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Abstract

The focus of the Master’s Thesis will be the investigation of current research involving 

trees that cover subsets of the vertex set of a connected graph. The primary goal is the 

extension of some recent results and a conjecture of Horak and McAvaney. Given certain 

conditions, we will reformulate their conjecture that states that if a graph can be spanned 

by a number of edge-disjoint trees, we can provide a bound on the maximum degree of 

this collection of edge-disjoint trees. We are able to show that this conjecture is true if 

the number of trees used to span the graph is one. We will then look at a specific class of 

graphs, namely series-parallel graphs, and present several new extremal examples to show 

that these ”tree-like” graphs are difficult to analyze. A comprehensive survey of related 

literature is also included.
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Chapter 1

Introduction

A well-studied problem in the field of graph theory is the determination of whether the 

vertex set, V(G), of a connected graph, G , can be covered by a single subgraph of G that 

is a tree called a spanning tree. Note n equals the number of vertices in a graph G or 

n — |V(G)|. This problem involves determining the number of subgraphs needed to cover 

the vertices of G as well as a upper bound on the degree of the set of subgraphs.

The focus of the thesis will be to expand upon the results found by Horak and McAvaney 

[12]. In their paper, they tackled the problem of finding the minimum number of subtrees 

of a maximum degree, k, whose union covers all vertices of a connected graph, G. In this 

case, we will denote the minimum number of subtrees as s and T\, . . . ,  Ts is the collection 

of subtrees with A (Tj) < k for i =  1, . . . ,  s. We will only be considering the case where T fs  

are edge-disjoint trees. Horak and McAvaney’s conjecture is as follows.

C on jectu re 1. Let G be a connected graph on n vertices, 5 — 5(G), and k > 2. Then the

vertices o f G can be covered by s < 

most k.

n —ô
S ( k - 1)+1 edge-disjoint trees o f  maximum degree at

If we consider when 5 =  1, then V(G) can be spanned by a single tree of maximum 

degree at most k. Note that throughout this paper, if G contains a spanning tree (i.e., if 

G is connected), we will denote some spanning tree of G as T*. There have been several 

theorems whose given conditions on G detemine not only whether V(G) can be covered by 

a single spanning tree but the maximum degree of a spanning tree. The first group of these 

theorems are based on whether a graph is Hamiltonian. A Hamiltonian cycle in a graph G is 

a spanning cycle C  where V(C) =  V(G). We say that a graph is Hamiltonian if it contains
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a Hamiltonian cycle. If a graph, G, is Hamiltonian, then the removal of exactly one edge of 

the Hamiltonian cycle results in a Hamiltonian path which is a type of spanning tree. Thus, 

if a graph G is Hamiltonian, then there exists a single spanning tree (Hamiltonian path) 

with maximum degree two. If G is not Hamiltonian or does not contain a Hamiltonian 

path, there may still exist a T* that covers V (G ) with A(T*) > 2. We will look at theorems 

that provide conditions for a graph to be spanned by a single tree, T*, of maximum degree, 

k. We will then consider theorems for a set, A C V (G ), to be covered by a tree. This lets 

us determine the maximum number of edge-disjoint trees necessary to cover V(G). Note 

that if A — V(G) then G can be covered by a single spanning tree.

Our results will extend upon Horak and McAvaney’s conjecture such that given G 

contains a spanning tree T*, we can determine a bound of the maximum degree of T* that 

is A(T*) < k. We will also consider when G is spanned by a collection of edge-disjoint 

trees, the maximum degree of the set of trees. We will also investigate a specific group of 

graphs called series-parallel graphs and utilize them to exemplify Horak and McAvaney’s 

conjecture. We will consider another group of graphs called random graphs and show how 

Horak and McAvaney’s conjecture is trivial for these types of graphs.
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Chapter 2

Background

We will look at previous theorems that investigate conditions of G that help calculate the 

number of trees necessary to cover V(G) and the maximum degree of the collection of trees.

Note that for a spanning tree with maximum degree one, the case is trivial because 

the only possible graphs are either the single vertex graph, or the graph, K 2, with 

two vertices connected by a single edge. In both cases the graph itself is its spanning tree 

with maximum degree one. If we consider the number of trees with maximum degree one 

necessary to cover a graph G where n > 3, the number of spanning trees necessary to cover 

the vertices of G is the matching number of G plus the number of vertices not matched. 

The matching number, v(G), of a graph G is the size of the largest possible set of pair-wise 

non-adjacent edges in G. In our paper, we will only consider connected graphs with n > 3 

and A (G) >  2.

The best possible non-trivial case for Conjecture 1 is when G contains a spanning tree, 

T*, with maximum degree two (Hamiltonian path). We first consider theorems that provide 

conditions for G to be Hamiltonian or contain a Hamiltonian path. The next group of 

theorems to consider is when there exists a T* in G but A(T*) > 2. There are theroems 

stating that for a set A Ç V(G), A can be covered by a tree. If A ^  V(G), these theorems 

provide a bound on the maximum number of trees necessary to cover G. Finally, we will 

further investigate the findings of Horak and McAvaney.
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2.1 Hamiltonian graphs and Hamiltonian paths

The simplest spanning tree for a graph G for n > 3 is a T* with A (T*) =  2 (Hamiltonian 

path). Conditions of a graph, (7, to be Hamiltonian or contain a Hamiltonian path lead 

to the same important results: V(G) can be covered by a single tree, T* with A(T*) =  2. 

We begin by looking at the degrees of vertices of G in determining whether a graph is 

Hamiltonian. The study of spanning trees in graphs with maximum degree two can be said 

to have started with the classical theorem of Dirac [8] which provides a sufficient condition 

for the existence of a Hamiltonian cycle in a graph. We include the proof for completeness. 

Dirac’s theorem is as follows.

Theorem  2. I f  G is a connected graph on n > 3 vertices and 6(G) > then G is 

Hamiltonian.

Proof. Suppose the contrary. Let G be an edge-maximal counterexample, that is G is not 

Hamiltonian, n > 3, 5(G) > and the addition of any edge joining two non-adjacent 

vertices in G results in a Hamiltonian graph. Since K n is obviously Hamilonian, G K n. 

So there exist x and y in G such that xy  ̂ E (G ). Since G +  xy contains a Hamiltonian 

cycle, there exists a Hamiltonian path in G with x and y as the endpoints. Let x — 

Vi, V2, . • ■, vn—\, vn =  y be such a path.

Suppose v\Vi e  E(y) such that 2 < i < n — 1. Then Vi-\vn E(G) because then there 

exists a Hamiltonian cycle, Vi, V2, . . . ,  v^-i,vn, un_ i , . . . ,  Vi, v\ as in Figure 2.2.

Let A :=  {vi : v\V{ 6 E (G )}  and B  { Vi : Vi-\vn G E (G )}. We must have A fl B  — 0 

for otherwise there exists a vertex, Vi, such that there exists a Hamiltonian cycle as in

Figure 2.1: Graph of example for proof of Dirac’s theorem.

