another by skipping some 

intermediate layers while still allowing the flow of information across the layers through multiple 

paths or shortcuts connections. The DenseNet connects each layer to every other layer in a feed-

forward fashion such that feature maps of all preceding layers are used as input to subsequent ones 

(Huang et al., 2018). 

Lightweight -  The EfficientNet DCNN developed by Tan & Le (2019) is a group of DCNN 

models created through neural architecture search to achieve an optimal network in all dimensions 

(width, depth, and resolution) that are more efficient. These, comparatively, lightweight models 
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have achieved better accuracy than past models. The main building block of EfficientNets is the 

mobile inverted bottleneck MBConvs introduced in MobileNetV2 (Sandler et al., 2019). MBConv 

blocks are made up of layers that expand then compress channels so that fewer channels are skip-

connected. They employ depthwise and pointwise separable convolutions to reduce the number of 

trainable parameters by up to a factor of k2. The authors also employ squeeze-and-excitation (SE) 

optimization to improve performance by giving weight to channels instead of treating them 

equally. SE blocks return an output of 1 x 1 x channel. Further, instead of the normal ReLU, the 

authors employ a swish activation to avoid information loss. 

2.2.4 Transfer Learning  

ML models, and in extension DCNNs, are often trained and tested with data taken from a 

single domain where the feature space and probability distribution are the same (or at least similar) 

(Pan & Yang, 2010). As such, and in the case of image datasets, ML models achieve the best result 

when both the training and the test images consist of the same number of classes, captured under 

similar conditions using a similar setup. However, ML models like DCNNs require many samples 

of training data to perform well on a classification task. Unfortunately, high-quality labeled data 

containing several samples of plant images are generally unavailable to researchers.  

In such cases, a DL technique known as Transfer Learning (TL) can be useful. TL allows 

the use of representations learned from previous data to solve problems in new datasets (Pan & 

Yang, 2010; Yosinski et al., 2014). TL is valuable when data unavailability is a problem (such as 

the case with plant datasets) as it allows the domain, tasks, and distributions used in training to be 

different from those used in testing (Pan & Yang, 2010; Yosinski et al., 2014). TL is motivated by 

the fact that humans apply previously learned knowledge to solve new problems faster (Pan & 
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Yang, 2010). Hence, in humans and, in this context, machines, learning to identify an apple could 

make the task of recognizing oranges easier. 

However, for TL to be successful, three main assumptions must be made 1) similar 

tasks/domain, 2) similar data distributions, and 3) a suitable model. When these conditions are not 

sufficiently satisfied, TL could degrade the performance of a DL model resulting in a scenario 

known as negative transfer learning (Pan & Yang, 2010; Rosenstein et al., 2005; Z. Wang et al., 

2019; Zhang et al., 2021). A recent survey by Zhang et al. (2021) demonstrates negative TL as an 

active research area where various theoretical and statistical approaches have been proposed 

especially with regards to secure transfer and domain similarity estimation approaches (for 

example feature statistics, test performance, and fine-tuning).  

As mentioned in Zhang et al. (2021), the fine-tuning approach employed in (Agrawal et 

al., 2014; Donahue et al., 2013) has proved beneficial when adapting a deep learning model from 

a source domain (such as the ImageNet dataset) to a different target domain (in this case plant 

datasets). Fine-tuning takes some weights from a DCNN model trained with a bigger base dataset 

and repurposes (or transfers) the learned features to a new model with a smaller target dataset. 

Specifically, the approach trains a base model using the base dataset, freezes the first several layers 

of the base model (consisting of generic features), and then re-trains the remaining layers with 

randomly initialized weights using the target dataset (to acquire the target-specific features) 

(Yosinski et al., 2014). Intuitively, this works because ML models have generic features near the 

input while the domain-specific features lie much deeper in the model (Yosinski et al., 2014). This 

approach is also effective for combating overfitting (where a large DCNN model learns all the 

nuances in the training data and generalizes poorly to new and unseen data).  
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High-level ML frameworks such as Keras make available pre-trained models from 

successful DCNNs such as the VGG, ResNet, Inception, and DenseNet models (Chollet & others, 

2015). The gold standard is to pre-train these models on massive general-purpose image datasets 

such as ImageNet (http://www.image-net.org/).  

2.2.5 Ensemble Learning 

The principle behind using an ensemble strategy is to allow the models to generalize better 

using a combination of individual predictions from two models or more models (Rokach, 2019). 

It allows the final model to be characterized by the accuracy of each model as well as the diversity 

of predictions that may be present due to architectural differences. Generally, regardless of each 

model’s performance, a model ensemble combines several models in a manner such that each 

model contributes an equal vote to the final prediction. A variation of this approach exists that 

allows the final prediction to be a result of a weighted average of each ensemble members’ 

predictions. This allows well-performing models to contribute more and less-well-performing 

models to contribute less. A third variant of the model ensemble approach is known as the stacked 

generalization ensemble (Ting & Witten, 1999; Wolpert, 1992). This approach which is 

demonstrated in Figure 6, uses two or more base models – also called base learners or level 0 

models – and combines their output as a basis for a meta-learner’s predictions.  

 

Figure 6. The stacking approach used to ensemble the DCNN models 

http://www.image-net.org/
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2.2.6 Model Compression 

Even though DL techniques such as TL often decrease training time and/or increase 

classification accuracy, DL models are known to be overparametrized and hence require 

significant computational resources. This is problematic in certain situations such as in PA where 

computational resources are limited. Model compression solves this problem by compacting 

models by about 35-50x the size of the base model (S. Han et al., 2016). Figure 7 demonstrates a 

model compression pipeline consisting of network pruning, quantization, and Huffman coding.  

 

Figure 7. The three-stage model compression pipeline: pruning, quantization, and 

Huffman coding. Source: (S. Han et al., 2016) 

Model pruning, which goes back to the 1990s (LeCun et al., 2015), refers to the biologically 

inspired algorithms that emphasize further changes to existing models to retain only the bare 

minimum information needed to achieve comparative accuracy to their base model (Kim et al., 

2016; Molchanov et al., 2016; Zhu & Gupta, 2017). Pruning aims to reduce DCNN models by 

eliminating the redundancy and number of operations required for prediction. Further, quantization 

and weight sharing compress the pruned network by reducing the number of bits required to 

represent each weight, and Huffman coding ensures additional data compression. Compressing a 

DCNN model leads to a decrease in the number and complexity computations, as well as the 
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number of memory accesses for inference (the processing time for making a prediction)  

(Choudhary et al., 2020; Lalapura et al., 2021; Voghoei et al., 2018). The compressed model is 

more energy- and resource-efficient due to its smaller size and faster inference speed (S. Han et 

al., 2016). Successfully fitting a compressed model on an embedded or mobile device and 

performing inference at the edge (without a need to transmit data to an intermediary server) has 

some additional advantages. For example, in most embedded systems where compressed models 

have been implemented, training is performed offline; and only inference is run on the embedded 

device. In this case, the compressed model preserves user privacy and reduces the transmission 

cost (Lalapura et al., 2021; Voghoei et al., 2018). Further, the use of offline training (training once 

and deploying to several devices) reduces the resource requirement of the model as compared to 

continuous training (Chen et al., 2020). As demonstrated in Figure 6, all three compression 

techniques under the right conditions retain the prediction accuracy of the original model. 

Regardless, some studies have found that the pruning ratio affects the accuracy of the model 

(Fountsop et al., 2020; Rajaraman et al., 2020). In effect, some reduction in accuracy is possible 

depending on the percentage of the model’s trainable weights that are pruned (Fountsop et al., 

2020; Rajaraman et al., 2020; Tensorflow.org, 2021b). 

2.3 ML for SSWM  

Approaches used by researchers contain a range of ML techniques that can be applied to 

different problems along the value chain of agriculture from pre-production – such as activities 

that take place before actual planting occurs - to post-production – such as harvesting, supply 

chain, and marketing operations. A detailed description of the use of ML techniques in PA 

organized along the agricultural value chain is described in a prior study (El-Gayar & Ofori, 2020). 
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2.3.1 Computer Vision and ML for SSWM 

In PA, weed detection using computer vision is not a novelty. It is an active research area 

that has evaded researchers over the years. Methods proposed by earlier studies used spectral 

imaging techniques available on drones (Goel et al., 2002; Gomez-Casero et al., 2010; Vioix et al., 

2002). The aerial methods are most effective when spraying an entire field is required rather than 

the site-specific, or crop-specific, needs of precision and smart agriculture. Other studies that have 

used other ML techniques with hand-crafted features are listed in Table 3. Manual feature 

engineering can be cumbersome and are not ideal compared to recent methods.  

Table 3. Computer vision and machine learning techniques for weed detection 

Computer Vision Technique Reference 

Multispectral analysis (Goel et al., 2002; Gomez-Casero et al., 2010; Vioix et al., 2002) 

Logistic Regression (Gutierrez et al., 2008) 

Support Vector Machine (Ahmed et al., 2012; Akbarzadeh et al., 2018; Bakhshipour et al., 2017; Binch 

& Fox, 2017) 

K-Nearest Neighbor, (Pallottino et al., 2018; Sabanci & Aydin, 2017) 

Fuzzy Logic (Sujaritha et al., 2017) 

Fully Connected Artificial 

Neural Networks 

(Bakhshipour & Jafari, 2018; Chantre et al., 2018; Pantazi et al., 2016, 2017; 

Torres-Sospedra & Nebot, 2014) 

 

2.3.2 Deep Learning for SSWM 

The literature shows that several studies continue to employ aerial-based methods for weed 

detection (dos Santos Ferreira et al., 2017; Farooq et al., 2019; Lammie et al., 2019; Milioto et al., 

2017; Pantazi et al., 2016; Sørensen et al., 2017). Further, a recent review (Kamilaris & Prenafeta-
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Boldú, 2018) found that all eight (8) deep learning papers for weed detection relied on satellite 

imagery-based remote sensing (Dyrmann et al., 2016; Milioto et al., 2017; Pantazi et al., 2017; 

Sørensen et al., 2017; Xinshao & Cheng, 2015) or unmanned aerial vehicles (dos Santos Ferreira 

et al., 2017; Farooq et al., 2019; Lammie et al., 2019). In terms of classification accuracy (CA), 

some of these studies have been extremely successful. For instance, Pantazi et al. (2017) employed 

hyperspectral imaging for crop and weed species recognition with their classifier able to identify 

100% of crops. Specific to weed species recognition, however, the result varied between 31% and 

98% in their mixture of Gaussians classifier; and 53% and 94% in their self-organizing maps 

classifier. Sørensen et al. (2017), on the other hand, identified weed classes growing among thistles 

with 97% CA. Similarly, Milioto et al. (2017) achieved up to 97.3% accuracy on two test sets of 

10,000 sugarbeet UAV images using DCNNs. 

