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ABSTRACT 

 

The Vietnam Mekong Delta (VMD) is the southernmost part of the Mekong River watershed 

basin and plays a critical role in Vietnam’s socio-economic and ecological wellbeing. Because of 

both climate change and anthropogenic activities, such as hydropower dam construction and 

overwhelming water extraction, the area has recently experienced severe droughts, changing 

rainfall patterns, and decreasing water resources, collectively heightening disaster risks. 

Understanding the interactions among these evolving factors is key to preserving resources in the 

VMD and similarly afflicted regions. Therefore, this dissertation included three objectives. The 

first objective was to estimate potential impacts of changes in the available water resources in the 

research area by predicting soil moisture and drought risk in the Mekong Delta using the 

Variable Infiltration Capacity (VIC) model. The second objective was to develop and validate an 

Artificial Neural Networks (ANNs) that would be able to predict soil moisture in the Mekong 

Delta. This process entailed using historical soil moisture data and comparing those data with the 

ANNs predicted model data. The third objective was to evaluate the willingness of the 

inhabitants of the VMD to engage in potential tradeoffs to avoid potential disaster risk in the 

region and to use this information to assist the Vietnamese government in developing 

environmental policies in the VMD. The VIC model showed that land cover change would have 

minimal impact on soil moisture in the area, that an increase in cropland would result in a 

decrease in soil moisture, and that there would be notable differences in soil moisture during the 

wet versus dry season. Also, the model showed that there would be severe drought in the period 

between the wet and dry season along the VMD’s western coastline. The ANNs model resulted 

in a high correlation between the historical data and the predicted soil moisture. In brief, both the 

VIC model and the ANN model have the ability to predict soil moisture. After the Vietnamese 

government introduced a flood management system, altering the natural flood pattern, VMD 

residents of both the area immediately downstream from the flood management structures and 

those who lived farther downstream were negatively affected socioeconomically.  We conducted 

a survey of residents of the VMD and found that residents were willing to trade off some short-

term benefits for long-term stability, but the residents farthest downstream were more willing to 
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accept tradeoffs than those residing immediately below the flood management system, as those 

farther downstream were more negatively affected by the new flood plan.  
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CHAPTER 1. INTRODUCTION  

 

1. The Mekong River Delta 

The Mekong River, which originates in China at the Tibetan Plateau, then flows downstream 

through Myanmar, Laos, Thailand, and Cambodia before draining into the East Sea (also known 

as the South China Sea) in Vietnam. The Mekong River is more than 4,000 kilometers in length, 

with an annual mean discharge of river water of approximately 475 km3 (Mekong River 

Commission [MRC], 2005). The hydrologic characteristics of the Mekong River are complex 

due to extensive watershed areas covering various geographic features. According to the 

Vietnamese government’s Ministry of Natural Resources and Environment (MONRE) (2010), 

the Mekong River gains its water mainly from precipitation via runoff processes. As a result, the 

different regions along the river contribute different volumes of water annually. The Mekong 

River Basin (Figure 1), with a surface area of 795,000 km2, is the most significant watershed 

basin in Southeast Asia and is divided into two parts: The Upper Mekong River Basin (UMB) 

and the Lower Mekong River Basin (LMB) (Thompson et al., 2014, Tanaka, 2003, MRC, 2010). 

The Lower Mekong River Basin is also called the Mekong Delta, extending from central 

Cambodia to the southern part of Vietnam, where the Mekong River empties into the East Sea 

(MRC, 2017).  
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Figure 1. The Mekong River Basin (Modified from Beilfuss and Tran, 2016) 
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While the LMB supplies a substantial amount of water to the river’s total annual flow, the UMB 

contributes a small portion to the total annual flow during the rainy season. However, 24% of the 

total river flow is dependent on ice melt in the Tibetan Plateau in China during the dry season 

(MONRE, 2010, MRC, 2017). Figure 2 illustrates the volume of water delivered to the Mekong 

River from its catchments (MONRE, 2010).  

 

The Mekong River has brought substantial economic benefits to the countries it flows through. 

For example, the enriched alluvial water brings natural fertilizer to the Mekong Delta via 

sedimentation processes. In addition, the Mekong River is the home to numerous native wild 

freshwater species, such as giant Mekong catfish, aquatic snail, and the rare river dolphin 

(Campbell, 2016). Several studies have estimated that there are approximately 900 freshwater 

species in the Mekong River, making it the second most biodiverse river ecosystem on Earth 

(Campbell, 2016; Ziv et al., 2012).  
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Figure 2. The contributions of Mekong River’s catchments to the total annual river flow. The 
number in the green box illustrates the amount of water (in billion cubic meters) that are 
contributed to the main flow of the river annually (Modified from MONRE, 2010). 
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2. Hydropower dam construction and its impact on water flow in the Mekong River 

 

A key anthropogenic activity that disrupts the Mekong River streamflow is hydropower dam 

construction. The total estimated hydropower potential of 53,000 megawatts (MW) has driven 

countries along the Mekong River to the dam construction race (International Centre for 

Environmental Management (ICEM), 2010). Indeed, there has been a remarkable increase in 

upstream hydropower development in several countries along the Mekong River (i.e., China, 

Laos, Thailand, and Cambodia). In 2011, it was reported that 77 dams had been built in the 

Mekong River catchments. Among these, eleven dams have been constructed along the free flow 

mainstream of the LMB (Orr J. et al., 2012). Nguyen (2014) had reported that 136 hydropower 

plants have been built in the catchments. An example of the challenges associated with dam 

development is the unilateral decision of Laos to build the Don Sahong Dam, ignoring all 

concerns raised by other MRC members about the dams’ impacts on the region’s socio-economic 

and ecological features (Trandem, 2015). Figure 3 illustrates the locations of dams that have 

been proposed along the mainstream of the Mekong River, reported by MRC (2010). 

 

There is a strong correlation between dam construction and the discharge declines along the 

Mekong Delta because the average discharge flows have been significantly lower in the post-

dam period (1992–2010) compared to the pre-dam period (1960–1991). The dams also severely 

affect the river's ecological webs because they have altered the river’s flow and sedimentation 

deposits (Orr et al., 2012; Piman & Shrestha, 2017). As a result, the water level in the river and 

its branches have recently decreased and threatened critical species’ habitats, decreasing the 

biodiversity of aquatic flora and fauna. Also, the livelihoods of people living near water bodies 

have been affected by reduced water accessibility and water-based resource production, such as 

crop irrigation (Orr et al., 2012). Overconsumption of water extracted from the Mekong River 

has caused water depletion in the region, especially to the approximately 60 million people living 

in the LMB (MRC, 2005, Orr et al., 2012). 
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Figure 3. The hydropower dam locations that have been built or are planned to be built in the 
Mekong River Basin (Hecht et al., 2018) 
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Several studies (Zhang et al., 2015, Lu et al., 2014, Lee et al., 2014) reported that water 

consumption plays a significant role in drought development in the Mekong area. These studies, 

funded by the Nature Conservancy, identified the factors that affect changes in flow pattern such 

as dam construction, land cover change, climate change, and the increase in water consumption 

along the river (Conservation Gateway, 2021). In 2014, the MRC reported that the total amount 

of water used for irrigation along the LMB was approximately 12% of the Mekong water flow.  

 

 
Figure 4. The contribution of agriculture to four countries of the LMB (Modified from MRC, 
2014) 

 

Figure 4 demonstrates how agricultural activities influence the economies of Cambodia, Laos, 

Thailand, and Vietnam. Freshwater requirements for irrigation are projected to increase 

exponentially as the LMB population is projected to grow to 90 million by 2050 (United Nations, 

2006). In areas with aggressive irrigation systems, farmers could grow three paddy cycles 

annually, but the process would consume a tremendous amount of water. 
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Figure 5. Total rice yield by province. Source: MRC 2014 
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Figure 5 shows the total spatial distribution of paddy rice yield in the LMB. The highest rice 

yield areas were in Thailand and Vietnam, where irrigation measures maximize paddy yields. 

However, in these two countries, poor irrigation system design, inappropriate application, and 

low maintenance have resulted in an excess of 20% of water usage for irrigation (MRC, 2014). 

 

Since sharing water management data among countries along the Mekong River has been a 

concern, the MRC was established with the goal of integrating water resources management. 

However, the lack of data sharing among the MRC members has further complicated the issue of 

ownership rights along the river (Thu, 2015). Southeast Asian countries have used the Mekong 

River for irrigation for centuries. In recent years, however, the Chinese government has 

influenced the river’s management by monetarily investing in dam development in Cambodia. 

Sithirith and Gillen (2017) suggested “If one examines the Mekong through the lens of 

Cambodia it increasingly looks more like a Chinese river than a mainland Southeast Asian 

River”. 

 

3. Vietnam’s Mekong Delta 

 

Since the Vietnam’s Mekong Delta (VMD) plays an essential role in the socio-economic and 

ecological aspects of the region. Any social or environmental modifications can drastically affect 

the region. There were two such attempts applied to the regions to enhance the development of 

this region.  First, the post-1975 land reform program was initiated in an effort to rebuild the 

southern socio-economic status after the Vietnam War. Second, dyke structures were constructed 

during the 2000s with the hope of protecting agricultural land from inundations (Trung et al., 

2007, Wolford and Gorman, 2010). However, both government attempts were unsuccessful. 

While the land reform program destroyed almost all agrarian structures in the Mekong Delta, the 

other was considered an expensive failure because of its social and environmental adverse 

consequences, such as increasing saltwater intrusion and reducing nutrient sedimentation leading 

to crop yield decreases. 
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From 2015 to 2017, agricultural drought occurred in the Mekong Delta (Fawthrop, 2019, Ho, 

2016, Quang, 2017), which may be a consequence of climate change and anthropologic 

activities. These events shocked local farmers since they were not adequately prepared for this 

extreme weather phenomena. While the scientific community is looking for the appropriate 

response, farmers in the Mekong Delta continue to face challenges, such as lack of potable water, 

loss of agriculture-based income, and the need to migrate to alternative living sources. The Food 

and Agricultural Organization (FAO) (2016) pointed out that smallholder agriculture producers 

in developing countries could be very vulnerable to these changes; however, they can gain 

substantial benefits from applying resilience measures. 

 

In efforts to cope with the drought disasters, the Vietnamese government spent approximately 

$2.7 million to upgrade dykes, construct sluices, and drill additional wells (Pham et al., 2017). 

Also, farmers living in these vulnerable areas have applied different adaptations to protect their 

livelihoods from these disasters. These farmer-led innovations vary from switching to more 

resilient crops to integrated rice-fish farming (Tran et al., 2018, Tran & Rodela, 2019). 

 

The VMD covers 39,000 km2, stretching from the Vietnam and Cambodia national borders to the 

south of Ho Chi Minh City, and finally to Ca Mau province at the southern tip of Vietnam 

(Figure 1). The VMD is located between latitude 8.5˚N - 11˚N and longitude 104.5˚E - 106.64˚E 

(Chen et al., 2011). As the Mekong River passes through Vietnam, it divides into two main 

branches, the Mekong River (Tiền Giang in Vietnamese) and the Bassac River (Hậu Giang in 

Vietnamese). These two main branches divide the VMD into three regions, including the Long 

Xuyen Quadrangle locating west of the Hậu River, the Plains of Reeds located east of the Tien 

River, and the area between the Tiền and Hậu rivers (Nguyen et al., 2015). Then, their waters 

drain into the East Sea. The VMD has a tropical monsoon climate, with two main seasons: rainy 

and dry. The rainy season is typically from July/August to December/January, while the dry 

season is typically from January/February to June/July. Therefore, the annual precipitation in the 

VMD varies from region to region. Figure 6 illustrates precipitation distribution in the VMD. 

The area between the Tiền River and Hậu River has the lowest annual mean precipitation rate of 

about 1,400 mm. 
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Figure 6. Map of precipitation distributions in the VMD (Modified from MONRE, 2010). Note: 
the black nodes represent mete orology stations. 

 

The VMD population is about 18 million (General Statistics Office, (GSO), 2014), which 

accounts for 20.63% of Vietnam’s population. More than 82% of them are living in rural areas. 

On average, an individual farmer has around 0.87 hectares (ha) (MORNE, 2010). There are 
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many different land-use-land-cover types in the VMD. Table 1 represents the most popular land 

uses in VMD since 2010. The VMD is named the “rice bowl” of Vietnam. Rice cultivation is the 

primary livelihood of about 60% of the population (Kakonen, 2008) and the region produces 

about half of the national food volume with 51% of total rice-paddy production, 55% of the 

domestic fisheries and fruit production, 60% of the exported aquaculture goods, and 61% of total 

export value.  

 

Table 1. Summary of Land use classification in the VMD. Source: MONRE 2010 

Land use classification Area (ha) 

1 Crop land  2,536,295 
2 Orchard land 219 
3 Aquaculture area 486,056 
4 Forestry cultivation land 347,453 
5 Developed area 496,992 
6 Marginal land 941 
7 Wetland  98,887 
8 Opened area 580,350 
9 Reforestation area 261,521 
10 Salt production land 3,897 

 

The VMD hydrology depends on the tropical monsoon climate with the two distinct seasons 

described above. Residents of Southern Vietnam are annually influenced by the floods, tidal 

regime, and saline intrusion from the coast. When the temperature is high and the rainfall is less 

during the dry season, water scarcity and saltwater intrusion from the East Sea threaten the 

region. In contrast, during the rainy season, floodwater brings alluvial-based nutrients to fertilize 

the land, driving seawater intrusion back to the ocean, and eliminating crop pests and diseases. In 

addition, climate change has resulted in sea level rise (SLR) and changes in precipitation 

patterns, which together increase the risk of freshwater depletion in the VMD. 
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Figure 7. Map of the Vietnamese Mekong Delta with distributions of flood area and brackish 
area. Source: modified from Kakonen 2008) 

 

Tanaka (2003) compared the flood regime in the Tonle Sap region of Cambodia and the VMD 

using specific sensor microwave/imager (SSM/I) data and national oceanic and atmospheric 

administration advanced very high-resolution radiometer (NOAA/AVHRR) to estimate the water 

coverage area from May 1997 to April 1999. He found that water coverage in VMD was greater 

than in Tonle Sap throughout the year. Similarly, Le (2011) used a hydrologic model approach to 

research climate-related phenomena on the Mekong Delta Basin flood regimes. In that study, the 
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flood regimes in the Mekong River Delta were affected by regional flow variation, which is 

significantly influenced by climate change, especially the changes in annual precipitation, on the 

upper parts of the basin. Le applied the special-report-emissions-scenarios-A2-greenhouse-gas 

(SRES A2 GHG) scenario suggested by the Intergovernmental Panel on Climate Change (IPCC) 

for sea-level rise to project the regional climate model, regional hydrodynamic model, and the 

ocean circulation model. The data from the three models were then fed into the Environmental 

Impact Assessment 3D model. Le’s model predicted that most of the flood water would be 

blocked in the upper part of the region instead of draining toward the East Sea. Figure 8 

illustrates differences in the flood regimes in the 1980s and the predicted changes in the 2030s at 

the Mekong River (Le, 2011). The submerged area, in blue, was projected to be much more 

extensive in the 2030s than during the 1980s period.  

