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Abstract

In this thesis, we examine intersective polynomials, which are polynomials with inte-

ger coefficients that have a root modulo any positive integer greater than 1. For any

prime number p, a p-intersective polynomial is a polynomial with integer coefficients

which has a root in Zp. We define a special type of p-intersective polynomial called

strict p-intersective polynomial that can be factored as the product of a p-intersective

polynomial and an irreducible polynomial mod p. The main results include methods

of construction of strict p-intersective polynomials for certain prime numbers p and

enumeration of such polynomials of certain degrees.

Chapter 1 gives the history and background of intersective polyomials. In Chapter

2, we explore irreducible polynomials over the field Zp, where p is prime. Those p-

intersective polynomials of degree ≤ 5 for p = 2, 3 and 5 are investigated. In chapter

3, we analyze strict p-intersective polynomials with focus on counting the number of

polynomials over Zp that are strict p-intersective. The chapter ends with constructing

and enumerating p-intersective polynomials with degrees 3,4, and 5. Lastly, we

construct some special p-intersective and intersective polynomials in chapter 4.

Keywords: Intersective polynomial, p-intersective polynomial, Strict p-intersective

polynomial, Irreducible polynomial.
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Chapter 1

Introduction

Finding roots of a polynomial has massive applications in mathematics, science, and

statistics. Often times finding roots of a polynomial helps determine when a function

reaches zero, which may take many different forms and may be from various real

applications. Another related problem is to figure out at what point(s) a polynomial

reaches its maximum or minimum value. In Number Theory, a classical and popular

problem is solving Diophantine equations. It is to search for integer solutions to a

polynomial equation with integer coefficients. Equivalently, it is to search the roots

of a polynomial with integer coefficients. The set Z[x] of all polynomials with integer

coefficients forms an integral domain. If n is a positive integer greater than 1, the set

of all integers modulo n is a ring, with the usual integer multiplication and addition,

denoted Zn. An intersective polynomial f(x) is a polynomial in Z[x] such that f(x)

has at least one root in Zn for all positive integer n > 1 . This research focuses

on those intersective polynomials which favor prime numbers. We are particularly
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interested in a special type of p-intersective polynomial, where p is prime, that can be

factored as the product of a p-intersective polynomial and an irreducible polynomial

over Zp. Such a polynomial is called a strict p-intersective polynomial.

1.1 Useful Definitions

The irreducibility of a polynomial over a ring plays an important role in the study

of polynomials. In this research, we focus on the ring of integers modulo a prime

number p.

Definition 1. Let R be a ring and g(x) be a polynomial of degree n > 1 in R[x].

It is said to be reducible over R if g(x) can be factored as g(x) = f1(x)f2(x), where

fi(x) ∈ R[x] and 0 < deg(fi(x)) < n for each i = 1, 2. A polynomial which is not

reducible over R is called an irreducible polynomial over R.

We denote the ring of integers by Z and for a positive integer n > 1, the ring of

integers modulo n by Zn. The polynomial ring Z[x] is the set of all polynomials with

integer coefficients equipped with the usual polynomial addition and multiplication.

Similarly, Zn[x] denotes the ring of polynomials with coefficients in Zn. Next, we

introduce the concepts of intersective polynomials and m-intersective polynomials,

where m ∈ Z.

Definition 2. A polynomial f(x) ∈ Z[x] is said to be intersective if for every positive

integer n > 1, there exists an integer a such that f(a) ≡ 0 (mod n). Let m be a

positive integer at least 2. A polynomial f(x) ∈ Z[x] is called an m-intersective
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polynomial if for every positive integer k, there exists an integer a such that f(a) ≡ 0

(mod mk).

In other words, an intersective polynomial is a polynomial in Z[x] that has a

root in the ring Zn for every positive integer n > 1. For a fixed integer m > 1,

some polynomials with integer coefficients may have roots modulo all positive integer

powers of m. They are called m-intersective polynomials.

Definition 3. Let P be the set of all prime numbers and S ⊆ P. A polynomial

f(x) ∈ Z[x] is said to be S-intersective if for each s ∈ S, there is an integer solution

to the equation f(x) ≡ 0 (mod sk) for all positive integers k. If the set S = {p} is a

singleton, then S-intersective means p-intersective. We denote by Nd(p) the number

of p-intersective polynomials in the polynomial ring Zp[x].

Of course, intersective polynomials are also m-intersective polynomials for every

integer m > 1. A simple example of intersective polynomial is the linear polynomial

x− a with a ∈ Z. Modulo every integer n > 1, a is a root of x− a. In general, if a

polynomial in Z[x] has x− a as a factor, it is also intersective. Assume f(x) ∈ Z[x]

and deg(f(x)) > 1. If a is a root of f(x) in Z and f(x) ≡ f(x) (mod n), then a is

a root of f(x) in Zn. With regard to polynomials in Z[x], some are called trivially

intersective and some are called nearly intersective.

Definition 4. A polynomial g(x) ∈ Z[x] is called trivially intersective if it has an

integer root (so a root in Zn for all n) and it is called nearly intersective if it has a

rational root.
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In this research, we need to apply properties of quadratic residues modulo a

positive integer n ≥ 2. Special focus is on n being a prime number.

Definition 5. An integer q is said to be a quadratic residue modulo n if there exists

an x ∈ Z such that x2 ≡ q (mod n).

For any odd prime p, the Legendre symbol is defined to characterize quadratic

residues mod p.

Definition 6. 11 Let a ∈ Z and p be an odd prime. The Legendre symbol
(
a
p

)
is

defined by

(
a

p

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if p � a and a is a quadratic residue mod p;

−1 if p � a and a is not a quadratic residue mod p;

0 if p | a.

Furthermore, the following properties of the Legendre symbol are useful in deter-

mining if an integer is a quadratic residue or not.

Theorem 1. 11 Let p be an odd prime and a, b ∈ Z.

1. If a ≡ b (mod p), then
(
a
p

)
=

(
b
p

)
;

2.
(
ab
p

)
=

(
a
p

)(
b
p

)
;

3.
(−1

p

)
=

⎧⎪⎪⎨
⎪⎪⎩
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

;
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4.
(
2
p

)
=

⎧⎪⎪⎨
⎪⎪⎩
1 if p ≡ 1 or 7 (mod 8)

−1 if p ≡ 3 or 5 (mod 8)

;

5.
(
3
p

)
=

⎧⎪⎪⎨
⎪⎪⎩
1 if p ≡ 1 or 11 (mod 12)

−1 if p ≡ 5 or 7 (mod 12)

;

6.
(
p
q

)
=

⎧⎪⎪⎨
⎪⎪⎩
−(

q
p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

(
q
p

)
if p ≡ 3 ≡ q (mod 4)

.

A generalization of the Legendre symbol for non-prime moduli, called the Jacobi

symbol, is defined.