Recent systematic reviews show that some studies have applied ground-based methods 

(Gikunda & Jouandeau, 2019; Kamilaris & Prenafeta-Boldú, 2018; Liakos et al., 2018; Moazzam 

et al., 2019; Santos et al., 2020; Zala & Patel, 2019)). A focused discussion of these DL 

applications in SSWM is presented below and summarized in Table 4. 

Using ground-based methods, Lee et al. (2015) showed that despite the relatively lower 

precision of the AlexNet CNN in recognizing species from the LifeClef dataset [48% CA achieved 

by Reyes et al, (2015) using TL], the same model could achieve up to 99.50% CA on the 44-specie 

90,000-image dataset sourced from the Royal Botanic Gardens in Kew, England. In this case, 

training from scratch employed in Lee et al. (2015) seems to deliver a significantly better result 

than TL employed in the former (Reyes et al., 2015). However, this could be due to the specific 

characteristics of the datasets used in the two studies. For example, in a different set of studies 

where adaptations of the VGG16 were used for early growth stage classification, Dyrmann et al. 
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(2016) managed 86.2% CA for the 22 species of plant seedlings while both Chavan & Nandedkar 

(2018) and Ashqar et al. (2019) found that using TL helped achieve CA of 93.64% and 99.48% 

respectively on a 12-class Plant Seedling dataset. 

Some authors have demonstrated that combining different models can increase the 

robustness of the overall classification. For example, Xinshao & Cheng (2015) employed the 

PCANet, a CNN comprising of a principal component analysis network combined with a large 

margin classifier, to categorize 91 weed seed types found during the mixing of crop seeds. Their 

algorithm achieved 91% CA. Tang et al. (2017) achieved 92.89% accuracy using k-Means feature 

learning combined with a CNN for soybean classification. Such approaches, despite the 

performance gains, also increase the complexity of the models (Xinshao & Cheng, 2015). 

On the other hand, some authors considered reducing DL model complexity (Lammie et 

al., 2019; McCool et al., 2017). McCool et al. (2017) found that their smaller AgNet model (0.25M 

parameters) could only achieve 85.9% CA as compared to an approach that incorporated a set of 

lightweight models with deep models. Only through this trade-off of memory and speed for 

accuracy were they able to achieve 90.3% CA but with an increased number of parameters (25M 

parameters). Lammie et al.'s (2019) attempts at model compression resulted in a smaller model 

that was 2.86 times faster but degraded CA by 1.17%. 
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Table 4. Recent applications of deep learning for weed detection 

Reference Problem Description Dataset DL model Used 

Result% 

(Top 1 

CA) 

Ground-

based 

Classification 

Transfer 

Learning 

Model 

Compression 

(Xinshao & 

Cheng, 2015) 
Classify 91 weed seed types 

Data set of 3980 images 

containing 91 types of 

weed seeds 

PCANet + LMC 

classifiers 
90.96 x   

(Dyrmann et al., 

2016) 

Classify weed from crop species 

based on 22 different species in 

total  

Data set of 10 413 

images, taken mainly 

from BBCH 12–16 

containing 22 weed and 

crop species at early 

growth stages 

VGG16 (variation) 86.20 x   

(Sørensen et al., 

2017) 

Identify thistle in winter wheat 

and spring barley images  

A total of 4500 images 

from 10, 20, 30, and 50m 

of altitude as captured by 

a Canon PowerShot G15 

camera 

DenseNet 97.00 x   

(Lee et al., 2015) Recognize different plant species Data set of 44 classes  AlexNet 99.60 x   

(Reyes et al., 

2015) 
Recognize different plant species 91 759 images AlexNet 48.60 x x  

(Fawakherji et 

al., 2019) 

Pixel wise segmentation of 

Sunflower using CNN 
500 images Deep-Plant 90.00 x   

(Knoll et al., 

2018) 

Image-Based Convolutional 

Neural Networks for Carrot 

classification 

500 images 
CNN (authors do not 

name) 
93.00 x   

(McCool et al., 

2017) 

Image-Based Convolutional 

Neural Networks for Carrot 

classification 

60 images AgNet 88.90 x  x 

(Tang et al., 

2017) 

K-means feature learning 

accompanied by CNN for 

Soybean classification 

820 Soybean images 
CNN (authors do not 

name) 
92.89 x   

(Milioto et al., 

2017) 

CNN based Semantic 

Segmentation of Sugar beet 
10,000 images 

CNN (authors do not 

name) 
94.74    

(Andrea et al., 

2017) 

Image-Based Convolutional 

Neural Networks for Maize 

classification 

2835 maize and 880 

weed images 
cNET 92.08 x   
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(Chavan & 

Nandedkar, 

2018) 

Classification of 12 plant species 5544 images 

AgroAVNET (hybrid 

model of AlexNet and 

VGG) 

93.64 x x  

(dos Santos 

Ferreira et al., 

2017) 

Weed detection and 

classification in soybean crops 

400 crop images 

captured by the authors 

with UAV 

CaeNet (CAFFE FW) 98.00    

(Farooq et al., 

2019) 

Weed detection and 

classification by spectral band 

analysis 

200 Hyperspectral 

images with 61 bands 
MatConvnet 94.72    

(Lammie et al., 

2019) 

Accelerate a DL approach with 

FPGA for weed classification 

with 8 classes 

18 000 weed images 

from the DeepWeedX 

dataset 

DenseNet 90.08   x 

(Sabzi et al., 

2018) 

Identification of potato plants 

and three different weeds 
4000 potato seedlings 

Hybrid Artificial Neural 

Networks – Harmony 

Search algorithm (ANN-

HS) 

98.38 x   

(Ashqar et al., 

2019) 
Classification of 12 plant species 5608 images VGG16 99.48 x x  
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2.4 Research Gap 

Despite the successes that demonstrate the potential of DL for site-specific weed 

management, the producers of PA equipment have left DCNNs relatively underutilized. A 

criticism of DL and DCNN models is primarily their complexity resulting in the constant need for 

computing power which requires them to be run on high-end computers or graphical processing 

units – CPUs and GPUs (Santos et al., 2020). An added disadvantage to this high computing power 

requirement is that it results in high power consumption to make predictions – which is ineffective 

for sustainable farming (Santos et al., 2020; J. Wang et al., 2018).  

Various literature reviews on the subject of agricultural information technology adoption 

for PA (Lowenberg-DeBoer & Swinton, 1997; Moazzam et al., 2019; Wolfert et al., 2017) have 

demonstrated that farmers are often concerned with their bottom-line, which makes the cost of 

technology a key issue when developing equipment. (Lowenberg-DeBoer et al., 2019), in their 

analysis of the economics of robots and automation, found that although switching from 

conventional mechanization to automated systems could have positive ripple effects on the whole 

farm, such a shift in on-farm mechanics will only gain traction if new systems can prove their cost-

effectiveness. Similarly, Ofori and El-Gayar (Ofori & El-Gayar, 2020b), in their survey of social 

media posts, found that reducing the cost and complexity of agricultural information technologies 

could result in the uptake of technology and the adoption of precision agriculture.  

Hence, for commercial farm equipment producers (and ultimately farmers) to accept and 

adopt DL systems for precision agriculture, research that introduces less complex models to reduce 

the demand for computing resources is required. To an extent, lightweight and mobile DCNN 

models have been able to solve the complexity problem but some work is needed to increase their 

accuracy to the levels of state-of-the-art DCNNs demonstrated in Table 1. In effect, reducing 
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model complexity should not result in performance degradation. This study proposes an approach 

to reducing the complexity of DCNN models for increased efficiency in ground-based plant 

classification systems. The proposed model stacks two DL models to counteract the expected 

effect of performance degradation in a compressed model and performs an empirical benchmark 

of performance runtimes in ss resource-constrained environments. 

From a theoretical perspective, the research demonstrates the potential of leveraging 

transfer learning, model compression, and ensemble learning to reduce the complexity (and thus 

the resource demands) of the resultant model while still maintaining classification performance 

that is comparable to full-size models. By reducing model complexity, the proposed method can 

also have implications for practice as it decreases the demands for computational resources and 

supporting technology infrastructure, thus contributing to the improved likelihood of adoption in 

resources-constrained environments such as precision agriculture   
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CHAPTER 3  

RESEARCH METHODOLOGY 

This section introduces the research methodology employed in this dissertation. A brief 

discussion on Design Science research methodology (DSRM) and how it fits the context of the 

study is presented. This is followed by a description of the artifact proposed in this study.  

3.1 Rational for the Design Science Research Methodology 

Generally, IS research – which deals with the study of artificial phenomena such as 

information systems – is comprised of two complementary paradigms: behavioral and design 

science research (Hevner et al., 2004; March & Smith, 1995). The approach of the behavioral 

science method is geared towards theorizing and justifying, that is to say, understanding and 

predicting phenomena. On the other hand, the design approach is a problem-solving methodology 

that centers on the study, development, and performance of information systems artifacts. These 

innovative artifacts are meant to contribute new knowledge to the body of scientific evidence. 

DSRM offers an appropriate and comprehensive framework to exploit the design process, as an 

opportunity to learn and further understand a problem domain while contributing to the body of 

knowledge (Blakey et al., 2008; Vaishnavi et al., 2004).  

Accordingly, this study ensured that it meets the standards of DSRM by covering all seven 

(7) DSRM guidelines for information systems research posited by Hevner et al. (2004). 

Specifically, the study followed the DSRM process model proposed by Peffers et al. (2007) in 

identifying the issues with the resource intensiveness of DL in SSWM and defining specific 

objectives for a suitable solution. Subsequently, the study designed an artifact using DL and 
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DCNN techniques. The development was done by applying state-of-the-art techniques to compress 

proposed DL models while increasing their generalizability and accuracy. To demonstrate the 

effectiveness, the study evaluated the proposed model using various plant datasets to assess the 

fitness of the model for practice and benchmarked the model runtime in a resource-constrained 

environment. This dissertation and the various publications made from serve as the means to 

communicate the findings of the work, and in extension, contribute to the body of knowledge of 

IS research. 

3.2 Proposed Artifact 

The discussion presented on the state-of-the-art DCNNs in the previous section highlights 

the effects model compression could have on model accuracy, and to an extent why there is a 

general lack of their application to SSWM. In this research, a novel method is proposed to realize 

an artifact for plant recognition. The proposed approach comprises three steps as shown in Figure 

8 and detailed in the following sub-sections. 

   

Figure 8. The proposed approach for a robust DCNN artifact 
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The novelty of the approach lies in the combination of hybrid ensemble deep learning with 

model compression techniques to compensate for the expected performance degradation in a 

compressed model.  

3.2.1 S1: Pre-Training using Transfer Learning  

As step one, several state-of-the-art DCNN models were considered based on their 

architectural properties as explained using the distinctions proposed by Khan et al. (2019) and as 

summarized in the literature review. These models were pre-trained with transfer learning. This 

strategy, which was discussed earlier, allowed retraining higher-level portions of the network 

while keeping the lower levels. The higher levels are chosen for retraining as they are known to 

contain features more specific to the original dataset for which they were trained (Yosinski et al. 

