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Most production scheduling-related research assumes that a job visits certain machines once at most, but this is often 
untrue in practical situations. A reentrant permutation flow-shop (RPFS) describes situations in which a job must be 
processed on machines in M1, M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm order and no job is allowed to pass a 
previous job. This study minimizes makespan by using the genetic algorithm to move from local optimal solutions to 
near-optimal solutions for RPFS scheduling problems. In addition, the hybrid genetic algorithm (HGA) improves the 
genetic algorithm’s performance in solving RPFS. 
 
Significance:  This paper studies the reentrant permutation flow-shop scheduling problem with the objectives of 

minimizing the makespan of jobs. The genetic algorithm and hybrid genetic algorithm are presented for 
the proposed problem. 
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1. INTRODUCTION 
 
In production management, a scheduling problem is defined as some specific work time hypothesis regarding assignment 
of resources, including equipment and human resources (labor), in order to complete work in a certain amount of time. In 
the complex and dynamic world of manufacturing systems, scheduling is an extremely important issue. Scheduling deals 
with the allocation of scarce resources to tasks over time. In different machine environments, these problems can be 
categorized into single machine, parallel machines, flow-shop, job-shop and open-shop. 

In manufacturing and assembly facilities, many operations must be completed for every job. Often, these operations 
must be done on all jobs in the same order, implying that the jobs must follow the same route. One assumes these 
machines are set up in series, and this environment is referred to as a flow-shop. Classical flow-shop scheduling problems 
assume that each job visits each machine only once (Baker 1974), but this assumption is sometimes violated in practice. 
A new type of manufacturing shop, the reentrant flow-shop, has recently attracted attention. The basic characteristic of a 
reentrant shop is that a job visits certain machines more than once. In a reentrant flow-shop (RFS), all jobs have the same 
route through the shop machines and the same sequence is executed several times (levels) to complete the jobs. For 
example, in semiconductor manufacturing, each wafer re-visits the same machines for multiple processing steps 
(Vargas-Villamil and Rivera 2001). The wafer traverses flow lines several times to produce a different layer in each 
circuit (Bispo and Tayur 2001). 

The reentrant permutation flow-shop problem (RPFS) is a special case of the RFS problem. In a RFS, if job ordering 
is the same on any machine at each level, there is no passing since no job is allowed to pass a previous job (Pan and Chen 
2003). Finding an optimal schedule that minimizes the makespan in RPFS is never easy. In fact, flow-shop scheduling, 
the sequencing problem in which n jobs must be processed on m machines, is known to be NP-hard  (Kubiak et al. 1996, 
Pinedo 2002, Wang et al. 1997), except when the number of machines is smaller than or equal to two; the makespan can 
be minimized by Johnson’s (1954) rule. 

Because of their intractability, this study presents genetic algorithms (GA) to solve the RPFS scheduling problems.  
GA has been widely used to solve classical flow-shop problems and has performed well. In addition, hybrid genetic 
algorithms (HGA) are proposed to improve the GA performance and the heuristic methods proposed by Pan and Chen 
(2004) for solving RPFS.  
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2. LITERATURE REVIEW 
 
The permutation flow-shop problem (PFS) is a special case of the flow-shop problem. A possible constraint in the 
flow-shop environment is that the queues for each machine operate according to the first-in-first-out discipline. This 
implies that the order (or permutation) in which the jobs go through the first machine is the same throughout the system. 
The most important property of PFS is deciding the job sequence on the first machine because once it is decided, all the 
jobs follow the same sequence on each machine throughout the system. Therefore, for a PFS with n jobs, there are n! 
solutions that are independent of machine numbers. The problem of n-jobs on m-sequential machines in a PFS with the 
criteria of minimizing makespan is proven to be NP-hard (Rinnooy Kan 1976) and can be solved exactly only for small 
size problems. Because of this intractability, many authors proposed various techniques to solve this problem. Palmer 
(1965), Campbell, Dudek and Smith (1970), Gupta (1971), Dannenbring (1977), Nawaz, Enscore and Ham (1983) have 
proposed existing heuristics for the m-machine n-job PFS problem with makespan as the criterion.  

