
O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

Ti
to

 M
ar

qu
es

 P
al

m
ei

ro
*

D
O

I:
ht

tp
://

do
i.o

rg
/1

0.
32

33
4/

oq
nf

p.
20

21
n4

9a
79

2

* Universidade do Estado do Rio de Janeiro (UERJ). Contato: tito22mp@gmail.com

What can Philosophy say,
in principle, about Computers?

O que a Filosofia pode dizer,
em princípio, sobre os Computadores?

Astract

Computers are the unexpected outcome of mathematical investigations from the
first half of the 20th century. From mathematics to physics, and even to biology,
there are many scientific disciplines in charge of their development nowadays;
however, the same cannot be said about philosophy. My purpose is to understand
whether philosophy would have something relevant to say about computers, even
though it does not play any relevant role in this new endeavor. I consider that in
order to answer this question, philosophical inquiry must discuss, in the first place,
the work of Alan Turing. He created the concept of computer in a 1936-1937 paper,

“On Computable Numbers, with an Application to the Entscheidungsproblem”,
and he also reflected upon the extreme implications of this concept on later texts, as
in a 1947 lecture on the Automatic Computing Engine (ACE), where he expressed
some interesting possibilities for understanding how computers and philosophy
relate to each other. I intend to show therewith that his work offers some important
insights for answering the decisive philosophical question on this subject: What can
philosophy say, in principle, about computers?

Keywords: Computers; Philosophy; Alan Turing; Errors

Recebido em: 04/04/2021 Aceito em: 10/11/2021

6 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

Resumo

Os computadores são o resultado inesperado de investigações matemáticas da
primeira metade do século XX. Da matemática à física, e mesmo à biologia, há
muitas disciplinas científicas encarregadas de seu desenvolvimento hoje em dia;
no entanto, o mesmo não pode ser dito sobre a filosofia. Meu objetivo é entender
se a filosofia teria algo relevante a dizer sobre os computadores, ainda que não
tenha papel relevante nessa nova empreitada. Considero que, para responder a
essa pergunta, a investigação filosófica deve discutir, em primeiro lugar, a obra
de Alan Turing. Ele criou o conceito de computador em um artigo de 1936-1937,

“On Computable Numbers, with an Application to the Entscheidungsproblem”, e
também refletiu sobre as implicações extremas desse conceito em textos posteriores,
como em uma palestra de 1947 sobre o Automatic Computing Engine (ACE), onde
expressou algumas possibilidades interessantes para entender como os computadores
e a filosofia se relacionam. Pretendo mostrar com isso que sua obra oferece alguns
insights importantes para responder à questão filosófica decisiva sobre esse assunto:
O que a filosofia pode dizer, em princípio, sobre os computadores?

Palavras-chave: Computadores; Filosofia; Alan Turing; Erros

Computers are the unexpected outcome of mathematical investigations de-
veloped in the 1930s by mathematicians such as Alan Turing, Emil Post or
Alonzo Church. Since then, science and technology have associated their ef-
forts towards a new endeavor that is changing the world around us. As in
previous technological revolutions, its full implications cannot be dealt with
exclusively by the disciplines in charge of it, and therefore it seems possible
to ask what something apparently foreign to this revolution, as philosophy,
would have to say about it. It is true that any contribution helping to cope
with the many problems aroused by the dissemination of computers in our
lives is welcome, but this does not mean that philosophy should be taken
for a handmaiden of science and technology, condemned to the Sisyphean
role of continually analyzing their impressive developments. I intend to show
that philosophy has something much more decisive to do than to follow an
endless chain of consequences, for it is an inquiry directed to what is first and
foremost in every problem.

7What can Philosophy say, in principle, about Computers?