2014). Additionally, the fine-tuning approach is used to combat negative transfer learning. In this 

case, the optimal models for each layer were chosen based on past work in this area (Ofori & El-

Gayar, 2020a, 2021): 

• VGG16: block4_conv2 

• InceptionV3: conv2d_51 

• DenseNet121: conv4 _block 12 1 _conv 

• Xception: block10_sepconv 1 _act 

• ResNet152V2: conv4 _block 14 2 _conv 

• EfficientNet-B1: block5a_expand_conv  

3.2.2 S2: Model Ensemble  

In step two, the stacked generalization model ensemble approach was used for combining 

models. This approach was considered because it has shown superior performance to the weighted 

ensemble and other forms of ensemble approaches in the past. It achieves the best result when, 
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instead of class labels, the class probability predictions of the base models are used as input to the 

meta-learner (Ting & Witten, 1999). It has the added advantage of one-shot inference as compared 

to other ensemble models where a prediction has to be performed for each model in the ensemble. 

In this dissertation, the stacking ensemble model was developed based on the results of 

pre-training. The ensemble was formed by combining the two models from the previous step that 

gave the best trade-off between model accuracy and size. As per the results reported in the 

following chapter, these two models were the DenseNet and Xception models stacked into the new 

artifact as the XD-Ensemble. Figure 9 is an illustration of the XD-Ensemble captured using the 

Netron application (https://netron.app/). It demonstrates the Xception (as the base learner on the 

left of the network) and the DenseNet (as the base learner on the right of the network). These two 

base learners have been concatenated as an input into the meta-learner. In this case, transfer 

learning was used such that the base learners were frozen and the meta-learner was trained to 

predict results based on predictions from both models (taken from each base learner’s softmax 

layer). The meta-learner consisted of three fully connected layers with the final softmax layer used 

for making predictions. It had the following dimensions: 

• Concatenatenation layer: This layer which takes as input a list of tensors and 

returns a single tensor was used to combine the output from the two base models.  

• Dense layer: Two densely connected NN layers of size 512 and 256 with ReLU – 

rectified linear activation function. A final dense softmax layer was added for 

prediction which has a size specific to each dataset.  

.

https://netron.app/
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Figure 9. Snapshot of the stacked XD-Ensemble consisting of an Xception (left-base) and DenseNet121 (right-base) learners 
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3.2.3 S3: Model Compression  

In step three, the resulting meta-learner was subjected to deep compression using S. Han 

et al.'s (2016) three-step pipeline: Pruning, Quantization, and Huffman encoding. Pruning to mask 

out redundant weights; Quantization to reduce the number of bits needed to store each weight 

through weight sharing such that only the effective weights (“codebook”) and resulting indices 

would be stored, and Huffman encoding to reduce the number of bits needed to represent the 

weights in the codebook. 

In this study, model training was started at 50% sparsity with a target of 80% sparsity by 

the end of training. Following this, post-training dynamic range quantization and Huffman’s 

encoding were applied to reduce CPU and hardware accelerator latency, processing, power, and 

model size were performed (Tensorflow.org, 2021a). This was done during conversion to the 

TFLite format by reducing the number of bits needed to store each weight and compressing the 

resulting model in a lossless format .The TFLite format is part of the TensorFlow framework 

optimized for inference on the edge in devices such as mobile, Internet of Things (IoT), and 

embedded systems to measure. TFLite facilitates inference at the edge from five key areas: 

“latency (there's no round-trip to a server), privacy (no personal data leaves the device), 

connectivity (internet connectivity is not required), size (reduced model and binary size) and power 

consumption (efficient inference and a lack of network connections)” (Tensorflow.org, 2021c). 

3.3. Proposed Experiments and Model Evaluation 

3.3.1 Dataset 

Plant Seedling Dataset. Giselsson et al. (2017) introduced the public image database for 

benchmarking plant seedling classification aimed at ground-based weed or species spotting 

(https://vision.eng.au.dk/plant-seedlings-dataset/). The dataset consists of 5,539 images of 

https://vision.eng.au.dk/plant-seedlings-dataset/
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approximately 960 unique plants belonging to 12 species at several growth stages. The plants were 

grown indoors in Styrofoam boxes and images were captured over 20 days. As overlapping plant 

leaves are minimal at the onset of plant growth, where most weed control such as broadcast 

spraying is undertaken, the images were captured in non-overlapping mode. Also, to avoid errors 

that may occur in pixel-based segmentation algorithms, plants were grown in soil that is covered 

in small stones. Six samples from the dataset are presented in Figure 10.  

 

Figure 10. Samples from the Plant Seedling Dataset 

Leafsnap Dataset. This dataset of plant species contains crops gathered across variable 

environmental conditions and light settings (Kumar et al., 2012). The dataset contains 30,866 RGB 

images of plant leaves of over 185 trees found in the Northeastern United States and Canada 

(http://leafsnap.com/dataset/). The images, as demonstrated in Figure 11, were captured by a non-

http://leafsnap.com/dataset/
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profit group (Finding Species) using mobile devices and all descriptions of the 185 plant species 

are botanist-curated. 

 

Figure 11. Samples from the Leafsnap Dataset 

Open Plant Phenotyping Database (OPPD). The dataset authored by Leminen Madsen 

et al. (2020) contains over 315,038 plant objects, representing 64,292 individual plants from 47 

different species (https://vision.eng.au.dk/open-plant-phenotyping-database/). Each species is 

cultivated under three different growth conditions, to provide a high degree of diversity in terms 

of visual appearance. For plant species classification as employed in this dissertation, the 

Monocotyledonous plants (PPPMM) consisting of 9,365 images and Dicotyledonous plants 

(PPPDD) consisting of 37, 990 samples were excluded from the classification task to prevent the 

introduction of noise from the lower taxonomy levels during model training. Overall, 47 plant 

https://vision.eng.au.dk/open-plant-phenotyping-database/
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species (264,899 plant images) were used for evaluating the models. Some examples from the 

dataset are shown in Figure 12. 

 

Figure 12. Samples from the OPPD Dataset 

3.3.2 Data Preparation 

Image resizing. All images were resized to 224x224 pixels to ensure the same aspect ratio. 

Normalization of pixel values. Pixel values range from 0 to 255. However, for DL 

projects, it is good practice to maintain values between 0 and 1. This is done to ensure that all the 

pixels have similar data distribution. Pixel normalization aids the convergence of neural networks. 

To achieve this normalization, all pixel values were divided by the largest pixel value: 255.  

Data augmentation. Since plants do not grow in a single orientation and images could be 

captured from different angles, image augmentation was performed using random horizontal and 

vertical flips (one in two chance for each). Additionally, random image saturation to modify the 
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depth and/or intensity of colors present within each image was applied to simulate bad lighting or 

image quality. A random value between 0 and 2 was used as a saturation factor.  

3.3.3 Training Conditions and Computational Resources 

All DCNN model training carried out in this research was conducted using the Python 

programming language and implemented using the Keras high-level API and a TensorFlow 

backend (Abadi et al., 2016; Chollet & others, 2015). Table 5 presents a summary of the different 

training conditions applied to each dataset. Random seed for both TensorFlow and NumPy was set 

at the beginning of training. The random seed allowed each model to be trained with the same 

distribution of datasets, augmented images, and more. 

Table 5. Training conditions per dataset 

Dataset 

No. of Images 

Classes Mini Batch Sizes Epochs 

Total Training Test 

Plant Seedling 5539 4,524 1,015 12 32 125 

Leafsnap 30,866   24,705 6,161 185 64 65 

OPPD 264,899 212,063 52,836 47 128 35 

 

The development environment was set up on the cloud using Google Colab Pro’s Tensor 

Processing Unit v2 (TPU). The initial learning rate was set at 0.0001. As shown in Table 5, 

different batch sizes and the number of epochs were experimented with: the larger the dataset the 

lower the number of epochs, and the higher the batch sizes. This serves two needs, it encouraged 

1) experimentation of different training scenarios and 2) judicious use of expensive training 

hardware. The datasets were divided into 80% training and 20% test sets. It is worth noting that 

for each dataset, all models were trained using the same parameters – training and test images, 

mini-batch sizes, and number of epochs. 
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To demonstrate that the approach delivers consistent results, a k-fold cross-validation approach 

was used where the training dataset D, was randomly divided into k number of mutually exclusive 

folds (subsets): S1, S2, S3,…, Sk. Consequently, the approach represented visually in Figure 13 and 

summarized below was used to train and validate each model: 

 

Figure 13. Training and testing steps 

Step 1. A five-fold cross-validation approach was used where the training images (80% of the 

original dataset) were randomly divided into five different sets (S1, S2, S3, S4, and S5).  

Step 2. Five training regimes (T1, T2, T3, T4, and T5,) were run for all the models where every 

single model was trained on four out of the five sets with the fifth used as a holdout set to validate 

the model performance. During training, the performance of the model on each holdout set was 

used to tune the learning rate such that the initial rate of 0.0001 was decreased by a factor of 0.5 

after every 3 continuous epochs where the validation accuracy on the holdout set did not improve. 
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Step 3. Once training was complete, each model had five variations (M1, M2, M3, M4, and M5,)  

to be used for evaluation. Each variation was evaluated against the test set. The specific evaluations 

carried out are described below. 

3.3.4 Evaluation 

Evaluation of the proposed ensemble model was carried out against state-of-the-art DCNN 

models which had been fine-tuned with transfer learning as presented in section 3.2.1. Similar to 

the proposed artifact, the last dense layer of each state-of-the-art model meant to predict 1,000 

ImageNet classes was replaced with a new dense layer consisting of the number of classes in each 

dataset. The layers chosen for fine-tuning were the same as those used in pre-training and outlined 

earlier. This means about two-thirds of each model was frozen and the remaining layers were fine-

tuned.  

Overall, the proposed model was evaluated against six models – five state-of-the-art 

models: DenseNet121, Inception V3, ResNet152V2, VGG16, and Xception, as well as a mobile-

sized DCNN with only 7.8M parameters: EfficientNet-B1. For accuracy evaluation, Top-1 

accuracy in percentage was measured. In the state-of-the-art models, accuracy evaluation was 

performed twice to account for both the fine-tuned models without pruning (referred to as vanilla 

in the result) and with pruning (referred to as pruned in results). For the pruned models, the same 

pruning parameters were used such that training started at 50% sparsity with a target of 80% 

sparsity by the end of training. 