Palmer’s (1965) heuristic first calculated a slope order for each job, and then sequenced the jobs according to the slope 
orders. This gives priority to the jobs with the strongest tendency to progress from short times to long times in the 
sequence of operations. Gupta (1971) presented a similar slope order index sequencing method, except he computed the 
slope differently. Campbell, Dudek and Smith (CDS) (1970) presented a heuristic that is an extension to Johnson’s (1954) 
rule. This algorithm first generated a set of (m  1) two-machine problems by aggregating the m machines into two groups 
systematically. Then it applied Johnson’s (1954) two-machine algorithms to find the (m  1) schedules and finally 
selected the best one. The best of these schedules was the solution to the original problem. Dannenbring’s (1977) 
heuristic attempted to combine the advantages of the heuristics presented by Palmer and CDS. His method was called the 
rapid access (RA) procedure and its purpose was to provide a quick and successful solution by constructing an artificial 
two-machine problem in which the processing times were determined from a weighting scheme and then solved with 
Johnson’s  (1954) rule. The Nawaz, Enscore and Ham (NEH) (1983) heuristic algorithm was based on the assumption 
that a job with a high total processing time on all the machines should be given higher priority than a job with a low total 
processing time. The NEH algorithm did not transform the original m-machine problem into one artificial two-machine 
problem, but instead builds the final sequence in a constructive way, adding a new job at each step and finding the best 
partial solution. 

The PFS scheduling problem can be modified to suit the RPFS scheduling problem by relaxing the assumption that 
each job visits each machine only once. This study considers the RPFS scheduling problems with the objective of 
minimizing makespan of jobs. The attachment of surface-mounting devices and the insertion of pin-through-hole devices 
of PCBs is a typical RPFS under first-come-first-served policy. It is popular to minimize makespans in industrial setting 
because this allows the machine to either increase its production capacity or reduce work in process. Minimizing 
makesapn in the RPFS is theoretically challenging, and such problems are NP-hard in the strong sense, even in the 
two-machine case (Kubiak et al. 1996, Pinedo 2002, Wang et al. 1997). 

Pan and Chen (2003) presented the mixed binary integer programming technique for RPFS by extending the models 
of Wagner (1959), Wilson (1989), and Manne (1960), respectively. In addition, they proposed six extended heuristic 
algorithms to find sub-optimal solutions for RPFS. The experimental results showed that for a set of problems with 
known optimal solutions (small problems), the CDS-based heuristic was the best, followed by the NEH-based heuristic. 
The NEH-based heuristic outperformed the other heuristics in a set of problems with unknown optimal solutions (large 
problems), followed by the CDS-based heuristic.  
 
3. PROBLEM STATEMENT AND HYBRID GENETIC ALGORITHM 
 
3.1 Problem Description 
The reentrant permutation flow-shop (RPFS) environment is described in this section. Assume that there are n jobs, J1, 
J2, …, and Jn,  and m machines, M1, M2, …, and Mm, to be processed through a given machine sequence. Every job in a 
reentrant shop must be processed on machines in the order of M1, M2, …, Mm, M1, M2, …, Mm, and M1, M2, …, Mm. In this 
case, every job can be decomposed into several levels so that each level starts on M1 and finishes on Mm. Every job visits 
certain machines more than once. The processing of a job on a machine is called an operation and its duration is called the 
processing time. The objective is to minimize the makespan.  
The assumptions made for the RPFS scheduling problems are summarized as follows:  
(1) The processing times are independent of the sequence. 
(2) There is no randomness; all the data are known and fixed. 
(3) All jobs are ready for processing at time zero, at which time the machines are idle and immediately available for 

work. 
(4) No preemption is allowed; for example, once an operation is started, it must be completed before another one can be 

