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Abstract.  
SARS-CoV-2 belongs the family betacoronavirus in Coronoviridae; it is known to have 

single strand RNA which is enveloped. The first case is reported late2019 in China. From there 

it is circulate around the world, causing the COVID-19 pandemic situation with higher fatality 

rates. At the beginner of April 2021 SARS-CoV-2 has infected more than 130 million people 

and led to 2.84 million death. There are several strategies for cure of SARS-CoV-2 infection, to 

date the number of drugs who are used for treatment is increased depends of these drugs are 

used alone or in combination form. FDA has approved remedesivir who have the ability to 

neutralized antibodies, although clinical effects were controversial. Here we discuss for 

development of new strategies for therapeutic reason in patients infected by SARS-CoV-2. 
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1   Introduction 

The term coronavirus came from crown-like spikes on the surface of the virus. The 

coronavirus are known to envelop positive strand RNA viruses; the coronavirus have 

ability to infect various vertebrates, including humans. In the 1960s, two kind of 

human coronavirus are discovered; alpha and beta. They are known to cause disorders 

such as respiratory illness of mild to moderate severity [1, 2]. The whole world is 

currently in a pandemic situation since the first case of patients infected with SARS 

virus appeared in late of December 2019 in Wuhan, China. The patients were exhibit 

common symptoms like fever, dry cough, sore throat, breathlessness, and tiredness. 

Before the spread of COVI-19 [3, 4], SARS appear as an epidemic in 2003, followed 

by Middle East respiratory syndrome (MERS) 2012, both caused by a novel 

coronaviruses assigned to the genus Beta coronavirus [5]. Coronavirus contain 

positive single strand RNA as a genetic inherited material, which is 30kb in length. 

This single strand RNA is protected from double fatty layer and help virus to evade 

host immune system inside host cell [6, 7]. The subfamily of Coronavirinae is divided 

into fourth genera: alpha, beta, gama, and delta [8]. The SARS –CoV-2 genome 

consist from 12 open reading frame (ORF). In 5’ end ORF 1a is overlapped by 

ORF1b, which encodes the RNA polymerase and other non-structural proteins. Genes 

encoding non-structural proteins such as S (spike), M (membrane), E (enveloped), 

and N (nucleocapside) are in the remaining part of the genome (one-third) spanning 

from the 5’ to the 3’ terminal along with several gene encoding non-structural 

proteins (NSP). Besides they belong the same serogroup, there is a slight differences 

in the nucleotide number, sequences, gene order and expression [9-12]. Last time is 
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reported that some nucleotide substitution has occurred in the gene which encode the 

S protein, such as NSP15, NSP12, NSP16, NSP9, NSP10, NSP8, NSP2, NSP3, NSP1 

[13-15]. The NPS3 is the most strongly enriched protein, NPS6 play pivotal role in 

formation of double membrane vesicles [16]. Mutation of NPS2 and NPS3 believed to 

enhance infection of coronavirus [17, 18]. The genetic mutation in RNA help perhaps 

virus to escape the host immune system and develop drug resistance. The research has 

found in many infection patients minor mutation in genotype SARS-CoV-2 [19].  

SARS-CoV-2, use ACE2 (angiotensine-converting enzyme 2) receptors to have 

access inside human cells; the MERS-CoV is shown to bind with specific DPP4 

(dipeptidyl peptidase 4) receptors [20, 21].  

 

1.1 Replication of SARS-CoV-2 

The coronavirus start to login inside cell by connection with host receptor of the S 

glycoprotein present on their surface. The S protein contain the RBD (receptor-

binding domain). In some type of coronavirus, the RBD is found to be present at the 

N terminus region of S protein, whereas in SARS-CoV-2, it is placed at the C-

terminus region [22, 23]. After the SARS-CoV-2 is inside of host cell via membrane 

fusion, it shown to release +ve ssRNA genome into the cytoplasm, where start the 

translation of ORF1a and ORF1b from ribosome, and came to formation of two large 

polyproteins (pp1a and pp1ab). After that came to activation of proteases which 

interact with polyproteins to cleavage them into 16 non-structural proteins (NSP1-16), 

which eventual have the possibilities to create the viral RNA polymerase and other 

accessory proteins for virus assembly [24-26].  

The glycoprotein E is shown to be incorporated into rough endoplasmatic 

reticulum or Golgi membrane. The single strand RNA have possibilities to interact 

with capsid and to form nucleocapsid, followed by budding of assembled virus 

particles in the ER-Golgi intermediate compartment [27].  

 

1.2   Human proteins who bind SARS-CoV-2 RNA 

The expanded SARS-CoV-2 RNA encompassed include 104 human proteins and 

included 13 SARS-VoV-2 encoded proteins. The majority of human RNA 

interactome proteins (100 proteins), have been identify previously-during the study of 

attract proteins that crosslink to RNA [26]. Only 10 of the 332 proteins that is found 

to link during the recombination of SARS-CoV-2 proteins in uninfected cells, also 

bound directly to viral RNA in cells which are infected with virus [28].  

