
O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Pa
ul

o
Ve

lo
so

*
e

 A
nd

ré
 P

or
to

**

D
O

I:
ht

tp
://

do
i.o

rg
/1

0.
32

33
4/

oq
nf

p.
20

21
n4

9a
80

4

* COPPE. Universidade Federal do Rio de Janeiro.
** Universidade Federal de Goiás. Contato: andre.porto.ufg@gmail.com

The God-given Naturals:
Induction and Recursion

Os Naturais que Deus nos deu:
 Indução e Recursão

Abstract

We discuss some basic issues underlying the natural numbers: induction and
recursion. We examine recursive formulations and their use in establishing universal
and particular properties.

Keywords: Naturals, induction, recursion, parameters, universal properties,
particular properties.

Resumo

Nós discutimos alguns problemas básicos subjacentes aos números naturais.
Examinamos as formulações recursivas e seu uso no estabelecimento de propriedades
universais e particulares.

Palavras-chave: Naturais, indução, recursão, parâmetros, propriedades uni-
versais, propriedades particulares.

Recebido em: 12/04/2021 Aceito em: 10/11/2021

116 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

“The good Lord created the natural numbers; all the rest is man’s work.”
L. Kronecker (1823-1891)

1.Initial Presentation

The present article is perhaps the last paper produced by Professor Paulo
Veloso. It greatly expands on some ideas contained in (Porto, 2009) regar-
ding Wittgenstein’s treatment of inductive proofs. In that paper, an alterna-
tive parametrized version of the usual recursive formulations of arithmetical
operations is introduced. For example, in the case of addition, instead of the
usual two clauses:

we substitute the second clause of the definition by its parametrized version:

which allow us to move α successors in one single step. Once we have this
new, parametrized recursive definition of addition, the usual inductive proof,
say, of associativity of addition becomes simply:

The main goal of professor Veloso’s paper is to offer an extremely detailed
comparison between usual inductive proofs with their parametrized versions,
particularly with respect to universal/local validity, i.e., their validity with
respect to non-standard models, and not only regarding the usual standard
model. The paper retains the character of a work which was in progress. If
it were not for his untimely death, professor Veloso would have certainly

117The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

clarified better the logical instruments behind his proofs (first order logic,
second order logic) as well as would have probably added parallel sections
regarding universal/specific properties of Multiplication.

2. Introduction

We will examine some basic issues underlying the structure of the natural
numbers: induction and recursion. In Section 3, we will use some simple
examples to introduce recursive formulations and induction, stressing the
distinction between universal and particular properties. In the remaining sec-
tions, we will examine other recursive formulations, as well as the role of
induction in establishing properties of functions with recursive formulations,
considering three approaches, which we called direct, reductive and algebraic
ones. The first approach establishes a universal property directly by induction,
whereas the other two approaches derive a property from other properties.
We will be particularly interested in distinguishing universal properties, valid
for all models, and merely local properties, valid only for the standard model.

3. Motivation: Recursion and Induction

We now use some simple examples to introduce the issues of recursion and
induction. Consider the natural numbers. They can be visualized as follows:

In this structure, we have the natural number and the (unary) successor
function: s(n) = n+1. In fact, the natural numbers are generated starting from
by (iterated) applications of successor:

One can give recursive formulations for some operations on naturals. For
instance, a recursive formulation for addition of naturals may be as follows

118 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

This recursive formulation (+) reduces addition to iterated applications of
the successor operation +. One often says that it defines the operation . It
is used in establishing some properties of addition, such as commutativity
(a+b = b+a) and associativity (a+(b+a) = (a+b)+c).

3.1. Double of Naturals

We will first examine the case of double the naturals. Consider the case of
doubling of a natural: d(n)=2·n.1 A recursive formulation for function d re-
duces it to iterated double successors. It is as follows:

With this formulation (d), one can evaluate the double of each natural.2 For
instance, to evaluate d(2), we can proceed as follows.

1. First, we express how 2 is generated: 2=s(s(0)).
2. Next, we use formulation (d) to evaluate d(s(s(0))) as follows

Finally, we note that s(s(s(s(0)))) denotes 4, by evaluating s, as follows:

The entire evaluation involves three steps as follows:

(r) first, we represent the argument 2 = s(s(0));
(d) next, we use formulation (d) to eliminate d;

1 A programmer would write (using predecessor p) d(v) = if v = 0 then 0 else s s (d(p(v))).

2 Note that the non-zero case (s) should be understood as d(s(n))=s(s(d(n))), for every natural n∈ℕ.
So, formulation (d) abbreviates d(0) = 0,d(s(0)) = s(s(d(0))),...

119The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(s) finally, we evaluate s, obtaining the natural 4 = s(s(s(s(0)))).
These three steps can be summarized as follows

Two features of formulation (d) are apparent from this operational view:

- it eliminates the (new) symbol d: d(s(s(0))) evaluates to s(s(s(s(0))));
- the reduced name s(s(s(s(0)))) denotes the correct double of 2.