started on that machine. 
(5) Machines never break down and are available throughout the scheduling period. The technological constraints are 

known in advance and immutable. 
(6) There is only one of each type of machine. 
(7) There is an unlimited waiting space for jobs waiting to be processed. 
(8)  Job ordering is the same on any machine at each level.  
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3.2 Basic Genetic Algorithm Structure 
GA is a meta-heuristic search. John Holland (1975) first presented it in his book, Adaptation in Natural and Artificial 
Systems. It originates from Darwin’s “survival of the fittest” concept, which means a good parent produces better 
offspring. GA searches a problem space with a population of chromosomes and selects chromosomes for a continued 
search based on their performance. Each chromosome is decoded to form a solution in the problem space in the context of 
optimization problems. Genetic operators are applied to high performance structures (parents) in order to generate 
potentially fitter new structures (offspring). Therefore, good performers propagate through the generations (Bowden 
1992). Holland (1975) presented a basic GA called the “Simple Genetic Algorithm” in his studies that is described as 
follows: 

 
Simple genetic algorithm () 

{ 
 Generate initial population randomly 
 Calculate the fitness value of chromosomes 
 While termination condition not satisfied 
 { 
  Process crossover and mutation at chromosomes  
  Calculate the fitness value of chromosomes 
  Select the offspring for the next generation 

} 
} 
 
A GA contains the following major ingredients: parameter setting, representation of a chromosome, initial population 

and population size, selection of parents, genetic operation, and a termination criterion. In Holland’s (1975) original GA, 
parents are replaced by their offspring soon after they give birth. This is called generational replacement. Since genetic 
operations are blind in nature, offspring may be worse than their parents. By replacing each parent with his offspring 
directly, some fitter chromosomes will be lost in the evolutionary process. To overcome this problem, several 
replacement strategies have been proposed. Holland (1975) suggested that when each offspring was born, it replaced a 
randomly chosen chromosome from the current population. This was called a reproductive plan. Since Grefenstette and 
Baker’s (1989) work, selection is used to form the next generation, usually with a probabilistic mechanism. Michalewicz 
(1994) gave a detailed description of simple GAs where offspring in each generation replaced their parents soon after 
they were born and the next generation was formed by roulette wheel selection.  
 
3.3 Hybrid Genetic Algorithm 
Local search in the context of GA has been receiving serious consideration and many successful applications have 
strongly favored such a hybrid approach. As a result of the complementary properties of GAs and conventional heuristics, 
a hybrid approach often outperforms either method along. The hybridization can be done in a variety of ways (Cheng et al. 
1999), including: 
(1) Incorporation of heuristics into initialization to generate a well-adapted initial population. In this way, a HGA with 

elitism can do no worse than the conventional heuristic. 
(2) Incorporation of heuristics into the evaluation function to decode chromosomes into schedules. 
(3) Incorporation of local search heuristics as an add-on to the basic GA loop, working together with mutation and 

crossover operations, to perform quick and localized optimization. This improves offspring before returning it for 
evaluation. 

One of the most common HGA forms is incorporating local search techniques as an add-on to the main GA’s 
recombination and selection loop. In the hybrid approach, GAs are used to perform global exploration in the population, 
while heuristic methods are used to perform local exploration of chromosomes. HGA structure is illustrated in Figure 1.  

 

New population

Selection

Population
Crossover

Mutation

Evolution

Other GA Operator

 

Figure 1. The HGA structure 
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3.4 The Proposed Hybrid Genetic Algorithms for Reentrant Permutation Flow-Shop 
In this study, we propose an HGA for RPFS with makespan as the criterion. The hybrid approach procedure is illustrated 
as follows. 
Step 1. Inputting job and machine data 
Step 2. Parameter setting 
Step 3. Encoding 
Step 4. Generating initial population 
Step 5. Crossover 
Step 6. Mutation 
Step 7. Other genetic operators 
Step 8. Evaluating fitness value 
Step 9. If termination conditions are satisfied, output the best solution and stop. 
Step 10. Selection 
Step 11. Generating new population 
Step 12. Go to Step 5 
 
3.4.1 Parameters Setting 
The parameters in GA are population size, numbers of generations, crossover probability, mutation probability, and the 
probability of processing other GA operators. 
 