Definition 7. Assume n is an odd positive integer and its primary factorization is

n = pe11 pe22 · · · pekk , where p1, p2, . . . , pk are distinct primes. For any integer a, the

Jacobi symbol
(
a
n

)
is defined as follows:

(
a

n

)
=

(
a

p1

)e1( a

p2

)e2

· · ·
(
a

pk

)ek

.

For an odd prime p, both the Legendre and Jacobi symbols help in determining

whether an integer is a quadratic residue modulo p. In10, cubic residue is defined

and properties are explained.

Definition 8. An integer q �= 0 is said to be a cubic residue modulo a prime number
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p if there exists a ∈ Z such that a3 ≡ q (mod p).

(
p

q

)
3

=

⎧⎪⎪⎨
⎪⎪⎩
1 if p is a cubic residue modulo q

−1 if p is not cubic residue modulo q

Theorem 2. 10 If p ≡ 2 (mod 3), then every integer is a cubic residue modulo p.

Lastly, the famous möbius function is useful to help determining the number of

irreducible polynomials.

Definition 9. For any positive integer n, the möbius function, μ(n), is the sum of

all the primitive nth roots of unity.

The function μ(n) has values in {1, 0, 1} depending on the factorization of n into

prime factors: μ(n) = 1 if n is a square-free positive integer with an even number of

prime factors; μ(n) = −1 if n is a square-free positive integer with an odd number of

prime factors; μ(n) = 0 if n has a squared prime factor. Also, μ(n) is multiplicative

meaning μ(ab) = μ(a)μ(b) if a, b are relatively prime integers.

From this definition, μ(1) = 1 because 1 has no prime divisors and it is square-

free. If p is a prime number, μ(p) = −1 because p has 1 prime divisor (itself) and is

square-free. If k is a positive integer, μ(pk) = (−1)k. in particular, the values of the

möbius function is given by
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Lemma 1. Let n be a positive integer.

μ(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if n is square-free with an even number of prime factors ;

−1 if n is square-free with an odd number of prime factors;

0 if n has a squared prime factor.

Next, we define a special kind of p-intersective polynomials.

Definition 10. Consider a prime p. Let f(x) and g(x) be polynomials in Zp. We

say that f(x) is an associate of g(x) if f(x) = cg(x) for some c ∈ Zp.

Definition 11. Let p be a prime number and f(x) ∈ Zp[x] with deg(f) = d ≥ 3. We

say that f(x) is strict p-intersective if it can be factored as f(x) = g(x)h(x) where

g(x), h(x) ∈ Zp[x], g(x) is p-intersective (treated as a polynomial in Z[x] and h(x) is

irreducible over Zp with deg(h) ≥ 2. Denote the number of monic strict p-intersective

polynomials of degree d mod p by νd(p).

1.2 Existing Results

An example of non-trivial intersective polynomial is given in2 which is proved by

applying Galois Group Theory.

Proposition 1. 2 The polynomial f(x) = (x3 − 19)(x2 + x + 1) is an intersective

polynomial.

In this research, we first focus on classifying p-intersective polynomials and finding
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properties of such polynomials, where p is a prime number. Some theorems given

in1 are useful in identifying p-intersective polynomials.

Theorem 3. 1 Let p be a prime number and f(x) ∈ Z[x].

1. If there exists a ∈ Z such that p | f(a) but p � f ′(a), then f(x) is p-intersective.

2. Let r ∈ Z such that p � r. Pick m ∈ N ∪ {0} and let f(x) = xp − rpm. Then

f(x) is p-intersective if and only if p | m and there exists a ∈ Z such that

ap − r ≡ 0 (mod p2).

From Theorem 3(1), it is equivalent to say that for any prime p, if f(a) = 0 but

f ′(a) �= 0 in Zp, then f(x) is p-intersective. By the above theorem, we can easily

find a 7-intersective polynomial.

Example 1. Let f(x) = x2 + x + 1. We have that 7 | f(2) = 7 and 7 � f ′(2) = 5.

Thus f(x) is 7-intersective.

Note that f(x) = x2 + x + 1 has no root modulo 2 because f(0) = 1 �= 0 and

f(1) = 1 �= 0. Thus f(x) is not 2-intersective and furthermore not intersective.

The results below shows the connection between p-intersective and regular inter-

sective polynomials.

Proposition 2. Let P be a set of prime numbers and f(x) be P-intersective. Then

for any positive odd integer n = pe11 pe22 · · · pekk , where p1, . . . , pk ∈ P and e1, e2, · · · ek
are natural numbers, f(x) has a root in Zn.

Proposition 3. Let f(x) and g(x) be polynomials in Z[x]. Let P and Q be sets of

prime numbers. If f(x) is P-intersective and g(x) is Q-intersective, then f(x)g(x)

is (P ∪Q)-intersective.
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Recall that P is the set of all prime numbers.

Corollary 1. Let f(x) be in Z[x]. If f(x) is P-intersective, then f(x) is intersective.

It is clear that an intersective polynomial is a p-intersective polynomial for every

prime p. Thus we first focus on the construction of p-intersective polynomials for cer-

tain prime numbers p. The following result refers to the irreducibility of polynomials

over Zp.

Theorem 4. (Gauss’ Formula) Let p be prime and n > 1 be a positive integer. The

number ηn(p) of all monic irreducible polynomials of degree n over the finite field Zp

of order p is given by12

ηn(p) =
1

n

∑
d|n

μ(n/d)pn/d,

where the μ(n) is the möbius function given in Definition 9.

If the degree of the irreducible polynomials in consideration is prime, the above

formula can be simplified.

Corollary 2. The number of monic irreducible polynomials of degree q, where q is

prime, over the finite field Zp, is ηq(p) =
pq−p
q

.

Proof. Using the formula in Theorem 4, we calculate ηq(p), where q is a prime

number. The only positive divisors of q are 1 and q. By Lemma 1, ηq(p) = μ(q) = −1

and μ(q/q) = μ(1) = 1. Thus,

ηq(p) =
1

q

∑
d|q

μ(q/d)pd =
1

q
(μ(q)p+ μ(1)pq) =

pq − p

q
.
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�

Lemma 2. 14 Let p be any prime number and d be a positive integer. Then the

number of monic irreducible polynomials for any degree d is bounded below by this

formula:

ηd(p) >
pd

2d
.

The following result is a consequence of the famous Hensel’s Lemma9 and it is

useful for determining whether a polynomial is p-intersective. We state it and give

a simple proof.

Theorem 5. Let p be an odd prime number and a ∈ Zp with p � a. Assume k is a

positive integer. Then a is a quadratic residue mod pk if and only if it is a quadratic

residue mod pk+1. Consequently, a is a quadratic residue mod p if and only if a is a

quadratic residue mod pk for all k ∈ N.

Proof. It is obvious that if a is a quadratic residue mod pk+1, then a is a quadratic

residue mod pk.