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

In order to accomplish this task, I propose to discuss the work of Alan
Turing. Turing created the concept of computer in his 1936-37 seminal paper,
‘On Computable Numbers with an Application to the Entscheidungsproblem’.1
From 1939 on, he not only worked on two real computing devices (the Blet-
chley Park Bombe and the National Physical Laboratory ACE), but he also
reflected upon the theoretical implications of this concept. The following
pages concentrate on some passages of his work discussing its most extreme
theoretical implications. I shall start with a 1947 lecture on the first gene-
ral purpose computer he designed, the Automatic Computing Engine (ACE).
There he makes two intriguing and decisive claims:

I expect that digital computing machines will eventually stimulate a consi-
derable interest in symbolic logic and in mathematical philosophy. (Turing
1947, p. 12)

In order to make this passage clearer, it is necessary to discuss the meaning of
the expressions ‘symbolic logic’ and ‘mathematical philosophy’. This will be
done in the next two sections (1 and 2). It is expected that this discussion will
contribute to the understanding of the possibility of a philosophical discourse
on computers, which will be explored in the subsequent sections (3, 4, and 5).

1. A claim about symbolic logic

Concerning the expression ‘symbolic logic,’ it seems possible to consider it
as self-explanatory since there are many books on the history of logic dea-
ling with the progressive use of symbols, from its pre-history in the works
of Aristotle, Plato and Greek mathematicians to modern and contemporary
achievements. However, Turing employed the expression ‘symbolic logic’ in a
different context — that of a lecture on a real computing device — and with
an entirely different meaning:

The language in which one communicates with these machines, i. e. the
language of instruction tables, forms a sort of symbolic logic. The ma-
chine interprets whatever it is told in a quite definite manner without any

1 The machine Turing proposed was soon called by Alonzo Church a ‘Turing Machine’ (Church
1937, p. 43).

8 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

sense of humour or sense of proportion. [...] [I]n principle one should be
able to communicate in any symbolic logic, provided that the machine
were given instruction tables which would enable it to interpret that logical
system. (Turing 1947, p. 12, emphasis mine)

This expression has both a negative and a positive sense in this passage. On
the one hand, Turing clearly denies that ‘symbolic logic’ would be limited to a
specific set of symbols or a given syntax, but, on the other hand, he positively
identifies it to ‘the language of instruction tables’. We may conclude therefore
that this expression means: any possible language allowing the achievement
of tasks by computers, i.e., ‘symbolic logic’ stands for the general idea of pro-
gramming languages. It is, therefore, necessary to ask why Turing claimed that
computers would probably stimulate interest in programming languages, and
why he did not make a similar claim about hardware. This would be quite
understandable since this lecture is mainly devoted to the physical features of
the ACE, such as memory storage, input, output or the arithmetic unit circuit.
However, while hardware problems can be solved by the use of engineering
techniques, there is no general technique available for creating programs. We
do not see it clearly nowadays because programmers are taught best prac-
tices for solving stereotyped problems like sorting, looping and so on. Due
to his previous programming experience, Turing was aware that to write a
program is quite different from applying our knowledge of physics to create
artifacts like ‘bridge,’ ‘memory storage’ or ‘arithmetic unit circuit’. He stated
this special difficulty three years later in a programmer’s handbook for a new
computer model in which he worked:

Programming is a skill best acquired by practice and example rather than
from books. The remarks given here are therefore quite inadequate. (Turing
1951, p. 51)

After fifteen years of programming experience, Turing considered important to
state as clearly as possible the impossibility of teaching how to write programs.
This stands in sharp opposition to the idea — implicitly at stake nowadays —
sustaining the plethoric offer of courses and books on this subject. The negati-
ve statement of Turing means that among the many questions to be solved for
computer development, the most defying one is related to the creation of pro-
grams as a means for allowing them do whatever we may wish for — and this
can be possibly the reason beneath the first claim on programming languages.
The main scientific and technological question guiding the development of

9What can Philosophy say, in principle, about Computers?

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

computers can be stated as: ‘How can we make computers do that?’, which is
mostly answered by the creation of programs to solve specific problems, like
effecting visual recognition, or computing huge amounts of data. In the sequel,
I shall compare this question to an entirely different one, associated with the
second expression employed in this lecture: ‘mathematical philosophy’.