Similarly, model size in megabytes (MB) was recorded. First, the vanilla models (M1 to M5 per 

model) were saved in the TFLite format. In the current study, the model metadata was added to 

populate mandatory information such as the class labels, for inference, no further modifications 

were made to the state-of-the-art models.  
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For the prediction runtime measurements, the models were initially benchmarked in the 

Google Colab development environment. The models were then converted to TensorFlow Lite 

(TFLite) to be benchmarked on a low-end android device: a Google Pixel 3 with a Qualcomm 

Snapdragon 845 chipset. The benchmark made use of TFLite’s image classification android 

application (https://www.tensorflow.org/lite/guide/android). This implementation of DCNNs on 

android using the TFlLite Java API was adapted to suit the purposes of the current study (see 

Appendix A). Unit test cases were written to log the inference times of predicting 50 different 

input images using the TFLite models saved from each of the 5 folds. In effect, the average runtime 

of each model was collated by averaging the result of 250 prediction instances. 

Additional Performance Benchmarks: 

Additional performance evaluation was carried out on the XD-Ensemble model to demonstrate 

robustness. The evaluation metrics calculated were: Precision (PC), Recall (RC), and Mean 

Weighted Average f1-scores (S) as shown in equations 1-4 below: 

Precision:     𝑃𝑐 =   
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
                                                          (1) 

Recall:      𝑅𝑐 =   
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
                                                        (2) 

F1-scores:    𝑓1,𝑐 =   2
𝑃𝑐∙𝑅𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
                                                    (3) 

Mean Weighted F1-scores:  𝑎𝑣𝑔𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑓1) =   ∑
𝑁𝑐

𝑁

𝑐
𝑐=1 ∙ 𝑓1,𝑐

𝑃𝑐∙𝑅𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
       (4) 

Where TPc, FPc, and FNc denote True positives, False positives, and False negatives for 

class c respectively. Pc is class-specific precision and Rc is the class-specific recall. N denotes the 

total number of samples. Nc is the number of samples of class c and C is the total number of 

classes.   

https://www.tensorflow.org/lite/guide/android
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CHAPTER 4  

EVALUATION AND ANALYSIS 

This chapter presents a detailed experimental evaluation of the approach that is proposed 

and described in Chapter 3. Using the three datasets, the ensuing discussion presents the proposed 

evaluation benchmarks as pseudo-objectives to validate the practicality of the approach by 

showing a) accuracy measures to demonstrate that the proposed approach achieves prediction 

accuracy comparable to state-of-the-art DCNN models in similar training conditions (Figures 14-

16), b) model size measurements showing the compression achieved by employing the proposed 

approach, and c) runtime benchmarks to demonstrate that the approach can achieve faster inference 

times compared to state-of-the-art DCNN models. 

4.1. Model Accuracy Measures 

4.1.1 Accuracy on the Plant Seedling Dataset 

As demonstrated in Table 6, the first experiment employed the Plant Seedling dataset 

consisting of 12 plant seedlings and weed classes. When state-of-the-art models were fine-tuned 

with TL, the models delivered a consistent performance baseline that averaged 92.44%±1.70. The 

DenseNet delivered the best performance with an average of 93.95%±0.34, followed by the 

Xception at 93.62%±0.36. The rest were the Inception at 93.32%±0.47, the ResNet at 92.00±0.48, 

and the VGG at 89.30±1.10.  

In a second scenario where the same models were pruned during training, there was a drop 

in prediction accuracy of ≈2% with an average of 90.38%±2.23. The pruning schedule affected the 

DenseNet the least with only an average drop of 0.06%. However, the remaining models had a 
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more dramatic accuracy loss: The ResNet lost 0.59%, the VGG lost 2.3%, the Xception lost 3.35% 

and the Inception model experienced the highest loss in accuracy: 4.26%.  

Comparatively, the EfficientNet lightweight model’s accuracy was 93.97%. Although this 

was higher than the accuracy of the state-of-the-art models, the proposed XD-Ensemble had an 

even better accuracy of 94.33±0.63 with a minimum of 93.30% in the first fold and a maximum of 

95.07% in the fifth fold.  

Table 6. Experimental result – Plant Seedling dataset 

Model Version 

Accuracy 

Avg (μ) Std (σ) 

M1 M2 M3 M4 M5 

DenseNet121 

Pruned 0.94680 0.93202 0.93990 0.93005 0.94581 0.93892 0.00688 

Vanilla 0.93300 0.94089 0.94286 0.93990 0.94089 0.93951 0.00339 

Inception V3 

Pruned 0.88867 0.87783 0.88867 0.90837 0.88966 0.89064 0.00987 

Vanilla 0.93695 0.93596 0.93596 0.92414 0.93300 0.93320 0.00472 

ResNet152V2 

Pruned 0.91034 0.91330 0.91626 0.91330 0.91724 0.91409 0.00245 

Vanilla 0.91429 0.91527 0.92709 0.92020 0.92315 0.92000 0.00480 

VGG16 

Pruned 0.87882 0.85616 0.88966 0.86502 0.87389 0.87271 0.01148 

Vanilla 0.88276 0.89655 0.90936 0.89754 0.87882 0.89300 0.01102 

Xception 

Pruned 0.89655 0.90345 0.90837 0.90246 0.90246 0.90266 0.00376 

Vanilla 0.93498 0.93103 0.93498 0.94187 0.93793 0.93616 0.00360 

EfficientNet-B1 0.93757 0.93600 0.94035 0.94222 0.94244 0.93972 0.00255 

XD-Ensemble 0.93300 0.93990 0.94778 0.94483 0.95074 0.94325 0.00625 
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Figure 14. XD-Ensemble Validation Accuracy and Loss on Plant Seedling Dataset 

4.1.2 Accuracy on the Leafsnap Dataset 

Table 7 shows experiments conducted with the Leafsnap dataset which consists of 185 tree 

species as identified by photographs of their leaves. The full-sized models averaged 94.83%±0.01. 

The highest accuracy was attained by the DenseNet with an average of 96.06%±0.11, this was 

followed closely by the Xception at 95.60%±0.11, the ResNet at 94.92±0.12, the Inception at 

94.42%±0.14, and finally the VGG at 83. 08±0.24.  

Pruning models resulted in a ≈1.5% drop in overall model accuracy at 93.41%±1.52. Once 

again, the DenseNet had the least average drop in prediction accuracy of 0.39%. The prediction 
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accuracy of the ResNet model dropped by 0.86%. The remaining three models, VGG, Xception, 

and Inception, also dropped 1.70%, 1.97%, and 2.50% respectively.  

In this case, EfficientNet had an average accuracy of 95.195 and the XD-Ensemble 

achieved an accuracy of 95.97±0.01. In this set of results, the XD-Ensemble was 0.09% lower than 

the best performing DenseNet model. However, that result was also 0.30% higher than the best 

performing pruned model. 

Table 7. Experimental result – leafsnap dataset 

Model Version 

Accuracy 

Avg (μ) Std (σ) 

M1 M2 M3 M4 M5 

DenseNet121 

Pruned 0.95358 0.95958 0.95764 0.95536 0.95715 0.95666 0.00205 

Vanilla 0.96056 0.96251 0.95894 0.96072 0.96023 0.96059 0.00114 

Inception V3 

Pruned 0.92371 0.92745 0.91966 0.91690 0.91365 0.92027 0.00488 

Vanilla 0.94725 0.94416 0.94335 0.94546 0.94595 0.94524 0.00136 

ResNet152V2 

Pruned 0.94483 0.94127 0.94317 0.93378 0.93994 0.94060 0.00379 

Vanilla 0.94774 0.94839 0.95114 0.94871 0.94985 0.94916 0.00120 

VGG16 

Pruned 0.90927 0.92258 0.91316 0.91219 0.91186 0.91381 0.00457 

Vanilla 0.93150 0.93280 0.92858 0.92745 0.93361 0.93079 0.00239 

Xception 

Pruned 0.93232 0.93605 0.93524 0.93848 0.93897 0.93621 0.00241 

Vanilla 0.95553 0.95796 0.95618 0.95472 0.95536 0.95595 0.00111 

EfficientNet-B1 0.95510 0.95274 0.95192 0.95067 0.94932 0.95195 0.00195 

XD-Ensemble 0.95803 0.96786 0.96397 0.94873 0.96624 0.95965 0.00697 
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Figure 15. XD-Ensemble Validation Accuracy and Loss on Leafsnap Dataset 

4.1.3 Accuracy on the Open Plant Phenotyping Dataset 

In the last experiment on model accuracy, the OPPD consisting of 47 individual plant 

seedlings was utilized. Table 8 is a summary of the experimental results achieved per model in 

each of the five folds. The average accuracy of the full-sized models was 95.70%±1.08. The model 

with the highest accuracy on this dataset was the Xception, 96.46%±0.14, beating the performance 

of the DenseNet by 0.04%. The Inception and ResNet models achieved similarly high performance 

distinguishing the classes of this dataset with an average accuracy of 96.02%±0.20, and 96.01±0.11 

respectively. The worst accuracy for a vanilla model was the VGG16 recorded at 93.56%±0.07.  
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The pruned models had ≈1.8% lower accuracy than their vanilla versions with a drop in 

overall model accuracy to 93.89%±2.75. The DenseNet had the highest sparse accuracy of 

96.15%±0.06, followed by 95.59%±0.12 achieved by the ResNet, then 95.37%±0.11 achieved by 

the Xception, 93.73%±0.22 by the Inception, and 88.63%±0.10 by the VGG.  

The proposed XD-Ensemble achieved an accuracy of 97.02±0.07 which was 0.56% higher 

than the maximum average accuracy achieved by the best performing model on this dataset: the 

full-sized Xception model. Additionally, that result was also higher than the EfficientNet’s  

96.65% average prediction accuracy. The minimum accuracy of the XD-Ensemble was 96.92% 

on fold 1 and the maximum accuracy of 97.12% was recorded on fold 3. 