Figure 2.2: Hamiltonian graph of example for proof of Dirac’s theorem.
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Figure 2.2. Note, V{ £ A by the definition of A and v\  ̂ B  for there is no vq in the graph. 

As a result, since v\  ̂ A U B , n — |{ui}| > \A U B\ and the following inequalities result.

n — |{ni}| > \A U B\ 

n -  1 > \AUB\

=  \A\ +  \B\ -  \AC\B\

=  dG(vi) +  dG(vn) -  0
n n 

>̂ — -j- —
~  2 2

=  n,

(2.1)

a contradiction. □

Thus, by Dirac if 6(G) > | for a connected graph (2, there exists a T* with a maximum 

degree k — 2. In order to help us understand the types of graphs when the conditions 

of Dirac’s theorem hold, consider the graph G where G is a complete bipartite graph, 

K J [■n-j. This is a complete bipartite graph where A (G) =  ["̂ ] and 6(G) — [|J. This is 

an extremal example of Dirac’s Theorem when n is even for then A (G) =  6(G) =  | and 

by Figure 2.3, we can see that G is Hamiltonian and therefore also contains a Hamiltonian 

path.

Figure 2.3: K n  n and a Hamiltonian cycle of K n n for n is even.O 2,2 J 2 ’ 2

Note that when n is not even in a complete bipartite graph |"n-|, 6(G) =  |_|J =  

and the condition for Dirac’s theorem is not satisfied. Let us consider an example of this 

graph, A 3 4, and investigate if the graph is still Hamiltonian. By Figure 2.4, we note that 

S(G) =  3 < [|] =  4, so Dirac’s condition does not hold. If we choose any vertex, x, of 

the independent set 4 and construct a maximal path from x , the path will end at another 

vertex, y, in the independent set of size 4. Since x and y belong to an independent set,



Figure 2.4: K 3,4 and a Hamiltonian path of

there is no edge in G to complete the cycle. Thus, there does not exist a Hamiltonian cycle 

and G is not Hamiltonian. This is not implied by Dirac, but the result shows that while a 

graph may not be Hamiltonian, the graph may contain a Hamiltonian path.

From the example o i K npi where n is even and the example of ^ 3,4, we see that complete 

bipartite graphs are not necessarily Hamiltonian but may have a Hamiltonian path. When 

a complete bipartite graph, G , is in the form Kk,k where n =  2/c, the graph is Hamiltonian. 

In order to have a Hamiltonian path, a complete bipartite graph must be in the form Kk,k+i 

where i 6 {0, 1} .  Otherwise, if i >  1, there is an independent set of at least k +  2 vertices 

and only k vertices available to be between each vertex of the independent set. Let X  be 

the independent set of size k where X  — {x i,X 2, ■ ■ • ,X k-i,X k}  and Y  be the independent 

set of size k  +  2 where Y  =  {y i ,y 2, ■ ■ ■, yk, 2/fc+i, yk+2}- Then a longest path, P , in G is of 

length k +  1 where P  — { y i ,x i ,y 2,X2, ■ -. ,yk, %k,yk+1} which leads to vertex yk+2 not being 

covered. Thus, in order to have a Hamiltonian path, a complete bipartite graph must be in 

the form of Kk,k+i where i 6 { 0, 1}.

Now, let us consider any graph that is a cycle, Cn, where n >  3. The graph G = Cn 

is Hamiltonian for the graph itself is the Hamiltonian cycle. But, A (G) — S(G) — 2 and 

for n > 5, | becomes significantly greater than the actual 6(G). This illustrates that while 

Dirac provided a lower bound on 6(G) that guarantees G being Hamiltonian, the converse 

is false. Determining a necessary and sufficient condition for Hamiltonicity has proved to 

be a very difficult problem.

Following Dirac, we find that if 6 > | then there exists a T* of maximum degree two; 

however, this leaves a large group of graphs that may or may not be Hamiltonian that need 

to be investigated. Ore [15] proved that a lower bound on the degree sum of any pair of 

nonadjacent vertices of G leads to G being Hamiltonian.

T heorem  3. I f  G is a graph o f order n >  3 such that fo r  each pair o f  nonadjacent vertices



x and y, dG(x) +  dG(y)> n, then G is Hamiltonian.

Proof. The same outline of the proof for Theorem 2 can be used to prove Theorem 3 where 

the conditions of G are changed from 5(G) > f  to the condition that for each pair of 

nonadjacent vertices x and y in G, dG(x) +  dG(y)> n. Given the same construction of 

a maximal counterexample, G is not Hamiltonian and the addition of any edge between 

nonadjacent vertices of G makes a Hamiltonian cycle. Let x and y be defined as before, 

since x and y are not adjacent, dG(x) +  dG(y) > n. From the same inequality, the same 

contradiction results with the omission of step 2.1 in the proof of Theorem 2. □

While Dirac’s theorem is significant, it leaves room for improvement. Ore’s theorem 

generalizes Dire’s theorem slightly. Let us consider a Hamiltonian graph, G , that satisfies 

the conditions of Ore’s theorem but do not satisfy the conditions of Dirac.

Figure 2.5: Example of graph that satisfies the conditions of Ore’s theorem.

By Figure 2.5, 5(G) — 2 < [t|] =  [§] =  3 and for each pair of nonadjacent vertices x 

and y, dG(x) +  dG(y)>  5. Thus, while Ore’s condition for Hamiltonicity is satisfied, Dirac’s 

it not. This illustrates that Ore’s Theorem is an extension of Dirac’s and also shows that 

while Ore’s condition is less strict than that of Dirac, it provides a sufficient condition for 

Hamiltonicity.

In our investigation of theorems beyond Dirac, we try and find the minimum conditions 

for a graph to be Hamiltonian or contain a Hamiltonian path. Posa [16] proved an extension 

of Ore’s theorem which goes beyond just the Hamiltonicity of a graph but rather provides 

a minimum number of vertices that can be covered by a path which is a type of tree with 

maximum degree two. Posa’s theorem is as follows.

T heorem  4. Let G be a connected graph o f order n >  3 such that fo r  any two non-adjacent 

vertices x and y we have

dG(x) +  dG(y) > k.
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I f  k =  n then G is Hamiltonian, and if k < n then G contains a path o f length k and a 

cycle o f  length at least \ 2 ~̂\-

For k — n, the theorem is the same as Ore’s. However, let us consider a connected 

graph G when k < n that satisfies Theorem 4 and results in a Hamiltonian path but fails 

the conditions of Theorem 3. Consider the graph, G , on 4 vertices, (see Figure 2.6) that

Figure 2.6: Example of graph that satisfies the conditions of Posa’s theorem.

contains a C3 with an additional edge from one vertex of the C3 to the fourth vertex. For 

any nonadjacent vertices x and y in V(G), dG(x) +  dG(y) > 3. While Ore’s condition 

for Hamiltonicity fails (so G is not Hamiltonian), by Theorem 4, for k — 3 < 4 =  n, G 

contains a path of length k — 3 and a cycle of length at least =  3. Thus, while

G does not contain a Hamiltonian cycle (need cycle to be length equal 4), there exists a 

path(Hamiltonian path) the covers all 4 vertices in G.