 

 
Figure 8. Flood water coverage in the Mekong Delta in the 1980s and 2030s (reproduced from 
Le, 2011). 
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Chen et al. (2011) used National Aeronautics and Space Administration’s (NASA) Moderate 

Resolution Imaging Spectroradiometer (MODIS) data to estimate soil moisture with the 

temperature vegetation dryness index (TVDI) and rice crop system. Using crop pattern indices in 

two years, 2002 and 2006, the researchers derived the spatial soil moisture distribution using 

temperature vegetation dryness index and classified the drought area in the region. Figure 9 

illustrates differences in TDVI between 2002 and 2006 monitoring soil moisture variability 

connected to rice cropping systems in the VMD using MODIS data (Chen et al., 2011). Son 

(2012) suggested that TDVI is a respectable indicator for evaluating drought-related climate 

change at the Mekong Delta. Similarly, Zhang et al. (2014) conducted a remote sensing-based 

model to calculate Net Primary Productivity (NPP) as a drought index using the following 

equation:  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁������

𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁
      Eq. 1 

 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁  = the NPP anomalies, NPP(i) = the annual NPP in the ith year, 𝑁𝑁𝑁𝑁𝑁𝑁������ = the value of 

mean NPP for the period 2000–2011, and σNPP = the standard deviation of the 12-year NPP. The 

investigators obtained data using the Palmer Drought Severity Index (PDSI) at 0.5o x 0.5o spatial 

resolution from the Numerical Terra Dynamic Simulation Group. The research concluded that 

the irrigation method applied in Vietnam could reduce the impact of drought in 2005 on 

croplands.  
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Figure 9. The spatial distribution of soil moisture in February in the year 2002 and 2006 at the 
Vietnamese Mekong Delta (modified from Chen, 2011). 

 

Arias et al. (2014) evaluated the potential impact of dams on Mekong tributaries using the Soil 

Water Assessment Tools (SWAT) model to estimate daily runoff. The study used both the 

generic water quantity and quality simulation model (IQQM) and the Reservoir System 

Simulation (HEC-ResSim) models to compute daily discharge in the Mekong Kratie branch of 

the Mekong River. Next, the researchers set their scenarios, including Baseline, Definite Future, 

and 3S (Sesan, Srepok, and Sekong river) Dam Development, to run models based on these 

scenarios. Then, each model outcome was calibrated with observed data collected at Tonle Sap. 

The study concluded that the 3S dam development scenario introduced a high probability of 

altering the water levels and the dynamics of water level change rates along the Mekong River. 

Although the research site was located in LMB, the authors did not report the effect of the dam 

development on the VMD. 

 

Although numerous publications are applying Artificial Neural Networks (ANNs) studies using 

deep learning-based methods on hydrology, predictions are limited. Agana et al. (2017) 

introduced research using a deep learning algorithms approach for long-term drought prediction. 

The authors suggested that, because drought variables are random and non-linear, it is difficult to 

find an accurate drought prediction. Hence, one should apply the ANNs method to extract 

hydrological features from past observed data. This research was implemented at the Upper 
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Colorado River Basin. In this study, the authors used Restricted Boltzmann Machine (RBM), a 

generative energy model, to define energy balance equations between visible and hidden layers. 

In this research, RBM was described as an activation function which is written as  

 

𝐸𝐸(𝑣𝑣, ℎ) =  − ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖=𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗𝑗𝑗=ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖 − ∑ 𝑣𝑣𝑖𝑖ℎ𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗   Eq. 2 

 

where 𝑣𝑣𝑖𝑖and ℎ𝑗𝑗 are the binary level of visible unit i and hidden unit j, respectively. 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑗𝑗  are 

the bias, and 𝑤𝑤𝑖𝑖𝑗𝑗  is the weight between a and b.  

 

The study compared observed data that were collected from 1912 – 2013 to a prediction model 

named deep belief network (DBN). The authors found that the output of the DBN drought 

prediction model had a higher correlation with the observed data than the traditional model.  

 

Two surveys were conducted to access the farmers’ perception in Maharashtra state, India, and 

the VMD. The research in India aimed to understand the farming community’s perception of 

drought effects on household socio-activities, local environment, individual’s adaption, and 

government opinion. This study carried out a face-to-face interviews with primary data collected 

from 223 samples. The questionnaire was divided into sections including general household 

characteristics, farmers' perception of drought and its impact on agriculture and livestock, 

environmental impacts, adaptation strategies, and mitigation measures. There were several sub-

questions in each section using dichotomous, Likert scale, and multiple-choice types. The study 

found that Indian farmers needed mitigations to adapt to droughts, even though they had a good 

perception of the drought severity. Unfortunately, this research did not introduce a quantitative 

relationship between farmers’ perception and the adaptations’ success (Udmale et al., 2014).  

 

Dang et al. (2014) investigated farmers’ perceptions of, and adaptations to, climate change in the 

VMD. The study used a structural equation model to estimate interrelationships among 

constructs in the conceptual model. The investigators interviewed 685 farmers in total, with a 
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refusal rate of 8.3%. The authors applied multi-stage probability sampling to identify twelve 

communes in the region. In this study, the questions constructed depended on specific variables. 

For example, to measure maladaptation to climate change, farmers were asked to rate to what 

extent they agreed with a given statement, based on a 7-point Likert scale. The investigators 

found that the farmers in VMD understood, and intended to adapt to, climate change. 

 

RESEARCH OBJECTIVES 

 

This study’s objective was to assess the impact of climate change, anthropogenic activities, and 

water management interventions on environmental and socio-economic conditions in the 

Mekong Delta region. This was accomplished through the following studies: 

 

1. Investigating the variation of soil moisture and agricultural drought in the Mekong 

Delta region using a macro-scale variable infiltration capacity (VIC) model with the 

Soil Moisture Anomaly Percentage Index (SMAPI) of drought.  

 

2. Developing and validating a Multi-layer Perceptron Neural Networks (ANNs) to 

predict soil moisture in the Mekong Delta, comparing historical soil moisture data 

with the ANNs predicted model data.  

 

3. Evaluating the willingness of the inhabitants of the VMD to engage in potential 

tradeoffs to avoid potential disaster risk in the region, and making this information 

available to the Vietnamese government, as it develops environmental policies in the 

VMD.  
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CHAPTER 2.  INVESTIGATING VARIATION OF SOIL MOISTURE AND 

AGRICULTURAL DROUGHT IN THE MEKONG DELTA REGION 

USING A MACRO-SCALE VARIABLE INFILTRATION CAPACITY 

MODEL WITH THE SOIL MOISTURE ANOMALY PERCENTAGE 

INDEX OF DROUGHT  

 

Abstract 

 

The Mekong River Basin (MKB) is an economically and ecologically important region 

vulnerable to climate variability and land cover changes. To effectively develop long-term plans 

for these potential changes, potential results of climate variability and land cover change must be 

evaluated. This study predicted the impact of future land cover change on MKB spatial and 

temporal hydrologic parameters. The research goal was achieved by (1) using baseline land 

cover change to predict future land cover change and (2) feeding the predicted future land cover 

change as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to predict future 

changes in soil moisture and drought in MKB. The VIC model outputs were analyzed against 

historical data on soil moisture and drought to understand to what degree land cover changes 

may affect the region's hydrology and where these changes would occur within the region. This 

study found that most land cover changes would occur in the Lower Mekong Basin (LMB), 

caused by increased use of land for agricultural purposes, but that the change in land cover 

would not affect soil moisture or drought. The results of this study may be used by policy makers 

to develop effective policies for land and water resources management in the LMB. 
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1. Introduction  

 

The Mekong Delta watershed is a comprehensive ecosystem with complex stream systems. The 

whole system is supplied by the Mekong River and its millions of branches. The Mekong River 

is over 4,000 kilometers in length, with an annual mean discharge of approximately 475 km3 

(MRC, 2005). Its enriched alluvial water brings natural fertilizer to the Mekong Delta via 

sedimentation processes. Also, the Mekong River is the home to numerous native wild 

freshwater species, such as giant Mekong catfish, aquatic snail, and the rare river dolphin 

(Campbell, 2016). There are approximately 900 freshwater species in the Mekong River, making 

it the second most biodiverse river ecosystem on Earth (Campbell, 2016; Ziv et al., 2012). The 

watershed is a dynamic system that changes significantly under natural processes and 

anthropogenic activities.  

 

Climate variability and land cover change have been identified as the main variables contributing 

to regional vulnerability within the Mekong Delta (Francisco, 2008). These changes have 

implications on crucial functions of the river such as aquatic ecosystem productivity (Kummu 

and Sarkkula, 2008, Lamberts, 2008), transport of sediment and nutrients (Kummu et al., 2006), 

freshwater supply, and disasters (i.e., flooding) (Lauri, et al., 2012). Given that the watershed 

itself covers almost 795,000 km2, it is not feasible to implement field-based research covering all 

elements of the Mekong Delta. Hydrologic models have considerable advantages in watershed 

modeling with the innovation of computer science, Geographic Information System (GIS), and 

remote sensing technologies. Many studies to date have predicted how climate change will alter 

the discharge of the Mekong River (Keskinen et al., 2010; Lauri et al., 2012). Nijssen et al. 

(2001a, 2001b) evaluated climate effects on the streamflow of the MKB in the context of global 

warming and predicted that the MKB streamflow would decrease due to climate change.  

 

Additionally, more targeted studies into the effects of climate change on the MKB (Eastham et 

al., 2008, Prathumratana et al., 2008, Kingston et al., 2011, Lauri et al., 2012), concluding that 

streamflow is highly dependent on changes in precipitation. Flow discharge reduction has also 
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been estimated to have an impact on traditional agriculture, including irrigation (MRC, 2010). 

Therefore, it is important to understand the possible impact climate variability and land cover 

change have on the hydrology of the MKB system. 

 

Soil moisture content (SMC) is a fundamental soil characteristic for understanding occurrences 

like erosion, flooding, groundwater recharge, and drought (Ahmad et al., 2009, Verstraeten et al., 

2008).  Spatio-temporal variation of soil moisture reflects a conjoint variability of climatic and 

spatial variables, such as the interactions among precipitation, land cover types, and 

evatransporation (Luong et al., 2020). Therefore, a better understanding of the spatio-temporal 

variation of soil moisture is of great importance for investigating the driving mechanisms and 

influencing factors for agricultural drought at the regional scale, which has important 

implications for water resource management as well as agriculture. 

 

Recently, extreme droughts have occurred in the Mekong Delta (Fawthrop, 2019, Ho, 2016, 

Quang, 2017), which may be a consequence of climate change and anthropologic activities. 

These events shocked local farmers since they were not adequately prepared for this extreme 

weather phenomena. While the scientific community is looking for the appropriate response, 

farmers in the Mekong Delta continue to face challenges, such as lack of potable water, loss of 

agriculture-based income, and the need to migrate to alternative living sources.  

 

It is essential to investigate the impact of mereological indicators, land cover changes, and 

topography on the spatial and temporal variation of drought in different regions in the MKB. 

However, the questions on how these variables influence the spatio-temporal variations of soil 

moisture in the regions remain unanswered. Therefore, the main objective of this study was to 

estimate the water budget of the region using the VIC model, a semi-distributed land surface 

hydrologic model. Then, the soil moisture and drought variation were derived from the VIC 

model results to: 

1. Estimate agricultural drought variation in the MKB using the soil moisture anomaly 

percentage index (SMAPI). 



MEKONG DELTA REGION   22 

2. Simulate soil moisture and drought variations for the different land cover change scenarios to 

determine effect of land cover on soil moisture and drought variation in the MKB. 

 

2. Method and Materials 

2.1. VIC Soil Moisture Simulation  

The VIC model was first introduced by Liang et al. (1994) as a hydrological modelling effort 

implemented at the University of Washington, Seattle. The model operates by using both water 

balance and energy balance equations within a grid-cell. Each active grid-cell is apportioned into 

multiple vegetation and soil layers with variable infiltration rates and topography (Tatsumi & 

Yamashiki, 2015). The VIC model runs on the Linux/Unix platform. Several studies have 

applied the VIC model. Applications of the model to the continental U.S. have established 

reasonable estimates between predicted and observed measurements, between observed and 

simulated snow water equivalent, and between observed and simulated streamflow (Andreadis & 

Lettenmaier, 2006).  

 

The VIC model estimates the hydrological features based on the water balance equation (Eq.3). 

While soil moisture, evapotranspiration, infiltration, and runoff are outputs, soil parameters, such 

as precipitation, land use land cover, and soil texture, are required as hydrologic inputs (Liang et 

al., 1994, 1996, Nijssen et al., 1997, Vigerstol et al., 2011). The water balance equation is written 

as 

 

𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑

= 𝑁𝑁 − 𝐸𝐸 − 𝑅𝑅    Eq. 3 

 

The dS/dt = the terrestrial water storage, P = precipitation, E = evapotranspiration, and R = the 

total runoff. In the long-term calculation, it is assumed that moisture in the atmosphere and soil 

are unchanged. Eq.3 can be simplified as 
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𝑅𝑅� ≈ 𝑁𝑁� − 𝐸𝐸� − 𝛻𝛻𝑄𝑄�      Eq. 4 

 

where 𝛻𝛻𝑄𝑄� = horizontal water vapor. Eq.4 can be interpreted as the system's horizontal water 

vapor, which approximately equals the total runoff out of the system.  

 

The VIC model outcomes usually estimate hydrologic watershed elements, including daily 

surface runoff, baseflow, evaporation, soil moisture, and snow water equivalent for each grid-

cell. With these outputs, the drought index can be characterized by the water balance equation 

(Ma et al., 2016). The VIC model's calibration and validation processes for this study were 

conducted from 2019 to 2020 using the streamflow data obtained from the stream gauges along 

the river. For calibration and validation procedures, the sensitivity parameters of the VIC model, 

including variable infiltration curve parameter (binfiltration), maximum velocity of baseflow (Dsmax), 

fraction of Dsmax where non-linear baseflow occurs (Ds), and fraction of maximum soil moisture 

where non-linear baseflow occurs (Ws) were adjusted (Markert et al., 2018). The critical metrics 

for model performance evaluation showed that the VIC model could capture the hydrologic 

dynamic over the MKB with Pearson’s correlation coefficient reaching 0.75 and the index of 

agreement approaching 0.85. Using the simulation outputs of the VIC model, the simulated soil 

moisture dataset for nine years (2010–2018) was extracted to analyze the agricultural droughts 

within the MKB in this study. The soil moisture datasets were calculated and presented for dry, 

wet, and transitional periods. 

2.2. Soil Moisture Anomaly Percentage Index  

The Soil Moisture Anomaly Percentage Index (SMAPI) indicator, suggested by the Copernicus 

European Drought Observatory (EDO), was applied for determining the start and duration of 

agricultural drought conditions relating to soil moisture variability, which adversely affects crop 

yield (Luong et al., 2021). The grid-cell based SMAPI is calculated using daily soil moisture 

content estimated by a hydrological model as follows 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆 =  𝑑𝑑𝑆𝑆𝑆𝑆𝑡𝑡−𝑑𝑑𝑆𝑆𝑆𝑆������

𝑑𝑑𝑆𝑆𝑆𝑆������        Eq. 5 

 

where SMIt = soil moisture index (SMI), standardized daily soil moisture with mean between the 

wilting point and the field capacity in a t-day period. The 𝑆𝑆𝑆𝑆𝑆𝑆����� = mean of SMI, which are both 

calculated for the same period t (time) within a baseline period of the start-year. SMA can be 

used to estimate weekly or every ten-day agricultural drought (EDO, 2019).  

 

The SMAPI is suitable to predict drought based on modelled SMC and the spatial extension of 

the regions impacted by or at risk of drought conditions (EDO, 2019). However, the SMAPI may 

produce large approximations of the actual SMC because of the hydrological models' impractical 

assumptions. Therefore, to avoid progressive divergence from actual conditions, model 

calibrations and validations were performed. Agricultural drought classification using SMAPI 

are presented in Table 2.  

 
Table 2. Classification of drought conditions using the soil moisture anomaly percentage index 
(SMAPI). 

Category  Description SMAPI Range 
D4 Extreme drought ≤− 0.50 
D3 Severe drought −0.50 to − 0.30 
D2 Moderate drought −0.30 to −0.15 
D1 Mild drought −0.15 to −0.05 
N Near normal −0.05 to 0.05 
W1 Slightly wet 0.05   to 0.15 
W2 Moderately wet 0.15   to 0.30 
W3 Very wet 0.30   to 0.50 
W4 Extremely wet 0.50 

2.3. Data Collection and Preparation 

a) Land surface data 

The land cover data applied in this study was extracted from National Aeronautics and 
Space Administration (NASA), Moderate Resolution Imaging Spectroradiometer (MODIS) 
combined land cover product version 6 (MCD12Q1v6) published May 14, 2018 (Friedl et al., 
2019) and downloaded from the Goddard Earth Sciences Data and Information Services Center 
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(GES-DISC) database. The land cover legend of the dataset followed the International 
Geosphere-Biosphere Programme (IGBP) classification scheme which includes 16 land classes 
and is represented in Table 3. 
 