2. On mathematical philosophy

To understand the meaning of the expression ‘mathematical philosophy,’ I
will follow the thread offered by a description of the theoretical landscape
around Turing:

The main schools of mathematical philosophy at the beginning of this cen-
tury were Russell and Whitehead’s view that logic was the basis for every-
thing, the formalist school of Hilbert, and an ‘intuitionist’ constructivist
school of Brouwer. (Chaitin 2007, p. 96)

This passage reduces the possibilities of understanding ‘mathematical philoso-
phy’ to three schools. We could maybe guess that Turing was possibly referring
to the first one, in particular to Russell’s 1919 popularization book Introduc-
tion to mathematical philosophy. This may be a good bet as, according to Charles
Petzold, he actually read it in 1933.2 Russell said in this book some interesting
things that may help us understand the general question at stake here, about
the possibility of a philosophical discourse on computers. He stated in the
introduction that ‘the matters concerned’ in mathematical philosophy ‘were
included in philosophy so long as no satisfactory science of them existed,’ and
he gave as examples ‘the nature of infinity and continuity’ (Russell 1993, p.
v). Philosophy, however, which since the Greeks had the role of defining ma-
thematical principles, does not have in fact for Russell the required expertise
to fully understand them, and for this he proposed Mathematical philosophy as
a transformation of the traditional philosophy of mathematics. This new dis-
cipline would speculate from an acquaintance of ‘the more scientific parts of
the principles of mathematics’. However, it is still different from mathematics
itself because ‘Mathematical philosophy, in the strict sense, cannot, perhaps, be

2 Petzold 2008, p. 60: ‘Turing’s interest in the rarefied world of mathematical logic might have be-
gun in 1933 when he read Bertrand Russell’s 1919 work Introduction to Mathematical Philosophy’.

10 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

held to include such definite scientific results as have been obtained in [ma-
thematics]’ (Russell 1993, p. v). It does not have the same degree of certainty
of mathematics because it must inquire into that which mathematics cannot:

philosophy of mathematics will naturally be expected to deal with questions
on the frontier of knowledge, as to which comparative certainty is not yet
attained. (Russell 1993, p. v)

However, we must not rely entirely on Russell’s discussion of ‘mathematical
philosophy’ because it is much more important to go back to Turing’s lecture
on the ACE to ask what he may have said about those ‘questions on the fron-
tier of knowledge’. That is how he explained this expression:

As regards mathematical philosophy, since the machines will be doing more
and more mathematics themselves, the centre of gravity of the human inte-
rest will be driven further and further into philosophical questions of what
can in principle be done etc. (Turing 1947, p. 12)

Unlike Russell, Turing did not take ‘mathematical philosophy’ for a new ver-
sion of the traditional philosophy of mathematics that would better grou-
nd mathematical principles. He takes it rather literally: as an association of
‘machines doing mathematics’ to ‘philosophy’. The probable ‘interest in [...]
mathematical philosophy’ is therefore rooted in the philosophical questions
that may rise as the side-effect of ‘machines […] doing more and more mathe-
matics’. Turing seems to indicate thereby something quite unexpected: that
the widespread use of computers in the most diverse fields of activity would
ask, by itself, for philosophy.

3. ‘How can we make computers do that?’

How is it possible to take seriously a claim stating that the development of
computers would create space for philosophy? It is hard to accept this even as
a mere theoretical hypothesis since philosophy has never played any substan-
tial role on the long history of computer industry. The apparent strangeness
of this claim is rooted in the fact that the question ‘How can we make computers
do that?’ has nothing to do with philosophy, as it is continually answered by
science and put into practice by the technological means available at a given
moment. Turing was well aware of this fact because his answer, offered in

11What can Philosophy say, in principle, about Computers?

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

the 1945 proposition for the creation of the ACE digital computer, made no
reference to philosophy at all:

The class of problems capable of solution by the machine can be defined fairly
specifically. They are those problems which can be solved by human clerical
labour, working to fixed rules, and without understanding. (Turing 1945, p. 14)

Just as any human being acting ‘without understanding,’ computers work
with ‘fixed rules’. We can make them do anything that can be achieved by
us in a series of mechanical steps. However, this answer does not stand for
something new in Turing’s work as it is only the reassessment of one impor-
tant achievement of his seminal 1936-37 paper in which he showed that the
question ‘How can we make computers do that?’ is answered by the creation
of instruction tables, i.e., by programming the computer. We will see in the
sequel that the second claim expressed in this lecture has an entirely different
scope. To see it clearly, let us quote again the last passage from the lecture on
the ACE and stress the decisive words:

As regards mathematical philosophy, since the machines will be doing more
and more mathematics themselves, the centre of gravity of the human in-
terest will be driven further and further into philosophical questions of
what can in principle be done etc. (Turing 1947, p. 12, emphasis mine)

While Turing’s first claim is directed to the scientific question responsible for
computer development, the second one unexpectedly introduces the possibi-
lity of thinking philosophically about them. The many questions asking ‘What
can computers do in principle?’ are called ‘philosophical’ because they cannot be
answered by the same means available for answering the first one, that is, by
’doing more and more mathematics’. Turing was certainly right in supposing
that the widespread use of computers would stimulate an interest in program-
ming languages and in theoretical and technological problems related to them,
but he would be probably very upset that almost a century after the creation
of the concept of computer and of the creation of real computing devices,
‘the centre of gravity of the human interest’ is still not driven into philoso-
phical questions. As a consequence, the main discourses on computers tend
to concentrate on ‘How can we make computers do that?’ and we think of them
accordingly in terms of efficiency, connectivity, memory management, and
so on. However, with that positivistic approach, we do not even wonder that
computers may also require an entirely different sort of approach.

12 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

4. Computers, philosophy, and errors

The previous moments have shown that the possible place for a philosophical
inquiry on computers is not the same as that of the disciplines in charge of
their development. Philosophy must think from a different standpoint: that
one indicated by the expression ‘in principle’. This does not mean that it
should determine computers by a reference to a general and abstract princi-
ple, a traditional αρχἠ from which it would think computers a priori. Turing
says nothing of that sort, for he simply indicates the existence of questions
intrinsically raised by computer activity. The expression ‘in principle’ indica-
tes therefore that a philosophical inquiry of computers should concentrate on
the ‘questions on the frontier of knowledge’. These questions have a twofold
nature, for they are 1. intimately related to computer activity , but they 2. shall
never have a definitive answer. The difficulty to envisage those questions lies in
the fact that it is not possible to propose a general procedure for determining
them, for they are raised by computer’s very activity.

In the sequel, I propose a first philosophical question for discussion. It
was implicitly raised by Turing’s paper when he created the concept of com-
puter. In his paper, he wrote many ‘programs’ and ‘subroutines’ to explain the
possibility of a machine that would do the same job of a human being wor-
king with a pencil and an eraser on a sheet of paper.3 However, as it was soon
noticed, many of these ‘programs’ and ‘subroutines’ contained errors. Emil
Post produced some corrections to them in the appendix of ‘Recursive Unsol-
vability of a Problem of Thue’ (Post 1947), and Donald Davies did the same in
his essay ‘Corrections to Turing’s Universal Computing Machine’ (Copeland
2004). In 1975, Davies gave an important testimony about the reaction of
Turing to his discoveries. He said that he ‘found a number of quite bad pro-
gramming errors [...] in the specification of the machine’. He showed them to
Turing expecting that he would reply with something like ‘Oh fine, I’ll send
along an addendum’ to his paper. However, Turing reacted very differently:

But in fact he was very annoyed, and pointed out furiously that really it didn’t
matter, the thing was right in principle, and altogether I found him extre-
mely touchy on this subject (Copeland 2004, pp. 92-93, emphasis mine)4

3 Called respectively ‘tables’ and ‘skeleton tables’.

4 If we are to believe in the testimony of Davies that Turing would have said that the concept of
computer was right ‘in principle,’ then we should ask accordingly if this concept is really a scien-

13What can Philosophy say, in principle, about Computers?

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

One may read this passage as a testimony of a personal reaction to a criticism,
but it has in fact a deeper meaning. To fully understand it, we must notice
that Turing never published a paper modifying his concept of computer and
that he continued to work from it in his theoretical texts and in his enginee-
ring projects.5 This means that he really considered that any possible errors in
the programs he wrote would not deny the validity of the concept. However,
he may have become ‘extremely touchy’ because the concept requires the
general idea of programming languages as a means for its activity, but no one
can guarantee beforehand the correction of a specific program written in a
given syntax — and in fact, many of them were wrong, mostly because Turing
did not have the possibility of ‘compiling’ and ‘running’ them.