3.4.2 Encoding 
In GA, each solution is usually encoded as a bit string. In other words, binary representation is usually used for the coding 
of each solution. Unfortunately, this method is not suitable for scheduling problems and over the years, many encoding 
methods have been proposed (Cheng et al. 1996). Among the various kinds of encoding methods, job-based encoding, 
machine-based encoding, and operation-based encoding methods are most often used for scheduling problem. This study 
adopts the job-based encoding method. 

For example, we have a three-job, three-machine, two-level problem (3×3×2). A chromosome can be easily described 
as a sequence of jobs. Therefore, there are n! schedules. Suppose a chromosome is given as (1, 2, 3), where “Job 1” is 
processed first, “Job 2” is processed next, and so on. If the allele appears twice in the chromosome, the chromosome is not 
a feasible solution, so it should be fixed to form a feasible solution. 
 
3.4.3 Generation of Initial Population 
We generate initial population randomly since we found that if the chromosomes of a population were generated by 
heuristics, it was likely to fall into local optimum. The performance of randomly generated initial populations was better 
than that of heuristic-based populations. 
 
3.4.4 Crossover 
Crossover is an operation that generates a new string (i.e., child) from two parent strings. It is the main operator of GA. 
Over the past few years, various crossover operators have been proposed (Murata et al. 1996). Murata et al. (1996) 
showed that the two-point crossover is effective for flow-shop problems. Therefore, the two-point crossover method is 
used in this study. 

Two-point crossover. This crossover is illustrated in Figure 2. The set of jobs between two randomly selected points 
are always inherited from one parent to the child, and the other jobs are placed in order of their appearance in the other 
parent. 

 

1 2 3 4 5 6 7 8Parent 1

8 1 3 4 5 6 2 7Child

5 8 1 4 2 3 7 6Parent 2

 
 

Figure 2. A two-point crossover  
 
3.4.5 Mutation 
Mutation is another common operator of GA. It can be viewed as a transition from a current solution to its neighborhood 
solution in a local search algorithm. It is used to prevent premature local optimum and fall into local optimum. The 
following four mutation operators for flow-shop scheduling problems are commonly used. Murata et al. (1996) showed 
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that shift change mutation is effective for flow-shop problems. Therefore, the shift change mutation method is adopted for 
RPFS in this research since permutation flow-shop is a special case of RPFS. 

Shift change. In this mutation operation, a job at one position is removed and put at another position as shown in 
Figure 3. The two positions are randomly selected. This mutation includes the adjacent two-job changes as a special case 
and has an intersection with the arbitrary three-job change.  
 

1 2 3 4 5 6 7 8Parent

1 6 2 3 4 5 7 8Child

 
 

Figure 3. A shift change 
 
3.4.6 Other Genetic Operators 
The hybrid genetic operator proposed in RPFS works is similar to the decomposition method, which randomly cuts a 
sub-string from one chromosome and treats it as a sub-problem. This sub-problem is then solved by a NEH 
heuristic-based method presented by Pan and Chen (2004).  This method sorts the jobs in order of decreasing total 
processing time requirements and builds the final sequence by adding a new job at each step and finding the best partial 
solution. The algorithmic steps are as follows: 
Step 1. Calculate the sum of the processing times for each job. Sequence the jobs in a non-increasing order according to 

their total processing times on all the machines. 
Step 2. Take the first two jobs (those with the largest total processing requirements) and schedule them in order to 

minimize the makespan, as if there were only two jobs. 
Step 3. For i = 3 to r (the number of jobs in the cut string), insert the i-th job at the position that minimizes the partial 

makespan among the i possible positions. 
Then, the new sequence is placed back into the chromosome to obtain a new chromosome. The procedure is shown in 

Figure 4. 
 