Table 8. Experimental result – OPPD dataset 

Model Version 

Accuracy 

Avg (μ) Std (σ) 

M1 M2 M3 M4 M5 

DenseNet121 

Pruned 0.962526 0.960803 0.961333 0.961276 0.961674 0.961522 0.00057 

Vanilla 0.962715 0.963983 0.964835 0.964002 0.965592 0.964225 0.00096 

Inception V3 

Pruned 0.934458 0.939984 0.935063 0.939265 0.937827 0.937319 0.00221 

Vanilla 0.960444 0.959857 0.961977 0.96209 0.956677 0.960209 0.00197 

ResNet152V2 

Pruned 0.954898 0.955106 0.955012 0.956583 0.95787 0.955894 0.00116 

Vanilla 0.959441 0.960765 0.96192 0.95874 0.959441 0.960061 0.00114 

VGG16 

Pruned 0.88646 0.885211 0.886857 0.887823 0.885306 0.886331 0.00098 

Vanilla 0.935764 0.935782 0.934458 0.935612 0.936558 0.935635 0.00067 

Xception 

Pruned 0.954368 0.954822 0.954406 0.953043 0.951756 0.953679 0.00113 

Vanilla 0.965024 0.966898 0.964494 0.964083 0.962696 0.964639 0.00137 

EfficientNet-B1 0.96658 0.96751 0.96603 0.96879 0.96366 0.96652 0.00171 

XD-Ensemble 0.96917 0.96957 0.97053 0.97116 0.97074 0.96917 0.00074 
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Figure 16. XD-Ensemble Validation Accuracy and Loss on OPPD Dataset 

4.2. Model Size Measurements 

4.2.1 Model Sizes for Plant Seedling Classification 

When trained to classify the Plant Seedling dataset, the TFLite model sizes of the state-of-

the-art models were 226.6MB for the ResNet, 85.44MB for the Inception, 83.91MB for the 

Xception 57.29MB for the VGG, and 29.94MB for the DenseNet. The EfficienNet model was also 

27.71MB in mobile form while the XD-Ensemble measured 28.9MB. 
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Table 9. Model size measurements a 

Model Dataset 
Mobile Size (TFLite) 

Avg (μ) Max Min 

VGG16b 

Seedlings 57.290 57.290 57.290 

Leafsnap 73.847 73.847 73.847 

OPPD 60.640 60.640 60.639 

Xceptionb 

Seedlings 83.914 83.914 83.913 

Leafsnap 150.141 150.141 150.141 

OPPD 97.312 97.313 97.312 

ResNet152V2b 

Seedlings 226.607 226.608 226.605 

Leafsnap 292.834 292.835 292.832 

OPPD 240.004 240.004 240.004 

InceptionV3b 

Seedlings 85.436 85.437 85.434 

Leafsnap 119.226 119.226 119.224 

OPPD 92.272 92.273 92.270 

DenseNet121b 

Seedlings 29.941 29.942 29.939 

Leafsnap 62.008  62.009 62.007 

OPPD 35.594 35.594 35.593 

EfficientNet-B1b 

Seedlings 27.708 27.710 27.708 

Leafsnap 69.102 69.102 69.100 

OPPD 36.083 36.082 36.084 

XD-Ensemble 

Seedlings 28.895 28.895 28.893 

Leafsnap 54.989 54.990 54.987 

OPPD 35.009 35.009 35.007 
a Size in megabytes and standard deviation < 0.01 
b Size measure resulting from converting the vanilla model to TFLite format 

 

4.1.2 Model Sizes for Leafsnap Classification 

Compared to the other datasets, the models trained to classify images from the Leafsnap 

dataset had the highest model sizes due to the greater number of classes in the dataset. In a similar 

order, the ResNet had the highest size of 292.83MB. The remaining models were measured as 

150.14MB for the Xception, 119.23MB for the Inception, 73.85MB for the VGG, and 62MB for 

the DenseNet. The EfficientNet maintained its comparatively smaller size at 69.1MB and the 

compressed stacked XD-Ensemble measured 54.98MB. 
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4.1.3 Model Sizes for Open Plant Phenotype Classification 

Models used in the OPPD dataset classification followed the same model size trends 

measured in the two previous experiments. The ResNet was recorded at 240MB, the Xception was 

97.31MB, followed by the Inception, VGG, and DenseNet at 92.27MB, 60.64MB, and 35.6MB 

respectively. The lightweight EfficientNet was 36.08MB and the proposed XD-Ensemble 

measured 35.01MB in HDF5. Table 9 presents a summary of the model size measurement. 

4.3. Model Runtime Evaluation 

4.3.1 Experimental Runtime - Plant Seedling Classification 

The runtime benchmarks were generally dependent on the model rather than the platform. 

While the ResNet and VGG were noticeably faster on the cloud (608ms and 600ms) than on the 

android device (703ms and 1003ms), the Xception model which is the second-largest model in 

terms of its byte size was only, on average, a fraction of a millisecond faster on the cloud 

(291.81ms) than when it was ported to the mobile device (292.32ms). The Inception and DenseNet 

models demonstrated slightly better runtimes on the mobile device with runtimes of 182ms and 

196ms, as opposed to the cloud benchmark results of 190ms and 253ms respectively. Meanwhile, 

the EfficientNet lightweight model was benchmarked at 75ms and 57ms in the cloud and the 

android environments respectively. 

Comparatively, the XD-Ensemble demonstrated remarkably improved runtimes on the 

mobile device after model compression such that it was on average ≈8x faster (58ms) than the 

benchmark results of the uncompressed XD-Ensemble model on the cloud CPU (486ms) and about 

≈4x faster than the fastest benchmark results of the mobile models. A summary of the results are 

presented in Table 10 below 
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Table 10. Runtime experiments – Plant Seedling dataset 

Model Platform Avg (μ) Max Min Std (σ) 

DenseNet121 

Colab 253.219 256.417 250.232 2.490 

Android 196.480 211.000 195.000 2.729 

InceptionV3 

Colab 190.936 191.883 189.719 0.768 

Android 182.900 194.000 181.000 1.803 

ResNet152V2 

Colab 608.244 612.116 598.582 4.914 

Android 703.340 708.000 702.000 1.518 

VGG16 

Colab 599.813 611.086 590.319 6.624 

Android 1003.102 1022.000 988.000 7.181 

Xception 

Colab 291.811 293.254 290.485 0.957 

Android 292.320 298.000 291.000 1.476 

EfficientNet-B1 

Colab 74.520 79.975 71.757 2.276 

Android 57.480 60.000 55.000 1.410 

XD-Ensemble 

Colab 486.226 489.196 483.387 2.307 

Android 57.860 61.000 57.000 0.775 

 

4.3.2 Experimental Runtime - Leafsnap Classification 

As shown in Table 11, the second set of benchmark results on the Leafsnap dataset was 

similar to the results achieved in the first set of experiments described above. The Xception, 

ResNet, and VGG were again faster on the cloud than on the mobile device with a benchmark 

result of 297ms, 611ms, and 600ms (on the cloud); and 298ms, 714ms, and 1007ms (in the android 

environment), respectively. The DenseNet and Inception were also benchmarked at 259ms and 

200ms (on the cloud) and 199ms and 186ms (on the android device), respectively. Measured in 

both environments, the EfficientNet recorded 82ms and 65ms average runtimes. 
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The XD-Ensemble remained on average ≈8x faster (62ms) in the resource-constrained 

android environment than its full-sized version on the cloud (496ms). As compared to the first set 

of experiments, there was a slight degradation in the performance on this dataset but the model 

remained ≈3x faster than the fastest benchmark results of the mobile models.  

Table 11. Runtime experiments – Leafsnap dataset 

Model Platform Avg (μ) Max Min Std (σ) 

DenseNet121 

Colab 259.239 260.603 256.676 1.476 

Android 198.660 202.000 197.000 1.088 

InceptionV3 

Colab 199.590 223.213 192.922 11.824 

Android 186.080 192.000 184.000 1.495 

ResNet152V2 

Colab 610.886 621.787 589.157 11.862 

Android 713.720 828.000 703.000 17.375 

VGG16 

Colab 599.699 601.234 597.644 1.186 

Android 1006.700 1019.000 992.000 5.991 

Xception 

Colab 297.295 301.453 288.982 4.405 

Android 298.200 306.000 296.000 1.887 

EfficientNet-B1 

Colab 82.486 92.610 75.748 4.980 

Android 65.420 71.000 66.000 1.783 

XD-Ensemble 

Colab 495.503 497.461 494.031 1.143 

Android 62.160 64.000 61.000 0.731 

 

4.3.3 Experimental Runtime - OPPD Classification 

The last set of experiments using the OPPD dataset remained in trend with the previous 

experiments. The Xception was benchmarked at 293ms on the cloud and 294ms on android, the 

ResNet was 602ms as against 795ms, and the VGG was again faster on the cloud at 598ms than 
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on android at 1097ms. The DenseNet had a runtime of 256ms on the cloud and 196ms on android, 

and Inception had 192ms and 185ms runtime on the cloud and android devices, respectively. Last, 

the lightweight EfficentNet recorded the following runtimes: 89ms in the cloud and 65ms in the 

android environment. 

As expected, the XD-Ensemble was slower (486ms) in its full-sized version than with 

compression (60ms). This means the compressed model continued to outperform its full-sized 

version by ≈8x and was faster than the fastest model by ≈3x. Table 12 summarizes this result. 

Table 12. Runtime experiments – OPPD dataset 

Model Platform Avg (μ) Max Min Std (σ) 

DenseNet121 

Colab 255.865 257.678 252.118 1.953 

Android 196.460 200.000 195.000 0.964 

InceptionV3 

Colab 192.466 195.329 190.973 1.661 

Android 185.260 238.000 182.000 7.621 

ResNet152V2 

Colab 601.971 614.984 580.865 14.228 

Android 794.460 1064.000 707.000 131.197 

VGG16 

Colab 598.464 612.210 587.895 7.863 

Android 1097.200 1534.000 997.000 168.170 

Xception 

Colab 293.078 295.666 290.231 1.773 

Android 294.360 298.000 293.000 0.995 

EfficientNet-B1 

Colab 88.582 95.102 83.675 3.614 

Android 65.260 66.000 63.000 1.117 

XD-Ensemble 

Colab 486.126 489.143 481.528 2.496 

Android 60.240 62.000 59.000 0.618 
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4.4. Additional Evaluation 

Figure 17 below presents a visual representation of how the proposed model compares to 

the other state-of-the-art models. It summarizes the relationship between the model accuracy and 

size. In this case, the runtime has been omitted since the results show that it correlates with model 

size. For an unbiased comparison, the results were normalized by rescaling the results of each 

metric to a range between 0 and 1 using equation 5 below: 

Normalization:  𝑦 =  (𝑥 –  𝑚𝑖𝑛) /(𝑚𝑎𝑥 –  𝑚𝑖𝑛)                                           (5) 

Where the minimum and maximum values relate to the value x being normalized. Figure 

17 demonstrates that ResNet and VGG16 are not on the Pareto efficient frontier with respect to 

size and accuracy compared to EfficientNet, DenseNet, and XD-Ensemble. Additionally, the 

proposed model performed better than the others on one out of three datasets (the OPPD dataset, 

which is also the largest dataset). There was a tradeoff to be made regarding size and accuracy for 

the other two data sets. Overall, the results demonstrate that the proposed approach could be 

beneficial for agriculture and mobile inference. 
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Figure 17. Comparing model accuracy vs compressed size (TFLite) per dataset 
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Two additional sets of experiments were conducted on the XD-Ensemble to demonstrate 

its validity and usability. The first set of experiments proved the robustness of the model by 

assessing a) the ratio of class predictions that truly belong to the class (Precision), the ratio of class 

accurate predictions out of the total samples in the dataset (Recall), and the balance between the 

two (f1-score). Table 13 summarizes this result. The raw result per class is presented in Appendix 

B. 