One can also establish some properties of function in this manner. For instance:

(0) 0 is its own double, as follows: d(0) =(0) 0;
(+) a successor is not its own double, as follows: d(s(n)) =(s) s(s(d(n)))≠0.

To clarify the matter, let us examine the language involved. Our language for
the naturals has the symbols: constant 0 (for zero) and unary function s (for
successor).

Within such a language, we have numerals as names for the naturals, as
usual. For instance, 3 =sss(0) denotes the natural 3, being a name for it. For
each natural n, we introduce its numeral n̅:=sn(0) (where sn is a shorthand
for .3

We can see that the numeral n̅ is a name for the natural n: it is a variable-
-free term denoting it. So, we see that every natural n is (uniquely) denoted
by its name n̅ = sn(0).

Thus, we have another natural formulation for double, as follows

3 One can also introduce numerals by recursion (over ℕ): 0 = 0 and s(n)∶= s(n).

120 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

This formulation (dbl) is just like the previous formulation (d).4 We then
have the following properties.

(=) f for n = 0: dbl[n] = ̇ n 0 does equal its own double

(≠) f for n ≠ 0:¬dbl[n] = ̇ n a non-zero numeral is not its own double

So, we have dbl[n̅]= ̇ n̅→n̅ = ̇ 0, for every natural n.5 Have we actually establi-
shed the universal property ∀v (dbl[v]= ̇ v → v= ̇ 0)? If all we know about is the
above formulation (dbl), the answer is no!

To see this claim, consider a non-standard model of the naturals with zero
and successor cf. (Herbert, 1972, pp. 178-183 §3), consisting of two chains: a
ℕ-chain (the standard part) and a ℤ-chain (the non-standard part) as follows:

In this structure, successor is indicated by the arrows. Now, let us define on
it as expected:

- on the standard part: dbl(n)=2·n;
- on the non-standard part: dbl(z)=2· z.

This expanded structure satisfies both clauses of the recursive formulation
(dbl).6 The non-standard point ±0 is a counterexample for the above uni-

4 Again, case (s) is be understood as dbl[s(n)] = ̇ s(s(dbl[n ̅])), for every natural .

5 Notice that only evaluation is required to establish each specific version.

6 In fact, it satisfies the universal sentence ∀v dbl[s(v)] = ̇ ̇ss(dbl[v]).

121The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

versal formula: ±0≠0 but dbl(±0)=±0, i.e., ±0 is a non-zero point that is
its own double.

Now, let us take a closer look at what is happening with respect to induc-
tion. Let formula φ(v) be dbl[v] = ̇ v→ v = ̇ 0. Notice that we do have:

(0) the basic instance φ(0) trivially, as 0= ̇̇ 0;

(s) each step instance φ(n)→ φ(s(n ̅)) since ¬s(n ̅) = ̇̇ n ̅ . ;

as well as ϕ(n), for every natural n. But we have failed to establish the univer-
sal formula ∀v φ(v). Why is this so?

Induction is a tool to establish universal properties. What is involved
here might be called induction on names. It captures part of the intuition we
have about the naturals; its shortcoming is that it covers only the standard
part, and not all “possible” naturals.

In order to establish the universal property ∀v φ(v), one should use the
induction schema

or the induction rule

In both cases, we have to establish:

(0) the basis φ(0) as before;

(s) the induction step ∀v(φ(v)→φ(s(v))) a universal formula.

In this case, we do have the basic instance ϕ(0), but can we establish the in-
ductive step ∀v(φ(v)→φ(s(v))) ? To establish such a universal inductive step,
we need a universal formulation for double, such as

122 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

With this formulation (db), the universal inductive step follows from ∀v ¬
s(v) = ̇ 0 Therefore, we can infer the universal property ∀v ϕ(v).

3.2. Addition of naturals

We now return to addition of naturals. Much as in the case of d, we can use
formulation (+) to evaluate specific cases of addition. For instance, consider
3+2 and 2+3.

1. We can evaluate 3+2 as follows

2. Similarly, we can evaluate 2 + 3 as follows

In this manner, we see the specific commutativity 3+2=2+3.
As in the case of double, we have another natural formulation for addition,

namely:

This formulation (add) is just like (+). So, for each given pair m and n of
naturals, we can establish the specific commutativity add[m, n] = ̇ add[n ,m]
by evaluation and comparison.

We can proceed similarly for each given pair m and n of naturals.

1. Evaluate the left-hand side add[m, n].7

2. Evaluate the right-hand side add[n, m].8

7 We have

8 We have

123The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

3. Notice that both sides evaluate to the same natural.9

Notice that we do not need induction to establish each given case add[m, n]
= ̇ add[n ,m].