Next we assume a is a quadratic residue mod pk. Then a = b2 + mpk for some

b,m ∈ Z with p � b. Since p is odd, we have GCD(2b, p) = 1 and so the congruence

equation 2bx−m ≡ 0 (mod p) has a solution in Z. Let c ∈ Z satisfying 2bc−m ≡ 0

(mod p). Then 2bc = m+ pn for some integer n and

(b+ cpk)2 = b2 + 2bcpk + c2p2k = (a−mpk) + (m+ pn)pk + c2p2k

= a+ (n+ c2pk−1)pk+1 =⇒ a ≡ (b+ cpk)2 (mod pk+1).

Thus, a is a quadratic residue mod pk+1. The rest is straightforward. �
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1.3 Research Questions and Goals

Using to the definition of n-intersective, we will be focusing on the situation where n

is prime. Let p be a prime number and f(x) ∈ Z[x]. Since f(x) ≡ f(x) (mod p), for

some f(x) ∈ Zp[x]. If we identify f(x) as a polynomial with integer coefficients from

1 to p−1, it is also a p-intersective polynomial. Thus, from now on we concentrate on

polynomials in Zp[x]. The following questions and/or goals are set for this research.

1. Identify or classify p-intersective polynomials in Zp[x]. In particular, for certain

given prime p, develop methods of finding a set of p-intersective polynomials

or strict p-intersective polynomials in Zp[x].

2. At least how many (strict) p-intersective polynomials are there in Zp[x]?

3. Let p be a prime number. In the ring Zp[x] and a given degree d > 0, how

many p-intersective polynomials of degree d are there? In particular, how many

quadratic or cubic p-intersective polynomials are there?

4. Find structural properties for strict p-intersective polynomials for certain prime

numbers p.

5. Let p be a prime number. In the ring Zp[x] and a given degree d > 0, how

many strict p-intersective polynomials of degree d are there?

6. Construct intersective polynomials of certain degree.
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1.4 Summary of Main Results

Chapter 1 gives the history and background of intersective polynomials. In Chapter

2, we explore irreducible polynomials over the field Zp, where p is prime. Fur-

thermore, p-intersective polynomials in Zp[x] of degree ≤ 5 for p = 2, 3 and 5 are

investigated. In Chapter 3, we analyze strict p-intersective polynomials with focus

on counting the number of polynomials that are strict p-intersective. The chapter

ends with constructing and enumerating p-intersective polynomials with degrees 3, 4,

and 5. Lastly, we construct some special p-intersective and intersective polynomials

in Chapter 4.
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Chapter 2

Preliminary Results and Examples

In this chapter, we state the basic properties of irreducible and reducible polynomials.

We start with irreducible polynomials and explore the basic properties of quadratic

and cubic irreducible polynomials and p-intersective polynomials. Consider a prime

number p. It is well known that for any non-constant polynomial f(x) of degree 1,

2, or 3, it is irreducible over Zp if and only if f(x) has a root in Zp.

2.1 Irreducible Polynomials Over Zp

Consider the finite field Zp, where p is prime. We first discuss irreducible polynomials

of low degrees.

Example 2. The polynomial f(x) = x2 + x+ 1 is irreducible over Z2 because it has

no root in Z2. Consequently, it is not 2-intersective.

We focus on monic irreducible polynomials and count the number of monic irre-

ducible polynomials of degree d > 0 over Zp, where p is any prime. Obviously, there

are p non-constant linear monic polynomials over Zp, which are irreducible. There
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is exactly one quadratic irreducible polynomial, x2 + x + 1, in Z2[x] and there are

2 monic quadratic irreducible polynomials over Z3. In12, a formula is given to help

calculating the number of monic irreducible polynomials of degree n by applying the

famous Möbius function μ(n).

In the table below we give the numbers of irreducible polynomials of degrees 2 to

7 modulo prime numbers 2, 3, 5.

Table 2.1: Number of monic irreducible polynomials with small degrees

p\d 2 3 4 5 6 7

p = 2 1 2 3 6 9 18

p = 3 3 8 18 48 116 312

p = 5 10 40 150 624 2580 11,160

In13, irreducible polynomials of low degrees with the first 4 prime moduli are

presented. Here we list the irreducible polynomials of degree 2, 3, 4 for p = 2.

Example 3. Consider the field Z2. Over Z2,
13

1. The only quadratic irreducible polynomial is x2 + x+ 1.

2. There are exactly 2 cubic irreducible polynomials: x3 + x+ 1 and x3 + x2 + 1;

3. There are exactly 3 irreducible polynomials of degree 4:

x4 + 1, x4 + x2 + 1, x4 + x+ 1.
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For any prime p, Irreducible polynomials of degree 1, 2, or 3 in Zp[x] can be simi-

larly determined by checking the existence of a root in the field Zp. It helps to identify

p-intersective polynomials. Since all non-constant linear polynomials are automati-

cally p-intersective, we start with investigating quadratic p-intersective polynomials.

2.2 Quadratic p-Intersective Polynomials

When dealing with Quadratic polynomials, the famous quadratic formula is a useful

tool.

Lemma 3. Let p be a prime number and a ∈ Z with gcd(a, p) = 1. Let f(x) =

(ax+ b)g(x) ∈ Z[x], where g(x) ∈ Z[x]. Then f(x) is p-intersective.

Proof. For any positive integer k, gcd(a, p) = 1 =⇒ gcd(a, pk) = 1 as well. Thus,

a �≡ 0 (mod pk) and so a−1b is a root of f(x) in Zpk . Thus f(x) is p-intersective. �

Next we give a criteria for a quadratic polynomial to be a p-intersective polyno-

mial.

Lemma 4. Let p be an odd prime number and a ∈ Z with gcd(a, p) = 1. A quadratic

polynomial f(x) = ax2 + bx + c ∈ Z[x] is p-intersective if and only if b2 − 4ac is a

quadratic residue modulo p.

Proof. Let k ∈ N. By the quadratic formula, any root of f(x) in the ring Zpk must

have the form of (2a)−1(−b± r), where r2 = b2 − 4ac is a quadratic residue mod pk.

By Theorem 5, it is if and only if b2 − 4ac is a quadratic residue modulo p. Thus,

f(x) is p-intersective if and only if b2 − 4ac is a quadratic residue mod p. �
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Now we focus on monic polynomials over the ring Zpk , where p is prime and

k ∈ N.

Corollary 3. Let p be an odd prime and f(x) = x2 + c ∈ Zp[x] with c ∈ Zp. Then

1. f(x) is p-intersective if and only if −c is a quadratic residue mod p.

2. If c is a quadratic residue mod p, then f(x) is p-intersective polynomial if and

only if p ≡ 1 (mod 4).