 
Table 3. The IGBP legend and class descriptions used in MCD12Q1v6 
Name  Value Description 
Evergreen Needleleaf 
Forests  

1 Dominated by evergreen conifer trees (canopy >2m). 
Tree cover >60% 

Evergreen Broadleaf Forests  2 Dominated by evergreen broadleaf and palmate trees 
(canopy >2m). Tree cover >60%. 

Deciduous Needleleaf 
Forests 

3 Dominated by deciduous needleleaf (larch) trees 
(canopy >2m). Tree cover >60%. 

Deciduous Broadleaf 
Forests 

4 Dominated by deciduous broadleaf trees (canopy >2m). 
Tree cover >60%. 

Mixed Forests 5 Dominated by neither deciduous nor evergreen (40-
60% of each) tree type (canopy >2m). Tree cover 
>60%. 

Closed Shrublands 6 Dominated by woody perennials (1-2m height) >60% 
cover. 

Open Shrublands 7 Dominated by woody perennials (1-2m height) 10-60% 
cover. 

Woody Savannas 8 Tree cover 30-60% (canopy >2m). 
Savannas 9 Tree cover 10-30% (canopy >2m) 
Grasslands 10 Dominated by herbaceous annuals (<2m). 
Permanent Wetlands 11 Permanently inundated lands with 30-60% water cover 

and >10% vegetated cover. 
Croplands 12 At least 60% of area is cultivated cropland. 
Urban and Built-up Lands 13 At least 30% impervious surface area including 

building materials, asphalt, and vehicles. 
Cropland/Natural 
Vegetation Mosaics 

14 Mosaics of small-scale cultivation 40-60% with natural 
tree, shrub, or herbaceous vegetation. 

Permanent Snow and Ice 15 At least 60% of area is covered by snow and ice for at 
least 10 months of the year. 

Barren 16 At least 60% of area is non-vegetated barren (sand, 
rock, soil) areas with less than 10% vegetation. 

Water Bodies 17 At least 60% of area is covered by permanent water 
bodies 

Unclassified 255 Has not received a map label because of missing 
inputs. 

 

The monthly leaf area index and albedo were derived from the second Modern-Era Retrospective 

Analysis for Research and Applications (MERRA-2), which is a NASA atmospheric reanalysis 
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using an upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5) 

data assimilation system. 

 

b) Meteorological data 

 

Forced meteorological data is an essential input variable for a hydrology model used in water 

balance through energy and mass balance equations. These data were extracted from the dataset 

freely available at Copernicus databases through the National Center for Atmospheric Research 

(NCAR) Research Data Archive from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim reanalysis dataset (ECMWF, 2009, Dee et al., 2011, 

Berrisford et al., 2011). The WorldClim version 1 observed climate dataset was used to study 

annual climatic averages of meteorological forcing variables such as annual precipitation and 

average temperature needed for parameterization into the hydrologic model (Hijmans et al., 

2005). 

 

The study accessed the precipitation products from the Precipitation Estimation from Remote 

Sensing Observation using Artificial Neural Networks Cloud Classification System 

(PERSIANN-CCS), which is designed and operated at the Center for Hydrometeorology and 

Remote Sensing (CHRS) at the University of California, Irvine. 

2.4. Land Cover Change Prediction 

Land cover projections were modeled using a multilayer perceptron neural network built-in the 

land change modeler (LCM) for ecological sustainability in TerrSet software, published by Clark 

Labs. The LCM, used for the assessment and prediction of land cover change and its application, 

are organized into major areas: change analysis, change prediction, and planning interventions. 

The LCM workflow included (1) Change Analysis, (2) Transition Potential, and (3) Change 

Prediction.  
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In the Change Analysis section, the LCM requires land cover images for earlier and later years in 

the period of study. In addition, the basic road and topographic layers are required for dynamic 

development predictions. Based on land cover change during the 2010-2018 period, the LCM 

estimated the main variables that drove changes in land cover. In this study, we chose distance to 

water, distance to urban area, distance to road, and distance to cropland as driven variables for 

disturbances in the MKB. These driven factors were tested for significance using p-values of 

Cramer’s V for significance.  

 

The change prediction deployed a Multi-layer Perceptron (MLP) neural network with one input, 

one output and one hidden layer. The input of MLP were cells that showed change during the 

period.  Using a trial-and-error method, the hidden layer had six nodes using three Sigmoid 

functions and three linear functions. We set the learning rate at 0.01 as default. 

The expected accuracy rate of the MLP was a function of the number potential transitions being 

modeled in a sub-model along with the number of persistence classes in the “source” land cover 

classes. The accuracy rate was calculated by equation:  

E(A) = 1
(T+P)

      Eq. 6 

where 

E(A) = expected accuracy, T = the number of transitions in the sub-model, P = the number of 

persistence classes = the number of “from” classes in the sub-model. 

A measure of model skill is then expressed as:  

𝑆𝑆 = 𝐴𝐴−𝐸𝐸(𝐴𝐴)
1−𝐸𝐸(𝐴𝐴)

     Eq. 7 

where A = measured accuracy, this measure ranges from -1 to 1 with a skill of 0 indicating 

random chance (Atkinson et al., 1997, Chan et al., 2001, Civco et al, 1993). 

 

3. Result and Discussion 

3.1. Land Cover Change Prediction  
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Based on the number of changed cells of each land cover category (Figure 10), Forest, Savanna, 

Cropland, and Grassland had very dynamic changes from 2010-2018, while Urban and 

Wetland/Water were stable during the same period. In the beginning, Cropland and Savannas 

expanded gradually before decreasing substantially in 2016. The decrease in Cropland areas may 

have been caused by the negative impacts of climate change and drought in the regions (Markert 

et al., 2018). It is possible that the Cropland areas may have been replaced by Grassland and 

Savanna areas because the Grassland and Savanna areas increased after 2016. Unfortunately, the 

Forest area decreased from 2010 to 2014 and then again starting in 2016. 

  

 
Figure 10. Land cover changed in MKB during 2010-2018  

 

Table 4 shows contributions of different land types to Cropland changes during 2010-2018. 

Grassland was the most extensive area converted to Cropland with more than 1.2 million km2. 

Next, Savannas and Evergreen Broadleaf Forest contributed to Cropland, about 420,750 km2 and 
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7,254 km2, respectively. In contrast, Cropland lost almost a million km2 to Closed Shrublands, 

Permanent Wetlands, Woody Savannas, and Cropland/Natural Vegetation Mosaics. 

  

 
Table 4. Contributions to net change in Croplands 

Land Cover Types Area change (km2) 
Grasslands 1,204,225 
Savannas 420,753 
Evergreen Broadleaf Forests 7,254 
Closed Shrublands -7,254 
Permanent Wetlands -21,763 
Woody Savannas -101,561 
Cropland/Natural Vegetation Mosaics -870,524 

 

The present study applied the LCM model to project land cover change using TerrSet (Clark 

Lab, 2020) with the MLP neural network. We focused only on the transition from other land 

cover types to Cropland, Forest, Savannas and Grassland since they have shown the most 

dynamic trends in the region. 

 

Results of LCM model showed that most of the contributions to cropland change were located at 

the lower part of the MKB (Figure 11). This finding is in agreement with that of Markert et al. 

(2018)  



MEKONG DELTA REGION   30 

 
Figure 11. Distributions of land cover changes during the period 2010-2018 
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3.2. Land Cover Change Simulations 

The predicted land cover simulations were run at five-year increments from 2018 to 2050 with 

multiple scenarios. This simulation used land use changes in period 2010-2018 as input for the 

MLP (Clark Lab, 2020), with the 2018 data as the baseline for predictions. The MLP model used 

three independent variables, including distance to water bodies, distance to urban areas, distance 

to main roads as input for the model. We also used one dummy variable, named Distance to All 

Cropland, to reduce the potential bias as suggested by LCM (Clark Lab, 2020).  

 

The parameters and performance of the MLP are shown in Table 5. The model accuracy rate of 

62.22% was acceptable, when considering that the MKB is a large geographic area with different 

ecoregions that have different suitability for different classes. As such, the model created for this 

study was optimized to capture the general trends, not specific regional trends within the basin. 

Also, the MLP showed a higher accuracy rate compared to previous research on MKB land cover 

change (Markert et al., 2018). 

 

Table 5. Parameters and Performance 

Parameters Values 
Input layer neurons 5 
Hidden layer neurons 6 
Output layer neurons 7 
Requested samples per class 38 
Final learning rate 0.001 
Acceptable RMS 0.01 
Iterations 100,000 
Training RMS 0.26 
Testing RMS 0.28 
Accuracy rate 62.22% 

 

The spatial distributions for each class under all scenarios for 2050 are presented in Figures 12, 

13, 14. The maps of the predicted large-scale spatial patterns appear to show little change over 

time. However, the model shows that predicted decreases in Grassland and Natural Vegetation 

would be replaced by predicted agricultural land. This shift between the two classes was 
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identified mainly in the Cambodian and Vietnamese regions of the MKB. These predicted 

changes make it essential to simulate the hydrologic response to these changes in order to 

understand the significance of shifts in land cover. 
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Figure 12. Predicted land cover for 2023 – 2028. 
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Figure 13. Predicted land cover for 2033 – 2038. 
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Figure 14. Predicted land cover for 2043 – 2048. 
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Figure 15 presents predicted changes in different land cover types for each five-year period from 

2023 to 2048 in comparison to baseline (2018). The MLP model predicted a substantial increase 

in Cropland during this period, except for 2028.  Savannas and Natural Vegetation were the two 

most prominent contributors to the change of Cropland. During this period, the regions are 

predicted to lose their Forest and Natural Vegetation areas due to conversion to Cropland. 

Wetlands/Water areas were projected to remain stable in the future. In addition, there was no 

predicted change in the Urban area.  

 

The MLP model predicted a large increase in Cropland in year 2023, but a large decrease in 

Cropland in year 2028. This suggests that the MLP model was too aggressive in predicting the 

outcome for 2023. However, the MLP predictions improved in the succeeding predicted years.  

 

 
 
Figure 15. Predicted land cover trend from 2023 to 2048 in comparison to 2018. 
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3.3. Spatio-Temporal Variation of Soil Moisture  

Soil moisture distribution in MKB during the period 2010-2018 is presented in Figure 16. The 

model predicted large variations in soil moisture at the LMB and stable soil moisture at the 

UMB. In 2015, soil moisture reduction occurred in the Vietnam and Cambodia regions of the 

MKB but increased slowly in 2017 and 2018.  
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Figure 16. Soil moisture distribution at MKB during 2010-2018 
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3.4. Relationships among SMAPI, Land Cover, and Rainy Season 

The seasonally averaged SMAPI maps for the MKB during the period 2010–2018 are displayed 

in Figure 17. The SMAPI maps captured the spatio-temporal variability of drought conditions in 

different regions of the MKB. In general, during the dry season and the transition season, there 

was severe drought throughout the MKB, especially in the LMB coastal areas. During the wet 

season, drought continued to occur in the UMB (China) and at several locations in the LMB. 

During the wet season, most areas in the southern region of MKB were classified as slightly wet. 

 

 
Figure 17. SMAPI maps for the dry (Dry-left) season, wet (Wet-center) season, and transitional 
(TRANS) months for the period of 2010–2018 win the MKB. 

 

Drought versus wet conditions have important implications for agroforestry activities. The 

relationship between land cover type and drought/wet conditions are presented in Table 6. Land 

cover types were separated into two major categories. The first major category included Urban, 

and built-up land, water bodies, and herbaceous wetland. Even though some areas were affected 
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by drought in 2015-2016, the VIC model was not able to capture these events. The second major 

category included cropland, grassland, forest, and savanna. For this category, the VIC model 

captured variations in drought versus wet conditions during the wet and dry season. 

 

In the second category, there was little difference in projected drought conditions during the dry 

and wet seasons in the Forest areas, which suggests that forested areas are protected from 

drought. But for Cropland and Grassland, projected drought occurred at the beginning of the dry 

season almost immediately, while the reverse occurred almost immediately during the wet 

season. This different in projected drought would be due to the greater evatransporation in 

Cropland and Grassland than in Forest. 

 

In the Savanna regions, there was little change in projected drought conditions between wet and 

dry season. However, in coastal areas of extreme drought (D4) Savannas in those areas were 

projected to suffer from drought during the wet season. 

 

There was a substantial difference in projected drought conditions in Cropland areas during the 

dry and wet season. In areas of mild drought (D1), drought during dry season was projected to be 

8.75 times higher than during the wet season.  
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Table 6. Drought/Wet conditions according to percentage of land cover types 

Land Cover Type Area  
(%) 

Dry season Wet season 

D4 D3 D2 D1 N D4 D3 D2 D1 N W1 W2 W3 W4 

Evergreen Needleleaf 
Forests 0.74 0.001 - 0.007 - - 0.001 0.001 0.003 0.002 0.001 - - - - 

Evergreen Broadleaf 
Forests 25.4 0.011 - 0.201 0.045 0.002 0.008 - 0.014 0.062 0.136 0.027 0.002 - - 

Deciduous Broadleaf 
Forests 2.5 0.002 - 0.008 0.016 - 0.002 - - 0.002 0.013 0.008 - - - 

Mixed Forests 2.4 0.003 - 0.010 0.010 0.001 0.003 - 0.004 0.004 0.008 0.006 0.001 - - 

Woody Savannas 14.5 0.006 - 0.108 0.034 - 0.010 0.002 0.006 0.053 0.055 0.022 0.001 - - 

Savannas 11.8 0.004 - 0.065 0.050 0.002 0.004 - 0.007 0.025 0.046 0.034 0.006 - - 

Grasslands 17.3 0.002 - 0.129 0.046 - 0.003 - 0.028 0.076 0.041 0.028 - - - 

Permanent Wetlands 0.3 - - 0.004 0.008 - - - 0.001 0.001 0.003 0.008 - - - 

Croplands 21.4 0.008 - 0.038 0.175 0.004 0.008 0.001 0.001 0.020 0.050 0.142 0.003 - - 

Urban and Built-up 
Lands 0.5 - - 0.002 0.005 - - - - 0.001 0.003 0.003 - - - 

Cropland/Natural 
Vegetation Mosaics 0.3 - - 0.002 0.006 0.007 - - - 0.002 - 0.006 0.005 0.002 - 

Barren 0.4 - - 0.004 - - - - 0.002 0.002 - - - - - 
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4. Conclusion 

 

This study investigated the historical spatial and temporal change to the MKB hydrologic system due 

to climate variability and land cover change and then predicted future changes using the VIC model. In 

this study, the VIC macroscale hydrological model was applied to simulate the daily soil moisture at a 

grid resolution of 0.25 × 0.25 degrees during the nine years of 2010–2018 for the MKB. The VIC 

simulation successfully captured the spatio-temporal variability of soil moisture in the MKB. The 

predicted land cover change had minimal impact on soil moisture. Although the MKB has a wet and 

dry season, this model predicted that some areas of the MKB would suffer drought year-round. This 

model predicted that forest and savanna areas would generally be protected from drought. However, 

soil moisture in cropland areas was predicted to fluctuate by season, creating drought during the dry 

season and increasing soil moisture during the rainy season.  

 

The predicted drought conditions during the dry season in the cropland areas is of great concern for the 

agricultural production and socio-economic welfare of the inhabitants of the areas affected by drought. 

These findings imply that proper irrigation management in cropland areas should be considered during 

the dry season in the MKB. Also, the savanna areas may be potential sources of increased agroforestry 

because these areas are predicted to be protected from drought, except for coastal areas, as suggested 

by Luong et al. (2020). These findings support the critical need for water resource and forest 

protection management policies in response to droughts predicted to occur in the MKB. 