Thus, we have the specific commutativity of addition:

(K+↓) add[m, n] = ̇ add[n ,m], for each pair m and n of naturals

We cannot, however, establish the universal property ∀u∀v add[u,v] = add[v,u]!10

To establish such a universal property, we need a universal formulation for
addition, such as the following one:

To see the difference between this universal formulation (ad) and formulation
(add), notice that we can now have more general evaluations. For instance,
we can now evaluate ad[u,ss(0)] to ss(u) as follows:

With this formulation , one can establish the following universal properties of ad.

(0+∀) Left zero: ∀v ad[0,v] = ̇ v by induction on v.

(s+∀) Left successor: ∀u∀v ad[s(u),v] = ̇ s(ad[u,v]) by induction on v.

(K+∀) ∀u∀v ad[u,v] = ̇ ad[v,u] using(0+_∀)and(s+∀) by induction on u.

Note that the above auxiliary properties (0+∀) and (s+∀) are special cases of
commutative property (K+∀). We also have specific instances of these auxi-
liary properties (0+∀) and (s+∀).

(0+↓) add[0,n] = ̇ n , for every natural n∈ℕ (of (0+∀))
(s+↓) add[s(m),n] = ̇ s(add[m,n]), for all naturals

9 Both and have the same number of s’s

10 We can argue much as in the case of dbl: we expand the non-standard structure by add[a,n]=a+n
and add[a,b]=b+1; then we satisfy both clauses of the formulation (add), but add[±0,0] = ±0
whereas add[0,±0] = ±0+1=+1.

124 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

These specific versions, being special cases of the specific commutative pro-
perty (k+↓), can also be established directly by evaluation and comparison.

Some remarks about these ideas are in order.

1. We mentioned that we do not need induction to establish each specific
version of commutativity of addition. So, induction appears to play no
role in such cases. Actually, induction (on numerals) might come in
handy to reuse cases previously established.11 For, all specific versions
form an infinite set, so we have countably many induction-free proofs.
Induction on ℕ may help condensing this countable set of proofs to
finitely many proofs. This seems to be the usual case.12

2. Similar methods, based on formulation (ad), yield associativity of addition.
- For the version ∀u∀v∀w ad(u,ad[v,w]) = ̇ ad(ad[u,v],w), we use (IR)13.
- For the version ∀u∀v ad(u,ad[v,k]) = ̇ ̇ad(ad[u,v],k), we can resort to

evaluation and comparison.14

3. The reason why these methods work so nicely for addition has to do
with the rather simple nature of its recursive formulation (see Section
4). One can also establish properties of other operations, such as multi-
plication, by similar methods, but the details tend to be more involved.

We can now return to some distinctions universal versus particular proper-
ties and direct and reductive approaches. These examples help clarifying
the distinction between universal and particular properties. The distinction
between the direct, reductive and algebraic approaches will become clearer
later on. Meanwhile, our examples can perhaps provide some clarification
about the distinction between the direct and reductive approaches. Consider,
for instance associativity of addition. On the one hand, the direct approach
will establish its universal version directly by the induction rule (IR). On
the other hand, the reductive approach will establish its particular version
by evaluating both sides, thereby reducing them to their normal forms, and
comparing the results. The case of commutativity of addition is similar. The

11 Note that add[m ,n] = ̇ add[n,m] yields immediately add[m,s(n)] = ̇ add[n,s(m)], by (add.s).

12 We will examine such issues in Section 7 (see 7.2).

13 We can employ induction on w (see 6.1 in Section 6).

14 Both sides reduce to sk (ad[u,v]) (see 7.1 in Section 7).

125The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

so-called algebraic approach establishes a (universal) property by instantia-
ting general conditions.

The following table may be of help in clarifying these distinctions.

 Approach Property Method Models Range Sections

 Direct Universal Induction (IR) all wide 6

 Reductive Specific Induction on ℝ standard narrow 7

 Algebraic Universal General conditions all wide 8, 9

In the sequel, we shall take a closer look at some aspects of these questions.
In the next section, we will examine universal recursive formulations.

4. Universal Recursive Formulations

We will now examine some examples of universal recursive formulations. We
shall illustrate recursive formulations (in 4.1) and classify them (in 4.2).

4.1. Examples of recursive formulations

We will now illustrate recursive formulations for some functions.
We will consider universal formulations. To simplify the notation, howe-

ver, we will leave implicit the universal quantifiers. So, we write the formula-
tion , in Section 3, simply as

As mentioned in Section 3, by relying on this formulation (ad), one can esta-
blish, by induction (IR), some properties of addition (see Section 6).

(K+∀) ∀u∀v ad[u,v] = ̇ ad[v,u] commutativity of +

(++∀) ∀u∀v∀w ad(u,ad[v,w]) = ̇ ad(ad[u,v],w) associativity of +

126 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Also, we write the formulation , in Section 3, simply as

By relying on formulations (db) and (ad), one can establish, by induction
(IR), the universal property ∀v db[v] = ̇ ad[v,v]..15

Other examples of recursive formulations are as follows.