8 1 5 6

Heuristic based on NEH

Parent 3 2 4 7

1 52 4new subproblem

4 21 5new substring

8 4 2 63 1 5 7

place back into the chromosome

randomly cut a substring

 
 

Figure 4. The hybrid operator in RPFS 
 
3.4.7 Fitness Function 
Fitness value is used to determine the selection probability for each chromosome. In proportional selection procedure, the 
selection probability of a chromosome is proportional to its fitness value. Therefore, fitter chromosomes have higher 
probabilities of being selected for the next generation. 

To determine the fitness function for the RPFS problems, first calculate the makespan for all the chromosomes in a 
population. Find the largest makespan of all chromosomes in the current population and label it Vmax. The difference 
between each individual chromosome’s makespan and Vmax to the 1.005th power is the fitness value of that particular 
chromosome. Gillies (1985) proposed power law scaling (), which powers the raw fitness to a specific value. Generally, 
the value is problem-dependent. Gillies (1985) reported an  value of 1.005. The fitness function is as follows: 

Fi = (Vmax  Vi)
 

This is done to ensure that there is a high selection probability of a schedule with a lower makespan. 
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3.4.8 Termination 
GA continues the above procedure until achieving the stop criterion set by the user. Commonly used criteria are: 
(1) the number of executed generations, 
(2) a particular object, and 
(3) population homogeneity. 

In this study, we use a fixed number of generations as our termination condition. 
 
3.4.9 Selection 
Selection is another important factor to consider in implementing GA. This procedure selects parents’ offspring for the 
next generation. According to the general definition, the selection probability of a chromosome should show the 
performance measure of the chromosome in the population. This means that a parent with high performance has a higher 
probability of being selected for the next generation. 

In this study, the parent selection process is implemented via Goldberg’s (1989) common roulette wheel selection 
procedure. The procedure is described below. 
(1) Calculate the total fitness value for each chromosome in the population. 
(2) Calculate the selection probability of each chromosome. This is equal to the chromosome’s fitness value divided by 

the sum of each chromosome’s fitness value in the population. 
(3) Calculate the cumulative probability of each chromosome. 
(4) Randomly generate a probability P where P~[0, total cumulative probability], if P(n)  P  P(n + 1). Then select the 

(n + 1) chromosome of the population for the next generation. P(n) is the cumulative probability of the n-th 
chromosome. 

In this way, the fitter chromosomes have a higher number of offspring in the next generation. This method, however, 
does not guarantee that every good chromosome will be selected for offspring in the next generation. Therefore, one 
chromosome is randomly selected to be replaced by the best chromosome found at that point. 
 
4. ANALYSIS OF EXPERIMENT RESULTS 
 
4.1 Experiment Design 
In this section, we discuss types of problems, compare exact and heuristic algorithms, and describe the experimental 
environment and facility. 
 
4.1.1 Types of Problems 
The instance size is denoted by n×m×L, where n is the number of jobs, m is the number of machines, and L represents the 
number of levels. The test instances are classified into three categories: small, medium, and large problems. Small 
problems include 3×3×3, 4×4×4, 5×4×3, 5×5×4, 6×8×5, 7×8×4, 8×8×4, 9×7×4, 9×9×3, and 10×6×3. Medium problems 
include 11×17×5, 12×20×6, 13×19×7, 14×18×9, 15×17×6, 16×16×7, 17×5×8, 18×16×6, 19×12×10, and 20×15×3. Large 
problems include 20×20×10, 30×30×5, 40×40×5, 50×50×6, and 80×80×3. The processing time of each operation for 
each type of problem is a random integer number generated from [1, 100], since the processing times of most library 
benchmark problems are generated in this range (Beasly 1990). 
 
4.1.2 Performance of Exact and Heuristic Algorithms 
For small problems, HGA performance is compared to optimal solution, NEH, and CDS. For medium and large 
problems, HGA performance is compared to pure GA, NEH, and CDS. 
 
