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FCCU (Fluid Catalytic Cracking Unit) is a part of oil refinery production process whereby valuable products such as 
gasoline, LPG (Liquid Petroluem Gas), diesel are manufactured in a short period of time. The objective of this paper is to 
find the most robust model by comparing the models of FCCU that are developed using different methodologies. The 
models of FCCU are developed by using Artificial Neural Network (ANN), Fuzzy Logic, Neuro-Fuzzy, and traditional 
methodology. In this paper, the criteria used for measuring the performance of different models is root mean squared error 
(RMSE). The models are applied to the real data obtained from TUPRAS (Turkish Petroleum Refineries Corporation)-
FCCU. Kurihara (1967) model is used as the traditional model for comparing with intelligence modeling techniques. 
Finally, the Fuzzy Neural Network (FNN) model was found as the model with the minimum RMSE. Qwicknet 2.23, 
MATLAB 6.5, and Neuro-solutions 4.1 softwares have been used for the construction of ANN, fuzzy, and neuro-fuzzy 
models, respectively. 
 
Significance:  In this paper, three intelligent modeling techniques are compared to not only with each other but also with 

traditional approach. The model that is developed using fuzzy neural network can be applicable to fluid 
catalytic cracking unit in an oil refinery to maximize the gasoline yield and it is shown to be better than 
the other modeling techniques.  
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1. INTRODUCTION 
 
FCCU is the heart of refinery since it produces a significant added value for the national economy. A small improvement in 
FCC process can result in significant gain. Depending on the particular unit, such a system can result in a 0.05$ to 0.20 
$/bbl improvement from advanced control, a 0.20$ to 0.80 $/bbl from on-line optimization (Lin, 1993). Most refiners 
operating FCC units try to maximize gasoline yield. Other processing objectives such as maximizing distillate yield or 
liquefied petroleum gas yield are also becoming more common. Maximizing gasoline yield, however, remains as the most-
common FCC processing objective. The function of FCCU is to convert heavy hydrocarbon petroleum fractions into more 
usable products such as gasoline, middle distillates, and light olefins. FCC is a complex system that made up of heat 
balance, pressure balance, and chemical balance. The complexity of FCC arises from the reaction kinetics, catalysts 
hydrodynamics, coke combustion on catalysts, process economics, operating constraints, and interactions of the process 
variables that are dominated by the heat balances between reactor and regenerator. The changes in one operating variable 
always result in equilibrating changes in other variables, sometimes reversing and sometimes adding to the expected 
changes because of its dynamic structure. In theory, if a good overall nonlinear model is available, it is possible to use it to 
directly control all manipulated (control) variables, both slow and fast, to monitor the system in the desired operating space. 
Before undertaking the study of the dynamic and steady state control of any complex system such as FCC system, one 
needs an adequate model. Such systems have two main aspects in common; a) In general, they are nonlinear and their 
models are seldom known accurately, b) The number of variables that need to be controlled is much larger than the number 
of controllable variables available for the control. 

Any control or optimization study of the FCCU requires a process model, which captures the major effects and 
interactions taking place in the unit. The effects of most changes are nonlinear. Robustness is the ability of a system to 
maintain its functionality across a wide range of operational conditions. Robustness indicates system performance. A 
common goal that designers and engineers of complex systems strive for is to obtain a robust and functional model to run 



Zeydan  
 
 

2 

the system as productive. System modeling and identification are the basic issue in the design of a control system. Since 
FCCU is a complex system, mathematical models are either too complicated for optimization or too simple for process 
representation. System modeling and control by use of intelligent systems have been rapidly increasing in the last decades 
(meziane, et.al., 2000). While system modeling based on ANNs is like a black box approach, fuzzy logic systems are 
knowledge-based systems consisting of linguistic If-then rules that can be constructed using the knowledge of experts. 
Especially, when we deal with a system which involves human interventions, the conventional modeling techniques may 
have difficulty in realizing the system. But, fuzzy modeling is able to combine numerical and symbolic processing into one 
framework. Firstly, the linguistic if-then rules can realize qualitative knowledge, human concepts, and human interventions. 
Secondly, fuzzy systems are universal approximaters of highly nonlinear mappings. Therefore, system modeling by fuzzy 
logic is a quantitative as well as a qualitative approach. Intelligent control has been applied with considerable success in the 
process industry. Examples can be found in the petrochemical, cement, paper, fertilizer, and metal industries. The use of 
intelligent control techniques for modeling FCCU can overcome some weaknesses and resolve some of the problems (King, 
2005). This study  is applied to the TUPRAS-izmit Refinery that is the largest oil refinery in Turkey. The mathematical 
model describes the UOP FCC System adopted by the TUPRAS in its industrial unit.   
 