Thus, a corollary of Posa’s theorem is that if for any nonadjacent vertices x and y in 

V(G), dG{x) +  dG(y) > n — 1, G contains a Hamiltonian path. The previous example shows 

that G containing a Hamiltonian path does not necessarily result in G being Hamiltonian. 

We have only considered the Hamiltonicity of G because it guarantees the existence of a 

Hamiltonian path in G which is a spanning tree T* with maximum degree two. Thus this 

corollary suffices for our line of research.

In the previous theorems, the Hamiltonicity of G or the existence of a Hamiltonian path 

in G were based on the degree of vertices. Bondy and Chvatal [3] provided a necessary 

and sufficient condition for graphs being Hamiltonian based upon the closure of the graph. 

Given a graph, G, on n vertices, the closure of G , cl(G), is the graph constructed by 

successively adding new edges uv for all nonadjacent pairs of vertices u and v of G with 

dG{v) -F dG{u) > n. Bondy and Chvatal’s theorem is as follows.

T heorem  5. A graph, G, is Hamiltonian i f  and only if  its closure is Hamiltonian.
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Determining cl(G ) is Hamiltonian requires investigating the degree sum of all nonadja- 

cent pairs of vertices and thus constructing a new graph if the degree sums are greater than 

n. While this provides a definitive method in determining the Hamiltonicity of a graph, 

it can prove difficult and tedious as this requires examining each vertex, v, and dc(v) in 

comparison to each nonadjacent vertices of v which is not efficient.

We now look at a theorem whose condition is the connectivity of G. Chvatal and Erdos 

[5] proved that if given specific connectivity conditions on connected graph G then G had a 

Hamiltonian path. Note a connected graph G is k-connected if deleting any set of vertices 

of size k — 1 of G results in G still being connected. Chvatal and Erdos’s theorem is as 

follows.

T heorem  6. Let G be a k-connected graph with no independent set o f k+2 vertices. Then 

G has a Hamiltonian path.

In order to exemplify this theorem, let G be the complete bipartite graph K^k+i- Then 

G is /¿-connected for deleting any k — 1 vertices leaves G still connected and the largest 

independent set is of size k +  2. As seen in the earlier example of K ^ 4, while G is not 

Hamiltonian, G does contain a Hamiltonian path. Chvatal and Erdos used the condition of 

connectivity in determining the existence of a Hamiltonian path while Posa used the degree 

sum of nonadjancent vertices.

So far we have only considered theorems where given certain conditions of the graph G 

were satisfied, G is Hamiltonian or contains a Hamiltonian path. That is, if the respective 

conditions of these theorems were satisfied, there exists spanning tree T* 6 G where A(T*) =  

2 (Hamiltonian path). But when G does not necessarily contain a Hamiltonian path, we 

will try to determine if G contains some spanning tree, T*, with a maximum degree of the 

tree, A(T*).

2.2 Graphs containing a spanning tree but not Hamiltonian 

path

We will now consider theorems whose results are that the graph G contains a spanning tree 

that is not necessarily a Hamiltonian path. By Conjecture 1, this is the case where s — 1 

with k >  2. We now consider k to be a general upper bound as the maximum degree of the

12



spanning tree, T*. Win [17] proved that given certain degree conditions of a specific group 

of vertices, G contains a spanning tree of maximum degree k. A k-tree in a graph G is a 

spanning tree, T, with A (T) < k. (Note that a 2-tree is simply a Hamiltonian path.) Win’s 

Theorem is as follows.

T heorem  7. Let k > 2 be an integer and let G be a connected graph on n vertices satisfying:

^ d G(x) > n -  1
xG/

fo r  every k-elem ent independent set I  C V(G). Then G contains a spanning tree T* with 

A p 1*) < k.

The assumption of this theorem generalizes that of Posa’s Theorem in that if k — 2, 

then dG(x) +  dG(y) > n — 1 for every independent set {x ,y }  G V(G). This guarantees the 

existence of a spanning tree of maximum degree two, i.e., a Hamiltonian path. Note that 

the condition of Theorem 7 is satisfied whenever 5(G) > ẑ .

An extremal example of this is any star, Sk, which is defined as a bipartite graph K\k 

where k > 2. Given G =  Sk with k > 2, let y be the lone vertex with degree greater than 1. 

The only independent set, I , where |/| =  k >  2, is I  =  V(G) \ { y }. For all x G I , dG(x) =  1 

and J2 xe i  ^g (x ) — 1|̂ | =  n — 1. Thus, Sk with k >  2 is an extremal example of Theorem 7 

since G is itself a tree, and so is its own unique spanning subtree.

Czygrinov et al. [7] proved an extension of Theorem7. By Theorem7 given the conditions 

are satisfied, there exists a spanning tree in G. But Czygrinov et al. expanded this theorem 

by describing the spanning tree as having three possible properties.

First, let n and k be positive integers and consider a sequence $i, 5%,. •., 5k of positive 

integers with £ i==1 5i =  n — 1. Then let us define the graph, G (5\,52, . . .  ,5k) as being 

formed by taking k disjoint complete graphs, each of size 5{ for each i =  1, 2, . . . ,  k  and then 

attaching a new vertex, x, that is adjacent to all the other vertices in G. (See Figure 2.7). 

A caterpillar is a type of tree, T , when there exists a path P  in T  so that every vertex of 

T  which is not on the path P  is adjacent to a point of P. The theorem by Czygrinov et al. 

is as follows.

T heorem  8. Let k > 2  be an integer and let G be a connected graph on n vertices satisfying:

y :  dG(x) > n — 1

fo r  every k-elem ent independent set I  C V(G). Then either:

13



1. G has a spanning tree with maximum degree less than k ;

2. G =  G{5\, ¿2: . .  ■, Sk) fo r  some sequence 5\, 82, . . . ,  5k o f  positive integers with at least 

three Sis larger than 1; or

3. fo r  every maximum length path P  in G, there is a spanning tree T  o f G such that:

(a) T  is a caterpillar,

(b) A (T) =  fc,

(c) the spine o f T  is the path P , and

(d) the set {v  E V{G)\cLt {v) >  3} is independent in T .

In Theorem 8 , (1) is the same result as that of Win in Theorem 7. (2) is shown by the 

graph G in Figure 2.7.

x , Ag (x) > k

' V "

J

Figure 2.7: Example of Czygrinov et al.’s theorem(2).