Table 13. Precision, recall, and f1 metrics for XD-Ensemble 

Dataset 
No of 

Images 

No of 

Classes 

Precision Recall f1-Score 

Macro Weighted Macro Weighted Macro Weighted 

Plant Seedling 1015 12 0.9475 0.9480 0.9337 0.9488 0.9377 0.9461 

Leafsnap 6161 185 0.9697 0.9675 0.9695 0.9664 0.969 0.9664 

Open Plant 

Phenotyping 
52836 47 0.9715 0.9707 0.9497 0.9706 0.9598 0.9705 

 

The use of transfer learning with pre-trained models – models originally trained on the 

ImageNet dataset which contains general real-world images and are made up of varying shapes, 

colors, and hues as compared to plant datasets made up mainly of green plants and brown gravel 

background – there is a possibility that the XD-Ensemble be making predictions based on some 

leaked information in the datasets. To demonstrate that there was no negative transfer occurring in 

the models, the second set of experiments sought to visually investigate how the models were 

making predictions. The Gradient-weighted Class Activation Map (Grad-Cam), which uses the 

gradient of a target class on the final convolutional layer to produce a coarse localization map of 

important regions used in predicting the class to visualize and validate the areas in the images used 

by the model for prediction was used (Selvaraju et al., 2020). It was realized that the model was 

indeed identifying objects based on the correct patterns. For example, rather than identifying the 

background information, especially parts of the box or labels that leaked into the image dataset, 
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the model established its predictions on the plant leaves and stems. Figure 18 shows sample classes 

from all three datasets and the localization maps generated by Grad-CAM. 

   

(a) Plant Seedling: Small-flowered cranesbill identified by the model based on leaf shape 

   

(b) Leafsnap: Platanus occidentalis (sycamore) identified by the model based on leaf edges 

 

   

(c) POLLA (pale smartweed) identified by the model based on clumps 

 

Figure 18. Grad-CAM visualization XD-Ensemble indicating model localization of stem 

and leaves as important regions for prediction   
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CHAPTER 5  

DISCUSSION 

The current study proposed a method to decrease the complexity of DCNN models for 

ground-based plant classification systems. This chapter presents the underlying meaning of this 

research by delving into the results and presenting possible use-cases where the proposed approach 

could be beneficial. 

5.1 Result Summary and Comparison with Past Research 

While the ensuing discussion focuses mainly on the result from the prediction accuracy 

assessment for comparison with prior research, it also considers the Pareto efficient trade-off 

between accuracy and size/speed.  

In the first case – the Plant Seedling dataset – the vanilla models achieved a prediction 

accuracy of 92.4% which was comparable to the results of prior studies that employed the same 

dataset (Alimboyong & Hernandez, 2019; Ofori & El-Gayar, 2020a, 2021; Rahman et al., 2020). 

As expected, compressing these state-of-the-art models resulted in about a 2% decrease in 

prediction accuracy. This was also similar to the result of a prior study using the VGG16 model – 

trained over 100 epochs on the Plant Seedling dataset with a 90% pruning ratio and post-training 

quantization applied (Fountsop et al., 2020). The XD-Ensemble, at 95% prediction accuracy, 

presented a performance that was better than the state-of-the-art models. In addition to the accuracy 

assessment, it is clear from Figure 17 that the XD-Ensemble and EfficientNet were on the Pareto 

efficient frontier for this dataset. In effect, while the results for the other models were inferior to 

these two, it was clear that a trade-off existed between accuracy and size such that the XD-
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Ensemble was more accurate (and larger) while the EfficientNet was smaller in size (and less 

accurate). 

The Leafsnap dataset which consisted of over 60,000 weed classes also resulted in a similar 

outcome. The average prediction accuracy of 94.8% was comparable to prior research (Bodhwani 

et al., 2019; Ibrahim et al., 2018; Kala & Viriri, 2018; Pawara et al., 2017). The XD-Ensemble 

achieved an accuracy of 96% in response to a 1.5% drop in average prediction accuracy of the 

pruned-vanilla models. The DenseNet had a marginally better result of 96.05%. Further, according 

to Figure 17, the XD-Ensemble and DenseNet were on the Pareto efficient frontier for this dataset.  

On the OPPD dataset, there were not enough studies to compare with except for the original 

study by Leminen Madsen et al. (2020) where the dataset was proposed. In that study, model 

accuracy was 77%. The state-of-the-art models employed in the current study demonstrated a 

performance baseline of 95.7%. On this dataset, model compression resulted in models with about 

a 1.8% lower prediction accuracy. The XD-Ensemble approach achieved the best overall average 

accuracy of 97%. Additionally, the XD-Ensemble was the Pareto optimal model when both 

accuracy and size metrics were considered.  

By examining the Pareto efficient frontier, it is evident that the XD-Ensemble performed 

particularly well on tasks involving the two largest datasets - the Leafsnap and OPPD datasets. 

The increased number of classes and training image samples likely combined to provide marginal 

improvements in the result on these two datasets as compared to the state-of-the-art models. This 

demonstrates that the combination of three cutting-edge DCNN techniques – transfer learning, 

model compression, and ensemble learning – could be valuable to inference on the edge. Especially 

because each technique is engineered to deliver benefits that can enhance and underpin the 

generalizability of the result. Transfer learning, where a model trained on one task can be ported 
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to another task, offers opportunities for reducing overfitting and ensuring robust results in the face 

of limited training data (Bengio, 2012; Ofori & El-Gayar, 2021; Pan & Yang, 2010). Model 

compression offers additional benefits for reducing the size of the DL models, which means an 

equivalent reduction in both energy consumption and inference time (Choudhary et al., 2020; 

Fountsop et al., 2020; S. Han et al., 2016; Zhu & Gupta, 2017). Last, ensemble learning improves 

classification performance by combining two architecturally different DL models into a single 

model to improve prediction accuracy (Rokach, 2019; Ting & Witten, 1999; Torres-Sospedra & 

Nebot, 2014; Wolpert, 1992).  

5.2 Implications for Agricultural Practice 

Data in agriculture, as with other industries, is relevant now more than ever. This is 

because, years of research have gone into developing many types of sensors for recording 

agronomically relevant parameters, collecting enough data through the IoT devices and sensor 

networks, developing farm management systems, devising AI-driven farm machinery, and more. 

It is believed that there are over 75 million agricultural IoT devices currently in use; by 2050 an 

average farm could be generating up to 4.1 million data points daily as compared to 190,000 data 

points generated in 2014 (Clercq et al., 2018). These IoT and Cloud computing systems are 

generating and collecting unprecedented amounts of useful big data (Clercq et al., 2018; El-Gayar 

& Ofori, 2020). 

Despite the apparent usefulness of data, there are several cross-cutting issues regarding 

cost and complexity, especially for smallholder farmers in developing countries (Misaki et al., 

2018; Saidu et al., 2017). With the massive amounts of data being captured, most of which are 

fluid and hierarchically distributed, it is required that analysis of the data take as little time as 

possible and give better profit margins as compared to human-made management decisions. Thus, 
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capturing and making real-time decisions could mean moving decision points from servers and 

cloud services to IoT and mobile devices. Research, such as the current one, leads efforts aimed at 

faster and more efficient methods of retrieving some value from data such as farm imagery. It 

steers the conversation from the drawbacks of DL (for example the need for large amounts of data, 

longer training times, and expensive computers) to inference implemented directly on cheaper IoT 

and mobile devices. Continuous and significant improvements to speed up DL techniques and 

reduce their resource needs have implications for yield improvements and competitive pricing (El-

Gayar & Ofori, 2020; Kernecker et al., 2020).  

5.3 Additional Implications and Hypothetical Use-Cases for the Future 

In principle, given relevant data and parameters to learn from, machines can perform most 

tasks with the help of AI and ML. The future of AI for farming lies in its very definition, that given 

any situation will act as a rational agent to take the best action possible (Russell & Norvig, 2010). 

Mobile-sized and lightweight DL applications present several interesting scenarios for PA and 

Green IS. The findings of the dissertation demonstrate that implementing DCNNs on the edge does 

not have to be computationally expensive: only a few MBs of memory and a split second are 

needed for inference. This section explores some interesting hypotheticals where the current study 

could be beneficial. 

5.3.1 Pre-Production: Seed sorting  

Fresh seeds for planting often contain impurities such as leaves, branches, and stones that 

need to be separated but current machinery can find this process difficult especially at faster sorting 

velocities (Buus et al., 2011; Kaliniewicz et al., 2021). Due to the characteristics of seeds 

themselves (for example seed density, surface texture, and shape), a solution that might work for 

certain seeds might not generalize well to others. Delegating the image analysis process to a 
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lightweight DL model such as the XD-Ensemble could increase both prediction accuracy and 

inference speed for identifying optimal seed varieties for planting. 

5.3.2 Production: Diseases and pest identification  

The current research has focused on weed detection. However, studies have shown that DL 

models are also effective for plant disease and pest identification (Liu & Chahl, 2021; Suresh et 

al., 2019; Too et al., 2019). Suresh et al., (2019) discussed the need for reducing the number of 

parameters, as well as training time using methods like TL. This could allow for instant detection 

of crop diseases and pest infestation. The proposed model serves this need while still 

outperforming the models employed in prior studies, albeit on different datasets. On a larger scale, 

additional data from satellite imagery could corroborate the onset of disease such as blight, as well 

as swarms of insects infesting nearby farms even before agronomists perform farm inspections.  

5.3.3 Post-Production: Harvesting and Distribution   

There are use-cases for improving the robotic harvesting process using embedded devices 

(Horng et al., 2020). Additionally, there is an apparent lack of transparency regarding data 

ownership and privacy between technology providers and farmers which has led to perception 

issues that fuel farmers’ reluctance to wholly embrace PA (Sykuta, 2016; Wiseman et al., 2019; 

Wolfert et al., 2017). Lightweight models, such as the XD-Ensemble, present an opportunity for 

further advancing privacy-preserving for increased inference on the edge (Lalapura et al., 2021; 

Lammie et al., 2019; Voghoei et al., 2018). Further, mobile-based DL applications could even go 

beyond computer vision applications to provide optimal pricing and distribution prediction with 

data that never leaves the farmers’ device (Zhao, 2021).  
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5.3.4 Applications beyond farming 

The onset of the COVID-19 pandemic has introduced new ways of relating and an added 

reliance on technology to maintain social distancing. Further, mobile applications have become 

ubiquitous in current contexts and present several opportunities for DL and DCNN tasks beyond 

agricultural settings. Botanical gardens, arboretums, and even amateur bird watchers could 

increase foot traffic for self-guided tours using virtual plant and animal species classification 

applications. Augmented reality has also gained popularity in recent times. Applications such as 

Snapchat, Facebook, and Instagram implement innovative smart camera features for entertainment 

value. Such features implemented on the edge presents opportunities to improve prediction time 

by reducing data usage bandwidth. Additionally, edge processing preserves the privacy of the user 

since no image or video data will be sent to application servers for processing. These are just two 

examples of an unlimited number of use-cases where efficient DL mobile applications could be 

beneficial. 
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CHAPTER 6  

CONCLUSION 

This chapter presents a summary of the dissertation. The limitations encountered in the 

study and propositions for future research are outlined. 