As is well known, Turing proved in his 1936 paper that it is not possible
to envisage a machine that would verify if others machines work properly. As
a consequence, program errors stand for the kind of philosophical questions
we are searching for. At a first sight, it may seem surprising to take them as
standing for philosophical questions, but it must be noticed that they do
respect the two requirements indicated above. In the first place, they are
evidently ‘intimately related to computers’ (as indicated in 1.) because it is
tautological to say that computer errors are produced by computers. This is
so much the case that it seems surprising to consider that (according to 2.)
they cannot have a definite answer. This seems to be simply wrong because
programming languages have instructions that allow programmers to deal
with errors, one of the simplest being the ‘else’ option in an ‘if’ statement, or
the ‘exception’ directive in Java and other languages. It is true that it is pos-
sible to minimize errors by using test scenarios and statistical analysis, and
it is also true that it is possible to automatize error-checking with automatic
procedures designed to analyze a finite set of scenarios. However, this is only
a practical and limited solution because, as Turing stated in his lecture on
the ACE: ‘[T]he statistical method can only help the analyst, not replace him.’
(Turing 1947, p. 20).

Let us try to understand a little bit more why programs could never
really catch all possible errors. A program is defined by what is coded in its

tific or rather a philosophical one. However, I will not discuss this problem here.

5 It is well known that Turing wrote in 1937 a correction to his ‘proof of the insolubility of the
Entscheidungsproblem,’ which ’contained some formal errors’ (TURING 1937, p. 344), but this
has no incidence on the concept of computer proposed.

14 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

instructions,6 such as to add numbers, digitalize images, play music and so
on. However, it is not possible to guarantee that it will fully accomplish what
we expect it to do in every possible situation because the numbers typed may
produce overflow, the original document to be scanned may be too faint, or
the music file may require too much memory to be read. That is why good
programming practices and methods of software development contain a test
phase. It is true that in this phase the most important errors should be iden-
tified and eliminated, but no one can be entirely sure that this will be really
the case because all epistemic relevant issues to program creation cannot be
known beforehand. The fundamental point is not that programming is an
activity depending on social criteria,7 neither that the idea of formal program
verification should be blamed for trying to make an a priori proof of an a pos-
terity real machine environment.8 The real philosophical issue is that the set
of possible program states is finite, while that of all possible errors is infinite.

It is not a simple a question of a set being greater than the other, that
which would possibly have a definitive answer by the use of mathematical
means. What is philosophically important here is that errors are not related
to the definition of computers because they stand to what computers cannot
do. Errors mean non-solvability; they stand for an external limit to what can be
done, in principle, by computers.

6 Davis 1972, “The program itself is the only description of what the program will do”.

7 De Millo, Lipton & Perlis 1979 provoked intense reactions from the computer science commu-
nity for stressing the impossibility of strict proofs of formal verifiability and for proposing accor-
dingly that they should be replaced by social analysis of what constitutes an acceptable software:

“The concept of verifiable software has been with us too long to be easily displaced. […] Verifiabi-
lity is not and cannot be a dominating concern in software design. Economics, deadlines, cost-be-
nefit ratios, personal and group style, the limits of acceptable error — all these carry immensely
much more weight in design than verifiability or nonverifiability.” (p. 279). For an analysis of the
debate, see MacKenzie 2004, chapter 6, “Mechanizing Proof: Computing, Risk, and Trust”.

8 Fetzer 1988 directed the criticism of De Millo, Lipton & Perlis 1979 to what he considered as
the most radical problem at issue, that of searching for a priori formal verifiability proofs of an a
posteriori environment, suitable only to inductive reasoning on empirical facts: “In this case, the
absolute verification of an abstract machine is logically impossible because its intended interpre-
tation is a target machine whose behavior might not be described by those axioms, whose truth
can only be established by induction.” (p. 1059).

15What can Philosophy say, in principle, about Computers?

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

5. A brief conclusion on computers’ errors

I would like to close this inquiry by making a few remarks on the philoso-
phical statement just proposed, that errors constitute ‘an external limit to
what can be done, in principle, by computers’. I intend to show that this
first attempt at thinking computers philosophically indicates that philosophy
has some new and interesting things to say about them. Here I shall briefly
discuss one single feature introduced by program errors.