 

Limitations 

This study had several limitations. We used the VIC model that requires remote sensing data input. 

However, some data were not completely available for the MKB for the 2010-2018 period, which 

makes it difficult to predict future trends for the entire region. Also, different input data were extracted 

from different sources, which varied in resolution. Therefore, this study had to interpolate and 

resample several data points, leaving small areas of the MKB without results. This study used the 

Python package for the VIC model, which requires regular updating of the source code to compile the 

model without error.
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CHAPTER 3.  DEVELOPING AND VALIDATING AN ARTIFICIAL NEURAL 

NETWORKS TO PREDICT SOIL MOISTURE IN THE MEKONG DELTA, 

AND COMPARING HISTORICAL SOIL MOISTURE DATA WITH THE 

ARTIFICIAL NEURAL NETWORKS -PREDICTED MODEL DATA 

 

Abstract 

Soil moisture is a fundamental soil characteristic, which has played an essential role in plant growth, 

flood generation, land degradation, and drought responses. Climate change and anthropogenic 

activities impact soil moisture dynamics globally. Understanding the interactions among soil moisture, 

climate data, and land surface information in climate change conditions is essential to preserving 

vulnerable regions from drought risk caused by soil moisture decrease. This study aimed to identify 

the relationship between SMC and the drought risk at the Mekong River Basin (MKB) to climatic 

variables and human impacts by using artificial intelligence to create simplified hydrological models. 

A multi-layer perceptron Neural Networks (ANNs) architecture was applied to estimate daily soil 

moisture and predict agricultural drought risk using Soil Moisture Deficit Index (SMDI). An ANNs 

architecture was built with one input layer, one output layer, and two hidden layers on the JMP Pro 

platforms. Then, the ANNs architecture was applied to 1105 grid-cells to predict daily soil moisture at 

the top layer of soil from 2010-2018 in MKB. Our model used climate data, land surface data, and 

river discharge data to predict soil moisture. This study also used the observed daily soil moisture 

datasets extracted from the Copernicus Global platform regions to train and validate the ANNs 

models. We tested our models’ performance against the observed soil moisture using the coefficient of 

determination (R2), root mean square (RMSE) indicators. We also tested the impact of topography and 

land cover on our models’ performance using pairwise correlation tests. We found that the best 

predictive model architecture included two hidden layers with nine nodes. The R2 value for both 

training and validation of these models ranged from 0.44 to 0.99 for predicting soil moisture and 

drought. The RMSE for both training and validation achieved 0.08 for predicting soil moisture and 

drought. Both land cover and topography in the region had weak positive correlations with the R2 and 

the RMSE in predicting soil moisture and drought. In conclusion, the developed ANNs models had 

strong ability to predict soil moisture and drought in the MKB.  
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1. Introduction 

1.1 Spatial Soil Moisture Issues 

The SMC is affected by precipitation in surface runoff, infiltration, and groundwater recharge, and has 

played an essential role in plant growth, flood generation, land degradation, and drought responses 

(Luong et al., 2021, Myeni et al., 2019). (Ahmad et al., 2009, Verstraeten et al., 2008). SMC has 

recently been affected by an increasing number of complex water resources management issues, which 

are often exacerbated by impacts of climate change (Berg & Sheffield, 2018). Because SMC is 

essential for agricultural planning, there is a need to monitor and predict SMC in order to support 

policymakers, farmers, and other stakeholders who rely on flood predictions, drought forecasts, and 

water quality information for their livelihoods (Adeyemi et al., 2018, Verstraeten et al., 2008).  

 

SMC is most accurately determined by a direct application of field measurement techniques (Millán et 

al., 2020). However, due to some constraints related to limited financial, technical, and human 

resources, in situ measurements are often only carried out at specific times and locations. Thus, the 

measured data is not enough for large-scale SMC measurement (Luong et al., 2021). Over the past few 

decades, there have been efforts to develop spatial soil moisture measurement products from active 

and passive microwave sensors, via remote sensing technologies. For instance, the ECMWF C3S has 

provided global surface soil moisture datasets to the community since 1991. These datasets include the 

Active, the Passive, and the Combine. The Active and Passive are derived from the scatter meter and 

radiometer product respectively, while the Combine is a blended product of the two  (Kidd, 2018a, 

2018b). Another popular database, Global Land Data Assimilation System (GLDAS), has provided 

daily surface soil moisture in different layers since 1948 at 0.25-degree resolution, and supports 

current water resources and water cycle investigations (Kidd, 2018b). However, since many factors, 

such as land cover, precipitation, and vegetation impact the sensitivity of the signal, SMC cannot be 

entirely observed in many areas of the world (Dorigo et al., 2010, Llamas et al., 2020). 
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1.2 Artificial Neural Networks to Predict Soil Moisture Content 

The ANNs have been found to accurately predict SMC and other soil water variables such as field 

capacity  and permanent wilting point (Ali et al., 2010, Keshavarz & Karami, 2013). An advantage of 

using the ANNs technique compared to regression models is that no priority model structure requires 

assumed relationships between input and output data (Merdun et al., 2006, Mohanty, 2015). 

 

The ANNs are machine learning models that define potential relationships from a training data set, 

with a learning algorithm similar to that of human-learning ability (Ahmad et al., 2009). Since there 

can be robust to noisy data and approximate multivariate non-linear relationships between variables, 

neural networks have been used to conduct analyses in a variety of scientific scenarios (Ahmad et al., 

2009, Twarakavi et al., 2006, Widrow et al., 1994). The ANNs have been used to study hydrological 

features such as streamflow modeling, soil moisture, and drought predictions (Adeyemi et al., 2018, 

Capraro et al., 2008, Tsang & Jim, 2016). This method has been recognized as appropriate for 

complex time-series predictions as an alternative method to traditional numerical predicting models, 

which may be limited in time-series projections due to the complexity of the systems. The term 

“complexity” also illustrates potential difficulties that rapid climate change in recent decades has 

added to predicting extreme climate events ( Agana & Homaifar, 2017, Zhang et al., 1998). 

 

The novelty of this study lies in employing ANNs, which not only derives soil moisture information at 

the regional scale but also fills missing data from geospatial databases for the MKB. This study 

employed a neural network model to explore the spatio-temporal dynamics and characteristics of SMC 

in the MKB to address these knowledge gaps. The soil moisture dataset was simulated for nine years 

(2010–2018) and then utilized to establish the SMDI, as was established by Martinez-Fernandez et al. 

(2015) in order to assess the intensity of agricultural drought. Furthermore, this study investigated the 

impacts of meteorological variables (precipitation and temperature) and land cover properties, 

topography, and soil types on the spatial and temporal variation of soil moisture and drought in 

different regions in the MKB. Our study is the comprehensive estimation of soil moisture and 

agricultural drought over the MKB using the deep learning ANNs model. The key objectives of this 

study were to (1) develop a ANNs model to investigate the sensitivity of soil moisture to 
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meteorological conditions, land cover properties, and topography in different regions in the MKB; and 

(2) analyze the intensity of agricultural drought concerning land uses in the MKB. 

 

2. Methodology 

 

2.1 Study Area 

 

The Mekong River originates in China at the Tibetan Plateau and flows downstream through 

Myanmar, Laos, Thailand, and Cambodia before draining into the East Sea in Vietnam. The Mekong 

River is over 4,000 kilometers long, with an annual mean discharge of approximately 475 km3 (MRC, 

2005). The hydrologic characteristics of the Mekong River are complicated due to extensive watershed 

areas covering various geographic features. The MKB  supports approximately 70 million people, a 

population projected to increase to 90 million in 2050 (Markert et al., 2018, UN, 2020). The Basin 

supports a substantial human population, over 900 freshwater species, and many more land 

vertebrates, making it the second most biodiverse river ecosystem on Earth (Campbell, 2016, Ziv et 

al., 2012) The MRB is divided into two parts: the Upper MKB and the Lower MKB (Thompson et al., 

2014, Tanaka, 2003, MRC, 2010). In the LMB, over three-quarters of the population depends directly 

or indirectly on agriculture (Kityuttachai et al., 2016) and other economic activities, including tourism, 

agriculture, forestry, fishing, manufacturing, and energy production (Costenbader et al., 2015a). 

Vietnam and Thailand, both of which are partially situated in the MKB, are the primary and secondary 

exporters of paddy production in the world United States Department of Agriculture, 2021, with total 

exports valued at an estimated US$ 703.68 million from 2000 to 2004 (Thanh and Singh, 2006). 

2.2. Artificial Neural Networks Model in the JMP Pro Platform 

Theoretically, an ANNs model learns the structure of a sample dataset to understand it. In this study, 

we used a MLP algorithm for the ANNs because MLP is the most common ANNs classifier applied 

for time series forecasting (Kaynar et al., 2010). The MLP requires at least three layers of neuron 

nodes, including an input layer, a hidden layer, and an output layer. Each node in the hidden layer has 

an activation function that weighted and accumulated the values of the inputs to the output nodes. The 
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weighted sum is then transferred from node to node by transfer functions (Kaynar et al., 2010, Zhang 

et al., 1998). Eq. 8 presents a non-linear relationship between input and output in a multi-layer 

perceptron with a hidden layer: 

 

y = 𝑓𝑓2. �� �𝑤𝑤𝑗𝑗𝑓𝑓1 �� 𝑤𝑤𝑗𝑗𝑖𝑖. 𝑥𝑥𝑖𝑖

𝑖𝑖

𝑗𝑗=0
��

ℎ

𝑗𝑗=0

�    Eq. 8 

 

where f1 and f2 = transfer functions for the hidden layer and the output layer, respectively. xi = the past 

data set as an input layer, and y = the output layer. The weights wj and wji = the weight and biases 

which connect the neurons between input and hidden layers and between the invisible and the output 

layers, respectively (Agana & Homaifar, 2017).  

 

This study used a multi-layer perceptron network in the JMP Pro platform to apply the ANNs in such a 

way that they benefited from using built-in statistical tools to analyze the model results. The network’s 

structure consisted of an input layer where input data was fed into the network, two hidden layers, and 

an output layer. We offered two hidden layers to avoid potential errors from correlated input variables, 

as suggested in earlier studies (Patterson & Gibson, 2017). There are three transfer functions built-in 

the JMP platform, including Linear (2), TanH (3), and Gaussian (4) (Klimberg & McCullogh, 2018) 

𝑓𝑓(𝑥𝑥) = (0, 𝑥𝑥)       Eq. 9 

𝑓𝑓(𝑥𝑥) =  𝑣𝑣𝑥𝑥−𝑣𝑣−𝑥𝑥

𝑣𝑣𝑥𝑥+𝑣𝑣−𝑥𝑥      Eq. 10 

𝑓𝑓(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2      Eq. 11 

 

For input data, we acquired 13 datasets, including one dependent and twelve independent variables. 

Based on the number of datasets, the number of nodes was calculated using the equation suggested by 

Kurt (2020): 

𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(2
3

× 𝑁𝑁𝑖𝑖 + 𝑁𝑁𝑜𝑜)    Eq. 12 
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where N = the number of hidden nodes, Ni = the number of input variables, and No = the output 

variable. Then, N is rounded up to the nearest integer. 

 

There were two main processes involved in the ANNs model, namely forward and backward 

processes. During the forward process, the training data point was propagated through the hidden 

layers. The output value obtained was compared with the actual target values to calculate the error 

between nodes (Azid et al., 2014). In the backward procedure, the calculated error was propagated 

back towards the hidden layers. The output weightings of the node were adjusted to reduce the errors, 

with each interaction resulting in improved models (Azid et al., 2014). These processes guided the 

directions of data analyses. 

 

Although it is an essential step in using ANNs, there is no specific method to define the structure of 

nodes and functions to form the model, save for the trial and error method (Zhang & Govindaraju, 

2000, Zhang et al., 1998). We selected two sub-datasets and tested all possible combinations of three 

activation functions and the number of nodes in two layers to determine the ANNs structure. We used 

R2 and RMSE indicators to test the trial results. 

 

The ANNs model can be very flexible, and is likely to overfit the data (JMP, 2019). Therefore, a 

penalty was applied on model parameters along with the use of an independent data set to assess the 

model's predictive power to avoid these issues.  Validation was performed using a portion of input 

datasets to estimate model variables and evaluate the model's predictive ability. We deployed K-fold 

cross validations to test the model’s performance (JMP, 2019, Klimberg & McCullogh, 2018). JMP 

divided the original dataset into seven groups or folds containing approximately the same number of 

observations as a K-fold technic. The model used six folds to form the training subset and used the 

seventh fold as a validation data set (Klimberg & McCullogh, 2018). 

 

A script using JMP scripting language (JSL) was created to run multiple ANNs models automatically 

(JMP, 2019). The script conducted three main tasks: creating a subset of datasets based on the cell’s 
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identification, running the ANNs model in each subset, and recording predicted values, R2, RMSE, 

and hidden nodes formulas.  
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Table 7. Input Dataset used in ANNs 

Dataset Unit Spatial 
resolution 

Temporal 
resolution  

Database 
source Accessed at 

Landcover 
(LC) unitless 300m x 300m yearly C3S 

https://cds.climat
e.copernicus.eu/c
dsapp#!/home 

LAI (hv, lv) m2 m-2 0.1 x 0.1 degree monthly C3S 
https://cds.climat
e.copernicus.eu/c
dsapp#!/home 

Forecast 
Albedo unitless 0.1 x 0.1 degree monthly C3S 

https://cds.climat
e.copernicus.eu/c
dsapp#!/home 

Evapotranspira
tion 

m water 
equivalent 

0.25 x 0.25 
degree daily 

GLDAS 
CLSM L4 
V2.0  

GES DISC  

Windspeed (at 
10m height) m/s 0.25 x 0.25 

degree daily 
GLDAS 
CLSM L4 
V2.1 

GES DISC  

Tmax, Tmin K 0.5 x 0.625 
degree daily MERRA2 GES DISC  

Total 
precipitation mm 0.25 x 0.25 

degree daily TRMM GES DISC  

Soil moisture % 0.25 x 0.25 
degree daily 

LPRM 
Surface Soil 
Moisture Data  

GES DISC  

USDA Soil 
class unitless 1km x 1km - HWSD FAO 

DEM  m 90 m x 90 m - STRM CGIAR 

 

2.3 Data Collection 

To develop our ANNs for the MKB soil moisture prediction, we derived datasets, including daily air 

temperature maximum and minimum (Tmax, Tmin), daily precipitation (Precip) including solid and 

liquid stages, daily leaf area indices for low (LAI_lv) and high (LAI_hv) vegetation types, daily wind 

speed, daily evapotranspiration (Evapotrans), annual land cover (LC), soil classification (SC), daily 

forecasted albedo (ALB), daily discharges (RD), and daily observed SMC. Amongst the 13 inputs, two 

datasets, LC and SC, were nominal; the rest were continuous. The datasets covered nine years from 

2010 to 2018.  
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The LC, LAI, and ALB were extracted from the Copernicus Climate Change Services (C3S). The 

Evapotrans and windspeed were derived from Global Land Data Assimilation System (GLDAS) 

Catchment Land Surface Model L4 V2.0 at 0.25 x 0.25-degree at Goddard Earth Sciences Data and 

Information Services Center (GES DISC) (Chen et al., 2013, Rui et al., 2019). Daily climate data, 

including daily total precipitation Precip (mm), Tmin (K), and Tmax (K), were extracted from the 

daily MERRA-2 product at 0.5 x 0.625-degree resolution at GES DISC (Ostrenga, 2017). Annual LC 

and monthly LAI were converted into daily values. 