Proof. (1) is obvious. For (2), by Lemma 4 and Theorem 5, f(x) is p-intersectve iff

−4c is a quadratic residue modulo p iff −1 is a quadratic residue modulo p iff p ≡ 1

(mod 4). �

2.3 Classification of 2- or 3-Intersective

Polynomials

In this section, we examine 2-intersective polynomials and 3-intersective polynomials

in Zp[x] of lower degrees. We focus on monic polynomials only.

Example 4. Consider the prime number 2. There are eleven monic 2-intersective

polynomials in Z2[x] with degree at most 3 over Z2. Among them, 2 are linear, 3 are

quadratic, and 6 are cubic. They are listed below:

1. Linear:
x x+ 1 ;
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2. Quadratic:
x2 x(x+ 1) (x+ 1)2 ;

3. Cubic:

x3 x2(x+ 1) x(x2 + x+ 1)

x(x+ 1)2 (x+ 1)(x2 + x+ 1) (x+ 1)3
.

Here, the quadratic polynomials are obtained from multiplying two the linear

polynomials and the cubic polynomials are obtained by multiplying a linear poly-

nomial with a quadratic polynomial. Since each linear polynomial has a root in

Zp, then the product is also p-intersective. Constructively, we obtain the number of

monic 3-intersective polynomials with degree less than or equal to 3.

Example 5. Consider the prime number 3. There are exactly 3 monic linear 3-

intersective polynomials, 6 monic quadratic 3-intersective polynomials, and 19 monic

cubic 3-intersective polynomials. They are listed below:

1. Three linear: x, x+ 1, x+ 2;

2. Six quadratic: x2, x(x+ 1); x(x− 1), (x+ 1)2, (x− 1)2, (x+ 1)(x− 1);
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3. Nineteen cubic:

x3 x2(x+ 1) x2(x+ 2)

x(x+ 1)2 x(x+ 1)(x− 1) x(x− 1)2

(x+ 1)3 (x+ 1)2(x− 1) (x+ 1)(x− 1)2

(x− 1)3 x(x2 + 1) x(x2 + x+ 2)

x(x2 + 2x+ 2) (x+ 1)(x2 + 1) (x+ 1)(x2 + x+ 2)

(x+ 1)(x2 + 2x+ 2) (x− 1)(x2 + 1) (x− 1)(x2 + x+ 2)

(x− 1)(x2 + 2x+ 2)

Proposition 4. There are exactly 150 monic 3-intersective polynomials of degree 5.

Proof. We count the 3-intersective polynomials by different types summarized below.

Let f(x), g(x), h(x), and l(x) be irreducible polynomials over Z3 with deg(f(x)) =

deg(g(x)) = 2, deg(h(x)) = 3 and deg(l(x)) = 4. Any 3-intersective polynomial of

degree 5 must be in one of the following forms:

• There are 54 polynomials of the form (x− a)l(x).

• There are 9 polynomials that are in the form of (x− a)f(x)g(x).

• There are 9 polynomials of the form (x− a)f(x)2.

• There are 24 polynomials of the form (x− a)(x− b)h(x) with a �= b.

• There are 3 polynomials of the form (x−a)(x− b)(x− c)f(x) with a, b, c being

distinct.
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• There are 18 polynomials of the form (x− a)2(x− b)f(x) (a �= b).

• There are 24 polynomials of the form (x− a)2h(x).

• There are 9 polynomials of the form (x− a)3f(x).

The above gives all the possible 3-intersective polynomials of degree 5. Adding all

the numbers up yields 150. �

2.4 Quadractic 5-Intersctive Polynomials

Example 6. The following quadratic polynomials are 5-intersective with leading co-

efficient 1:

x2 x2 + 1 x2 + 4

x2 + x x2 + x+ 3 x2 + x+ 4

x2 + 2x x2 + 2x+ 1 x2 + 2x+ 2

x2 + 3x x2 + 3x+ 1 x2 + 3x+ 2

x2 + 4x x2 + 4x+ 4 x2 + 4x+ 4

.

Multiplying each of these polynomials with an integer would still result in a 5-

intersective polynomial. If the polynomial f(x) has a root in Z5, then af(x) also

has a root in Z5. Each of the above multiplied by 2, 3, and 4 will give a different

5-intersective polynomial of degree 2 and all quadratic 5-intersected polynomial are

among them. That is, there are exactly 60 quadratic 5-intersective.

Proposition 5. There are exactly 105 monic polynomials with degree 3 or less that

are 5-intersective. Among them, 5 are linear, 15 are quadratic, and 85 are cubic.
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Proof. We count the 5-intersective polynomials by degree 1, 2, and 3 respectively.

• Obviously, there 5 monic polynomials in the form of x+b, where b ∈ Z5. These

are all the 5-intersective polynomials of degree 1.

• There are 10 monic quadratic polynomials in the form of (x− a)(x− b), where

a �= b. There are 5 polynomials of the form (x− a)2. The total is 15.

• Cubic monic 5-intersective polynomials are counted by: 5 in the the form

(x − a)3, 20 in the form of (x − a)(x − b)2 with a �= b, (5)(4)(3)
6

= 10 in the

form of (x − a)(x − b)(x − c) with a, b, c being distinct in Z5, and 50 = 5(10)

polynomials of the form (x − a)g(x) where g(x) is a monic quadratic irre-

ducible polynomial. Note that By Table 2.1, there are 10 monic quadratic

irreducible polynomials mod 5. Adding all of those forms will give us 85 monic

5-intersective polynomials.

�

Below we give a summary for the enumeration of monic p-intersective polynomials

for p = 2, 3, 5 of degree up to 5. Most of the numbers are from the examples from

the previous results shown in this section.

Table 2.2: Number of monic p-intersective polynomials with small degrees

p\d 1 2 3 4 5

p = 2 2 3 6 12 24

p = 3 3 6 19 54 150

p = 5 5 15 85 420 2077

.
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Chapter 3

Strict p-Intersective Polynomials of
a Given Degree

Definition 11 defines a special type of p-intersective polynomials, called strict

p-intersective polynomials. In this chapter, we classify, construct, and enumerate

such polynomials of various degrees. For any prime number p, a strict p-intersective

polynomial is a polynomial that is the product of a p-intersective polynomial and an

irreducible polynomial of degree at least 2 over Zp. Below is an example of a strict

2-intersective polynomial.

Example 7. The polynomial (x+1)3(x2+x+1) is a strict 2-intersective polynomial

with degree 5, where (x+1)3 is 2-intersective and (x2+x+1) is irreducible over Z2.

Obviously, for any prime p, strict p-intersective polynomials exist and every strict

p-polynomial is also p-intersective. For example, for any prime number p, a strict

cubic monic p-intersective polynomial can be constructed as follows:

Example 8. Let p be any prime, a, b ∈ Zp, and b is a quadratic non-residue mod p.