6.1 General Summary 

The race for better chemical agents with higher biodegradability and lower environmental 

persistence continues unabated. Computer vision equipment used in SSWM should be able to 

capture images and distinguish between food crops and weeds quickly and efficiently, especially 

at the onset of plant growth, where lax weed control could result in up to 100% yield loss. As such, 

and given the success of DCNNs, ensuring their applicability to farming scenarios will represent 

a huge milestone for Precision Agriculture and Green IS. However, the drawback of DL and other 

machine learning tasks is in their requirement for huge amounts of data for training which has a 

direct impact on both energy consumption and computing power of the infrastructure involved.  

This study proposed a DCNN approach for plant seedling classification and weed detection 

using a set of techniques for reducing the hardware requirements of resource-constrained systems 

while keeping accuracy at par with full-sized state-of-the-art DCNNs. The approach employed 

three stages to devise a sparse network: transfer learning, model compression; and a model 

stacking ensemble to determine the appropriate combination of model weights that deliver the best 

accuracy. The proposed XD-Ensemble outperformed the baseline average prediction accuracy of 

state-of-the-art models on all three datasets. 
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6.2 Principal Findings 

At the start of the current study, the specific objectives set were to reduce computational 

cost and increase the efficiency of DL models in low-resource conditions, to introduce a new DL 

architecture, and to evaluate this new model against well-established DCNN models. These 

objectives were motivated by the need for robust AI applications to support sustainable 

development. Thus, in the face of resource-constrained agricultural devices, the current study 

introduced a novel concept for plant recognition tasks that exploited existing DL techniques such 

as transfer learning; model compression; and ensemble learning.  

Often, prediction accuracy, and a few other metrics, is the standard evaluation method for 

DL models, but for IoT, mobile devices, and embedded systems inference speed, model size, and 

power efficiency is a challenge that requires innovative solutions. However, the literature points 

to a relationship between model accuracy and model compression, such that pruning models could 

result in decreased accuracy (Fountsop et al., 2020; Rajaraman et al., 2020). Theoretically, the 

approach proposed in this dissertation aimed to demonstrate that combining transfer learning and 

ensemble learning could resolve the performance degradation associated with model compression. 

The results indicated that the proposed XD-Ensemble delivered a performance at a high level, on 

par or better than the state-of-the-art, and also outperformed the lightweight EfficientNet-B1 model 

with regards to prediction runtime and model accuracy. Specifically, in each of the pseudo-

objectives employed in Chapter 4, the model achieved 1) better accuracy than both the state-of-

the-art and lightweight models in two out of three datasets and was only marginally out-predicted 

by the DenseNet on one dataset, 2) smaller model size as compared to the vanilla models after 

compression; except for the first dataset where the lightweight EfficientNet was smaller by 1MB, 
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and 3) faster inference time than all state-of-the-art models in the resource-constrained android 

device; only the EfficientNet model recorded a faster prediction runtime on one dataset. 

Thus, the approach presented in the current study will be beneficial to ground-based weed 

detection equipment used for SSWM systems and contribute to minimizing the environmental 

footprint of AITs while maximizing production efficiency. Model compression and ensemble 

methods have been applied independently in several past studies. This research proves that they 

can be combined to a great effect. Although the context for the research is limited to computer 

vision use cases in PA and Green IS, the proposed method could be applied to similar computer 

vision tasks, as well as machine learning systems that employ other forms of data, in resource-

constrained environments commonly encountered in other industries such as healthcare and 

telecommunication. 

6.3 Study Limitations and Recommendations for Future Researchers 

With regards to the use of transfer learning, the number of layers to freeze for each model 

is a hyperparameter that can be tuned. Although the dissertation leaned on past work that 

experimented with this particular parameter, it is still a potential limitation since other researchers 

could achieve varying results depending on which layers are chosen for fine-tuning.  

Additionally, the research has used different plant species captured both in-field and lab 

settings to demonstrate the robustness of the proposed DCNN model but further analysis using 

different forms of data such as satellite imagery, video streams, as well as numerical and time-

series data should be investigated. In addition, evaluation on different types of resource-

constrained devices such as embedded systems and micro-controllers could prove useful. Further, 

an analysis of the lifetime cost and energy savings of employing this approach has not been 

measured and could warrant further investigation.  
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APPENDIX B: PRECISION, RECALL, AND F1-SCORE PER 

CLASS 

Plant Seedling Dataset 

                           precision    recall  f1-score   support 

 

                    Maize     1.0000    1.0000    1.0000        47 

         Shepherd’s Purse     0.9636    0.9636    0.9636        55 

        Scentless Mayweed     0.9741    0.9576    0.9658       118 

         Common Chickweed     0.9914    0.9914    0.9914       116 

              Black-grass     0.7353    0.4717    0.5747        53 

             Common wheat     0.9400    0.9592    0.9495        49 

                 Cleavers     1.0000    0.9710    0.9853        69 

         Loose Silky-bent     0.8148    0.9496    0.8771       139 

                 Charlock     0.9873    1.0000    0.9936        78 

Small-flowered Cranesbill     0.9921    1.0000    0.9960       126 

                  Fat Hen     1.0000    0.9688    0.9841        96 

               Sugar beet     0.9710    0.9710    0.9710        69 

 

                 accuracy                         0.9488      1015 

                macro avg     0.9475    0.9337    0.9377      1015 

             weighted avg     0.9480    0.9488    0.9461      1015 

 

 

Leafsnap Dataset 

                              precision    recall  f1-score   support 

 

            prunus_yedoensis     0.9310    0.9643    0.9474        28 

               quercus_rubra     1.0000    0.9130    0.9545        23 

           populus_deltoides     1.0000    1.0000    1.0000        41 

          taxodium_distichum     1.0000    1.0000    1.0000        35 

            pinus_densiflora     0.8889    1.0000    0.9412        24 

          syringa_reticulata     0.9474    0.9474    0.9474        19 

              tilia_europaea     0.9667    0.9355    0.9508        31 

            prunus_serrulata     0.9130    0.9545    0.9333        22 

           magnolia_stellata     0.8529    0.9062    0.8788        32 

       populus_grandidentata     0.9730    1.0000    0.9863        36 

          halesia_tetraptera     0.9394    0.9394    0.9394        33 

          betula_populifolia     1.0000    1.0000    1.0000        26 

      chamaecyparis_thyoides     1.0000    0.9655    0.9825        29 

                ulmus_glabra     0.9667    0.9667    0.9667        30 

                  morus_alba     1.0000    0.9706    0.9851        34 

         paulownia_tomentosa     0.9677    0.9677    0.9677        31 

            acer_saccharinum     0.9792    1.0000    0.9895        47 

               malus_baccata     0.8718    1.0000    0.9315        34 
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             styrax_japonica     0.9767    0.9545    0.9655        44 

          betula_jacqemontii     1.0000    1.0000    1.0000        27 

               juglans_nigra     1.0000    0.9667    0.9831        30 

       quercus_muehlenbergii     0.7576    0.5682    0.6494        44 

          fraxinus_americana     1.0000    1.0000    1.0000        23 

           eucommia_ulmoides     0.9767    1.0000    0.9882        42 

               pinus_pungens     1.0000    0.9688    0.9841        32 

              aesculus_flava     0.9615    1.0000    0.9804        25 

         ailanthus_altissima     0.9524    1.0000    0.9756        20 

        pseudolarix_amabilis     0.9600    0.9600    0.9600        25 

               larix_decidua     1.0000    0.9286    0.9630        28 

                quercus_alba     1.0000    1.0000    1.0000        42 

            quercus_velutina     1.0000    1.0000    1.0000        33 

      chionanthus_virginicus     1.0000    0.9608    0.9800        51 

      fraxinus_pennsylvanica     1.0000    1.0000    1.0000        25 

                pinus_rigida     0.9667    0.9667    0.9667        30 

            quercus_stellata     1.0000    1.0000    1.0000        35 

        crataegus_crus-galli     1.0000    1.0000    1.0000        20 

             malus_coronaria     0.9412    0.9143    0.9275        35 

          prunus_subhirtella     0.7111    0.8421    0.7711        38 

           magnolia_denudata     0.8889    0.8889    0.8889        36 

                acer_ginnala     1.0000    0.9583    0.9787        24 

         magnolia_virginiana     1.0000    1.0000    1.0000        39 

             quercus_montana     1.0000    1.0000    1.0000        50 

              styrax_obassia     0.9474    0.9000    0.9231        20 

            prunus_sargentii     0.7162    0.8548    0.7794        62 

               cedrus_libani     0.9394    1.0000    0.9688        31 

          quercus_macrocarpa     1.0000    1.0000    1.0000        22 

            pinus_koraiensis     0.9118    0.9118    0.9118        34 

           prunus_virginiana     0.7164    0.7164    0.7164        67 

              pinus_bungeana     0.9630    0.9630    0.9630        27 

                acer_negundo     0.9756    1.0000    0.9877        40 

                 pinus_taeda     0.9756    0.9524    0.9639        42 

              cedrus_deodara     0.9474    1.0000    0.9730        18 

             tilia_americana     0.9688    1.0000    0.9841        31 

              pinus_resinosa     0.9706    1.0000    0.9851        33 

              pinus_flexilis     0.8750    0.9655    0.9180        29 

       platanus_occidentalis     1.0000    1.0000    1.0000        41 

            pinus_parviflora     1.0000    0.9429    0.9706        35 

            ulmus_parvifolia     1.0000    1.0000    1.0000        36 

        magnolia_grandiflora     1.0000    1.0000    1.0000        30 

                  cornus_mas     0.9667    0.9667    0.9667        30 

                 morus_rubra     1.0000    1.0000    1.0000        24 

              acer_campestre     1.0000    1.0000    1.0000        31 

         gymnocladus_dioicus     1.0000    1.0000    1.0000        24 

                 pinus_nigra     1.0000    0.9750    0.9873        40 

             quercus_bicolor     1.0000    1.0000    1.0000        26 

         oxydendrum_arboreum     0.9667    1.0000    0.9831        29 

            tsuga_canadensis     0.9722    1.0000    0.9859        35 

       crataegus_phaenopyrum     1.0000    1.0000    1.0000        29 

        carpinus_caroliniana     0.8947    1.0000    0.9444        34 

                 ulmus_rubra     0.9701    0.9701    0.9701        67 

         quercus_marilandica     1.0000    1.0000    1.0000        42 

             asimina_triloba     0.9762    0.9535    0.9647        43 
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            malus_floribunda     1.0000    1.0000    1.0000        37 