(pd) Function predecessor pd has the following recursive formulation:

Formulation (pd) gives the property ∀v pd[s(v)]= v.16

(mn) For function minus, with a– ̇ b = a-b (for a ≥ b) and a– ̇ b = 0 (for a < b), we
have the following recursive formulation (using function pd)

Formulations (mn) and (pd) give the property ∀v mn[0,v] = ̇ 0.

(mt) A recursive formulation for multiplication · is as follows:

Formulation (mt) gives property (K·): ∀u∀v mt[u,v] = ̇ mt[v,u].

15 The formulations (dbl) and (add), in Section 3, would give the particular properties dbl[n] =
add[n, n], for every natural n ∈ ℕ.

16 Function successor has a recursive formulation: sc[0]= ̇ s(0); sc[s(v)]= ̇ s(sc[v]).

127The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(sq) A recursive formulation for square is as follows:

Formulations (sq) and (mt) give the property ∀v sq[v] = ̇ mt[v,v].

(pw) A recursive formulation for exponentiation (with 00 = 1) is as follows:

Formulation (pw) gives the property ∀u pw[u,s(0)] = ̇ u.

4.2. Classes of recursive formulations

We will now classify our recursive formulations.
In each one of our recursive formulations in 4.1, the value of the function

at the next input is computed from the present value: cf. case (⊳). There are,
however, some distinctions.

1. In formulations (ad) and (mn), the value at the next input depends
only on the present value. We may call them value recursive.
A value recursive formulation for a function 𝑓 uses a unary step func-
tion h as follows

The case of (db) also fits into this pattern: it has no parameter.

2. Formulations (mt) and (pw) are different: by clause (mt. ⊳),
mt[u,s(v)] depends on both u and mt[u,v].. Indeed, we evaluate
mt[u,ss(0)] as follows:

128 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

In these formulations (mt) and (pw), the value at the next input de-
pends on the parameter as well as on the present value. We may call
them simple recursive.

A simple recursive formulation for a function f´ uses a step function
h́ as follows

Formulations (pd) and (sq) illustrate yet another difference: clause
(pd.⊳) shows that pd[s(v)] depends on v, rather than on the present
value pd[v]; its step function is the left projection . In these
formulations (pd) and (sq), the value at the next input depends on
the input.

In general, a primitive recursive formulation for a function 𝑓´ uses a
step function h´ as follows

Next, in Section 5, we will examine parameterization. In Section 6, we will
examine how one can establish some universal properties of addition: asso-
ciativity and commutativity.

5. Parameterization

We will now examine parameterization. Here, the motivation is the reduction
to compositions of step functions. In Sections 3 and 4, we have examined
some features of recursive formulations. This has clearly led to compositions
of the step function, in the case of addition, but not quite so in the case of
multiplication. Indeed, we have the following evaluations:

129The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

composite successors (cf. 3.2)

nested additions (cf. 4.2)

One way of approaching the goal of compositions of step functions is para-
meterization. We introduce the basic ideas with the simple case of addition
(cf. formulation (ad) in 4.1). For each natural m, we define the parametrized

addition . So, we have the following connection between

the two versions of addition:

Thus, this unary function m
_ad has the following (value) recursive formulation:

This formulation (m
_ad) has basis value m (cf.(⊥)) and step function s (cf. (⊳)).

We can compare these two versions of addition as follows:

Function arity Basis arity Step arity

Original 2 ι(u)=u 1 s(w) 1

Parametrized
m
_ad[v] 1 m

_
0 s(w) 1

We can now examine the ideas underlying parameterization: parameterizing
a function by fixing some of its arguments.

We parameterize a function F∶ℕn × V→W as follows: for each tuple m⃗∈:ℕn
introduce its parameterized version m⃗F∶V→W by:

Parameterization constructs several new functions form a given one. We can
compare these two versions of a function F as follows:

130 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Original function Parameterized function Definition

F ∶ ℕn × V → W m⃗F ∶ V → W

We shall examine parameterization for classes of recursive formulations (cf.
4.2): value recursion (in 5.1), simple recursion (in 5.2) and primitive recur-
sion (in 5.3).

5.1. Parameterization: value recursion

We will now examine parameterization for value recursive formulations (cf. 4.2).
The case of monus (cf. 4.1) is entirely similar to addition. For each natural

m, we define parametrized monus mmn by the following connection:

Thus, this unary function ⃗ mmn has a value recursive formulation much
as ⃗ m ad), with basis value m and step function predecessor pd.

It is not difficult to extend these ideas to value recursive functions (cf.
4.2). Consider a value recursive function 𝑓 satisfying formulation (f). We
introduce the unary parameterized version ⃗ m 𝑓 by the following connection:

We now consider the unary parameterized version m⃗ g = ⃗ m and noting that m⃗ g
∈ ℕ, we consider its numeral . Then, the parameterized version m⃗ 𝑓
has the following recursive formulation:

This formulation m⃗ 𝑓 has basis value m⃗ g and step function h.