 

Soil characteristics were extracted from the Harmonized World Soil Database of Food and Agriculture 

Organization (HWSD) V1.2 database (Batjes et al., 2012). This product combines multisource soil 

information worldwide at a 30 arc-second spatial scale with over 16,000 different soil mapping 

elements. The digital elevation model (DEM) from NASA’s shuttle radar topographic mission 90 m 

digital elevation database version 1.4 with raster format was collected to obtain topographical data 

(Farr & Kobrick, 2000). Table 7 presents input datasets characteristics, including sources, temporal 

and spatial resolutions, and units.  

 

We tested multicollinearity diagnostics to avoid the presence of multicollinearity in the ANNs model 

inputs.  There was no collinearity among selected input variables (Figure 18). Hence, the ANNs 

models would reduce unstable and high standard errors due to inputs.
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Figure 18. Collinearities among input variables for (LAI _hv/lv = Leaf area index for high vegetation /low vegetation, DEM = Digital 
elevation model, Tmax/min = Temperature (K) max/min)
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2.4 Data Preparation 

Since datasets differ in their resolution, format, and spatial reference, it is necessary to convert them 

into a unique data frame. First, all datasets were projected to the geographic coordinate system, GCS-

WGS-1984 (World Geodetic System 1984), Prime Median – Greenwich. Then, the datasets were 

converted into GeoTIFF format using ArcGIS geospatial tools. To extract the value of each dataset to 

the grid-cells, first, we created a fishnet shapefile that contained multiple cells based on the Mekong 

basin boundary using the fishnet tool in ArcGIS to grid the MKB area into 0.25 x 0.25-degree grid-

cells. There were 1105 cells in total, with cell size set at 0.25x0.25-degree. Each cell had a unique 

longitude and latitude. We used the ArcGIS sample tool to extract the values of datasets into the 

fishnet attribute (ArcGIS, 2021). Since the data contained different grids, they required refitting to 

adhere to a typical grid resolution. This study used classic bilinear and nearest neighborhood 

interpolation methods to re-grid the datasets. For the monthly LAI dataset, we assumed that LAI 

values did not change during months.  

 

We assumed that each cell to be homogeneous and simulated independently of the other. Hence, there 

was no communication between grid-cells (Lohmann et al., 1996, Lohmann et al., 1998, Markert, 

2018). This assumes that the water can only move between soil layers vertically in each grid-cell. This 

assumption was similar to one applied in semi-distributed hydrologic models, such as the VIC model 

(Markert et al., 2018, Luong et al., 2021). After this step, all input datasets were stored into cells 

according to their unique coordinates. Each cell contained 42,731 data points (3,287 days x 13 

datasets). Finally, we exported the fishnet attribute tables to a CSV file. The final CSV file contained 

columns storing the cell identifications (CELL_ID), longitude (X), latitude (Y), twelve input variable 

columns, and an observed soil moisture column.  The final CSV file was input to the ANNs model on 

the JMP14.2 Pro platform (JMP, 2019). 

2.5 Model Performance Criteria 

The performance of the ANNs models is assessed based on statistical performance criteria like R2 and 

RMSE). 
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𝑅𝑅2 = 1 −
∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2

𝑖𝑖

∑ (𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦�)2𝑖𝑖
     Eq. 13 

𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 = �∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2𝑁𝑁
𝑖𝑖

𝑁𝑁
     Eq. 14 

where, yobs and ypred = the observed and predicted values, respectively, y� = the mean of observed 

values, and N = the total of predictions (Agana & Homaifar, 2017, Adeyemi et al., 2018, Klimberg & 

McCullogh, 2018). 

  

3. Results and Discussion 

3.1 Data Quality 

There was a total of 13 variables x 3287 days for the period from 2010 to 2018.  The total missing data 

in the datasets was minimal (∼3%) compared to the overall data. Figure 19 demonstrates statistical 

summaries of meteorology data inputs, including Tmax (K), Tmin (K), Precip (mm), Albedo, and 

Windspeed (m/s). While others were relatively uniform, Precip and Albedo datasets showed 

significant variations in the MKB. The daily precip ranged from 0 to 283.29 mm, while daily ALB 

ranged from 0.06 to 0.83. 
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Figure 19. Meteorological Dataset Input Statistic Summary 

 

 
Figure 20. Surface and Vegetation Input Statistics Summary 
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Figure 20 shows statistic summaries of vegetation and surface datasets, which were input in the ANNs 

model. The LAI_hv and LAI_lv were daily high-level and low-level leaf area indices, respectively. 

While LAI_hv ranged from 0 to around 6.5 with a mean of 3.28, the LAI_lv was from 0 to about 4.4 

with a mean of 1.75. Like precip, the range of river discharge (RD) (m3/s) was large but captured the 

characteristics of the Mekong River and its tributary features. There are millions of river tributaries 

with various discharges dominating the MKB. 

3.2 Neural Network Structure Selection 

Figure 21 presents the result of the trial-and-error test on a sub-dataset, which was used to select the 

ANNs structure. The highest R2 of the trail models was 0.73, while the lowest RMSE was 0.46. Hence, 

we selected an ANNs structure that included six nodes using three TanH and three Gaussian active 

functions in the first hidden layer and three nodes using a TanH, a Linear, and a Gaussian function in 

the second hidden layer. Figure 22 presents the ANNs structure that was used to predict the soil 

moisture in the MKB.
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Figure 21. R-square and RMSE of Models with Different Activate Functions Combination 
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Figure 22. Diagram of Neural Network Structure with an Input Layer, Two Hidden Layers, and an 
Output Layer  
 

3.3 Model Performance 

We used each grid-cell as a dataset of all input variables to train the model framework. Hence, there 

were a total of 1105 models being tested. All the prediction results presented are based on the test data 

sets. We used R2 and RMSE in training and validation processes to examine the model's performance, 

as suggested by Klimberg et al. (2018). In general, the models performed relatively well for SMC 

prediction since the R2 values were relatively high (mean = 0.89), and the RMSE values were 

relatively small (mean = 6.3) (Table 8). 
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Table 8 described statistical summaries of R2 and RMSE of models at 1105 cells. High R2 and low 

RMSE results confirmed that ANN models could predict SMC well based on input variables. 

However, the models showed deficient performances at some grid-cells. These unexpected results may 

be errors related to missing data in datasets and/or impacts of elevation and land cover at those cells.  

 

  

Figure 23. Training and Validation R-square of 1105 models 
 
Figure 23 presents training and validation R2 of soil moisture prediction using the ANNs models. The 
R2 ranged from 0.44 to 0.99 and were distributed without any pattern. Figure 24 presents training and 
validation RMSE of soil moisture prediction, using the ANNs models. The RMSE of soil moisture 
prediction was 0.08, also distributed without any pattern.  
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Figure 24. Training and Validation RMSE of 1105 models 

 

Table 8.  Distribution of R-square and RMSE for Both Training and Validating Processes 

 R-square RMSE 
 Training Validation Training Validation 
Max 0.99 0.99 14.36 13.13 
Min 0.41 0.49 0.08 0.08 
Mean 0.89 0.89 6.3 6.2 
Std Dev 0.043 0.045 1.63 1.68 
Std Err Mean 0.001 0.001 0.05 0.05 
Upper 95% Mean 0.897 0.89 6.39 6.32 
Lower 95% Mean 0.885 0.887 6.2 6.12 
DF 1104 1104 1104 1104 
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We also tested the impacts of DEM and LC on model performance using a pairwise correlation test. In 

general, both LC and DEM showed positive correlations with both R2 training and RMSE training.  

However, as the test results indicate, DEM and LC do not substantially impact the R2 and RMSE of 

the models. Figure 25 shows the pairwise correlation test between DEM and model R-square. R-

square and DEM have a weak correlation since the correlation value was 0.19. 

 

 
Figure 25. Pairwise Correlations between DEM and R-square Values 

 

In addition, we applied Newman-Keuls as suggested by Keuls (1952), to compare the mean of the R2 

of the model in different land cover types. Table 9 shows the result of the comparison test. In general, 

there is little difference in the mean of R2 between land cover types. 
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Table 9. Newman-Keuls Test for R-square Comparison between Land Cover Types 

Level  Mean R2 
Bare land A 0.906 
Grassland A 0.900 
Forest A 0.893 
Shrubland A 0.893 
Wetland A 0.893 
Vegetation A 0.888 
Water bodies A 0.886 
Cropland A 0.878 
Urban areas A 0.861 
Levels not connected by same letter are significantly different  

 

The scatter plots (1:1) of the observed against predicted SMC and SWDI show the dataset's goodness 

of fit at different R2 levels, presented in Figure 26 and Figure 27, respectively. In these figures, we 

presented SMC and SWDI in three R2 levels including small R2 (< 0.7), medium R2 (0.7 - 0.85) and 

high R2 (> 0.85). There were strong correlations between observed and predicted results, which 

confirms a stable performance of the ANNs models. 

 

Figure 28 illustrates the observed and predicted SWDI at two different grid-cells. Overall, the model at 

different accuracy levels shows their ability to predict the drought index in the area. The model at cell 

ID = 63 presented a better performance than at cell ID = 32. At cell ID = 63, the model reflected the 

drought event happening during at years 2016, 2017, and 2018 at the Mekong Delta in Vietnam (Ho, 

2016, Tran, 2018). In contrast, the model at ID = 32, where R2 and RMSE were modest, did not reflect 

the drought events due to a lack of data input information. It may be necessary to have a missing 

filling data step in data preparation to achieve better results. 
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Figure 26. Scatter plot of observed against predicted SMC at different levels of the R-square. 
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Figure 27. Scatter plot of observed against predicted SWDI at different levels of the R-square 
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Figure 28. Observed and predicted SWDI of models 
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4. Conclusion 

 

This study, investigated the SMC and agricultural drought problem using a deep learning-based 

approach to identify interactions among soil moisture, climate data, and land surface information in 

climate change conditions, is essential to preserving vulnerable regions from drought risk caused by 

soil moisture decrease. We designed a multi-layer perceptron ANNs architecture was applied to 

estimate daily soil moisture and predict agricultural drought risk from 2010 to 2018 with the SMDI 

index. The ANNs architecture had one input layer, one output layer, and two hidden layers on the JMP 

Pro platforms. We trained and validated the ANNs with 1105 grid-cells within the MKB using 

observed soil moisture derived from the Copernicus Global platform and twelve independent spatial 

datasets covered to train 1105 models. The models’ performance against the observed soil moisture 

was tested using the coefficient of determination (R2), the root mean square (RMSE) indicators. In 

general, the models had a solid predictive ability to estimate SMC and agricultural drought using 

SWDI in the research area. In addition, as a data-driven model type, the model’s performance strongly 

correlated with missing data problems. The R2 value for training and validation of these models ranged 

from 0.44 to 0.99 for predicting soil moisture and drought. The RMSE for both training and validation 

achieved 0.08 for predicting soil moisture and agricultural drought. Both land cover and topography in 

the region had weak positive correlations in predicting soil moisture and drought. In conclusion, the 

developed ANNs models had a solid ability to predict soil moisture and drought in the MKB. 

Future work should involve comparing the ANNs model and traditional hydrologic model, including 

the VIC model, in soil moisture and drought prediction within the MKB. Further studies could 

investigate the model’s performance for different input series in different climatic, geographical and 

hydrological conditions for enhancing the applicability of models. 

 

Limitations  

 

This study showed limitations during data preparation and model training processes. First, since the 

datasets used to train the models were varied in spatio-temporal resolutions, we applied interpolations 

which may have caused errors during data preparations. In addition, although we applied informative 
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missing methods during the training and validation processes, missing data still impacted model 

performance. Hence, data filling should be conducted before inputting data for training the model. 
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CHAPTER 4.  IDENTIFYING POTENTIAL TRADE-OFFS OF SHORT-TERM 

BENEFITS FOR LONG-TERM SOCIOECONOMIC STABILITY AMONG 

INHABITANTS OF THE VIETNAM’S MEKONG DELTA REGION 

ASSOCIATED WITH THE GOVERNMENT’S FLOOD CONTROL PROGRAM 

Abstract 

The VMD has played an essential role in Vietnam’s socio-economic development. Residents of 

southern Vietnam have been annually influenced by coastal flooding, tidal regime, and saline intrusion 

for centuries. However, recent hydropower development, climate change, and the combined effects of 

sea-level rise and deltaic subsidence have become the main drivers impacting people's livelihoods in 

the region. In response to these problems, Vietnamese governmental flood control measures have had 

both positive and negative effects on the VMD population’s livelihoods. These flood management 

strategies have been reported to reduce alluvial sediment load and water flow, intensifying saltwater 

intrusion from the South China Sea/East Sea into the VMD. We surveyed 615 VMD residents using a 

Best-Worst choice design to quantify the socio-economic trade-offs between the advantages and 

disadvantages of the government’s flood management measures in the VMD. The best worst scaling 

results showed that subjects most highly valued long-term sediment replenishment and reduced 

salinity, and in the short-term, the amount of fish caught and crop yield. The willingness to accept 

analysis showed that people living within upstream VMD were willing to accept compensation of US 

$39.41 each season to receive more sediment and accept US $13.18 each season to shift their crop 

yield from high to medium level. But, the willingness to accept figures for those living downstream 

were only US $1.40 and US $11.46, respectively.  The greater motivation to accept a lower subsidy by 

those downstream is most probably due to two factors (1) the greater intrusion of sea water and greater 

incidence of drought in the downstream region compared to the upstream region and (2) less 

sedimentation deposits downstream compared to upstream. These findings could be applied to 

quantify the tradeoffs between long-term and short-term benefits in flood water management in VMD. 
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1. Introduction  

1.1. Agricultural Production in Vietnam’s Mekong Delta 

Vietnam’s Mekong Delta region in southern Vietnam plays an essential role in the country’s 

agricultural development (Khong et al., 2018). About 17 million people (GSO, 2020) live in the VMD, 

most of whom are largely dependent on the Mekong River and its tributaries for transportation, 

commerce, irrigation, aquaculture, fishing, and domestic and industrial use. Moreover, the VMD is 

known as the “rice bowl” of Vietnam since rice cultivation is the primary livelihood of about 60% of 

the population (Kakonen, 2008). This region produces about half of the national food volume with 

51% of total rice-paddy production, 55% of the domestic fisheries and fruit production, 60% of the 

exported aquaculture goods, and 61% of total export value (Khong et al., 2018, Käkönen, 2008, Tran 

et al., 2011). The VMD’s primary source of water is the Mekong River, which originates at the 

Tibetan Plateau in China and passes through Myanmar, Laos, Thailand, and Cambodia before flowing 

through the heart of the VMD and finally emptying into the East Sea.  

 

Global warming has substantially impacted the VMD’s agricultural development through shifting 

rainfall patterns and rising temperatures, which has resulted in water shortages and drought throughout 

the region. Also, because of sea level rise in the East Sea, saltwater has infiltrated the Mekong River 

and its tributary system, increasing the salinity of the water used for agriculture (Nguyen et al., 2021, 

UN, 2020). In addition, there has been a marked increase in the construction of upstream hydroelectric 

dams in China, Laos, and Cambodia since 1992, disrupting the Mekong River’s streamflow (Orr et al., 

2012, Soukhaphon et al., 2021). Lu et al. (2014) compared pre-dam (1960-1991) and post-dam (1992-

2010) discharge flow along the river and found a strong correlation between dam construction and 

decreased discharge. Others have found that the damming process has resulted in a decrease in 

downstream sedimentation as well as substantial ecological damage (Orr et al., 2012, Tran et al., 

2019). 

 

As extreme weather events have intensified, there has been a decrease in agricultural production in the 

VMD (Hoang et al., 2018, Sebastian et al., 2016, UN, 2020). For example, because of drought and 
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salinity infiltration, in 2016 almost 400,000 ha of cropland were affected, including 26,000 ha 

suffering complete crop failure (Sebastian et al., 2016). In addition, alluvial sediment, which provides 

natural fertilizer, decreased more than 75% due to upstream dam development, with an estimated 

annual loss of $24 million due to crop yield reduction (Chapman et al., 2016). Also, crop failure 

directly affected household income. In that same year, more than 208,395 VMD households faced 

insufficient freshwater for domestic use (Sebastian et al., 2016). 