If we consider K$i for i =  1 , . . . ,  k  separately, each 7Q. is Hamiltonian for each contains 

the Hamiltonian cycle Csf). Therefore, each K& for i — 1 , . . . ,  k also contains a Hamiltonian 

path. Since x is adjacent to all other vertices in G , there exists a Hamiltonian path with x 

as the endpoint in each K$i U x for i =  1 , . . . ,  k. Thus, if we take the union of each of these 

Hamiltonian paths, we have a spanning tree, T* in G , with maximum degree Ag {T*) =  k.

Finally, the third possible structure of the spanning tree T* is described in (3). This 

is another specific type of spanning tree T* called a caterpillar with a maximum path P  

and each vertex, v £ P  being adjacent to a vertex in P. and the maximum degree of

14



the spanning tree, T*, is k. See Figure 2.8 for an example of a caterpillar described in 

Theorem 8(3).

Figure 2.8: Example of Czygrinov et al.’s theorem(3).

Another generalization of the Ore condition that is related to our work is that of Kyaw 

[14]. A few definitions needed are as follows. A nonempty set S  of independent vertices of 

G is called fram e  of G if G — S' is connected for any S' C S. If \S\ =  k then S  is called a 

k-frame. For a set S  C V(G), we denote the set of vertices with exactly i neighbors in S  by 

N i(S ), so that N i(S ) =  {v  G V(G) : \Ng {v) fl <S| =  i} . The theorem of Kyaw is as follows:

T heorem  9. Let G be a connected graph and k > 2  be an integer. I f

k+1
^ 2  dG(s) +  ¿ ( f c  -  z)| AA(5')| > n -  1 
s e s  i=2

fo r  every (k -f- 1) -frame S in G, then G has a k-tree.

The results of this theorem implies Theorem 7. The condition is technical and requires 

significant investigation in the properties of G in order to find G. Note that if the condition 

holds for every 3-frame S  in G , then G contains a 2-tree or a Hamiltonian path.

So far we have considered theorems where if the given conditions were satisfied, G con

tained a spanning tree, T*. In the case of G being Hamiltonian or containing a Hamiltonian 

path, this results in A(T*) =  2. In the more recently provided theorems, G contains a A(T*) 

with a maximum degree of k > 2. Now we will consider when the set A C V(G) can be 

covered by a tree and note that if A ^  V{G), how many trees are necessary to cover V(G).

2.3 Subtrees that cover the vertices of a set A where A C

V(G)

We now proceed to theorems where G  may not contain a spanning tree T*. In this case, 

we will try to determine the maximum number of vertices, A C V(G), that can be covered
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by a single subtree. Note that for A ^  V(G), this is not directly related to our problem 

but does provide some bounds on the number of trees necessary to cover G for if A can be 

covered by a tree of maximum degree k, then the maximum number of trees necessary to 

cover V(G) is less than or equal to n — \ A\ +  1.

Caro, Krasikov, and Roditty [4] provided an extension of W in’s theorem that gives a 

minimum number of vertices covered by a tree in a graph G. The theorem is as follows.

T heorem  10. Let k > 2. Then every connected graph G contains a tree T  o f maximum  

degree at most k that either spans G or has order at least kS(G) +  1.

While Win’s theorem has an extra condition, Theorem 10 follows from Win’s theorem 

for given a subtree T  in G where k =  A (T), k is also the the minimum size of an independent 

set I  in T. Therefore, the minimum number of vertices able to be covered in G is kd(G ) +  1 

and there exists a spanning tree in G when 6(G) > Although the subtree, T, does

not necessarily cover all the vertices of G, the theorem provides a bound on the maximum 

number of trees necessary to cover G which is n — (k5(G ) +  l)  +  l =  n — k 6(G).

Egawa and Morimoto [9] provided an extension to the theorems of Ore and Posa in 

regards to the degree of non-adjacent vertices in a graph G but a minimum number of 

vertices that could be covered by a cycle. The theorem is as follows.

T heorem  11. I f  G is a graph such that do(x)  +  d o (y ) > fo r  some integer p and any 

nonadjacent distinct vertices x and y o fV (G ), then G has a cycle o f  length at least
p - 1

Note that when p — 2, Theorem 11 is the same as that of Ore. The extension does not

explicitly state that the cycle in G is a Hamiltonian but at least of length . Posa’s

theorem states that if the degree sum of nonadjacent vertices is greater than k, then there 

exists a cycle of at least length ^ 2 . If we compare this to the conditions of Theorem 11, 

and let k — 2n 

length at least

p , by Posa, there exists a cycle of length at least  ̂ +  1 compared to a cycle of

p - 1 . The result of Theorem 11 is that if the conditions are satisfied then

p - 1 +  1 withthe maximum number of spanning trees necessary to cover V (G) is s < n — 

maximum degree is 2.

Bollobas and Brightwell [2] proved an extension of Theorem 11. For a graph G, such 

that W  C V(G) and t is an integer, a (t,W )-cycle  is a cycle in G containing at least t 

vertices of W. Bollobas and Brightwell’s theorem is as follows.
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T heorem  12. Let G be a graph on n vertices where W  C V (G ), w =  \W\, d =  Sq {W ). 

Suppose that s >  2 and fo r  some integer l > 2, w > s(l — 1) +  1 and n < dl. Then G 

contains an (s +  1, W )-cycle.

Let us consider two examples that show this result is best possible given n, w, and d. 

Let k =  |"̂ ] and s — \w/{k — 1)] — 1.

For s < d — 1, we will show in Figure 2.9 a sharp example of Theorem 12.

x

Figure 2.9: Bollobäs and Brightwell case for s < d — 1.

In Figure 2.9, we define G by taking k — 1 disjoint copies of K all attached to a separate

vertex, x , and a set of r — n — d(k  — 1) — 1 isolated vertices where r ^  0. For s — jjrfpj — 1,

W  is chosen so that it contains at most s +  1 vertices from each Kd. Then for s =  d — 1,

d — s +  1 and W  is the union of s +  1 disjoint complete graphs Kd and G contains an

(s +  1, kF)-cycle in one of the K d 's which makes this example sharp.

Let us now consider when s > d.

In Figure 2.10, we see that every vertex of W  has degree at least s > d. Then for s — d ) 

the largest cycle in W  is the cycle contained in the complete graph K s+\ by K s U q where 

q e  Q. Thus, there is no (s +  2, !F)-cycle and the largest cycle is an (s +  1, VF)-cycle which 

makes the example sharp.

Given this theorem, we note that at least s +  1 vertices can be covered by a cycle and 

thus a path. Therefore the maximum number of trees necessary to cover G is n — (s + l)  +  l =  

(n — s).

A theorem of Cutler [6] gives a degree condition for existence of a tree through specified 

vertices. To state the theorem, we need a bit of notation. Namely, for a graph G and a set of
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Figure 2.10: Bollobas and Brightwell case for s > d.

vertices A C V(G), we let do {A) =  min{do(v) : v E A} and likewise Ag (̂ 4) =  max{dGr(u) : 

v E A }. Cutler’s theorem is as follows.