We can compare these two versions of a value recursive function as follows:

131The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Function arity Basis arity Step arity

Original n+1 g(u⃗) n h(w) 1

Parametrized m⃗ 𝑓[v] 1 m⃗ g 0 h(w) 1

5.2. Parameterization: simple recursion

We now examine parameterization for simple recursive formulations (cf. 4.2).
We will begin with parametrized multiplication for each na-
tural m, by the following connection:

Thus, this unary function has the following recursive formulation:

This formulation (mmt) has basis value: 0 (cf.(⊥)) and step function: mad (cf.
(⊳)). We can compare these two versions of multiplication as follows:

Function arity Basis arity Step arity

Original 2 ζ(u)=0 1 2

Parametrized
m
_mt[v] 1 0 0 ⃗ m ad(w) 1

The case of exponentiation (cf. 4.1) entirely similar to multiplication. For
each natural m, we define parametrized exponentiation ⃗ m pw, by the follo-
wing connection:

Thus, this unary function pwmmn has a value recursive formulation much as
(m

_mt) , with basis value and step function parametrized multiplication m
_mt.

132 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Much as before, we can extend these considerations to a simple recursive
function (cf. formulation (𝑓) in 4.2). Consider a simple recursive function 𝑓

satisfying formulation (𝑓). We introduce the unary parameterized version ⃗ m 𝑓
by the following connection:

Introducing the unary parameterized version , we consider

the numeral. Then, the parameterized version m⃗ 𝑓 has the following recursive
formulation:

This formulation (m⃗ 𝑓) has basis value m⃗ g and step function m⃗ h́ .

5.3 Parameterization: primitive recursion

We will now examine the general case of parameterization, namely functions
with primitive recursive formulations (cf. 4.2); one can also parametrize them.
Consider a primitive recursive function 𝑓 (cf. formulation (𝑓) in 4.2). As before,
we introduce the unary parameterized version ⃗ m 𝑓 by the following connection:

Now, we consider the numeral and introduce the parameterized
version . Then, the parameterized version ⃗ m 𝑓 has the following

recursive formulation:

Notice that the parametrized step function is no longer unary.

Notice that we take as parameters the inputs other than the recursive variable.

133The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Now, consider functions without parameters, such as the unary functions
db, sq, and pd (in 4.1). One could in principle apply the same idea to the
recursive variable, but this does not seem to be of much help. Consider the
case of unary predecessor. This function has no parameters. If we define mpd
= pd[m], then will have distinct versions of predecessor, depending on the
input m : 0pd = 0 and s(n)pd = n. In the next section, we will examine iteration.

6. Addition: universal properties

We will now examine how one can establish some universal properties of
addition. We will establish associativity (in 6.1) and commutativity (in 6.2),
using the universal formulation (ad) (cf. 3.2 in Section 3).

6.1. Universal associativity of addition

Consider the following universal formulation of associativity of addition:

We establish Aad∀ by (IR): induction on w, using formulation in 3.2:

(0) Using (ad.⊥) twice

(s) Using (ad.⊳) twice, (HI) and (ad.⊳)

134 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

6.2. Universal commutativity of addition

We will now examine how one can establish the universal commutativity
of addition. Consider the following universal formulation of commutati-
vity of addition:

We will establish (Kad∀) by using its two special cases (cf. Section 3):

We first note that the, in the presence of formulation (ad), two proper-
ties (0ad∀)∶ left zero and (sad∀): left successor are special instances of (Kad∀)
commutativity.

17 18

We now establish these three properties by (IR), using formulation (ad) in 3.2.

(0) Direct by (ad.⊥)

17 Indeed

18 Indeed

135The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(s) Using (ad.⊳) and (HI)

(0) Using (ad.⊥) twice

(s) Using (ad.⊳), (HI) and (ad.⊳)

(0) Using (0ad∀) and (ad.⊥)

(s) Using , (HI) and

136 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Table 1 compares the proof structures for these three universal commutati-
vity-related properties of addition.

Property Formulation IR on Structure

Left zero

Left successor

v

v

(0): (ad.⊳)
(s): (ad.⊳);(HI);(ad.⊳)

(0): (ad.⊳)
(s): (ad.⊳);(HI);(ad.⊳)

Commutativity u
(0):(0ad∀);(ad.⊳)
(s):(sad∀);(HI);(ad.⊳)

7. Addition: specific properties

We will now examine how one can establish some specific properties of addi-
tion. We will establish associativity (in 7.1) and commutativity (in 7.2), using
the universal formulation (cf. 3.2 in Section 3). For such specific properties,
one can avoid the induction rule, by resorting to auxiliary properties (esta-
blished by induction on). For addition, the idea is (partially) reducing it to
composition of successors.