 

1.2. Vietnam’s flood management systems 

 

In addition to the problems described above, internal Vietnamese policies have affected agricultural 

production and the livelihoods of Vietnamese in the VMD. In 1986, the Vietnamese government 

instituted an economic reform policy known as Đổi Mới (restoration, reformation) to shift from a 

centrally planned economy to a market-oriented economy (Kingdom of the Netherlands, 2011, Toan et 

al., 2011). The main objective of this reform was to increase rice production in the VMD (Sebesvari et 

al., 2012). To protect cropland areas, mostly paddy fields, the government installed various water 

management systems. During the 1990s, the government installed low dikes, drainage canals, and 

irrigation systems. This process allowed the production of two crops per year, one during the regular 

rice-growing season and one in the off-season (Nguyen & James, 2013, Tran et al., 2018). 

 

During the land reclamation and flood protection program that started in 1996, a large-scale high dike 

system was installed at the upstream region of the VMD with the intention to produce three rice crops 

annually (Kien, 2014). To accomplish this goal, many residents were relocated to flood-protected 

villages (Danh & Mushtaq, 2011). Over the next period, in addition to the high dikes, the government-

built sluices and other flood control infrastructures to produce rice cultivation compartments. 

However, in the attempt to produce three crops per year, the agricultural fields have been cut off from 

the natural flooding process, with high floods spilling over low dikes, inundating cultivation areas. In 

addition, the flood control infrastructure has interrupted the natural resources replenished by 

floodwaters, such as wild fish stocks and fertile sediments (Tran, 2018). 
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The flood control measures instituted by the government have had both positive and negative effects 

on the VMD population’s livelihood. For example, the sluice system allows three rice crops per year 

in An Giang and Dong Thap provinces, the two provinces immediately downriver from the sluices 

(Tran et al., 2019). However, the sluice system has stopped the normal process of flooding that 

farmers in the entire VMD had adapted to over generations. Before the introduction of the sluices, the 

upper part of the Mekong River deposited approximately 475 tons of fish, of which there were more 

than 1,200 species, into the VMD annually (Manh et al., 2015, Van et al., 2013, Arias et al. 2013, 

Chapman et al. 2016). However, today the fish yield has been significantly reduced, with a 

concomitant reduction in the ability to make a livelihood from fishing in the VMD (Tran et al., 2019). 

This has especially negatively affected fishers' livelihoods in An Giang and Dong Thap, two provinces 

(Danh & Mushtaq, 2011) previously known for fish production. Also, before the introduction of the 

new flood control system, 160 million tons of sediment were deposited each year in this region. 

However, the sluice system has reduced natural sedimentation in the VMD region, reducing soil 

nutrition and negatively affecting crop production. This reduction in natural sedimentation has resulted 

in a significant increase in the use of artificial fertilizer by farmers in this region (Tran et al., 2018b). 

Also, in addition to the reduction of water flow into the VMD due to the dam systems in the upriver 

countries described above, the sluice system has exacerbated the intrusion of saltwater from the East 

Sea into the VMD due to the rise of sea level caused by global warming (Tran et al., 2019). 

 

The sluice system is essential to the triple rice crop each year in An Giang and Dong Thap provinces, 

which was the government's main objective when installing the sluices (Nguyen et al., 2014). While 

there is a wealth of research on the negative and positive impacts of flooding in the Mekong Delta 

(Hoang et al., 2018), very little work has been published examining the priorities of the people of the 

VMD in resolving this crisis. From the perspective of most farmers in the VMD, the flood 

management system is a hindrance to their livelihoods (Tran et al., 2018, Howie, 2011).  Therefore, 

the purpose of this study was to identify the variables that are important to upstream and downstream 

farmers in the VMD to better inform government policies on controlling the flood infrastructure. We 

hypothesized that the residents of the VMD would be willing to accept the disadvantages of the 

opening of the upstream sluice gates in the VMD during flood season in exchange for certain benefits.  
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1.3. Best-Worst Choice Tool 

 

This paper used a novel social survey, best-worst choice, to quantify the socio-economic trade-offs of 

the physical relationship between benefits and constraints of flood management in the VMD. This 

experiment used the Best-worst choice (BWC) method, which combines best-worst scaling (BWS) and 

discrete choice experiment (DCE). BWS, developed by Finn and Louviere (1992), is a discrete choice 

method that asks a person to select the “best” or “most preferred” and the “worst” or “least preferred” 

item in each choice set. BWS is usually applied to provide more choice data than traditional methods 

(e.g., Likert Scale) and recognizes choice processes through a random utility framework, allowing one 

to estimate the value of a specific item or attribute within a choice set (Finn & Louviere, 1992). Due to 

the nature of this framework, BWS is frequently perceived as having greater discriminatory power 

than other scale measures, providing greater insight into importance scaling, and is less cognitively 

demanding for the survey taker to generate valid data (Louviere et al., 2015, Burton et al., 2019, 

Parvin et al., 2016). DCE is a quantitative method that evaluates preferences by accessing respondents’ 

willingness to accept (WTA) or willingness to pay (WTP) in a given scenario based on the entire 

profile (Finn & Louviere, 1992, Flynn & Marley, 2014). Integrating BWS inherent value with DCE 

monetary value allows invaluable insight by measuring individuals’ WTP/WTA estimates for a given 

product based on traditional demand theory (Soto et al., 2016, Soto et al., 2018, Oluoch et al., 2021).  

 

2. Materials and Methods  

2.1. Subjects 

Subjects’ demographic data are presented in Table 10. The subjects were adult male and female 

farmers living in four different provinces in the VMD (n = 605). Almost half of the subjects lived 

upstream in An Giang or Dong Thap province (n = 280), located just below the sluices. A little more 

than half of the subjects lived in Ben Tre or Vinh Long province, located further downstream in the 

Mekong River (n = 335), where water salinity is greater, and sediment deposition is less than the 

upriver provinces (Figure 29). Each subject signed an informed consent approved by the Montclair 

State University’s Institutional Review Board, IRB-FY20-21-1950.  
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Table 10. Best-worst scaling attributes and levels. 

Attributes Definition Levels 

Amount of fish 
caught (AFC) 

Flood water brings aquatic species (e.g., fish, crab, and snail) to 
the VMD. People living in flood zones can catch these species 
as a benefit from the floods. Since the amount of capture fish 
per household per day in VMD were reported ranged from 
about 2 kg to 22 kg (Hortle, 2007; Lem, A & Nghia, N, 2003), 
we selected three levels of AFC attribute as described in the 
right column.  

0-10 kg*(F010) 
11-20 kg 
(F1120) 
21-30 kg 
(F2130) 

Sediment rate 
(SR) 

The enriched alluvial water brings natural fertilizer to the VMD 
via sediment processes. The increase in sediment rate is one of 
the benefits of opening the sluice gates. 

Low* (SL) 
Medium (SM) 
High (SH) 

Reduce salinity 
rate (RSR) 

As an extreme water-related event, saltwater intrusion has 
occurred annually during dry seasons in the VMD. It has 
caused adverse impacts on people’s livelihood due to the 
increase of salinity in surface water. The floodwater can push 
seawater back to the ocean resulting in salinity reduction. 
According to the expert interview and literature review, the 
salinity rate rages from 0.4 g. l-1 to 30 g.l-1.  

25%*(RSR25) 
50% (RSR50) 
75% (RSR75) 
100% (RSR100) 

Crop Yield 
(CY) 

Floodwater provides freshwater and nutrient sediment and 
wipes out pets and diseases. This benefit helps, implicitly, to 
increase crop productivity. Most of the land in production is 
dedicated to paddy; we used the annual yield of paddy by the 
province to represent the crop yield. The average yield at the 
VMD was 5,970 kg per hectare (597 kg per 1000 m2) (GSO 
2020). 

Low* (YL) 
Medium (YM) 
High (YH) 

Tax subsidy 
(TS) 

Although floods bring many advantages to the VMD, they also 
cause losses, such as decreasing yield, creating difficulties in 
daily activities, and affecting people’s livelihood. Therefore, 
the government will provide a subsidy in tax reduction to those 
who are getting influence. 

25% reduction* 
(T25) 
50% reduction 
(T50)  
75% reduction 
(T75) 
100% reduction 
(T100) 

Asterisks (*) indicate the baseline variable for each attribute used for level-scale coding.  
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2.2. Survey Design 

We developed a questionnaire using ArcGIS Survey123 software, introduced by ESRI (2018), where 

respondents answered the questions using a mobile device (e.g., a tablet). One of the main benefits of 

using this software is that response data is automatically recorded and preprocessed instantaneously, 

thus avoiding the loss of information.  Participants were required to be at least 18 years old and to be 

living at the site when the survey was conducted. The first part of the survey included 

sociodemographic questions, including sex, age, education, farming experience, and household 

income. The second part of the survey explored farmers’ perceptions and beliefs surrounding extreme 

weather events that may impact their lives. The third part of the survey, which was the key focus of 

this study, was designed to explore the importance that farmers attached to the characteristics of 

floodwater as they affect their livelihoods. We also conducted an in-person expert interview to gather 

information about recent situations relating to changes in the water regime in local areas in order to 

identify the attributes and their levels (Table 10). Seventeen experts, all long-term employees of local 

agricultural extensions with extensive knowledge of agricultural activities and water regimes in their 

local regions were identified in An Giang, Ben Tre, and Can Tho provinces. 

 

Although researchers have estimated the amount of sediment transported by flooding to the VMD 

(Piman & Shrestha, 2017), very few studies have reported the actual amount of alluvial sediment 

trapped in a given unit of land field area in the VMD (Manh et al., 2015, Nguyen et al., 2014). The 

experts reported that, in their experience, sediment deposition rate ranged from 2 – 8 kg.m-2 annually. 

These figures agree with those of Hung et al. (2013). Therefore, we set the low level of sediment at 2 

kg.m-2, medium level of sediment at 5 kg.m-2, and high level of sediment at 8 kg.m-2. 

 

The data from the literature suggest that salinity rates at the Mekong delta varies according to season 

and year. Ho (2015) reported that the salinity rate in the Mekong River (Tiền Giang River) ranged 

from 7.4 g.l-1 – 21.6 g.l-1. However, our experts reported that, the salinity rates ranged from 0.4 g. l-1 – 

30 g.l-1 in Ben Tre, Can Tho, and An Giang provinces. 
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Based on experts' opinions and literature reviews (Manh et al., 2015, Nguyen et al., 2014; Piman & 

Shrestha, 2017, Tran et al., 2019), five attributes and 17 attribute levels were selected for this study, 

slightly modified to reflect the benefits of floodwater to local farmers’ livelihood. Table 10 describes 

the attributes and their levels used in this study. 

 

For this study, we used the sediment loads and salinity rates reported in the literature and the data 

reported from the experts to arrange levels of these attributes, which are presented in Table 10. It 

should be noted that we created the ranges of levels to assist survey participants in selecting responses. 

These levels were not used as quantitative values in this study. 

 

The hypothetical agricultural tax subsidy was calculated using Decision 74-CP, issued by the Ministry 

of Agriculture and Rural Development of Vietnam on October 25, 1993, which assigns the annual 

agricultural tax based on a unit of 1000 m2 of paddy field.  



MEKONG DELTA REGION   76 

 
Figure 29. Upstream versus downstream interview locations in the VMD 

 

The associated levels of attributes in Table 10 allow the possible number of combinations equal to the 

multiplication of the number of attribute levels. That is, 432 (3*3*4*3*4) potential profiles existed, 

which is an unfeasible number to employ in the survey. Therefore, we generated the MaxDiff Design 

Platform, which follows a balanced incomplete block design, through JMP Pro 14.2, to select a set of 

optimal choice profiles and created choice sets used in the main part of the survey (Olouch et al., 2021, 

Smith et al., 2020). The choice sets allowed for orthogonality, balance, and minimal overlap. We 

obtained 36 choice set profiles, divided into six questionnaire blocks forming the respondent’s choice 

options. The respondents were randomly assigned one of six blocks, reducing potential bias caused by 

correlation among these choices in responses. Each respondent completed two tasks in each set of 

questions, (1) to choose the “Best” and the “Worst” attribute level, and (2) to agree or not agree with 
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the hypothetical tax subsidy program. These two tasks allowed the researchers to both compare the 

utility of all attribute levels and to estimate farmers’ willingness to accept introduced attribute levels. 

A sample questionnaire is presented in Figure 30 below. 

 

 

 
Figure 30. Sample best-worst choice question  
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2.3. Sampling Method and Survey Administration 

 

The questionnaire was translated from English into Vietnamese before the data collection process was 

started. The primary survey was administered in December 2020 in-person, using face-to-face 

interviews to reduce participant bias (Udmale et al., 2014). However, in November 2020, the survey 

was subjected to a small pre-test (n=20) to assess the clarity and usefulness of the information 

contained in the questionnaire. The pre-test also helped to avoid potential misunderstandings between 

the subjects and the interviewers, as the interviewers had more formal education and were from 

different cultural regions of the country. The feedback of the pre-test was used to improve the 

questionnaire before the start of data collection of this study. Those who participated in the pretest trial 

were excluded from the subject pool of the primary survey.  

 

Although face–to–face interviews may result in the most expected outcome, the questionnaire may be 

biased by unanticipated communications between the subject and the interviewer (Udmale et al. 2014). 

Hence, while designing and administering the questionnaire, the study followed several steps to reduce 

bias.  First, the language of the questions was simplified so that target subject population could easily 

understand the questions from the interviewer (UN, 2008). Second, various topics were categorized 

into sections to keep a uniform flow during the interview. Third, the questions were administered with 

care to avoid responses beyond the immediate question asked (Udmale et al., 2014). Fourth, the 

differences in local subculture terminology among target groups were considered.  

 

Each province's local District People’s Committee office providing a list of households in their 

community. The interviewers then recruited respondents by either going from house to house or 

gathering farmers at central points to conduct the survey (Thi et al., 2017). For those subjects who 

were interviewed at home, the oldest adult was interviewed. For households where no adult was 

present when the interviewer arrived, the subject later came to a central point for the interview 

(Oluoch et al., 2021). 
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2.4. Econometric Analysis  

 

We used two different econometric models to analyze each choice task. First, a paired estimation 

approach (conditional logit) suggested by Flynn et al. (2007) and Louviere et al. (2015) was used to 

analyze at the sample- or respondent-level in the BWS part. Then, a multinomial condition logit 

(MNL) model was utilized to estimate the DCE for the second task, “supporting” or “not supporting” 

the hypothetical Mekong Flood subsidy program that we had constructed. In this study, we chose the 

best-worst paired estimation for the BWS to avoid the potential for large standard errors (Soto et al., 

2016). 

 

a) First task of BWC: Best worst scaling 

 

As presented in Figure 30, the profile of attribute levels (items) that respondents evaluated before 

selecting the item maximized the difference of their preference. The possible best-worst combination 

of each profile may be calculated as 

𝐽𝐽 ∗ (𝐽𝐽 − 1) = 20        Eq. 15 

where J = the number of attributes per choice set (J = 5 in our model). The chosen best-worst pair is 

coded as 1. Those pairs not chosen are coded as 0. 

If individual i chooses item j as best and item k as worst in the M choices, then the level of importance 

or utility U of item j and item k is calculated by  

𝑈𝑈𝑖𝑖𝑗𝑗 = X𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗;  𝑈𝑈𝑖𝑖𝑖𝑖 = X𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖      Eq. 16 

where, Xj; Xk = the locations of value j and k, and 𝜀𝜀𝑖𝑖𝑗𝑗;  𝜀𝜀𝑖𝑖𝑖𝑖 represent random error terms.  