Then f(x) = (x− a)(x2 − b) is a cubic p-intersective polynomial over Zp.
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Note that f(x) has a root a in Zp and x2− b has no root in Zp, so it is irreducible

in Zp[x]. Thus f(x) is strict p-intersective and also p-intersective.

Below are some questions that we would like to answer for this chapter:

1. For a fixed prime number p, how many (or at least how many) strict p-

intersective polynomials do we have?

2. How do we construct strict p-intersective polynomials?

3. How to we determine if a given p-intersective polynomial is strict p-intersective?

4. For a given positive integer d ≥ 3, does strict p-intersective polynomials of

degree d exist and if yes, how many?

First, we will be looking at strict 2-intersective polynomials.

3.1 Classification of Strict 2-Intersective

Polynomials of degree ≤ 5

In this section, we classify strict p-polynomials of degrees 3, 4, and 5 for any prime

number p. As before, we focus on monic polynomials.

Proposition 6. The following is the number of monic strict 2-intersective polyno-

mials with the given degree.

1. There are exactly 2 strict 2-intersective polynomials of degree 3;
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2. There are exactly 7 strict 2-intersective polynomials of degree 4;

3. There are exactly 18 strict 2-intersective polynomials of degree 5.

Proof. 1. Two strict 2-intersective polynomials of degree 3 use the only irreducible

polynomial x2 + x+ 1 and a polynomial of degree 1:

x(x2 + x+ 1), (x+ 1)(x2 + x+ 1).

2. A strict 2-intersective polynomial of degree 4 must have a quadratic irreducible

factor or a cubic irreducible factor. The other factor(s) must have at least one of the

factors x, x+ 1. There are seven possible combinations:

x2(x2 + x+ 1), x(x+ 1)(x2 + x+ 1), (x+ 1)2(x2 + x+ 1)

x(x3 + x+ 1), x(x3 + x2 + 1), (x+ 1)(x3 + x+ 1), (x+ 1)(x3 + x2 + 1).

3. We count strict p-intersective polynomials of degree 5 over Z2 by going through

all possible cases.

(1) It is the product of an irreducible polynomial of degree 4 and a polynomial of

degree 1; By Table 2.1 and Example 3, there are 3 irreducible polynomials of degree

4: x4+x3+x2+x+1, x4+x3+1, x4+x+1. The table build 6 strict 2-intersective

polynomials of degree 5 shown below:

x(x4 + x3 + x2 + x+ 1), (x+ 1)(x4 + x3 + x2 + x+ 1), x(x4 + x3 + 1)

(x+ 1)(x4 + x3 + 1), x(x4 + x+ 1), (x+ 1)(x4 + x+ 1)
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(2) Product of an irreducible polynomial of degree 3 and a reducible polynomial

of degree 2. There are only two irreducible polynomials of degree 3: x3 + x2 + 1 and

x3 + x+ 1. Here 6 strict 2-intersective polynomials are constructed.

• x2(x3 + x+ 1), x2(x3 + x2 + 1)

• x(x+ 1)(x3 + x+ 1), x(x+ 1)(x3 + x2 + 1)

• (x+ 1)2(x3 + x+ 1), (x+ 1)2(x3 + x2 + 1)

(3) The last case the product of a cubic 2-intersective polynomial with a quadratic

irreducible polynomial x2+x+1. This case includes the situation when (x2+x+1)2

is used.

• x3(x2 + x+ 1), x2(x+ 1)(x2 + x+ 1)

• x(x2 + x+ 1)2, x(x+ 1)2(x2 + x+ 1)

• (x+ 1)(x2 + x+ 1)2, (x+ 1)3(x2 + x+ 1)

Taking all of these polynomials into account gives 18 strict 2-intersective polyno-

mials of degree 5. �

3.2 Classification of Strict 3-Intersective

Polynomials of Degree ≤ 5

After classifying strict 2-intersective polynomials in the previous section, we inves-

tigate the situation for p = 3. Similar as in the previous section, we examine strict

3-intersective polynomials of degree 3, 4, 5.
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Proposition 7. There are exactly 9, 42, and 150 monic strict 3-intersective polyno-

mials of degree 3, 4, 5 respectively.

Proof. 1. Any monic strict 3-intersective polynomial of degree 3 can only be in the

form of (x−a)f(x) where a ∈ Z3 and f(x) is one of the 3 quadratic irreducible

polynomial over Z3: x
2 +1, x2 + x+2, and x2 +2x+2. It gives 9 monic strict

3-intersective polynomials of degree 3.

2. Monic strict 3-intersective polynomials of degree 4 can only be in two forms;

(1) The first form is (x − a)f(x) where f(x) is an irreducible polynomial of

degree 3 and a ∈ Z3. There are 8 irreducible polynomials which can be f(x)

and 3 from x− a. Thus, there is a total of 24 in this form. Below is the list of

this form. (a = 0, 1, 2)

(x− a)(x3 + 2x+ 1) (x− a)(x3 + 2x+ 2) x3 + x2 + 2

(x− a)(x3 + x2 + x+ 2) (x− a)(x2 + x2 + 2x+ 1) (x− a)(x2 + 2x2 + 1)

(x− a)(x3 + 2x2 + x+ 1) (x− a)(x3 + 2x2 + 2x+ 2)

(2) The second form is (x− a)(x− b)f(x) where f(x) is one of the 3 quadratic

irreducible polynomials, x2 + 1, x2 + x + 2, x2 + 2x + 2, and a, b ∈ Z3. There
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are 18 such polynomials listed below.

(x2)(x2 + 1) (x2)(x2 + x+ 2) (x2)(x2 + 2x+ 2)

(x+ 1)2(x2 + 1) (x+ 1)2(x2 + x+ 2) (x+ 1)2(x2 + 2x+ 2)

(x+ 2)2(x2 + 1) (x+ 2)2(x2 + x+ 2) (x+ 2)2(x2 + 2x+ 2)

(x)(x+ 1)2(x2 + 1) (x)(x+ 1)2(x2 + x+ 2) (x)(x+ 1)2(x2 + 2x+ 2)

(x+ 1)(x+ 2)(x2 + 1) (x+ 1)(x+ 2)(x2 + x+ 2) (x+ 1)(x+ 2)(x2 + 2x+ 2)

(x)(x+ 2)(x2 + 1) (x)(x+ 2)(x2 + x+ 2) (x)(x+ 2)(x2 + 2x+ 2)

Adding both forms together gives 42 monic strict 3-intersective polynomials of

degree 4.

3. There are 3 types of monic strict 3-intersective polynomial of degree 5.

• 54 polynomials of the form (x− a)f(x) with deg(f(x)) = 4.

• 48 polynomials of the form (x− a)(x− b)f(x) with deg(f(x)) = 3.

• 48 polynomials of the form (x− a)(x− b)(x− c)f(x) with deg(f(x)) = 2.