 

 

1.3   Pathogenesis of SARS-CoV-2 

SARS-CoV-2 arrived to lung via the naso-oral cavity. After the virus came to lung, 

it is shown to interact with ACE receptors and initiate its replication [29-31]. This is a 

first phase which lasts 1-2 days, during this time the virus have possibilities to 

multiply in the upper respiratory tract. After that came second phase who begin from 



day 2 and lasts till day 14 which is manifested with different symptoms (see above). 

In this phase patients start to exhibit enhance activity of pro-inflammatory cytokines 

response that lead to viral sepsis accompanied by other complication. The infect 

patients rarely are manifested by intestinal symptoms like diarrhea [32]. The patients 

who are sick from other diseases such as asthma, obesity, hypertension, diabetic, 

heart, and kidney, liver are also in higher risk to acquire the disease [33]. The autopsy 

of patients who die by SARS-CoV-2 infection show multi-organ dysfunction, higher 

viral titers in lung and immune cells in circulation, thus damaging immune system 

and lung [34, 35]. In children affected with SARS-CoV-2 show severe symptoms but 

with rare death and better prognosis [36]. The researcher unsuspected for two ways. 

One is ACE2 receptor activity is higher in children aged 4-13 years; after that ACE2 

receptors start to decline until adolescences. The second way is differential CD4+ and 

CD8+ T cell population are found in children compared with adults [37, 38]. 

 

1.4 Structure and function of the -1 PRF (programmed -1 ribosomal 

frameshift) signal of SARS-CoV-2 

SARS-CoV-2 use a molecular mechanism called programmed -1 ribosomal 

frameshift (-1PRF) to control gene expression and protein synthesis. The -1PRF 

signal is very important for SARS-CoV-2: the frameshift gene product including 

RNA polymerase is required for replication. Many research paper show on SARS-

CoV show that mutation suppressing -1 PRF significantly in cell culture [39-41]. 

Frameshift –stimulatory structure are shown to be a potential target for anti-viral 

drugs [42].  

The pseudoknot stimulating –1 PRF is shown to have three stem architecture; this 

is characteristic just for coronaviruses, in contrast many viruses have two stem 

pseudoknots [43]. The pseudoknot sequences are much conserved between 

coronaviruses [44], several mutation in this part are identify in SARS-CoV-2 during 

the COVID-19 pandemic [45]. Some of these mutation are found in one patients; 

others are found in different patients from different countries of word (Figure 1).  



 
 

Fig 1. Natural of mutation in SARS-CoV-2 pseudoknot. The mutation are found in 

patients affected by SARS-CoV-2 in structure of pseudoknots (figure adapted from 

Neupane et al, 2020) [42].  

 

How these mutation affect -1 PRF in SARS-CoV-2; it is not known well, but 

understanding these mutation is a good issue for future therapies [42]. The major 

mutation in these position are transition (purine-purine or pyrimidine-pyrimidine 

conservation) rather than transversions. The majority of these mutation approximately 

62% in the stem keep it in original state the wild –type base pairing by conserving 

pairs G:C to G:U, A:U to G:U to G:C [42].  

The -1PRF of SARS-CoV-2 begins with U UUA AAC slippery site, continue by a 

6-nt spacer region and then three-stemmed mRNA pseudoknot that stimulates -1PRF. 

A second regulatory element is attenuator hairpin, which located at 5’ at the slippery 

site; this part is much conserved sequences (Figure 2) [39].  



 



Fig 2. The structure of SARS-CoV-2. A) Cartoon who describe genome 

organization of SARS-CoV-2 including a -1 PRF. B) pairwise analysis of the –PRF 

signals. C) structur of the SARS-CoV -1PRF. D) comparison of SARS-CoV and 

SARS-CoV-2-1PRF elements. E and F) silent mutations in slippery side in the SARS-

CoV2 and SARS-CoV-1PRF (figure adapted from Kelly et al, 2020) [47].  

 

1.5 Small and large molecules who have possibilities to inhibit SARS-CoV-

1PRF 

Based on conservative sequence of the frameshift SARS-CoV-2, the possibilities to 

inhibit –1 PRF is only by small molecules. This is reported by Kelly et al, [47] when 

they tested the small molecule who have possibilities to bind with pseudoknot and 

suppress -1 PRF, 2-{[4-(2-methyl-thiazol-4-methyl)-[1,4]diazepane-1-carbonyl]-

amino}-benzoic acid ethyl ester, hereafter denoted as MTDB [48, 49]. This provide 

concrete evidence for small-molecule frameshifting inhibitors in SARS-CoV-2 and 

support the hypothesis that the frameshift – stimulatory pseudoknot may be an 

attractive therapeutic target [42, 47]. The small compound FR6 referred as 1.3-

dimethyl-6H-pyrrolo [3.4-d] pyrimidine-2.4-dione, have the affinity to complex with 

NSP9 COVID-19 and to accommodate orientation of motifs GxxxG [50].  