The different utility or importance, U, with respondent i’s selection of item Xij   as best and Xtk as worst 

(j, k ∈ M; j ≠ k) in the choice set t is calculated by 

𝑈𝑈𝑗𝑗𝑖𝑖𝑑𝑑
𝑖𝑖 = 𝛽𝛽𝑗𝑗. 𝑋𝑋𝑑𝑑𝑗𝑗

𝑖𝑖 − 𝛽𝛽𝑖𝑖. 𝑋𝑋𝑑𝑑𝑖𝑖
𝑖𝑖 + 𝜀𝜀𝑑𝑑𝑗𝑗

𝑖𝑖 − 𝜀𝜀𝑑𝑑𝑖𝑖
𝑖𝑖      Eq. 17 

(Soto et al., 2016, 2018) 
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where β and Ɛ = the coefficients and errors, respectively, of the regression model. Hence, the 

probability of individual, i, to choose j as best and k as worst in assigned set t, is expressed as a 

multinomial logit (MNL)  

𝑁𝑁𝐵𝐵𝐵𝐵(𝑋𝑋) = 𝑣𝑣𝛽𝛽𝑗𝑗.𝑋𝑋𝑡𝑡𝑗𝑗
𝑖𝑖 −𝛽𝛽𝑘𝑘.𝑋𝑋𝑡𝑡𝑘𝑘

𝑖𝑖

∑ 𝑣𝑣𝛽𝛽𝑙𝑙.𝑋𝑋𝑡𝑡𝑙𝑙
𝑖𝑖 −𝛽𝛽𝑚𝑚.𝑋𝑋𝑡𝑡𝑚𝑚

𝑖𝑖
𝑙𝑙,𝑚𝑚∈𝑀𝑀;𝑙𝑙≠𝑚𝑚

             Eq. 18 

The 𝛽𝛽𝑗𝑗 parameters in the equation above are estimated using the MNL command (clogit) in 

STATA/SE 15.1, as Flynn (2007, 2008) suggested.  

Therefore, each attribute’s difference in importance (utility) is represented by the BWS equation 

adapted from Soto et al., 2016.  

𝑈𝑈𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑖𝑖 =  𝛽𝛽𝐴𝐴1

𝑖𝑖 + ⋯ + 𝛽𝛽𝐴𝐴𝑖𝑖
𝑖𝑖 + ⋯ + 𝛽𝛽𝐴𝐴1𝐿𝐿1

𝑖𝑖 . 𝐷𝐷𝐴𝐴1𝐿𝐿1
𝑖𝑖 + ⋯ + 𝛽𝛽𝐴𝐴𝑖𝑖𝐿𝐿𝑖𝑖

𝑖𝑖 . 𝐷𝐷𝐴𝐴𝑖𝑖𝐿𝐿𝑖𝑖
𝑖𝑖 +∈𝑖𝑖  Eq. 19 

where the importance of each best-worst pair for individual 𝑖𝑖 (𝑖𝑖 = 1, … n) and the level values are such 

that the attribute that is chosen as best (𝛽𝛽𝐴𝐴𝑖𝑖𝐿𝐿𝑖𝑖
𝑖𝑖 )  has an impact value (𝐷𝐷𝐴𝐴𝑖𝑖𝐿𝐿𝑖𝑖

𝑖𝑖 ) of 1, the attribute chosen 

as worst having a value of -1, and the remaining having a value of 0 (Smith et al., 2021, Soto et al., 

2016, Flynn & Marley, 2014).  

 

b) Second task of BWC: binary choice model and willingness to pay (WTP) or willingness to 

accept (WTA) 

 

For the DCE choice task, subjects were asked to make a discrete choice (YES or NO) to support or not 

support the hypothetical subsidy program. The dependent variable was coded as 1 if respondents were 

likely to support the program (YES) and coded as 0 if the respondent did not support the program. 

These data were analyzed using an MNL, which assumes that potentially unobserved heterogeneity is 

a part of the error term structure (Oluoch et al., 2021, Soto et al., 2016).  We applied logit command in 

STATA/SE using a logit model to estimate binary responses by maximum likelihood for each variable 

and the model constant.     

The modified random utility for individual i and binary choice task t is calculated by the below 

equation   

𝑈𝑈𝑖𝑖𝑑𝑑 = 𝛽𝛽𝜒𝜒𝑖𝑖𝑑𝑑 + 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑑𝑑   Eq. 20 
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where 𝛽𝛽 = the coefficient of marginal utilities, 𝜒𝜒𝑖𝑖𝑑𝑑 represents attributes of choice, 𝛼𝛼𝑖𝑖 = a specific 

individual error, and 𝜀𝜀𝑖𝑖𝑖𝑖= the overall error term (Smith et al., 2021; Soto et al., 2016) 

We also estimated WTA/WTP using the WTP command in STATA/SE, which estimated confidence 

for willingness to pay to calculate for dichotomous data using the calculated cost coefficient and the 

attribute coefficient from the model based on the tax subsidy variable (COST).  When COST was 

selected as best/worst choice, we applied the following equation to estimate an implicit price (a) 

expressed as willingness to pay to achieve a given quality or quantity of an attribute. 

 

𝑎𝑎 =  −( 𝛽𝛽𝑎𝑎
𝛽𝛽𝑐𝑐𝑜𝑜𝑜𝑜𝑡𝑡

)    Eq. 21 

 

where  𝛽𝛽𝑐𝑐𝑜𝑜𝑣𝑣𝑑𝑑 , is the cost/price of an attribute and 𝛽𝛽𝑎𝑎  is utility of an attribute (Brennan & Van 

Rensburg, 2016). Then the implicit price may be used as a marginal WTP/WTA for discrete change in 

attribute level, which estimates the relative importance that the respondent placed on attributes 

(Oluoch et al., 2021).  

 

3. Result and Discussion 

3.1. Subject’s sociodemographic data 

 

Interviews were conducted with 615 subjects, with 605 (98.37%) completing the Best-worst choice 

questionnaire. The subjects’ demographic data are presented in Table 11 along with the equivalent 

population distribution of the VMD as reported by the Vietnamese government (GSO, 2019). Some 

variables, including education level and sex, were somewhat reflective of government census data 

(Pearson test), but age was not. This may be explained by our method of choosing the oldest person in 

the household when conducting the survey. 
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Table 11. Demographic distribution of survey respondents compared to the Mekong Delta population 
(GSO, 2020) 

Subjects Percent of the subject pool Percent of VMD population 

Province Residence 
An Giang 
Dong Thap 
Vinh Long  
BenTre 

 
19.3 
26.2 
21.3 
33.2 

NA 

Sex 
Female 
Male 

 
39.8 
60.2 

 
50.55 
49.45 

Age  
18-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65+ 

 
1.1 
2.0 
3.3 
7.2 
12.4 
10.4 
16.4 
14.0 
14.0 
19.3 

 
11.2 
10.4 
11.9 
12.1 
10.9 
10.2 
9.7 
7.9 
6.2 
9.4 

Education level 
Primary 
Secondary 
High 
Vocational 
University 

 
44.6 
38.2 
14.0 
1.5 
1.8 

 
51.2 
34.2 
14.6 
2.3 
4.3 

Number of household members  
<3 
3-4 
5-6 
7-8 
 >8 

 
10.1 
50.2 
33.8 
5.5 
0.3 

 
NA 

Household incomes (monthly) 
< 3 million VND 
3 – 6 million VND 
6 – 9 million VND 
9 – 12 million VND 
12 – 15 million VND 

 
21.8 
29.8 
18.2 
13 
7.3 

 
NA 
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15 – 18 million VND 
> 18 million VND 

3.3 
6.7 

Cultivated area (1000 m2) 
 0 (No-farm) 
< 5 
5-10 
10-15 
15-20 
20-25 
> 25  

 
7.3% 
42.9 
23.9 
11.4 
6.2 
3.3 
5.0 

 
NA 

The population data is taken from the Statistical Yearbook of Vietnam 2019. Figures in 
underline fail the Pearson χ2 test. 
 

Table 11 illustrates the socio-demographic characteristics of the survey pool. The null hypothesis for 

equality of means at 10%, significance level was rejected for age groups 18 to 24, 25-29 and 30-34. 

Perhaps these differences could be attributed to the older demographic of our subject pool, who were 

farmers. Number of household members, median household income, and cultivated area were not 

reported in the national census. In all the other socio-demographic characteristics, there was no 

statistically significant difference reported.  Overall, the chi-square tests show that the VMD sample 

and VMD population had a goodness of fit for most of the socio-demographic factors.  

 

The household income was found to be representative of the region, where more than 50 % of 

respondents earn less than six million VND per month, while higher incomes (above 12 million VND) 

accounted for only 17.3% of the subjects. The low income (less than 6 million VND) accounted for a 

large portion of respondents (more than 50%) and was likely due to more than 50% of subjects owning 

less than 5,000 m2 cultivated area.  

 

3.2. Best-worst scaling analysis  

 

The conditional fixed-effects logistic regression (clogit) performed on the attribute impacts groups 

showed significance at 1% for each attribute (Table 12). Following the BWS convention, it was 

necessary to omit one attribute to avoid a saturated model. For this reason, we omitted the tax subsidy 
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(TS) attribute, as this attribute is objective while the others are subjective and based on the 

respondents’ opinions. Removing this group also serves as a reference point for the underlying scale of 

importance for other groups (Oluoch et al., 2021, Smith et al., 2021). 

 

Reducing the salinity rate (RSR) was found to be the most important, followed by sediment rate (SR). 

Interestingly, crop yield (CY) and the amount of fish caught (AFC) were significant but negative, 

implying that while these factors are important to respondents, they have a negative effect on overall 

perception of the hypothetical flood management program (Table 12). These results suggest that the 

respondents felt that long-term ecosystem benefits of floodwater, including sedimentation and 

reducing saltwater intrusion, were more important than the short-term benefits of annual CY and 

annual AFC. From a government policy perspective this is a very important finding, and decision 

makers should consider these findings when building programs that address these concerns.  

 
Table 12. Estimation Conditional Logistic Regression Analysis 

Attribute Impacts Coefficient z 95% CI 

Amount of fish caught (AFC) -.467 (.0342) * -13.63 -.535 -.400 

Sediment rate (SR) .095 (.0341) * 2.8 .028 .162 

Reducing the salinity rate (RSR) .298 (.0338) * 8.83 .232 .365 

Crop Yield (CY) -.459 (.0343) * -13.37 -.526 -.391 

Tax subsidy (TS) omitted 

Level Scales  Coefficient z 95% CI 

F1120 -.256 (.045) ** -7.69 -.348 -.163 

F2130 -.165 (.067) * -3.71 -.298 -.032 

SM  .196 (.043) **  4.54  .111   .281 

SH  .609 (.053) **  7.02  .506  .714 

RSR25  .405 (.068) **  5.92  .271  .539 

RSR50  .643 (.054) **  11.82  .536  .749 

RSR75  .487 (.052) **  9.35  .384  .588 
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YM -.438 (.045) ** -9.76 -.525 -.350 

YH  .510 (.064) **  8.03  .385  .634 

T50  .206 (.057) **  3.63  .095  .317 

T75  .283 (.051) **  5.51  .182  .383 

T100  .307 (.084) **  3.66  .143  .472 

Number of observations 72,540 

LR Chi2 729.48 

Log likelihood  -10530.049 

a. One (*) and two (**) asterisks represent 0.05, 0.01 levels of statistical significance, respectively. 
b. The number in parentheses are standard errors. 
c. F1120 = Fish caught up to 11-20kg/da; F2130: Fish caught up to 21-30kg/day, SM: Sediment increase at Medium 

level, SH: Sediment at High level, RSR75: Reduce 75% salinity, RSR50: Reduce 50% salinity, RSR25: Reduce 25% 
salinity, YM: Crop yield at Medium level, YH: Crop yield at High level, T50: Subsidy 50% household tax, T75: Subsidy 
75% household tax, and T100: Subsidy 100% household tax.  

 

On closer observation of the level scale values, all attribute levels were found significant (at either 5% 

or 1%) in respect to their baselines. For the AFC level scales, we found both level scales (F1120 and 

F2130) to be negative. However, F1120 had a higher negative coefficient than F2130, which can be 

translated to mean that respondents find high fish yield more important than moderate fish yield, when 

given the option (Table 13). This result may indicate that the lowest yield (F010) was more valued 

than F1120 and F2130. That is, it may be that a yield of up to 10kg/day was considered by local 

fishermen as the maximum sustainable yield, which is the highest catch that a body of water can 

support long-term via the Gordon-Schaefer bioeconomic model (Zhang & Smith, 2006). 

 

The SR attribute level results suggest that respondents thought that sedimentation management should 

be a key component of flood management strategies. It can be observed that the coefficient was 

positive, with respondents finding higher levels of sediments (SH) more important than medium (SM) 

and low (SL) levels of sediments (Table 12). Hong et al. (2016) suggested that sediment deposition 

provides several services to the VMD socio-ecological wellbeing. This result challenges the practice 

of Upstream infrastructure, e.g., the extensive damming systems, which starves the VMD of the much-
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needed sediment deposition critical for agricultural productivity and economic growth (Tran et al., 

2016, Weger, 2019). 

 

Extreme salinity conditions have inherent disadvantages by negatively impacting crop yields (Dam et 

al., 2019, Alam et al., 2017). For the RSR level scales, all the coefficients were positive with RSR50 

being valued the highest, followed by RSR75 and RSR25. Evidence suggests that farmers in Ben Tre 

province switched from rice production to other agricultural products (e.g., shrimp, prawns) more 

conducive to growth in a higher salinity environment as salinity rates increased over time (Loc et al., 

2021), which may explain why RSR50 was most valued. 

  

Crop yield level scale coefficient exhibited surprising results, where medium yield (YM) had a 

negative coefficient whereas high yield (YH) was positive. This finding suggests that while CY overall 

is less important than environmental factors like SR and RSR, respondents still hold value in high 

yield which in turn would lead to increased income potential. As Mr. Hanh, from Can Thanh 

commune, Chau Thanh district, An Giang province, stated: “Even though farmers know it's not 

profitable to grow a third rice crop each year, they continue to do so because rice production is their 

only income. They don't know what else to plant and don’t know how to do anything else”. This 

statement suggests that the government should have education and training for these farmers to adapt 

to the new environmental reality. 

 

The TS attribute, which in our study was the hypothetical tax reduction, showed consistent trends 

according to economic theory. Results showed that the 100% household TS (T100) was the most 

highly valued, implying that the respondents preferred a greater TS than lower TS. However, we 

observed that monetary payment was not the most important aspect of the hypothetical management 

plan. Rather, respondents valued long-term ecosystem benefits like salinity reduction and alluvial 

sedimentation deposition as providing much higher utility. 

 

The key finding in this study was that respondents, in general, seemed to more highly value the 

attributes that have more long-term ecosystem impacts. Therefore, we deemed it important to further 
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explore data by dividing the responses into two regions: the upstream region, including the An Giang 

and Dong Thap provinces, and the downstream region, including Vinh Long and Ben Tre provinces. 

Table 13 presents a comparison of BWS results between these two sub-regions.  