Theorem  13. Let k be such that 1 < k < n — 2. Then, given a connected graph G on 

n vertices and A C V(G) such that 6g (A) > k, there exists a subtree T  o f  G such that 

A C V (T )  a n d A T(A )<  [S jJ| .

Let us look two different sharp examples of Cutler’s theorem the first where A — V(G) 

and the second where A C V(G).

Exam ple. For 1 < k < n — 2, let G — Kk,n-k  and let A — V(G) as in Figure 2.11. Without 

loss of generality let k <  | (k < n — k), then 5 — 6(G) — 6q (A) =  k. Since A =  V(G), 

in order to prevent confusion we will denote everything in terms of G. Let X  C V(G) 

be the independent set of vertices of size k and let Y C V(G) be the independent set 

of vertices of size n — k where X  U Y =  V(G). Let each vertex in X  be denoted X{ for 

i — 1, ,k  such that X  — {xi\i — 1, , k} .  Construct subtrees by first distributing the 

n — k vertices of Y  among the vertices of X  as evenly as possible. Now we have k disjoint 

trees, T\,. . .  ,Tk with the maximum degree of the collection of trees being [ẑ "| =  [̂ "| — 1 

and A (Tf) — Ar ^ i )  for i =  1 , . . . ,  k. In order to connect the disjoint trees, add an edge 

between one y vertex in each T* to Xi+\ E V(Ti+\) for i =  1, . . . ,  k — 1 since the T  ̂ tree will 

be connected by the edge added from y E T k — 1. Now we have a spanning tree, T* with
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A(T*) =  — 1 +  1 =  However, note that dTf (x i) =  — 1 since its degree did not

increase when connecting the disjoint trees. But Cutler’s theorem requires A(T) <  l"22̂ ] .  

The only time A (T) < ^  |"̂ ] is for n =  1 mod k. But, if this is the case, since

=  [ f ]  — 1 when constructing T* let the extra vertex in y be connected to X{ which 

does not increase A(T*) and results in A(T*) =  So, for the graph G being Kk,n-k

with 2 <  k < n — 2 and A =  V(G), we have shown that there exists a subtree T  of G such 

that A =  V (T) and A t  {A) — l"22̂ ]  thus making G a sharp example.

Y

Figure 2.11: Sharp example of Cutler’s theorem with A — V(G).

The previous example was introduced not only to illustrate the theorem is sharp and 

best possible for A — V(G) but also to introduce techniques in the construction of spanning 

trees that will be utilized later.

Let us look at another sharp example of Cutler’s theorem where A C V(G). First, per 

Cutler’s theorem, let us consider the following inequality:

1 < k < $(7(.A)A t (A) < < n -  2.

Since all values represent integers we can restate the inequality without the ceiling as

Tl — 1
1 < k < Sg {A)A t (A) < ——  < n -  2.

k

Then k < leads to k < y/n — 1 . Thus, for k =  \Jn — 1 , k — SG(A) =  At (A) —

This signifies for a graph G with A C V{G) and SG(A) > k  when k < y/n — 1, G is an 

extremal example of Cutler’s theorem. Let us now consider the sharp extremal example 

where A C G.

Exam ple. Let there exist a vertex, x , such that dG{x) =  A (G) and NG(x ) is an independent 

set. Let A C V(G) where A — { x ,N G(x)} and for each vertex, y G NG(x), let dG(y) =  k
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as in Figure 2.12. We will denote Nq (x) or the neighborhood o f  the neighborhood o f  x in 

G, as the set of vertices NG{x) Ng {N (x)) \ [N(x) U {a:}]. Let A =  A (G) =  A(A) then 

dG(x) =  dA(x) =  A.

Figure 2.12: Sharp example of Cutler’s theorem with A ^  V(G).

If we calculate n, we get the following equalities:

n =  \x\ +  |iVc?(ar)| +  |lVG(a;)|

=  \x\ +  |Ag (̂ )| +  |lVG(a;)|(fc -  1)

= 1 +  A +  A (k -  1)

=  1 +  A k.

This implies that

n — 1 — A k,

so that

where the last inequality follows from the assumption that k < \Jn — 1 as showed earlier. 

Then there exists a subtree T  of G such that for A C V (T) and in this case A ^  V(T), 

where A t  (A) — when A =  =  k making G a sharp example.

A corollary to this theorem is as follows. The proof of Theorem 13 is built on the same 

ideas. We include the proof because the proof of Horak and McAvaney’s theorem may
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follow the same ingredients. We consider only the case when k < yfn — 1 since the proof is 

much simpler in this case. Let us consider a corollary by Cutler to Cutler’s theorem.

Corollary 14. Let G be a connected graph with 5(G) > k and 1 < k < y/n — 1. Then there 

exists a spanning tree, T , such that A(T) <

Proof. We will be proving Corollary 14 by contradiction. We will suppose that the con

ditions are satisfied and further that a counterexample exists. If G be a counterexample, 

then every spanning tree of G has maximum degree at least +  1. Let T  be the set of

spanning trees of G. Then let the subset 7a Q T  be the set of spanning trees with minimal 

maximum degree, say A, so that, by assumption, A > +  1. We define the subset

T™n C 7a as the set of spanning trees with the minimum number of vertices of degree A. 

Finally, let T  G Tfffm and suppose that x G V(T) with dr(x )  =  A.

We begin by showing that if u and v are T-neighbors of x and that uv G E (G ), then 

both u and v must have large T-degree.

Claim. I fu ,v  G Nt (x) with uv G E (G ), then dr(u ),dT (v) > A — 1.

Proof o f  claim. Suppose the contrary. Then there exists u, v G N t (x ) with uv G E(G ) such 

that without loss of generality dr(u) < A — 2. Since u,v G N t (x), ux,vx G E (T ). (Note 

uv £ E (T )  because then T  has cycle.) Then we can remove the edge vx from T  and add 

graph edge uv to T  to form a new spanning tree T'. However, this decreases dx(x) and we 

have a spanning tree T' where dT'(x) =  A — 1 and dr>(u) =  dx(u) +  1 < A — 2 + 1 < A — 1 

and dx'(v) =  dr(v). This contradicts our assumption that T  G with the minimum

number of vertices with minimum maximum degree A. Also, note that if x was the only 

vertex in T  with degree A, then A(T') =  A — 1 and T   ̂ 7a - □

We use the above claim to show that each vertex in Nt (x) has at least k — 1 neighbors 

outside of {¿c} U N t (x). To do this, we need to show that if k < \Jn — 1 then A — 1 > k. 

First if k < y/n — 1 then k 2 < n — 1 and so k < By definition, A > f22̂ ]  +  1 and we
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have the following string of inequalities.

>
k

> k.