2.  LITERATURE REVIEW 
 
FCCU in the petroleum refinery consists of reactor, regenerator, and fractionator. There are many mathematical models for 
the FCCU in the literature. Some of them use extensively regenerator and reactor models coupled. Some authors have only 
regenerator models. Others have reactor or cracking models. Optimal control algorithm of FCC process was used for the 
first time by Kurihara (1967). Many authors such as Mc Farlane, did not use the fractionator unit in their models as a part of 
FCC process and also affecting it to avoid complication (Sundaralingam, 2001). Mc Farlane’s model (1993) explains 
computing the complex pressure balance and catalyst circulation rate for integrated reactor and regenerator. It doesn’t 
predict feed conversion. The Lee-Grooves (1985) model uses a plug flow reactor (PFR) model for the reactor riser and a 
continuous stirred tank reactor model for the regenerator with the three lump model of Weekman and Nace (1970) to 
describe the cracking reactions. The main problem of the model is a lack of detailed kinetics for the combustion of CO and 
CO2. The model by Arbel et al. (1995) uses a PFR model for the reactor with the ten lump model of Jacob et al. (1976) to 
describe the cracking kinetics. Khandelakar and Riggs (1995) combined the Amoco FCC model with the model of Lee and 
Grooves (1985). Han and Chung (2001) developed a detailed model of a modern riser-type FCC unit that consists of the 
reactor, regenerator, and catalyst transport lines with slide valves. The model used by Arbel et al. (1995) suggests a new 
model for FCCU based on a more detailed kinetic description of the kinetics in both the reactor and the regenerator. Secchi 
et al. (2001) presented a theoretical dynamic regenerator – riser model for FCC to predict operating variables. Ali and 
Rohani (1997) developed dynamic model for FCC unit to describe the dynamic behavior of both the riser and the 
regenerator reactors and their interactions. The cracking reactions are simulated by the four-lumped kinetic model. Yescas 
et.al (1998) explains a theoretic method by using a non-linear model for pre-analysis of controllable of a FCCU. Ramirez et 
al. (1996) develops an adaptive model-based strategy to control the temperature of reactor-regenerator system. Ali and 
Elnashaie (1997) had some studies to control a non-linear model predictive of Industrial type IV for maximum gasoline 
productivity. Studies related to FCCU on intelligence modeling such as artificial neural networks, fuzzy and neuro-fuzzy 
have been achieved and focused for the last ten years. Fuzzy modeling and fuzzy expert-optimization control in FCCU by 
using fuzzy relation equations was applied in a Chinese petroleum refinery by Lu et al. (1997). Zeydan (1999) uses a fuzzy 
modeling and control approach in a Turkish Refinery including fractionator subsystem in FCCU. Alaradi and Rohani’s 
paper (2002) presents identification and control of a riser-type FCC unit using neural networks. Taskın et al. (2006) uses a 
fuzzy modeling and control approach in a Turkish Refinery to maximize the outputs. Azeem, et al. (2007) presented a 
generalized fuzzy model and identification of FCCU for multi input-single output variables. The structure identification and 
the parameter estimation were carried out using hybrid learning approach comprising modified mountain clustering and 
gradient descent learning with least square estimation for the identification of a fuzzy model. Zanin et al.’s paper (2001) 
focuses on the modeling of the practical implementation of an optimizing controller in a FCC unit. Michalopoulos et.al. 
(2001) makes a modelling study of an industrial fluid catalytic cracking unit using neural networks Some basic studies that 
provide significant contribution on traditional modeling, control and optimization related to FCC are classified into the 
table 1.  