Large molecule such as merafloxacin, belongs antibacterial compound known as 

fluoroquinolones [51]. Fluoroquinolones is tested for inhibition of -1 PRF, and it is 

shown the ability to inhibit the -1 PRF [52].  

The modification of RNA is known to play pivotal role in different process in our 

organism. One form of modification is N6-methyladenosine (m6A) who control gene 

expression. The m6A modification is performed by a nuclear methyltransferase 

complex (METTL3/METTL14/WTAP) that include the essential methyltransferase-

like enzyme 3 (METTL3) catalytic subunit [53]. m6A modification of RNA are 

recognized by a number of RNA-binding proteins, so called “the readers”, including 

nuclear YTHDC1 and three other paralogs who are placed in cytoplasm such as 

YTHDF1, YTHDF2, and YTHDF3 as well as other RNA binding proteins [54, 55]. 

Understanding of modification in this case m6A may have influence in future therapy 

opportunities to interfere in virus replication and spread of SARS-CoV-2 [56].  

Oxidation is another type of modification which is shown to be involved in 

replication of genetic inheritance material in virus. Oxidation of iron-sulfur cluster by 

the stable nitroxide TEMPOL caused their disassembly, and inhibited the RdRp, and 

blocked SARS-CoV-2 replication in cell culture. These iron-sulfur cluster it is 

possibilities to serve as a target therapy of COVID-19 [57].  

 

1.6 Non-structural protein as a target for cure of SARS-CoV-2 

Non-structural protein gene is known to encode S protein. As we mention above 

there are a huge number of NSP, which play pivotal role during the infection of host 

cell. Some of NSP are involved in replication/transcription process, such as NSP7 and 

NSP8 [58-60]. In vitro is shown that NSP7, NSP8 and NSP12 are involved in in the 

RNA-dependent RNA polymerase (RdRp) activity [61]. But transcription of full 

genome is facilitated by NSP9 and NSP13 [24, 62, 63]. The coronavirus NSP9 is 

single strand RNA binding proteins, who can be repurposed to direct interface with 

nucleotidyltransferase or NiRNA, domain of NSP12 [64]. The NSP9 is reported to 



have ability to insert into enzymatic site and to recruit NSP10 and NSP14 [65]. The 

NSP8 may bind to 7SL RNA discrete region and to involve in modification of host 

protein trafficking [66].  
 

1.7 Treatment strategies for SARS-CoV-2 

Till today they are not approved any specific drug for SARS-CoV-2 treatment. 

FDA- has approved some antiviral drugs, vaccines and immunotherapy already have 

being used to treat COVID-19. The molecular, structural, and functional relationships 

SARS-CoV-2 with SARS-CoV might define the use of existing anti-viral drugs 

against COVID-19 [67, 68]. The increasing knowledge of the genetic, immunological, 

and pathologic pathway might help in developing specific treatment approaches for 

COVID-19 in the future.  

 

1.7.1 Vaccine design strategies 

The number of researcher who are working hard to develop vaccine and to stop the 

pandemic situation caused by SARS-CoV-2. Development of vaccine is not easy task, 

as a huge number of clinical trials are required before approval for patients. The 

common strategies are used for develop of vaccine, such as monoclonal antibodies, 

virus vectors, protein vaccine, and DNA/RNA-vaccine [69-72].  

An adenovirus vector-based vaccine candidate, is developed by Oxford University 

(AstraZeneca) for used against SARS-CoV-2, and has been reported both humoral 

and cell mediated immune response when tested in rhesus monkey [73]. Another 

group have used a recombinant adenovirus type 5 (Ad5-nCoV) and has been very 

effective in generating humoral and T-cell response post immunization [74]. Another 

type of vaccine is neutralization of specific regions such S1-NTD, or the S2 region 

and in this form came to blocking the interaction of virus with the receptors [75]. The 

monoclonal antibody has been identify, who target the conserved region S-RBD and 

came to effective neutralization of SARS-CoV-2 [76]. The new technologies of the 

microneedle array has been approved for delivering SARS-CoV-2 S1 subunit vaccine, 

which is very helpful in the treatment of patients infected with SARS-CoV-2 [77].  

 

 

2 Conclusion 

 

Considering the current situation more than 8 million of people has been infected, 

and number of death every day is going to be higher and higher. There is an urgent 

need to control the SARS-CoV-2 pandemic. The government authorities in every 

country have approved guidelines and take action of quarantines for infected people, 

to break the spread infection in the community. Different antibodies, vaccines, and 

potential drugs could be used for treatment of infected people. Combination of 

different drugs can be used for neutralization of -1 PRF or S protein. Among different 

antiviral compound has been approved by FDA, such as chloroquine/ 

hydroxychloroquine has shown to have good outcomes in infected patients. 
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