        diospyros_virginiana     0.9273    1.0000    0.9623        51 

            evodia_daniellii     0.9545    1.0000    0.9767        21 

          malus_angustifolia     0.9444    0.8947    0.9189        19 

                betula_nigra     1.0000    1.0000    1.0000        21 

        cryptomeria_japonica     1.0000    1.0000    1.0000        33 

          abies_nordmanniana     1.0000    1.0000    1.0000        31 

       robinia_pseudo-acacia     1.0000    1.0000    1.0000        33 

      chamaecyparis_pisifera     0.9688    1.0000    0.9841        31 

              acer_saccharum     1.0000    1.0000    1.0000        34 

           cercis_canadensis     1.0000    1.0000    1.0000        41 

            carpinus_betulus     0.9667    1.0000    0.9831        29 

                ulmus_pumila     0.9808    0.9808    0.9808        52 

            pyrus_calleryana     0.9688    1.0000    0.9841        31 

      aesculus_hippocastamon     1.0000    1.0000    1.0000        24 

           ostrya_virginiana     1.0000    0.9388    0.9684        49 

               pinus_strobus     0.9286    1.0000    0.9630        26 

            salix_babylonica     1.0000    1.0000    1.0000        34 

metasequoia_glyptostroboides     0.9762    1.0000    0.9880        41 

             ulmus_americana     0.9487    1.0000    0.9737        37 

               ulmus_procera     1.0000    0.9259    0.9615        27 

            pinus_virginiana     0.7838    0.7250    0.7532        40 

              abies_concolor     0.9778    0.9778    0.9778        45 

           ptelea_trifoliata     0.9792    0.9792    0.9792        48 

                malus_pumila     0.9744    0.9744    0.9744        39 

                betula_lenta     0.9615    0.9615    0.9615        26 

         prunus_pensylvanica     1.0000    0.9259    0.9615        27 

            quercus_coccinea     0.9459    1.0000    0.9722        35 

                ficus_carica     1.0000    1.0000    1.0000        35 

          quercus_virginiana     1.0000    1.0000    1.0000        25 

           sassafras_albidum     0.9697    0.9697    0.9697        33 

              toona_sinensis     1.0000    1.0000    1.0000        16 

        magnolia_macrophylla     1.0000    1.0000    1.0000        28 

                 picea_abies     1.0000    1.0000    1.0000        22 

            catalpa_speciosa     0.9250    0.9737    0.9487        38 

     koelreuteria_paniculata     1.0000    1.0000    1.0000        32 

                pinus_cembra     0.9667    0.9062    0.9355        32 

               aesculus_pavi     0.9737    0.9737    0.9737        38 

            cladrastis_lutea     1.0000    1.0000    1.0000        36 

            pinus_thunbergii     0.9565    0.9565    0.9565        23 

             quercus_falcata     0.8889    0.8889    0.8889         9 

            malus_hupehensis     0.9655    0.9655    0.9655        29 

               quercus_nigra     1.0000    1.0000    1.0000        31 

     liquidambar_styraciflua     1.0000    1.0000    1.0000        31 

                cornus_kousa     0.9630    0.9630    0.9630        27 

           fagus_grandifolia     0.9714    1.0000    0.9855        34 

      phellodendron_amurense     1.0000    1.0000    1.0000        27 

            pinus_sylvestris     1.0000    1.0000    1.0000        34 

        magnolia_soulangiana     1.0000    1.0000    1.0000         8 

                 carya_ovata     1.0000    0.9286    0.9630        42 

               tilia_cordata     0.9231    0.9474    0.9351        38 

           quercus_shumardii     1.0000    1.0000    1.0000        25 

              cornus_florida     1.0000    0.9773    0.9885        44 

    stewartia_pseudocamellia     0.9310    1.0000    0.9643        27 
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                  ilex_opaca     1.0000    1.0000    1.0000        43 

             tilia_tomentosa     0.8846    1.0000    0.9388        23 

         amelanchier_arborea     0.9524    0.8333    0.8889        24 

          magnolia_acuminata     1.0000    0.9412    0.9697        34 

        juniperus_virginiana     1.0000    0.9583    0.9787        24 

         platanus_acerifolia     0.9697    1.0000    0.9846        32 

             corylus_colurna     1.0000    1.0000    1.0000        16 

             salix_matsudana     1.0000    1.0000    1.0000        37 

                carya_glabra     0.8519    1.0000    0.9200        23 

             aesculus_glabra     1.0000    0.9714    0.9855        35 

             nyssa_sylvatica     0.8966    0.9630    0.9286        27 

               acer_palmatum     1.0000    1.0000    1.0000        47 

               quercus_robur     1.0000    1.0000    1.0000        33 

           pinus_wallichiana     0.9706    0.9429    0.9565        35 

        catalpa_bignonioides     1.0000    0.9038    0.9495        52 

    broussonettia_papyrifera     0.9726    0.9467    0.9595        75 

           carya_cordiformis     0.9756    1.0000    0.9877        40 

         albizia_julibrissin     1.0000    1.0000    1.0000        23 

            maclura_pomifera     0.9753    0.9753    0.9753        81 

              quercus_cerris     1.0000    1.0000    1.0000        32 

           crataegus_viridis     1.0000    0.9545    0.9767        44 

             zelkova_serrata     1.0000    0.9706    0.9851        34 

             carya_tomentosa     1.0000    0.9286    0.9630        28 

           celtis_tenuifolia     1.0000    0.9697    0.9846        33 

           quercus_palustris     0.9688    0.9394    0.9538        33 

         populus_tremuloides     0.9375    1.0000    0.9677        30 

          magnolia_tripetala     0.9000    0.8710    0.8852        31 

                acer_griseum     0.9697    1.0000    0.9846        32 

       betula_alleghaniensis     1.0000    1.0000    1.0000        28 

             prunus_serotina     0.9565    0.9565    0.9565        23 

            picea_orientalis     1.0000    0.9744    0.9870        39 

              fraxinus_nigra     0.9744    0.9500    0.9620        40 

          crataegus_pruinosa     0.9677    1.0000    0.9836        30 

          amelanchier_laevis     1.0000    1.0000    1.0000        29 

          quercus_imbricaria     0.9714    0.9444    0.9577        36 

            acer_platanoides     1.0000    0.9600    0.9796        25 

          staphylea_trifolia     1.0000    0.8974    0.9459        39 

     liriodendron_tulipifera     1.0000    0.9737    0.9867        38 

         celtis_occidentalis     0.9615    0.9615    0.9615        26 

         crataegus_laevigata     1.0000    1.0000    1.0000        34 

                 acer_rubrum     1.0000    1.0000    1.0000        73 

                 salix_nigra     0.9773    1.0000    0.9885        43 

         chionanthus_retusus     0.9688    0.9394    0.9538        33 

            cedrus_atlantica     1.0000    0.9756    0.9877        41 

            castanea_dentata     1.0000    1.0000    1.0000        27 

             juglans_cinerea     0.9565    0.9362    0.9462        47 

    cercidiphyllum_japonicum     1.0000    0.9615    0.9804        26 

         acer_pseudoplatanus     1.0000    1.0000    1.0000        21 

           quercus_michauxii     1.0000    0.9688    0.9841        32 

                pinus_peucea     1.0000    0.9722    0.9859        36 

             quercus_phellos     1.0000    1.0000    1.0000        20 

       gleditsia_triacanthos     1.0000    1.0000    1.0000        43 

               ginkgo_biloba     1.0000    1.0000    1.0000        24 

               picea_pungens     1.0000    1.0000    1.0000        27 
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           salix_caroliniana     1.0000    1.0000    1.0000        33 

          quercus_acutissima     1.0000    0.9600    0.9796        25 

          acer_pensylvanicum     1.0000    1.0000    1.0000        31 

      amelanchier_canadensis     0.9310    0.9310    0.9310        29 

              pinus_echinata     0.9333    0.9032    0.9180        31 

 

                    accuracy                         0.9664      6161 

                   macro avg     0.9697    0.9695    0.9690      6161 

                weighted avg     0.9675    0.9664    0.9664      6161 

 

Open Plant Phenotyping Dataset 

              precision    recall  f1-score   support 

 

       LOLMU     0.9593    0.9246    0.9416       663 

       THLAR     0.9731    0.9791    0.9761      1291 

       MATIN     0.9723    0.9793    0.9758      3047 

       STEME     0.9776    0.9838    0.9807      1733 

       POLCO     0.9897    0.9796    0.9846       294 

       MYOAR     0.9723    0.9259    0.9485       607 

       POLPE     0.9838    0.9806    0.9822       619 

       APESV     0.8466    0.7610    0.8015       544 

       GALAP     0.9873    0.9541    0.9705       327 

       FUMOF     1.0000    0.7241    0.8400        29 

       VERPE     0.9809    0.9814    0.9811      1932 

       CHEAL     0.9578    0.9835    0.9705      1270 

       PLALA     0.9241    0.9267    0.9254       723 

       BRSNN     0.9685    0.9771    0.9728       786 

       BROST     0.9558    0.8757    0.9140       346 

       CENCY     0.9964    0.9822    0.9893       845 

       ALOMY     0.9284    0.9011    0.9145       475 

       EPHHE     1.0000    0.8824    0.9375        34 

       CAPBP     0.9732    0.9821    0.9776      3293 

       RUMCR     0.9701    0.9796    0.9748      1225 

       SOLNI     0.9811    0.9460    0.9632      1204 

       SONOL     0.9868    0.9825    0.9846       914 

       CHYSE     0.9843    0.9436    0.9635       266 

       ANGAR     0.9730    0.9771    0.9751      2141 

       SENVU     0.9732    0.9799    0.9765      1296 

       CIRAR     0.9764    0.9414    0.9585       307 

       VERAR     0.9705    0.9898    0.9801      5692 

       LAPCO     1.0000    0.9368    0.9673       253 

       PAPRH     0.9862    0.9933    0.9898      4620 

       VICHI     0.9870    0.9813    0.9841       854 

       MATCH     0.9731    0.9488    0.9608      1601 

       LYCAR     1.0000    0.9737    0.9867        76 

       SONAS     0.9490    0.8532    0.8986       109 

       ARTVU     0.9471    0.9283    0.9376      1060 

       GERMO     0.9960    0.9893    0.9926       748 

       PLAMA     0.9719    0.9679    0.9699       966 

       POLAV     0.9805    0.9557    0.9679       474 

       VIOAR     0.9866    0.9858    0.9862      1195 
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       POAAN     0.8917    0.9578    0.9236      1874 

       POLLA     0.9941    0.9826    0.9883       688 

       EROCI     0.9918    0.9791    0.9854       863 

       URTUR     0.9659    0.9795    0.9726      1560 

       AVEFA     0.9158    0.8995    0.9076       617 

       SINAR     0.9892    0.9753    0.9822       849 

       MELNO     0.9840    0.9805    0.9823      1131 

       EPHPE     0.9911    0.9711    0.9810      1141 

       CONAR     0.9960    0.9724    0.9841       254 

 

    accuracy                         0.9706     52836 

   macro avg     0.9715    0.9497    0.9598     52836 

weighted avg     0.9707    0.9706    0.9705     52836 
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