4.1.3 Experimental Environment and Facility 
Pure GA, HGA, NEH, and CDS were implemented in Visual C++, while ILOG CPLEX solved optimal solutions. These 
programs were executed on a PC with Pentium IV 1.7GHz processor. 
 
4.2 Analysis of RPFS Experiment Results 
 
4.2.1 Small Problems 
The HGA parameters setting were as follows: the population size was 50, the crossover probability was 0.8, the mutation 
probability was 0.3, the hybrid operator probability was 0.1, and the number of generations was 100. For small size 
problems, there were 10 types of problems with 10 instances in each type; 100 instances were tested.  

The comparison results of HGA, NEH, and CDS in small problems are shown in Table 1. The experimental results 
show that HGA performance was very promising because all of the minimizing Cmax in 100 instances reached optimal 
solutions, while NEH reached optimal solutions 30 times, and CDS reached optimal solutions 19 times. Although the  
 
NEH and CDS heuristics were very efficient, it was difficult for them to reach optimal solution when job numbers were 
larger than 8. We found that the performance of NEH was better than that of CDS, and HGA was the best among these  
three methods. The experimental results for small size problems of integer programming, HGA are listed in following 
table. Table 1 shows that all of the average Cmax from 10 types problems are very close to the mean value of optimal 
solutions (about 0.09% above optimal). 
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Table 1. Comparison Results in Small Problems 
 

Types 

No. of opt. found 
 

CPU time(s) 
 

The improvement 
rate of HGA over 

Avg. 
deviation of 

HGA 

HGA NEH CDS IP HGA NEH CDS  

3×3×3 10 8 5 0.03 0.07 0.23% 0.86% 0.00% 

4×4×4 10 8 5 0.11 0.11 0.61% 0.70% 0.00% 

5×4×3 10 5 4 0.12 0.11 2.14% 1.60% 0.00% 

5×5×4 10 2 2 0.34 0.14 1.96% 2.01% 0.00% 

6×8×5 10 4 3 2.36 0.43 1.94% 1.65% 0.00% 

7×8×4 10 2 0 6.52 0.58 2.17% 2.58% 0.09% 

8×8×4 10 1 0 25.73 0.88 2.59% 3.19% 0.15% 

9×7×4 10 0 0 61.39 1.20 3.46% 3.88% 0.18% 

9×9×3 10 0 0 71.39 1.56 1.83% 3.37% 0.18% 

10×6×3 10 0 0 20.59 1.31 3.02% 3.81% 0.16% 

Average 10 3 1.9 18.86 0.64 2.00% 2.36% 0.09% 

 
 

Table 2. Comparison Results in Medium Problems 
 

 
 
 

Types 

CPU time(s) HGA versus GA HGA versus NEH 
 

HGA versus CDS 
 

GA HGA NEH CDS 

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA) 
< 

Cmax(GA)  

The 
improvement 
rate of HGA 
over NEH 

Cmax(HGA) 
< 

Cmax(NEH)  

The 
improvement 
rate of HGA 

over CDS 

Cmax(HGA) 
< 

Cmax(CDS) 