We introduce the composites of a unary function , as expected. Given a
unary function t∶ W→W, we define its k-composite tk ∶W→W, for each k ∈ ℕ, by
the following recursion (over ℕ)

t0 [w]=w, ts(k) [w] = t(tk [w])

Thus, .19

The following commutativities of composites are clear.20

19 One could also introduce the iteration t* [v,w] (with a new variable v giving the number of
iterations) by the recursion t* [0,w]= ̇ w and t* [s(v),w] = ̇̇ t(t* [v,w])

20 The instance (sn sm) of property (tn tm) will be used for establishing commutativity of addition.

137The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Equation (ttn) follows by induction on n ∈ ℕ.21 Now, equation (tn tm) follows
also by induction on n ∈ ℕ.22

Also, consider the generalizations of (ad.⊳) and (ad.⊳) to composite suc-
cessors as follows.

(ad sk) Addition of composite successors

(ad k) Addition of numeral

The proof of (ad sk) is by induction on k ∈ ℕ. Now, (ad sk) and (ad.⊥) entail
(ad k).

7.1. Specific associativity of addition

We will now examine how one can establish a specific version of associativity
of addition. Consider the following specific version of associativity of addi-
tion (a+(b+k) = (a+b)+k):

With equations (ad k) and (ad sk), we can establish directly this associative
property (Aad_) as follows:

21

22

138 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

7.2. Specific commutativity of addition

We will now examine how one can establish particular versions of commuta-
tivity of addition. Consider the following quantifier-free version of commu-
tativity of addition:

With , (ad n) instance (sn sm) (of (tn tm) (sn sm)) and (ad m), one can show di-
rectly this commutative property (K+↓) as follows:

8. General Conditions: value recursion

We will now examine some general conditions for two properties of a value
recursive binary operation (cf. 4.2 in Section 4). Consider a binary function
q with the following universal value recursive formulation:

This formulation (q) has unary basis function e(u) and unary step function r(w).
We wish to establish conditions for some properties of such a binary ope-

ration q. We will examine conditions for commutativity (in 8.1) and for as-
sociativity (in 8.2).

139The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

8.1 Conditions for commutativity: value recursion

We will now characterize the commutative value recursive binary operations.
Consider the following universal formulation of commutativity of q:

Analogy with addition suggests the following two universal properties.

Now, consider 3 q 2 and 2 q 3. Let us evaluate them and compare the results.
The above formulation (q) evaluates them as follows.

(3q2) It evaluates as follows:

(2q3) It evaluates as follows:

If we had e s = r e, then both results (r2 e s3)(0) and (r3 e s2)(0) would be
equal.23 This example suggests yet another universal condition, as follows.

(es∀) ∀w e[s(w)] = ̇ r(e[w]) Basis at successor is step at basis: [e s](b)=[r e](b)

23 Indeed, both r2 es3 and r3 es2 would be equal to r5 e: r2 es3 = r2 e s s s = r2 r e s s = r2 r r e s =
r2 r r r e, and r3 e s2 = r3 e s s = r3 r e s = r3 r r e.

140 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

We can now see that we have two alternative characterizations for commuta-
tivity. For a binary operation q satisfying the value recursive formulation (q),
the following conditions are equivalent.

Proof: We will show (Kq∀) ⇒ (es∀) ⇒ (Vq∀) ⇒ (Kq∀).

(Kq∀) ⇒ (es∀) Commutativity of q yields, by (q), (es∀) as follows:

(es∀) ⇒ (Vq∀) We show (es∀) ⇒ (0q∀) and (es∀) ⇒ (sq∀), both by induction on
v, using (q).

(es∀) ⇒ (0q∀) By induction on v, using (q).

(es∀) ⇒ (sq∀) By induction on v, using (q).

(Vq∀) ⇒ (Kq∀)(0q∀) & (sq∀) yield, by induction on x, using (q), commutativity
of q as follows:

141The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

Now, let us apply the criterion (es∀) to functions addition ad and monus mn
(in Section 4), which have (similar) value recursive formulations (cf. 4.2). In
each case, we will proceed in two steps:

1. first, we instantiate the criterion (es∀);
2. next, we check whether the instantiated criterion holds.

(ad) In the case of addition ad (cf. formulation (ad) in 4.1), we have

basis function: e(u)= ι(u);
step function: r(w) = s(w).

1. So, the above criterion (es∀) becomes

2. Now, ∀w s(w) = ̇ s(w) is identically satisfied.

Hence, addition ad is commutative:

(mn) In the case of monus mn (cf. formulation (mn) in 4.1), we have

basis function: e(u)=ι(u);
step function: r(w)=pd(w).