In order to get to a contradiction, we would like to estimate the size of N t(x) — 
N g (Nt (x)) \ ({rc} U N t (x)). We know, by the claim above, that any vertex in N ?(x ) is 

adjacent to at least k — 1 vertices in N t(x). If we could map the edges between N  := N t{x ) 

and N  =  N t(x) by an injection to vertices in V(G) \ ({x }  U N ), then the following would 

be true.

k
n — 1 

k
n — 1

n >  |{x}| + \N\ + \V(G) \ ({a:} U N)

> 1 + A + A(k -  1)

> 1 + A k

> 1 +  n — 1 +  k

> n +  k,

a contradiction since k > 1. Unfortunately, we cannot guarantee that this map will be an 

injection, but we can keep track of how much we lose for each vertex in N.

Partition N  =  S  U U, where S  represents vertices with two or more G-neighbors in N  

and U has only one G-neighbor in N. (Note this is in respect to G not T  for otherwise T  

would have a cycle and no longer be a tree.) Our next claim shows that vertices in S  must 

have large T-degree.

Claim. For each s E S, dr{s)  > A — 1.

Proof o f  claim. Suppose not, so that d r(s)  < A — 1. Then since s G S', we know there exists 

a vertex, u G N, such that su € E(G ) and u does not lie on the unique (s,x)-path in T. 

Then we can add the edge su to T  and delete the edge xu. This results in a contradiction 

for cIt (x) has decreased which contradicts our choice of T. □
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We would like to show that there are no edges of T  inside of S, but cannot assume this 

is necessarily true of T. However, we can find another tree in T ffm. Let B  C TV be the set 

of vertices x G N  with d rix )  > A — 1. This allows us to note, by our earlier claim, that 

G [N \B] is empty. We modify G by deleting all edges of G — T  between N  and N  incident 

with vertices of B . Note that all the claims above still hold.

Claim . There is som e tree T' G ‘J'™n such that T'fS'] contains no edges.

Proof o f  claim. Suppose not and let T' with minimum number of edges in T'[S].

Let s ,t  e  S  and st G E {T ). Then, without loss of generality, s has no T-neighbors in 

N . (Both s and t cannot have T-neighbors, or T  would contain a cycle.) Further, s has 

a G-neighbor in N  which is not on the unique (s,x)-path in T, say u. We can then add 

su to T  and delete st. This does not create a new vertex of degree A since u $/L B  by our 

above work. This contradicts our assumption that T' had the minimum number of vertices 

in T'[S]. □

Claim . For each s G S, there exists A — 1 unique vertices G — ({x }  U N  UU)

Proof o f  claim. Given that d(s) >  A — 1 for all s G S, we can algorithmically go down paths 

from x and group A — 1 vertices in each closed neighborhood (neighborhood that includes 

the vertex) at each step. □

In order to conclude the proof of the Corollary 14 we must show that \S\ < k — 1, since 

it is for these vertices that we lose one in our map from edges to vertices. If we try and 

calculate the lower bound of n — |V(T)| we have the following inequality.

n> |{x}|  +  |JV| +  | 5 | (A -l)

> 1 + A + |S|(A-1)

> 1 +
n — 1 

k
+ |S|

n
k
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which implies that

|S1 <
n m - 2

m
n — 2

T¥T
n — 2

1

<
n — 1

< — 1.

fc- 1

Now given we have shown |<S'| < — 1, we can provide a lower bound for n which leads

to a contradiction. Note that for each vertex of S, while it may be adjacent to all of N  

in G , we can find only A — 1 vertices to associate with them. Thus, we lose one in our 

correspondence for each. Thus, we have

n > |{x}| +  \N\ +  \N\(k — 1) — \S\

=  1 +  A +  A (k  — 1) -  \S\

> 1 +  A k — (k — 1)

> n +  k — (k — 1)

=  n +  1,

a contradiction. □

While we have not been able to modify this proof to help prove Conjecture 1, we do 

believe that this may be possible. Looking at simplified cases such as k < \/n — 1 may lead 

to partial results in this direction.

These results illustrate the different approaches and conditions that have been been 

proven for if A — V (G ) a connected graph G has a spanning tree, T* with maximum degree 

k and if A < V(G), the maximum number of spanning trees to cover G are n — \A\ +  1.
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Chapter 3

Our research

3.1 Horak and McAvaney

Let us begin by restating Horak and McAvaney’s original conjecture.

C on jectu re  1. Let G be a connected graph, and k >  2. Then the vertices o f G can be

covered by s < n—6 edge-disjoint trees o f maximum degree at most k.S ( k - i )+ i

So far we have considered three different groups of theorems. The first were where given 

conditions of G, G contained a Hamiltonian path that results in G containing a spanning 

tree, T*, of maximum degree two. The second group of theorems we considered stated that 

given conditions on G, G contains a spanning tree, T*, of maximum degree k. Finally, 

we considered theorems where given conditions, a set A C V(G), there exists a tree in G 

that covers A which leads to the maximum number of trees necessary to cover V(G) as 

n — \A\ +  1 of maximum degree k. Note that for the case where we considered G contains a 

single spanning tree, edge-disjoint is irrelevant. However, when we will be considering more 

than one tree that spans V(G) we will be considering edge-disjoint trees since this is the 

conjecture of Horak and McAvaney we have considered. A different set of questions comes 

up if the trees considered have either no condition on them or are vertex-disjoint.

We will now look at specific cases where given a graph G, a positive integer k, and

6 =  0(G ), V (G ) can be covered by n—6 edge-disjoint trees of maximum degree at6 ( k - l ) + l

most k. Horak and McAvaney proved that for Ô — 1 and k > 2, Conjecture 1 was true. If 

Ô — 1 and k >  2, Horak and McAvaney’s conjecture states that for a graph G, V(G) can

be covered by n— 1
l(fc-l)+l =  l"1̂ ]  edge-disjoint trees of maximum degree k. Note that this
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follows directly from Cutler’s theorem which showed that G then contains a spanning tree, 

T* (T* is the one edge-disjoint tree). The proof was provided earlier.

Let us consider the graph K ^n-6 and show that V(G) can be covered by 

edge-disjoint trees with maximum degree k =  2. For k — 2 and 6(G) =  1, by Conjecture 1, 

V (G ) can be spanned by at most f"22̂ ]  edge-disjoint trees of maximum degree two. By

Figure 3.1: K\̂ n-\ and edge-disjoint trees of K i fU- i  of maximum degree two.

Figure 3.1, if n is odd, G can be spanned by edge-disjoint trees of maximum degree 

two. If n is even, then there will be an isolated vertex and therefore, G , will be spanned by 

| edge-disjoint trees of maximum degree two with one tree being an isolated vertex.

Let us now consider when k — 2 and 6 >  1.

For k =  2 and 6 > 1, we can find a connected graph, G that can be covered by

s — ¿(2-~i)+i =  ITT edge-disjoint trees of maximum degree k — 2. This follows in the

same fashion as the previous example where in this case we will find the maximum length

paths and each of these paths will the edge-disjoint trees that cover V(G). Let G be the

graph K sins  and 6 > 1 as in Figure 3.2. Without loss of generality let 6 < n — 6. For k =  2

by Figure 3.2 we see the maximum number of edge-disjoint trees necessary to cover V (G )

is T—6+1

T heorem  15. Let k be a positive integer. Every connected graph on n vertices can be 

covered by edge-disjoint trees o f maximum degree at most k.