In the above, a, b, c are in Z3 and f(x) is a monic irreducible polynomial over

Z3. In total, there are exactly 150 monic strict 3-intersective polynomials of

degree 5.

�
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3.3 Enumeration of Certain Strict

p-Intersective Polynomials

Enumeration of strict p-intersective polynomials for prime numbers greater than 3

of higher degree is more complicated. We next investigate degree 3 for any prime p.

Theorem 6. For any prime p, there are exactly p2(p−1)
2

many monic strict p-intersective

polynomials of degree 3. That is, ν3(p) =
1
2
p2(p− 1).

Proof. Any strict p-intersective polynomial of degree 3 can only be in the form (x−
a)g(x) where g(x) is an irreducible polynomial of degree 2. There are p polynomials

of the form (x− a) and η2(p) =
p2−p
2

irreducible polynomials over Zp (Corollary 2).

Multiplying them together we obtain

ν3(p) =
p2(p− 1)

2
,

the number of polynomials that are strict p-intersective polynomials of degree 3. �

Similarly, we develop the formula for the strict p-intersective polynomials of de-

gree 4.

Theorem 7. For any prime p, the number of strict monic p-intersective polynomials

of degree 4 is given by

ν4(p) =
7p2(p2 − 1)

12
=

7

12

(
p4 − p2

)
.
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Proof. Any monic strict p-intersective polynomials only has 2 forms: (1) (x− a)g(x)

where a ∈ Zp and g(x) is an irreducible polynomial of degree 3, and (2) (x− a)(x−
b)g(x) where a, b ∈ Zp and g(x) is an irreducible polynomial of degree 2. The number

of monic strict p-intersective polynomials is the sum of the produced polynomials in

both forms.

(1) Polynomials in the form of (x− a)g(x). By Corollary 2, there are p3−p
3

many

such g(x). Thus p4−p2

3
polynomials of this form can be produced.

(2) Polynomials in the form of (x−a)(x−b)g(x). By Corollary 2 again, there are

1
2
(p2−p) many quadratic irreducible polynomials. There are p quadratic polynomials

in the form of (x−a)2 with a ∈ Zp. There are p(p−1)/2 many quadratic polynomials

in the form of (x − a)(x − b) with a �= b and a, b ∈ Zp. Altogether, the number of

polynomials in the form of (x− a)(x− b)g(x), where g(x) is irreducible over Zp, is

p · p
2 − p

2
+

p(p− 1)

2
· p(p− 1)

2
=

p2(p2 − 1)

4
=

p4 − p2

4
.

Adding the number from case (1), we have

ν4(p) =
p4 − p2

3
+

(p4 − p2)

4
=

7

12

(
p4 − p2

)
.

�

Lastly, we develop a formula for the number of (monic) strict p-intersective poly-

nomials of degree 5.

Theorem 8. For any prime number p, the number of monic strict p-intersective
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polynomials of degree 5 is given by

ν5(p) =
1

24

(
15p5 + 2p4 − 3p3 − 14p2

)
.

Proof. We consider 4 cases. Below is the number of polynomials that are strict

p-intersective with the given forms.

1. There are (p
4−p2

4
)p = p3(p2−1)

4
polynomials of the form (x − a)g(x) where g(x)

is an irreducible polynomial of degree 4 over Zp.

2. There are (p(p−1)
2

+ p)(p
3−p
3

) = p2(p2−1)(p+1)
6

polynomials of the form (x− a)(x−
b)g(x) where g(x) is an irreducible polynomial of degree 3 in Zp[x].

3. The number of strict p-intersective polynomials of degree 5 in the form of

(x − a)(x − b)(x − c)g(x), where g(x) is an quadratic irreducible polynomial

over Zp, is given by

(
p(p− 1)(p− 2)

6
+ p(p− 1) + p

)
· p

2 − p

2
=

1

12
(p5 + 2p4 − p3 − 2p2).

4. The number of strict p-intersective polynomials of degree 5 in the form of

(x − a)g(x)h(x), where g(x) and h(x) are quadratic irreducible polynomials

over Zp, is given by

p

[
(p

2−p
2

)(p
2−p
2

− 1)

2
+

p2 − p

2

]
=

1

8
(p5 − 2p4 + 3p3 − 2p2).

The above four cases cover all the possible strict p-intersective polynomials of
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degree 5 over Zp. By adding all of the expressions from the the above and

simplify the result, we obtain the exact number ν5(p) of all strict p-intersective

polynomials of degree 5:

ν5(p) =
p2(p− 1)(15p2 + 17p+ 14)

24
=

1

24
(15p5 + 2p4 − 3p3 − 14p2).

�

Remark 1. Note that ν5(2) = 18 and ν5(3) = 150 which confirms our earlier results

for the number of strict 2-intersective or 3-intersective polynomials. Theorems 13,

7, 8 give formulas for νd(p) for any prime p and for d = 3, 4, 5. In sections 3.1 and

3.2, we provided the numbers νd(2) and νd(3) for d = 3, 4, 5. Those results confirm

the formulas given in the above theorems. The following table shows the comparison.

Table 3.1: Values of νd(2) and νd(3) for d = 3, 4, 5

p = 2 p = 3

d = 3 22(2−1)
2

= 2 32(3−1)
2

= 9

d = 4 7(24−22)
12

= 7 7(34−32)
12

= 42

d = 5 22(15(2)3+2(2)2−3(2)−14)
24

= 18 32(15(3)3+2(3)2−3(3)−14)
24

= 150

Recall that ηd(p) is the number of monic irreducible polynomials of degree d and

νd(p) is the number of strict p-intersective polynomials mod p. Below we show that

the νd(p) can be obtained by counting the number of p-intersective polynomials and

irreducible polynomials of lower degrees.
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Theorem 9. Let p be prime and d be a positive integer at least 3. Then the number

of strict p-intersective polynomials with degree d is given by

νd(p) =
d−1∑
k=2

Nd−k(p)ηk(p),

where Nd−k(p) is the number of p-intersective polynomials over Zp of degree k and

ηk(p) is the number of monic irreducible polynomials over Zp of degree k.

Proof. For 2 ≤ k ≤ d−1, choose any irreducible polynomial f(x) of degree k and any

p-intersective polynomial g(x) of degree d−k. Then f(x)g(x) is a strict p-intersective

polynomial of degree d. Thus, the formula is true. �

3.4 Strict p-Intersective Polynomials

of Higher Degrees

In this section, we explore strict p-intersective polynomials for any prime number

p for any degree d. As seen above, the calculation for the number of monic strict

p-intersective polynomials gets more complex as the degree gets higher. Theorem

9 gives only a general formula for the counting but since there is no well-developed

formulas for νd(p) in general, it is not easy to apply. We then approach to give a

lower bound for the number νd(p).