1. So, the above criterion (es∀) becomes

142 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

2. Now, ∀w s(w) = ̇ pd(w) is not satisfied at w = 0.24

This fact provides a counterexample for the commutativity of monus mn, namely

25

8.2. Conditions for associativity: value recursion

We will now characterize the associative value recursive binary operations.
Consider the following universal formulation of associativity of q:

Analogy with the case of commutativity suggests the following two conditions.
(qe∀) Value at basis

This condition bridges the gap between the evaluations of and .26

This condition serves to reduce the gap between the evaluations of
and .27

24 Indeed,

25 Indeed

26 Indeed

27 Indeed

143The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

For instance, these two conditions lead to as follows:

We can now see that these two conditions jointly characterize associativity.
For a binary operation q satisfying the value recursive formulation (q),

the following conditions are equivalent.

(qer∀) Values at basis and at step

Proof. We will show (qer∀) ⇒ (Aq∀) & (Aq∀) ⇒ (qer∀).

(⇑) We show (qer∀) ⇒ (Aq∀) by induction on z.

144 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(⇓) We show (Aq∀) ⇒ (qe∀) & (Aq∀) ⇒ (qr∀).

Now, let us apply these criteria to the functions addition ad and monus mn as
in 8.1. Much as before, in each case, we will proceed in two steps:

1. first, we instantiate the criteria (qe∀) and (qr∀) ;
2. next, we check whether the instantiated criteria hold.

(ad) For addition ad (cf. formulation (ad) in 4.1), we have (cf. 8.1):

basis function: e(u) =ι(u) ;
step function: r(w)= s(w).

So, the above conditions (qe∀) and (qr∀) become as follows.

which is identically satisfied.

which follows from (ad.⊳).

Thus, addition ad is associative:

(mn) For monus mn (cf. formulation (mn) in 4.1), we have (cf. 8.1):

basis function: e(u)=ι(u);
step function: r(w)=pd(w).

145The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

So, the above conditions (qe∀) and (qr∀) become as follows.

which is identically satisfied.

(w= 0) At w= 0, this condition becomes

, i. e.,

(w=0,v=0) At v=0, this last condition becomes

, i. e.,

by (pd.⊥) and (mn.⊥) : ∀u u= ̇ pd[u]; which is not satisfied at u=s(0).28

This fact provides a counterexample for the associativity of monus mn,namely
 .29

We can now summarize our discussion so far about commutativity and as-
sociativity of value recursive binary operations. First, we will summarize our
criteria and the analyses of addition ad and monus mn. Next, we will examine
some further examples of value recursive binary operations.

The characterizations for a value recursive binary operation presented
in this section serve, either to establish or to refute its commutativity, or

28 Indeed, , and .

29 Indeed, , whereas .

146 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

associativity. They rely only on the basis and step functions of the value re-
cursive formulation. As such, they can be employed to analyze commuta-
tivity or associativity of other binary operations satisfying value recursive
formulations.

Some examples of such binary operations, with their analyses, are as follows.

(adb) Addition of double, with :

This formulation (adb) has

basis function: ι(u) = u;
step function: ss(w).

So, conditions (es∀),(qe∀) and (qr∀) become as follows

(is∀) (adbι∀) (qr∀)

Now, conditions (is∀) and (qr∀) fail.
Hence, addition of double adb is non-commutative and non-associative.

(dba) Double of addition, with :

This formulation (dba) has

basis function: db(u);
step function: ss(w)

147The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

So, conditions (es∀), (qe∀) and (qr∀) become as follows

(dbs∀) (dba db∀) (dba ss∀)

Now, condition (dbs∀) holds, whereas conditions (dba db∀) and (dba ss∀) fail.
Hence, double of addition dba is commutative and non-associative.

(γ) Left projection, with :

This formulation (γ) has

basis function: ι(u)= u;
step function: ι(w) = w.

So, conditions (es∀), (qe∀) and (qr∀) become as follows

(ιs∀) (γ ι∀) γ ι∀

Now, condition (ιs∀) fails, whereas conditions (γ ι∀) and (γ ι∀) both hold.
Hence, left projection γ is non-commutative and associative.

148 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(δ) Right projection, with :

This formulation (δ) has

basis function: ζ(u)= 0;
step function: s(w).

So, conditions (es∀), (qe∀) and (qr∀) become as follows

(ζs∀) (δ ζ∀) (ζs∀)

Now, condition (ζs∀) fails, whereas conditions (δ ζ∀) and (ζs∀) both hold.
Hence, right projection δ is non-commutative and associative.

In the next section, we shall characterize commutativity and associativity of a
binary operation satisfying a simple recursive formulation.

9. General Conditions: simple recursion

We will now examine some general conditions for two properties of a simple
recursive binary operation (cf. 4.2 in Section 4).

Consider a binary function with the following universal simple recursive
formulation:

149The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

This formulation (m ́) has unary basis function p ́ (u) and binary step function .
We wish to establish conditions for some properties of such a binary ope-

ration m ́ . We will examine conditions for commutativity (in 9.1) and for
associativity (in 9.2).

9.1. Conditions for commutativity: simple recursion

We will now characterize the commutative simple recursive binary operations.
Consider the following universal formulation of commutativity of :

Analogy with the case of value recursion suggests the following three properties.