11×17×5 1.59 11.35 0.01 0.02 0.33% 9 1.76% 10 2.08% 10 

12×20×6 3.84 12.60 0.01 0.01 0.34% 10 1.19% 10 2.40% 10 

13×19×7 3.50 19.11 0.01 0.02 0.34% 9 1.86% 10 2.34% 10 

14×18×9 8.78 24.82 0.02 0.02 0.63% 10 1.87% 10 2.73% 10 

15×17×6 5.38 18.76 0.02 0.01 0.74% 10 2.79% 10 3.35% 10 

16×16×7 5.65 17.00 0.02 0.02 0.61% 9 2.55% 10 3.48% 10 

17×15×8 8.01 14.53 0.02 0.02 0.74% 10 2.44% 10 3.54% 10 

18×16×6 5.43 12.91 0.02 0.02 0.73% 8 2.83% 10 3.42% 10 

19×12×10 7.37 17.52 0.02 0.02 0.53% 9 2.18% 10 3.02% 10 

20×15×3 2.64 12.25 0.02 0.02 0.94% 10 3.39% 10 4.73% 10 

Average 5.22 16.09 0.02 0.02 0.6% 9.4 2.29% 10 3.11% 10 

 
4.2.2 Medium Problems 
The parameters were the same as those in small problems, except that the number of generations was 200. There were 10 
types of problems with 10 instances in each type. The column Cmax(HGA) < Cmax(NEH) in Table 2 is the number of times 
that the minimizing  Cmax of HGA was better than that of NEH in each instances. 

Table 2 shows that the computational times of NEH and CDS were lower than that of HGA. The HGA solution quality, 
however, was better than that of NEH and CDS. Also, the minimizing Cmax in 100 instances was smaller than that of NEH 
and CDS. The comparison results of HGA and pure GA in RPFS medium problems are shown in Table 2. Although the 
experimental results show that the solutions quality of the non-hybrid version of GA are close to those of HGA (about 
0.6%), minimizing Cmax in each instance of HGA is better than that of pure GA in almost every test (about 94 times). 
 
4.2.3 Large Problems 
The parameters were the same as those in medium problems, except that the number of generations was 400. There were 
5 types of problems with 10 instances in each type. Table 3 shows that the computational times of NEH, CDS, and pure 
GA were lower than that of HGA. The solution quality of HGA, however, was better than that of NEH, CDS, and pure 
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GA. All of the best values in 100 instances of HGA were the best among all four of these methods. In Table 3, we find that 
the larger the number of job, the greater the improvement quality of HGA over pure GA. 

 
Table 3. Comparison Results in Large Problems 

 

 
 

Types 

CPU time(s) HGA versus GA HGA versus NEH HGA versus CDS 

GA HGA NEH CDS 

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA) 
< 

Cmax(GA) 

The 
improvement 
rate of HGA 
over NEH 

Cmax(HGA) 
< 

Cmax(NEH) 

The 
improvement 
rate of HGA 

over CDS 

Cmax(HGA) 
< 

Cmax(CDS) 

20×20×10 5.92 26.45 0.02 0.2 0.93% 10 2.29% 10 3.09% 10 

30×30×5 10.03 51.57 0.21 0.25 1.75% 10 2.70% 10 4.18% 10 

40×40×5 17.22 100.29 0.31 0.37 1.71% 10 2.16% 10 3.62% 10 

50×50×6 37.49 285.86 0.76 0.33 1.83% 10 2.26% 10 3.40% 10 

80×80×3 44.19 635.35 0.95 0.55 2.01% 10 2.32% 10 4.58% 10 

Average 22.97 219.90 0.45 0.31 1.65% 10 2.35% 10 3.77% 10 

 
5. CONCLUSIONS 
 
In this study, we developed a HGA for RPFS problems with makespan as the criterion. The experimental results show that 
HGA outperforms the other algorithms (NEH and CDS). Moreover, computational results show that HGA is superior to 
pure GA for large and medium size problems. GA is inspired by nature phenomena. If it exactly mimics nature, however, 
it takes an unexpected long computational time. Therefore, the effect of parameters must be studied thoroughly in order to 
obtain a good solution in a reasonable amount of time. As the probability of obtaining a near-optimal solution increases, 
so do the costs of longer computational time resulting from the increase in the number of generations or size of population. 
When dealing with large size problems or large reentrant times, setting larger population sizes or generations will 
increase the probability of obtaining near-optimal solutions. 

In conclusion, GA provides a variety of options and parameter settings that still must be fully investigated. This study 
has demonstrated the potential for solving RPFS problems using a GA, and it clearly suggests that such procedures are 
well worth exploring in the context of solving large and difficult combinatorial problems. 
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