Theorem 10. Let p be any prime number. For a specific degree d > 3, the number of
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monic strict p-intersective polynomial of degree is bounded from below by the formula:

νd(p) >
pd−2

12

[
(10p2 + 3p+ 2)d2 − (

45p2 + 9p+ 10
)
d+

(
47p2 + 6p+ 7

)]
.

Proof. Just like in the previous sections, we will be looking at each form one by one

and add them all together. We count the number of monic p-intersective polynomials

in the forms of the product of an irreducible polynomial and exactly one linear factor,

two linear factors, or three linear factors. Refer to Lemma 2, we have

1. There are more than pd

2(d−1)
many monic strict p-intersective polynomials of the

form (x− a)g(x), where g(x) is irreducible of degree d− 1.

2. There are more than pd−2

2(d−2)
monic irreducible polynomials of degree d−2. There

are p(p − 1)/2 + p many polynomials of the form (x − a)(x − b). Thus there

are in total pd−1(p+1)
4d−8

many monic strict p-intersective polynomials of degree d

in the form of (x− a)(x− b)g(x) with g(x) being irreducible.

3. Similarly, there are pd−1(p+1)(p+2)
12(d−3)

monic strict p-intersective polynomials of the

form (x− a)(x− b)(x− c)f(x) where deg((f(x)) = d− 3.

Adding all of them together will obtain;

νd(p) >
pd

2(d− 1)
+

pd−1(p+ 1)

4(d− 2)
+

pd−2(p+ 1)(p+ 2)

12(d− 3)

=
pd−2

12

[
(10p2 + 3p+ 2)d2 + (−45p2 − 9p− 10)d+ (47p2 + 6p+ 7)

]
.
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�

To get a better estimation of the number of monic polynomials that are p-

intersective, we would have to continue adding each forms, adding 1 linear factor

and reducing the degree of the irreducible polynomial by 1 until we get to the form

(x− a1)(x− a2)...(x− ad−2)f(x) where deg(f(x)) = 2.

Lemma 5. Let p be any prime and r be a positive integer. Assume d is a pos-

itive integer with d − r being a prime number. Then the number of strict monic

p-intersective polynomials of degree d in the form of f(x)g(x), where f(x) is a p-

intersective polynomial of degree r and g(x) is an irreducible polynomial of degree

d− r, is

vr(p)ηd−r(p) = vr(p) · p
d−r − p

d− r
.

Proof. The proof is straightforward by Lemma 2. �

Theorem 11. The number of strict p-intersective polynomials of degree 6 can be

calculated by the formula:

ν6(p) =
1

60

(
47p6 − 20p5 − 35p4 + 20p3 − 12p2

)
.

Proof. These are the numbers of each polynomials for each form with degree 6:

1. There are
(

p6−p2

5

)
polynomials of the form (x − a)g(x) where g(x) is an ir-

reducible polynomial of degree 5. Given that N5(p) = p5−p
5

and there are p

elements for a in Zp.
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2. There are p(p+1)
2

(
p4−p2

4

)
of the form (x − a)(x − b)g(x) where g(x)is an irre-

ducible polynomial of degree 4. Given that N4(p) = p4−p2

4
and p(p+1)

2
strict

p-intersective polynomials of degree 2.

3. There are p2(p−1)
2

(
p3−p
3

)
polynomials of the form (x−a)(x−b)(x−c)g(x) where

g(x) is an irreducible polynomials of degree 3. Given that N3(p) =
p3−p
3

and

p2(p−1)
2

strict p-intersective polynomials of degree 3.

4. There are 7(p4−p2)(p2−p)
24

polynomials of the form (x−a)(x− b)(x− c)(x−d)g(x)

where g(x) is an irreducible polynomial of degree 2. Given N2(p) =
p2−p
2

and

7
12
(p4 − p2)strict p-intersective polynomials of degree 4.

Adding all of the forms together will yield:

ν6(p) =
p6 − p2

5
+

p2 + p

2
· p

4 − p2

4
+

p2(p− 1)

2
· p

3 − p

3
+

7(p4 − p2)(p2 − p)

24

= ν6(p) =
1

60

(
47p6 − 20p5 − 35p4 + 20p3 − 12p2

)
.

�

Table 3.2: Values of νd(2), νd(3), νd(5), and νd(7) for d = 3, 4, 5, 6.

d\p 2 3 5 7

d = 3 2 9 50 147

d = 4 7 42 350 1,372

d = 5 18 150 1,975 10,633

d = 6 32 450 10,870 85,260
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From the results from this chapter, we are now able to find the number of monic

strict p-intersective polynomials with degrees 3,4,5, and 6. Above is a table for some

of the values with a specific prime p.
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Chapter 4

Construction and Enumeration of

p-Intersective Polynomials

In this chapter, We focus on p-intersective polynomials where p is any fixed prime

number. It is obvious that every polynomial of degree 1 over Zp is p-intersective. We

start with small prime numbers p and lower degree p-intersective polynomials.

In order to construct an intersective polynomial, one idea is to first construct a

Pi-intersective polynomial fi(x) for each subset Pi ⊆ P , where i = 1, 2, . . . , r, with

P1 ∪ · · · ∪ Pr = P . The product h(x) = f1(x) · · · · · fr(x) is then a P-intersectionve

polynomial. Thus, it is important to investigate methods of creating p-intersective

polynomials for a fixed prime number p. We first count the number of linear and

quadratic p-intersective polynomials in Zp[x].
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4.1 Linear and Quadratic P -Intersective

Polynomials

In this section, we focus on monic p-intersective polynomials in the ring Zp[x] for

a given prime number p. Recall that Nd(p) denotes the number of p-intersective

polynomials in Zp[x].

Theorem 12. Let p be any prime. In the ring Zp[x], there are exactly p monic linear

p-intersective polynomials and p(p+1)
2

many monic quadratic p-intersective polynomi-

als. That is, N1(p) = p and N2(p) = p(p+ 1)/2.

Proof. Every momnic polynomial of degree 1 is in the form of x + a, where a ∈ Zp.

Therefore, there are exactly p monic linear p-intersective polynomials.

For a monic quadratic polynomial to be p-intersective, it must be the product of

two monic polynomials of degree 1 and so it can be written in the form of (x−a)(x−b),

where a, b,∈ Zp. There are p of them in the form of (x − a)2 (a = b). There are

p(p− 1)/2 polynomials in the form of (x− a)(x− b), where a �= b. We obtain

N2(p) = p+
p(p− 1)

2
=

p(p+ 1)

2

many monic quadratic p-intersective polynomials. �

Next we construct a quadratic S-intersective polynomial for some special sets S.
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Proposition 8. Let p be an odd prime number.

1. The polynomial x2 + x+ 1 ∈ Z[x] is P1-intersective where

P1 = { p ∈ P | p ≡ 1 or 7 (mod 12) }.