Also, Horak and McAvaney [12] were able to show the case when k =  2 and all 5 > 2.

T heorem  16. Every connected graph G can be covered by n —6
6+1 edge-disjoint paths.
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Figure 3.2: K$̂ n_s and edge-disjoint trees of K s,n-6  of maximum degree two.

3.2 Restatement of the conjecture

We slightly shift the scope of investigation by restating Conjecture 1. This allows us to 

prove some other cases of the conjecture. We begin by noting that Dirac’s theorem implies 

Conjecture 1 for graphs G on n > 3 with S(G) > n/2, which can also be read out of

Theorem 16. To this end, we let r(n , Ô, k ) = n—6 Thus, Conjecture 1 can beS ( k - l ) + l

restated: If G is a connected graph, then G can be covered by at most r(n , 5 (G ),k) edge- 

disjoint trees of maximum degree at most k. We have the following theorem.

T heorem  IT. Let G be a connected graph on n > 3 vertices with S(G) > n /2 . Then we can 

cover the vertices with at most r(n , 5(G), k) edge-disjoint trees o f maximum degree 2 < k. 

In particular, G has a Hamiltonian path, i.e., a spanning tree o f  maximum degree two.

Proof. We begin by noting that r (n ,5 (G ),k )  >  1 and so the result follows from Dirac’s 

theorem by deleting an edge from the Hamiltonian cycle in G. □

The idea behind our restatement of Conjecture 1 is that we split not according to values 

of 5 or k, but rather values of s, the number of trees used to span the vertices of the graph.
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Our restatement follows from a bit of algebra on the relationship between r(n , S(G), k ) and 

s.

C on jectu re 18. I f  G is a connected graph on n vertices with S{G) =  Ô, then the vertices o f 

G can be spanned by at most q edge-disjoint trees, each o f  maximum degree •

We now prove the following which shows that our restatement is at least as strong as 

Horak and McAvaney’s conjecture.

T heorem  19. Conjecture 18 implies Conjecture 1.

Proof. Assuming Conjecture 18, we know that G can be covered by at most q edge-disjoint

trees of maximum degree n + S ( q - l ) - q
Sq . To show that this implies Conjecture 1, we would

like to show that if q =  r(n , 5, k), then k >

ild also work f

q — r(n , 6, k ) —

n + S ( q - l ) - q
Sq , since then the trees that Conjec- 

ture 18 would guarantee would also work for Conjecture 1. To this end, let

n

and so,

Solving for k, we see that 

Since k is an integer, we have that

q >

S(k — 1) +  1 

n — S

k >

k >

6( k -  1) +  1 *

n -f S(q — 1) — q 
Sq

n + ô(q -  1) -  q 
Sq

□

This version of the conjecture allows us to derive the case r(n , 5, k) — 1 from Theorem 13 

which results in the following theorem. This corresponds to the case s — 1 in Conjecture 1 

and is one advantage of the restatement.

T heorem  20. Conjecture 18 is true in the case when q =  1; i.e., i f  G is a connected graph 

on n vertices with S(G) =  S, then G has a spanning tree o f  maximum degree l"2̂ ]  •

Proof. By Theorem 13, with A — V(G), we know that there is a spanning tree with maxi

mum degree This is equivalent to Conjecture 18 in the case q =  1 since then

n +  S(q -  1) -  q n — 1
Sq S

□
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3.3 Series-parallel graphs

As of this point, we have had difficulty making progress a proof of Conjecture 18. We have 

focused our attention on a very specific case of the conjecture, namely when q =  2 (the first 

unsolved case). Further, we have focused on proving the conjecture for the class of graphs 

known as series-parallel graphs. One reason for doing this is that they have a “tree-like” 

structure, and so if the conjecture is able to be proved easily, it should be easy in this 

case. However, we believe that the conjecture is difficult even in this case, which leads us 

to believe that both Conjecture 1 and Conjecture 18 are difficult.

Series-parallel graphs (SP-graphs)  are a type of two-terminal graphs. A two-terminal 

graph is a graph with two distinguished vertices, s and t called source and sink, respectively. 

The motivation for this terminology comes from having a circuit with a positive side, s, 

and negative side, t, of a battery. An SP-graph is formed by either identifying the source of 

one two-terminal graph to the sink of another two-terminal graph (a series connection) or 

identifying the both sources of two two-terminal graphs and their sinks (a parallel connec

tion). The simplest two-terminal graph we will consider is K 2 with one endpoint the source 

and the other the sink. It is well-known that if G is an SP-graph and v G V (G ) \ {s,£},  

then 5q (v) > 2. In our research, we will only consider simple SP-graphs with no loops and 

multiple edges.

Since Conjecture 1 has already been proved for graphs G with 5(G) =  1, we need only 

consider those SP-graphs G with 5(G) > 2. Since vertices of degree one in SP-graphs can 

only occur at the source or the sink, we do not eliminate many SP-graphs by doing this. 

Since we are interested in Conjecture 18 with q =  2, we want to show that if G is an SP- 

graph, then V(G) can be spanned by 2 edge-disjoint trees, T\ and T2, where A (Tf) < [ f ]  

for i — 1, 2. Let us state this simplified conjecture precisely.

C on jectu re  21. I f  G is a series-parallel graph with 5(G) — 2, then there exist two edge- 

disjoint subtrees T\ and T2 such that

V(T1)U V (T 2) =  V(G) and A(Ti) <
~n~
4

fo r  i =  1, 2 .

Let us consider an SP-graph of the form E 2 V E n- 2, which is isomorphic to K 2}U- 2, and 

was already shown to be extremal in [12]. Note that E n is a graph on n vertices where the 

set of edges is empty. That is E n is a graph of n isolated vertices. (The jo in  o f graphs G
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and H, denoted G V H, has vertex set V(G) U V(H ) and edge set E {G ) U E (H )  U {xy  : 

x 6 V(G) and y G V (H )}.)  We will introduce notation for a group of SP-graphs that 

generalize E 2 V E n- 2 as in Figure 3.3. We denote this type of graph as <S(n; Aq,. . . ,  Â ), 

which is formed by taking SP-graphs £ 2 V E ki for i =  1 , . . .  where one of the vertices in 

the E 2 is the source and the other the sink, and connecting them in series. Thus, in order 

for S(n ; fci,. . . ,  kg) to be defined, we need n =  1 +  +  !)• So, for graph E 2 V £ n_2,

we would denote this graph as ¿>(n; n — 2) since there is only one independent set, k\. Later 

we will look at the case where t  — 2.