In the lack of a philosophical inquiry on computers, the presupposition
beneath the question ‘How can we make computers to do that?’ is a positivistic
one, implying that their activity has potentially no limit. In this perspective,
errors are extremely productive because they are the reason why we tend to
think about computers in contradictory terms: as exact machines that can
nonetheless infinitely progress. Computers are adopted in the most diverse
fields, ranging from Banking and Manufacturing to the Academia, because
they are considered a sound basis for the management and the production of
knowledge. Errors are nonetheless bound to them as is clearly shown by the
proliferation of software beta-versions, correcting patches and new program
versions. What is surprising in this situation is that errors are not taken for a
symptom of a possible lack of grounds of computing, but appear moreover as
an important opportunity for the development of new possibilities.

In contrast to the positivistic approach frequently associated to the un-
derstanding of computing as a bold and limitless “new technology”, our in-
quiry has shown that errors are not simple details that could be ignored due
to the promise of an infinite progress in computing, but they constitute an
intrinsic limit for what computers can do. This statement is not something
that could be understood by experts only, for it is a philosophical statement
directed to anyone trying to think computers thoroughly. This limit concerns
the very definition of computers, as they can only be said to do what they
are supposed to do so long as no error has been detected. Philosophy shows
therefore that computers are not truth-machines, but an intriguing concept
that is defined by what it does, and intrinsically incapable of dealing with
what it does not.

16 Tito Marques Palmeiro

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.5-16, jul.-dez.2021

References

CHAITIN, Gregory. Thinking about Gödel and Turing. Essays on Complexity, 1970-2007.
Singapore: World Scientific Publishing Co., 2007.

COPELAND, Jack. The Essential Turing: Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life plus The Secrets of Enigma, Oxford: Clarendon
Press (Oxford University Press), 2004.

CHURCH, Alonzo. “Review: A. M. Turing, On Computable Numbers, with an Appli-
cation to the Entscheidungsproblem”. Journal of Symbolic Logic (2): 42–43, 1937.

DAVIS, P. J. Fidelity in mathematical discourse: Is one and one really two? The Ameri-
can Mathematical Monthly 79, 3 (1972), 252-263.

DE MILLO, Richard; LIPTON, Richard; PERLIS, Alan. Social Processes and Proofs of
Theorems and Programs. Communications of the ACM, May 1979, volume 22, number 5.

FETZER, James. Program verification: The very idea. Communications of the ACM. Sep-
tember 1988, Volume 3, Number 9.

GÖDEL, Kurt. Remarks before the Princeton bicentennial conference on problems
in mathematics (1946), Collected Works, volume II, publications 1938-1974. New York:
Oxford, 1990.

MACKENZIE, Donald. Mechanizing Proof: Computing, Risk, and Trust. Cambridge: MIT
Press, 2004.

PETZOLD, Charles. The Annotated Turing: A Guided Tour through Alan Turing’s Historic
Paper on Computability and the Turing Machine. Indianapolis: Wiley Publishing, 2008.

POST, Emil. “Recursive Unsolvability of a Problem of Thue”. The Journal of Symbolic
Logic, Vol. 12, No. 1. (Mar., 1947), pp. 1-11.

TURING, Alan. “Intelligent Machinery” (1948) in The Essential Turing

TURING, Alan. “Alan Turing’s Manual for the Ferranti Mk. I” (1951). http://curation.
cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf

TURING, Alan. Intelligent Machinery, a Heretical Theory” (1951) in The Essential Turing

TURING, Alan. “Lecture to the London Mathematical Society, February, 20, 1947, on
ACE”. AMT/B/1: http://www.turingarchive.org/browse.php/B/1.

TURING, Alan. Proposed Electronic Calculator (ACE). (1945) AMT/C/32: http://www.
turingarchive.org/browse.php/C/32.

RUSSELL, Bertrand. Introduction to Mathematical Philosophy, second edition. George
Allen & Unwin, 1920; Dover, 1993.

http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/kgill/mark1/RobertTau/turing.pdf
http://www.turingarchive.org/browse.php/B/1
http://www.turingarchive.org/browse.php/C/32
http://www.turingarchive.org/browse.php/C/32