2. If p ≡ 5 (mod 12), then the polynomial f(x) = x2 + 2x+ 2 is p-intersective.

3. If p ≡ 11 (mod 12), then the polynomial f(x) = x2 + 2x− 2 is P1-intersective.

Proof. By Lemma 4, it is sufficient to prove that 12 − 4(1)(1) = −3 is a quadratic

residue.

For (1), there are two cases: p ≡ 1 (mod 12) or p ≡ 7 (mod 12).

Case 1. p ≡ 1 (mod 12). Then 3 is a quadratic residue by Theorem 1(5). Also,

p ≡ 1 (mod 12) implies p ≡ 1 (mod 4), so −1 is a quadratic residue. Therefore −3

is a quadratic residue.

Case 2. p ≡ 7 (mod 12). Then p ≡ 3 (mod 4). Again by Theorem 1, both −1 and

3 are quadratic non-residues, thus −3 is a quadratic residue.

Therefore, f(x) is p-intersective.

For (2), the discriminate for x2 + 2x + 2 is −4. Since p ≡ 1 (mod 4), −1 is a

quadratic residue mod p and so is −4. By Lemma 4, x2 + 2x+ 2 is p-intersective.

For (3), the discriminant of x2 +2x− 2 is 12 = 3 · 4. Since p ≡ 11 (mod 12), 3 is

a quadratic residue mod p, and so does 12. Thus, x2 + 2x− 2 is p-intersective. �

Proposition 9. The polynomial f(x) = x2 − (2β + 1)x+ β(1 + β) for any β ∈ Z is

intersective and has two consecutive roots in Zp.
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Proof. Let p be any prime. We apply Theorem 3 to determine if the given polynomial

f is p-intersective. It is obvious that the polynomial can be factored as f(x) =

(x− β)(x− β − 1), therefore both β and β + 1 are roots. Next,

f ′(x) = 2x− (2β + 1) ⇒ f ′(β) = 2β − (2β + 1) = −1 �= 0 in Zp.

This proves that f(x) is p-intersective for every prime p, therefore it is intersective.

�

4.2 Cubic p-Intersective Polynomials

Now we focus on p-intersective polynomials of degree 3 which are also monic.

Theorem 13. Let p be a prime number. The number of monic cubic p-intersective

polynomials in Zp[x] is given by

N3(p) =
p(2p2 + 1)

3
.

Proof. We need to count all of the polynomials with degree 3 that are p-intersective.

Below is the list of all possible forms of monic cubic polynomials that have a root in

Zp and the number of them:

1. There are p cubic polynomials that are in the form of (x− a)3, a ∈ Zp.

2. There are p(p − 1) polynomials that are in the form of (x − a)2(x − b) where

a, b ∈ Zp and a �= b.
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3. There are p(p−1)(p−2)
6

polynomials that are in the form of (x− a)(x− b)(x− c)

where a �= b �= c.

4. There are p(p2−p)
2

polynomials that are in the form of (x − a)g(x) where g(x)

is an irreducible polynomial of degree 2 in Zp[x]. Refer to Corollary 2 for the

number of quadratic irreducible polynomials over Zp.

Adding all of the polynomials will give us,

N3(p) = p+ p(p− 1) +
p(p− 1)(p− 2)

6
+

p(p2 − p)

2
=

p(2p2 + 1)

3
.

�

For small primes, we immediately obtain the following results which confirms the

numbers in Examples 4, 5, and Proposition 5.

Corollary 4. There are exactly 6 monic cubic 2-intersective polynomials, 19 monic

cubic 3-intersective polynomials, and 85 monic 5-intersective polynomials in Z2[x],Z3[x],

and Z5[x] respectively. That is,

N3(2) = 6, N3(3) = 19, and N3(5) = 85.

Proof. By evaluating the formula p(p2+1)/3 obtained from Theorem 13 at p = 2, 3, 5,

we obtain the values 6, 19, and 85. �

Note that there are 1, 2, and 4 non-zero quadratic residues modulo 2, 3, 5 re-

spectively. The product of a non-zero quadratic residue and a p-intersect polynomial
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is also p-intersective. Thus, there are 6, 38, and 340 2,3,5-intersective polynomials

respectively, including the non-monic ones.

4.3 Construction of Special Intersective

Polynomials

The polynomial (x3 − 19)(x2 + x+1) in Proposition 1 was proven to be intersective

using advanced Galois Theory. We create a similar intersective polynomial.

Theorem 14. The polynomial (x3 − 19)(x2 + 3) is intersective.

Proof. In order to prove that the polynomial is intersective, we need to show that

modulo any prime number p, either (x3 − 19) or (x2 + 3) has a root in Zp.

Case 1. If p ≡ 5 or 11 (mod 12), x2 + x + 1 is irreducible over Zp because the

discriminant is −3 which is a quadratic non-residue mod p and so mod pk for all

positive integer k. It implies that x2 + x+ 1 has no root in Zpk where k ∈ N. When

p = 2, x2 + x + 1 is irreducible over Z2 so does in Zpk for all positive integers k.

By Proposition 8, the polynomial x3 − 19 must have a root in Zpk for all k ∈ N and

therefore it is p-intersective. Thus, (x3 − 19)(x2 + 3) is p-intersective.

Case 2. If p ≡ 1 or 7 (mod 12), the discriminant of x2+3 is −3 which is a quadratic

residue mod p because both −1 and 3 are so. Thus, x2 +3 is p-intersective, so it has

a root in Zp.
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Therefore, the polynomial f(x) is P-intersective. Then, by Corollary 1, it is

intersective. �

Theorem 15. The polynomial f(x) = (x2 + x + 1)(x2 + 2x − 2)(x2 + 2x + 2) is

Po-intersective, where Po = P \ {2}.

Proof. It is immediate from Proposition 8 �
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Chapter 5

Conclusions and Future Directions

In this paper, we first examined and enumerated irreducible polynomials over Zp,

where p is prime. We investigated and enumerated the polynomials in Zp[x] that

are p-intersective with certain degrees. Furthermore, we introduced the concept of

“strict p-intersective polynomial,” for any fixed prime number p. The main results

include the classification of strict p-intersective polynomials, an iterative formula for

counting such polynomials, and the exact number for those of small degrees. Several

polynomials in Z[x] that are intersective are constructed.

Below is a list of things that could be done in the future:

1. Find explicit formulas for the number of p-intersective or strict p-intersective

polynomials over Zp[x] with higher degrees.

2. Get a bound for the number of strict p-intersective polynomials over Zp[x] of

a certain degree.
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3. Develop different methods of constructing strict p-intersective polynomials over

Zp[x].

4. Find real-life applications for strict p-intersective polynomials.
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Appendix
Below are the polynomials that are irreducible in Zp with degree n. The number

corresponds to the coefficients of the terms from the highest power decreasing into

the constant term. For example, in modulus 2 and n = 3, 1011 means that x3+x+1

is irreducible in Z2
13.
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