 

Table 13. Best-Worst Scaling for Upstream and Downstream Survey Respondents  

Attribute level 
Upstream Downstream 

Coefficient z Coefficient z 

F1120 - .138 (.072) -1.92 -.402 (.065) ** -6.14  

F2130 - .149 (.102) -1.46 -.205 (.096) * -2.12  

SM   .297 (.066) **  4.56  .114 (.061) 1.88  

SH   .578 (.079) **  7.24  .719 (.076) ** 9.51  

RSR25 - .294 (.079) *  -1.90 1.017 (.074) ** 13.84  

RSR50 - .031 (.079)  -.39 1.346 (.081) ** 16.67  

RSR75 - .151 (.104)  -2.83 1.036 (.097) ** 10.62  

YM - .364 (.067) ** -5.39 -.507 (.063) ** -7.99  

YH   .336 (.095) **  3.55  .754 (.092) ** 8.19  

T50   .377 (.087) **  4.35  .141 (.079) 1.77  

T75   .528 (.079) **  6.69  .071 (.071) 1.91  

T100   .345 (.127) **  2.71  .391 (.119) ** 3.27  

Number of observations 31,300 39.320 

LR Chi2 250,04 966.89 

Log likelihood  -4,583.562 -5,412.920 

a. One (*) and two (**) asterisks represent 0.05, 0.01 levels of statistical significance, respectively. 
b. The number in parentheses are standard errors. 
c. F1120 = Fish caught up to 11-20kg/da; F2130: Fish caught up to 21-30kg/day, SM: Sediment increase at Medium 

level, SH: Sediment at High level, RSR75: Reduce 75% salinity, RSR50: Reduce 50% salinity, RSR25: Reduce 25% 
salinity, YM: Crop yield at Medium level, YH: Crop yield at High level, T50: Subsidy 50% household tax, T75: Subsidy 
75% household tax, and T100: Subsidy 100% household tax.  
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This analysis showed a marked difference in attribute utility among upstream and downstream 

respondents. One of the starkest differences can be seen when viewing the RSR attribute levels, where 

upstream respondents held negative utility with minimal to no significance, and downstream 

respondents held positive, significant utility. For downstream respondents, moderate salinity (RSR50) 

was in fact the most highly valued attribute, followed by RSR25 and RSR75 respectively. This result 

suggests that those living downstream are most impacted by unmanaged salinity intrusion and 

therefore most in need of an adaptive management system. According to Mr. Lach, who lives in Can 

Thuan commune, Chau Thanh district, An Giang province, mentioned: “According to media reports, 

the Ben Tre region does not have enough water for irrigation due to drought and salinity. If possible, I 

would accept the release of floodwater our region in order to have enough freshwater for the 

downstream region. If I'm happy here upstream and people downstream are miserable, I don't want 

to....”.   

While the trend in the SR attribute were the same among both groups, we observed that SH was more 

important to the downstream group (Table 13) than the upstream group. This may be due to the 

difference in SR between upstream and downstream, with upstream locations having a higher SR. 

Again, this supports the argument that greater water management system intervention is more 

important for the downstream provinces in order to satisfy the needs of those who live and farm there 

(Duong et al. 2018).  

 

While CY was important for both groups, we observed that the downstream group more highly valued 

YH than the upstream group (Table 13). This can be explained by the fact that rice production is 

almost twice as high upstream compared to downstream according to the Vietnamese government 

annual statistical report (GSO, 2021). 

 

The AFC levels were insignificant for the upstream group, but negatively significant for the 

downstream group. These results can be explained as follows: during the recent period, in the 

upstream area, the water in the canals below the sluice system has been low, resulting in a low rate of 

fish capture. Consequently, people in that region no longer rely on fishing as their primary source of 

income. According to Mr. Lach, "In the past, this canal flooded both sides of the road. However, 

because no water discharges from upstream, now there is very little water arriving here. In February 
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or March, the canal is so dry that boats cannot even travel; how can I catch fish here? Now I wish for 

more water to come back like it did before so that I can catch fish and eel to live through the day...". 

Loc et al. (2021) reported that this problem does not exist to the same extent above the sluice system. 

For the downstream group, where the amount of fish caught per day has been historically low, the 

water management system has not affected this area as much as the upstream area (GSO, 2019). 

 

For the hypothetical TS proposal, the upstream group found utility for the T50 and T75 level, but the 

downstream group found no utility in T50 or T75. However, both groups found utility for T100. These 

findings suggest that the TS was more important for the upstream group than the downstream group, 

because residents downstream are more concerned about the salinity attributes than other attributes 

since salinity has affected this group more than the upstream group (Thuy & Anh, 2015).  

 

3.3. Willingness to accept analysis 

In this section, we utilized the MNL regression model to quantify the WTA/WTP of local 

communities for potential externalities of floodwater. It is important to note that the cost attribute is 

not divided into levels, as depicted in the BWS analysis, but rather is a continuous variable that was 

calculated using the agricultural tax for 1000 m2. Table 14 reports the impact of attribute levels on 

respondents' decisions and WTA/WTP compensation, and Figure 31 depicts the findings comparing 

the upstream and downstream group results. The negative monetary results represent WTA (i.e., 

receive tax subsidy), whereas the positive results represent WTP (i.e., give payment). 

   

For AFC, the downstream group found that the F2130 attribute level provided utility. No other AFC 

attribute levels were considered important for either group. It should be noted that F2130 would be 

quite unrealistic for the downstream region. 

 

For CY, both YM and YH attribute levels were considered important for both groups. The upstream 

respondents were WTA a much higher amount ($46.81) than the downstream respondents ($19.66) for 

YH. The same trend was seen for YM with a WTA of $33.63 and $8.20 for each group, respectively. 
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This finding suggests that the upstream residents would require a much higher tax subsidy than 

downstream residents if the hypothetical management intervention focused on crop yield. 

 

The SR attribute levels show that both groups are WTA a higher amount for SH compared to SM. 

However, the difference between these two attribute levels is substantially different. The upstream 

group results show a WTA $60.71 for SH versus $21.30 for SM, while the downstream group shows a 

small difference of only $1.40 between these levels, $15.27 versus $13,87, respectively. Tran et al. 

(2019) reported that costs of sediment loss per hectare ranged from $145 to $370, indicating that loss 

of sedimentation is a major problem in the VMD region (Tran et al., 2019).  

 

For RSR, RSR50 was the only attribute level found to have opposed views between the upstream and 

downstream group. The upstream group was WTP $24.58 compared to the downstream group who 

was WTA $5.36. These results suggest that the upstream group is quite concerned about the potential 

negative impact of salinity in the future and is willing to pay to reduce salinity. These results are 

supported by earlier findings which suggest VMD farmers do not want salinity impacting their 

cropland (Nhan et al., 2012). In contrast, the downstream group has already adapted to a high salinity 

rate and is willing to accept the RSR50 attribute level. 

  

Table 14. Willingness to Accept/Pay MNL Model Estimations for the Upstream and Downstream 
Regions in VMD  

Attribute level 
Upstream Downstream 

Coefficient WTA ($US) Coefficient WTA ($US) 

F1120 -.183 (.148) 7.79 .110 (.123) -2.90 

F2130 .164 (.172) -6.95 .573 (.172) * -15.05 

SM .501 (.142) ** -21.30 .528 (.126) ** -13.87 

SH 1.430 (.202) ** -60.71 .582 (.158) ** -15.27 

RSR25 .243 (.213) 6.37 -.039 (.174) -1.83 

RSR50 -.578 (.177) ** 24.58 .204 (.161) * -5.36 
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RSR75 -.150 (.175) -10.35 .069 (.174) 1.01 

YM .791 (.139) ** -33.63 .312 (.124) * -8.20 

YH 1.101 (.193) ** -46.81 .749 (.171) ** -19.66 

Number of observations 3,120 3,946 

LR Chi2 540.92 663.85 

Log likelihood  -810.85 -1,038.10 
a. One (*) and two (**) asterisks represent 0.05, 0.01 levels of statistical significance, respectively. 
b. The number in parentheses are standard errors. 
c. Negative signs in WTA present willingness to accept. Positive signs of WTA present willingness to pay. 

 
 

 
Figure 31. A Comparison between Upstream and Downstream Participants’ Willingness to 
Accept/Willingness to Pay  

 

The findings of the WTA/WTP analyses suggest that several aspects of a potential water management 

program in the VMD are important to residents, and that these aspects are valued very differently 

depending on where people reside. Overall, a management program for downstream residents would 

be much less costly, as respondents are WTA significantly less money than those upstream to see a 

RSR50 
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change in the environment and therefore their livelihood. While a management program may be more 

costly to enact for upstream residents, the residents were actual WTP for moderate salinity levels, 

suggesting government intervention could indeed lead to government income.  

 

4. Conclusion 

The purpose of this study was to identify the important variables to upstream and downstream farmers 

in the VMD, using BWS, to better inform government policies on controlling the flood infrastructure. 

We found that there was not necessarily a one-size-fits-all approach to effective water management or 

intervention programs.   

 

The BWS results suggest that respondents showed a higher preference for long-term floodwater 

ecosystem services, including sediment deposit and salinity reductions, compared to short-term 

benefits, including the amount of fish caught and crop yield. In addition, when choosing the attributes 

offered in the survey, the respondents did not necessarily choose the maximum attribute level. These 

results suggest that it is possible to convince residents of the VMD to agree to allow water from 

upstream to flood their land in order to bring resources downstream (e.g., sedimentation, fresh water) 

if their expectations are satisfied.  

 

When dividing the respondents into an upstream or downstream group, the BWS results highlighting 

critical differences between these groups. While both groups valued high sedimentation and devalued 

amount of fish caught, the downstream farmers viewed salinity reduction in any amount as a positive 

attribute compared to upstream farmers who viewed it as a negative attribute. This demonstrates that 

the impact of flooding caused different results in the two regions. That is, those living downstream 

were more severely impacted by the present flooding control system. 

 

We also proposed a hypothetical tax subsidy in this survey. Much like the BWS results, however, the 

WTP/WTA analyses showed differences in preferences among attributes between upstream and 

downstream residents. The downstream group was willing to accept a low mount of tax subsidy for 
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each attribute, but the upstream group was only willing to accept a higher tax subsidy for most 

attributes. For the reduction in salinity attribute, the upstream group was willing to pay for a moderate 

reduction. These results suggest that a tax subsidy may be a viable form of compensation to help 

residents accept the destructive impacts of floodwaters. These fundamental differences in choices 

between the upstream and downstream group present an opportunity for the Vietnamese government 

to create multiple intervention programs, depending on the geographic location.  

 

The findings of this study support the hypothesis the residents of the VMD would be willing to accept 

the disadvantages of the opening of the upstream sluice gates in the VMD during flood season in 

exchange for certain benefits. Also, these findings suggest that the Vietnamese government should 

offer appropriate education and training to farmers in the VMD to help them to adapt to the present 

and evolving environmental conditions.  

 

Limitations 

 

While the results of this study provide insight into potential water management programs, there were 

several limitations of this study. This study offered only five choices in the BWS, which may not 

represent the entire needs of the population of the two regions. There were 605 respondents to this 

survey in two different regions of the VMD, which makes it difficult to generalize the results to the 

population of the entire VMD. This study used a hypothetical agricultural tax subsidy for WTA/WTP. 

However, both the upstream and downstream group reported that they were currently receiving 

agricultural tax exemptions for extreme environmental events (e.g., drought, saltwater intrusion, 

flooding) during the survey process, which may confound the results of this attribute. 
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CHAPTER 5. SUMMARY AND CONCLUSION 

 

1. Summary and Conclusion 

Freshwater is a non-renewable resource that is vital to ecosystems and human society. The Mekong 

River flows through China, Myanmar, Laos, Thailand, Cambodia, and Vietnam, which raises political 

and economic issues among riparian countries. As in many other transboundary river basins globally, 

the MKB has faced issues relating to the sustainability of water supply when the region experience 

population increases, droughts, water quality, and water competition. These nations have exploited the 

benefits of the Mekong River, which has resulted in many conflicts among the countries. Because the 

VMD region is located at the mouth of the Mekong River, recent hydroelectric dam construction and 

increased agricultural use of water by upstream nations, in addition to climate change, has caused a 

substantial decrease in river flow to the VMD region. The Vietnamese government, through the MRC, 

has repeatedly requested that upstream countries adjust water management in order to increase the 

water flow to the VMD region. Thus, the objectives of this dissertation were to predict the surface 

water budget in the MKB by use of the VIC model, to develop an ANNs model for the prediction of 

soil moisture and drought risk, and to determine the willingness of residents of the VMD to accept 

short-term disadvantages for long-term water management interventions. 

 

The VIC model predicted that land cover change would have a small impact on soil moisture and 

drought risk. This model also predicted that an increase in cropland would cause a decrease in soil 

moisture and an increase in drought risk. This model predicted that severe drought would occur along 

the coastal areas of the VMD year-round. However, our experience was such that the VIC model 

required much effort to prepare and compile the data into the model. 

 

We developed an ANNs model using neural network architecture with two hidden layers to predict 

soil moisture and drought risk.  This model’s data calculated historical soil moisture distribution that 

had a high correlation with historical soil moisture data from remote sensing platforms. This suggests 

that the ANNs model may be used as an additional tool to predict soil moisture and drought risk in 

future studies.  



MEKONG DELTA REGION   95 

 

We conducted a survey of inhabitants of the VMD to identify variables that the residents were willing 

to trade off short-term water management benefits for long-term floodwater benefits. The residents 

chose increased sediment deposits and salinity reduction as the most important long-term benefits in 

exchange for a short-term higher annual crop yield. However, there was a difference between the 

upstream and downstream farmers in the importance of salinity reduction. That is, the downstream 

farmers indicated that salinity reduction was of upmost importance, which reflects the greater sea 

water intrusion downstream compared to upstream. We also proposed a hypothetical tax subsidy to 

compensate farmers adversely affected by flood water. The downstream farmers were willing to 

accept a lower tax subsidy than the upstream farmers, most probably because the downstream 

residents are more severely affected by the existing flood control system. Many studies, such as 

Kakonen (2008), Tran (2018a, 2018b), Hoang et al. (2018), and Tran et al. (2019), have confirmed that 

using flood control measures at upstream regions for triple-rice cultivation resulted negative impacts to 

both ecological and socioeconomic aspects in VMD. Our research introduced a quantitative approach 

to estimate tradeoff between long term benefits, e.g., alluvial sedimentation, salinity reduction versus 

short term benefits, e.g. annual crop yield in flood control managements of Vietnamese government.  

 

While this study identified attributes that residents of the VMD would be willing to trade, the bigger 

challenge is to convince the Vietnamese government to consider these data a call to reorganize its 

flood control policies in an equitable and sustainable manner. While scientists embrace the scientific 

process, government bureaucrats have their own agendas. Therefore, the next challenge would be to 

develop an approach to convince the government to consider a reorganization of the flood control 

policy such the application of a sluice-gated management schedule that would allow more floodwater 

flowing downstream during flood seasons. 

 

This study estimated soil moisture and drought risk in the MKB based on the SLR and the digital 

elevation model obtained from the spaceborne platform SRTM DEM. However, recent studies have 

proposed that relative SLR is a combination of both SLR and land subsidence (Minderhoud et al., 

2019, Tessler et al., 2015). However, the SRTM DEM does not consider land subsidence as a variable 

in SLR, which results in an underestimation of SLR compared to the relative SLR model. Therefore, 
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future studies using the VIC and ANNs models to predict soil moisture and drought risk should 

consider using relative SLR (including land subsidence) as an input variable rather than using only 

SLR.  

 

In summary, the present environmental conditions in the VMD, the attitudes of the residents of the 

VMD, and the data from the predicted model of the future of sea water intrusion, drought risk, and 

decreased freshwater flow in the VMD together suggest that the Vietnamese government should 

aggressively develop a more informed flood management system in the VMD. 

 

2. Potential Application 

 

Climate change has affected every river delta region globally. Predictions of the future of these bodies 

of water suggest that sea water intrusion and drought will only increase in these areas. Global 

population growth would certainly accelerate this process. The use of prediction models for soil 

moisture and drought risk are important tools to inform public policy. From our experience, the ANNs 

model is more user friendly than the VIC model for predicting soil moisture and drought. Therefore, 

future studies may consider using the ANNs model for predicting soil moisture and drought in similar 

large river deltaic systems (e.g., Nile River Basin, Mississippi River Basin).  

 

The Best-worst scaling survey provided important information on VMD residents attitudes on 

tradeoffs of short-term benefits for long-term ecosystem services. This method may be used in other 

troubled river delta regions to define attributes that are important to residents to assist policy makers in 

developing policies to achieve sustainable and equitable socioeconomic development in the region. 

Thus, future studies of deltaic regions should consider using high-level techniques to predict change in 

soil moisture, drought, and seawater intrusion over time, how changes in these variables may affect the 

socioeconomic conditions of the residents of these deltaic regions, and how to influence government 

responses to these changing conditions that result in an equitable and sustainable future for the 

residents and the land. 
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