Figure 3.3 shows that G can be spanned by two edge-disjoint trees, T\ and T2, where T\ 

has solid edges and T2 dashed edges. For the n — 2 middle vertices of <S(n; n — 2), we reserve 

two vertices as “connecting” vertices and divide the remaining n — 4 vertices into four sets 

as equally as possible. To be precise, divide these n —4 vertices into four sets X \,X 2,X%, X 4 

where < \Xj\ < \TL̂ '\ for j  — 1 , . . . ,  4. Thus, for either i — 1 or i — 2, we have that

A(Tj) =  +  1 — f"f] and so this is an extremal example for Conjecture 21.

In fact, since S(n\n — 2) =  K 2)U- 2, the fact that this example is extremal was already 

noted by Horak and McAvaney. Further, if we add an edge between the two terminals, 

this provides another extremal example which is noted in [12]. We attempted to find an 

inductive proof of Conjecture 21, but were unable to get it to go through. Another possible 

method of attack would be to try to make any series-parallel graph “more extremal” via 

some operation, but we realized that this technique would be difficult as we found that 

the above two examples are not the only extremal cases. In what follows, we will present 

further extremal examples.

Let us now consider the series union of two of these types of SP-graphs, which we have

n — 2

Figure 3.3: <S(n; n — 2) and two edge-disjoint trees of <S(n; n — 2).
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denoted <S(n; k, n — k — 3). It is easy to see in Figure 3.4 that as long as k > 2 and n > 7, then

Figure 3.4: «S(n; k ,n  — k — 3).

5(S(n-,k,n — k — 3)) =  2. We begin by showing that in a particular case, we can do better 

than [ ,  and so this is not an extremal example in general. Suppose that n — 3 is even, 

and consider the graph <S(n;21̂ , IL̂ ) ,  so that the two independent sets have the same size. 

In each of the independent sets of size we again reserve two vertices as “connectors” 

and divide each of the remaining sets of vertices into three parts, as equally as possible. 

Connect each of the terminal vertices to one of the three sets in each tree and connect the 

middle vertex to the remaining set on the left in one of the trees and the remaining set to 

the right in the other tree (see Figure 3.5). In this case, A(Tj) =  — 2)] +  1 ~  ^

when n is large. Thus, this is not an extremal example.

Figure 3.5: T\ and T<i of S{n\ rL̂ ) .

However, there are an infinite number of graphs of the form <S(n; fc, n — k — 3) that are 

extremal for Conjecture 21. We found that if to =  3 (mod 4), then <S(n;2,n — 5) is an 

extremal example for the conjecture. See Figure 3.6 for a depiction of <S(n; 2, n — 5). Since 

n =  3 (mod 4), then n — 7 =  0 (mod 4). Again, we reserve two “connector” vertices in
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2 n — 5

Figure 3.6: <5(n; 2, n — 5).

the independent set of size n — 5, and divide the remaining n — 7 vertices into four equal 

parts (which is possible since n — 7 is divisible by 4). Then connecting the middle vertex, 

which we will call y, and i as we did above (see Figure 3.7), and then connecting y to one 

of vertices in T\, we get that

, , x n — 7 
dTi (y) =  — h 2 =

n + 1
4

~ h ~

4

The same argument works forn =  0 (mod 4), and so <S(n; 2, n —5) is also always an extremal

Figure 3.7: T\ and T2 of <S(n; 2, n — 5).

example for Conjecture 21. The graph of the trees is similar to Figure 3.7. However, the 

additional vertex in the independent set of size n — 5 can be connected to t in either tree.

Here we presented different extremal examples for Conjecture 18 within two different 

types of SP-graphs both of the form S(n\k,n  — k — 5). This does seem to indicate that 

the conjecture may be difficult to prove. In our investigations, we found that extending the 

cycle on the left of <S(n;2,n — 5) led to further extremal examples, but this only worked
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for very small cycles. Also, an investigation of whether S ( n ; k , i , n  — k — l — 4) is extremal 

would be an interesting area of future research. This leads us to ask the following question.

Question. Are there extremal examples for Conjecture 21 with arbitrarily large diameter?

3.4 Random graphs

A natural question is whether Conjecture 1 holds for random graphs, as introduced by 

Erdos and Renyi [10]. Given n and M, we define the random graph, denoted G(n, M ), as a 

graph on n vertices and M  edges chosen uniformly at random from the set of all graphs on 

n vertices and M  edges. Thus, if H  is any graph on n vertices and M  edges, we have

P {G(n,M) =  H ) = ( ^ f j  .

Of course, if M  — 0, then G(n, 0) = E n, the empty graph on n vertices, and if M  =  («), 

then G(n, (2)) =  K n, the complete graph on n vertices. In order for Conjecture 1 to hold, 

we need that the random graph is connected. We say that an event, A(ri), depending on n 

occurs asymptotically almost surely, or a.a.s., if P(A(n)) —> 1 as n —> 00.

Erdos and Renyi [11] were able to show the following.

Theorem 22. Let u(n) be any function approaching 00 as n —> 00. Then

1. If M(n) — ^(logn — then G(n,M(n))  is a.a.s. disconnected.

2. If M{n) — ^(logn + cu(n)), then G(n,M(n))  is a.a.s. connected.

In this case, we say that (nlogn)/2 is the threshold for connectivity in the random 

graph G(n,M).  If the random graph is Hamiltonian, then, as noted above, Conjecture 1 is 

certainly true, since we can simply delete an edge from the Hamiltonian cycle and are left 

with a spanning tree of maximum degree two. While Posa [16] gave a rougher result much 

earlier, Komlos and Szemeredi [13] and Bollobas [1] were able to show that the threshold 

for Hamiltonicity occurs only slightly later, which is also when the random graph becomes 

2-connected.

Theorem 23. Let cu(n) be any function approaching 00 as n —> 00. Then

1. If M{n)  = |(logn + log log n — u{n)),  then G(n,M(n))  is a.a.s. not Hamiltonian.
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2. If Min)  = ^(logn +  log log n +  v(n)),  then G(n,M(n))  is a.a.s. Hamiltonian.

Thus, Conjecture 1 becomes trivial as soon as the threshold for Hamiltonicity is reached, 

which occurs essentially when connectivity is reached. The question of whether the con

jecture is true for M  such that (nlogn)/2 < M  <  n(logn +  loglogn)/2 is perhaps an 

interesting one, but outside the scope of this thesis.
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Chapter 4

Conclusion

In this thesis, we have shown that the idea that one or more trees of a maximum degree span 

a connected graph has been explored extensively. Here we have expanded upon more recent 

concepts by Horak and McAvaney. They conjectured a bound for the maximum number 

of edge-disjoint trees of a maximum degree necessary to cover the vertices of a connected 

graph. As provided in the background section, we have illustrated sharp examples of Horak 

and McAvaney’s conjecture. We have also formulated our own conjecture that if Horak 

and McAvaney’s conjecture always holds true, we have a bound for the maximum degree of 

the set of trees. Within this bound, we found extremal examples among different types of 

series-parallel graphs. In the future, we look to try and prove the validity of our conjecture 

for all series-parallel graph specifically those with arbitrarily large diameters.
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