(Vm ́ ∀) Values of m ́ at left zero and at left successor

Let us see some examples of how these conditions are used to establish
commutativity.

- Conditions (Vm ́ ∀) lead to as follows:

150 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

- Conditions (p ́s∀) lead to as follows:

We can now see that we have two alternative characterizations for
commutativity.

For a binary operation q satisfying the value recursive formulation , the
fol- lowing conditions are equivalent.

Proof: We will show (Km ́ ∀)⇒(p ́s∀)⇒(Vm ́ ∀)⇒(Km ́∀)

(Km ́∀) ⇒ (p ́s∀) Commutativity of m ́ yields, by (m ́) (p ́s)as follows:

(p ́s) ⇒ (Vm ́∀) We show (p ́s) ⇒ (0m ́∀) and (p ́s) ⇒ (sm ́∀), both by induction on v,
using (m ́).

(p ́s) ⇒ (0m ́∀) By induction on v, using (m ́).

(p ́s) ⇒ (sm ́∀)By induction on v, using (m ́) .

151The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(Vm ́∀) ⇒(Km ́∀) (0m ́∀) & (sm ́∀) yield, by induction on x, using (m ́), commutati-
vity of (m ́) as follows:

Now, let us apply the criterion (p ́s∀) to functions multiplication mt and expo-
nentiation pw (in Section 4), which have (similar) value recursive formula-
tions. As before, in each case, we will proceed in two steps as follows:

1. first, we instantiate the criterion (p ́s∀);
2. next, we check whether the instantiated criterion holds.

(mt) In the case of multiplication mt (cf. formulation (mt) in 4.1), we have:

So, the above criterion (p ́s∀) becomes

Now, follows from (ad.⊥)

Hence, multiplication mt is commutative:

(pw) In the case of exponentiation pw (cf. formulation (pw) in 4.1), we have:

1. So, the above criterion (p ́s∀) becomes

152 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

2. Now, is not satisfied.30

This fact provides a counterexample for the commutativity exponentiation
pw, namely

31

9.2. Conditions for associativity: simple recursion

We will now characterize the associative value recursive binary operations.
Consider the following universal formulation of associativity of m ́ :

Analogy with the case of value recursion suggests the following two properties.

This condition bridges the gap between the evaluations of and
.32

30 Indeed,

31 Indeed,

32 Indeed, and

153The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

This condition serves to reduce the gap between the evaluations of

and .33

For instance, these two conditions lead to as follows:

We can now see that these two conditions jointly characterize associativity.
For a binary operation satisfying the simple recursive formulation m ́ , the

following conditions are equivalent.

(m ́ ṕ t́ ∀) Values at basis and at step

Proof. We will show (m ́ ṕ t́ ∀) ⇒ (Am ́ ∀) & (Am ́ ∀) ⇒ (m ́ ṕ t́ ∀)

(⇑) We show (m ́ ṕ t́ ∀) ⇒ (Am ́ ∀) by induction on z.

33 Indeed, and

154 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

(⇓) We show (Am ́ ∀) ⇒ (m ́ ṕ ∀) & (Am ́ ∀) ⇒ (m ́ t́ ∀)

Now, let us apply these criteria to the functions multiplication mt and expo-
nentiation pw used as examples in 9.1. Much as before, in each case, we will
proceed in two steps:

1. first, we instantiate the criteria (m ́ ṕ ∀) and (m ́ t́ ∀);
2. next, we check whether the instantiated criteria hold.

(mt) For multiplication mt (cf. formulation (mt) in 4.1), we have (cf. 9.1):

So, the above conditions (m ́ ṕ ∀) and (m ́ t́ ∀) become as follows.

155The God-given Naturals: Induction and Recursion

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

which follows from (mt.⊥).

which follows from distributivity.

(pw) For exponentiation pw (cf. formulation (pw) in 4.1), we have (cf. 9.1):

So, the above conditions (m ́ ṕ ∀) and (m ́ t́ ∀) become as follows.

which is not satisfied at u = 0 .34

This fact provides a counter-example for the associativity of exponentiation

pw, namely .35

which is not satisfied at u = ss(0),v = s(0), w = 0.36

34 Indeed

35 Indeed whereas

36 Indeed whereas

156 Paulo Veloso e André Porto

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.115-156, jul.-dez.2021

This fact provides yet another counterexample for the associativity of ex-
ponentiation pw, namely

References

ENDERTON, Herbert B. - A Mathematical Introduction to Logic. New York: Academic
Press, 1972.

POLYA, G. - How to Solve it: a new aspect of the mathematical method. Princeton: Prince-
ton Univ. Press, 1945 (2nd edition 1956, repr. 1971).

PORTO, Andr´e S. - Wittgenstein sobre as provas indutivas, 2009.

SHOENFIELD, Joseph R. - Mathematical Logic. Reading: Addison-Wesley, 1967.