 
Table 1. Studies related to basic FCCU modelling, controlling and optimization 

 

Reactor 
Models 

Weekman and  Nace (1970), Paraskos et al. (1976), Jacob et al. (1976),Shah et al. (1977) Takatsuka et al. 
(1987),Lee et al. (1989),Larocca et al. (1990), Shnaider and Shnaider (1990), Theologos and Markatos 
(1993), Farag et al. (1993),Theologos et al. (1997)  
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Regenerat
or Models 

Ford et al. (1976), Errazu et al.(1979), de-Lasa et al. (1981), Guigon and Large(1984), Krishna and Parkin 
(1985), Lee and Cheng (1989), Faltsi-Saravelou et al. (1991-a,b) 

Reactor-
Regenerat
or Models 

Luyben and Lamb (1963), Kurihara (1967), Kunii and Levenspiel (1969), Iscol (1970), Lee and Kugelman 
(1973), Seko et al. (1978-1982), Errazu at al. (1979), Elnashaie and Elhennawi (1979), Krishna and Parkin 
(1985), Lee and Groves (1985), Mcgreavy and Isles-Smith (1986), Bozicevic (1987), Zhao and Lu (1988), 
Elshishini and Elnashaie (1990), Felipe and Richard (1991), Arandes and de Lasa (1992), Mc Farlane et al. 
(1993), Zheng (1994), Arbel et al. (1995), Elnashaie et al. (1995), Ellis et al. (1998), Han, Chung, and 
Riggs (2000), Han and Chung (2001), Dave and Saraf (2003) 

 
3. LOCATION AND DESCRIPTION OF THE FCCU IN AN OIL REFINERY 
 
Figure 1 illustrates a schematic drawing of a modern oil refinery. Here the feed to the FCCU consists of vacuum gas oil 
(VGO) from the vacuum unit and heavy atmospheric gas oil from the atmospheric (Atmos Unit) crude distillation unit. The 
heavy atmospheric gas oil can also be directed to the hydrocracker or it can be split with part going to the FCCU and part to 
the hydrocracker. Coker Gas oil (CGO) can be charged directly to the FCCU when the hydrocracker is down. Feedstock is 
converted to various products in the reactor of the FCCU. These products undergo additional processing and separation in 
the main fractionator and other vessels downstream of the FCCU reactor. The catalytically cracked gasoline and lighter 
products are processed further in the Gas Concentration Plant (Gas Con). The dry gas from the Gas Con is directed to the 
refinery fuel gas system after sulfur removal. LPG is sent to storage for sale as fuel or for use in adjusting the vapor 
pressure of gasoline. Two units were lumped into Ether unit. LCO (Light Cycle Oil) from the cat cracker can be sent 
directly to storage for blending into distillate fuel such as No.2 or diesel fuel. LCO stream can also be directed to the 
hydrocracker for conversion into lighter products or it can be split as feed to the hydrocracker and as distillate product to 
storage.  The  system is totally adiabetic. Most modern versions of the FCC are equipped with a feed preheater that allows 
the feed temperature to be raised to a specified value. All FCC’s are autothermic and require heating to start up the system. 
Nonlinear systems like FCC can have, in addition to multiple steady states, input multiplicities. (Meyers, 1996) 

 
 

 
 

Figure 1. Location of the FCCU in the oil refinery.  
 

Figure 2 illustrates the schematic drawing of a FCCU. Fresh feed preheated in the furnace is mixed with hot slurry 
recycle from the bottom of the main fractionator and injected into the reactor riser where it mixes with the hot catalyst and 
is vaporized. In the reactor riser, the high molecular weight feed is partly cracked to the low molecular weight products. 
The hot catalyst provides the heat for this endothermic cracking reaction. During cracking, coke (Carbon and 5-10 % 
hydrogen) is deposited on the catalyst, reducing the catalyst activity. Product gas from the reactor goes to the main 
fractionator for heavy recovery and separation into various product streams. Wet gas (C4 and lighter) from the main 
fractionator is compressed for further separation in downstream fractionators. The entrained catalyst is separated from the 
product gas in the cyclones at the top of the reactor and returned to the stripping section of the reactor where steam is 
injected to strip off the entrained hydrocarbon from the catalyst. The hydrogen in the coke comes from the hydrocarbons 
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entrained in the catalyst since the stripping is never completely successful. The separation area is the main fractionator and 
gas plant. The wet gas compressor belongs to the separation area, but sometimes it is considered to be in the reaction 
because it often limits conversion in the reactor. A unique feature of the FCC reactor is the behaviour of the catalyst. The 
catalyst loses its activity very rapidly (within seconds) due to coking. This loss of activity can be recovered by combusting 
the coke in the regenerator. The catalyst also loses activity more slowly but permanently due to steaming and exposure to 
higher temperatures. (Arbel et. al, 1995)  

 

 
Figure 2. Schematic diagram of  FCCU.  

 
4.  PROBLEM FORMULATION 
 
FCCU operating variables have been termed independent and dependent variables and all these variables are directly 
controlled usually with a control meter. Figure 3 lists the major variables in a FCCU. Dependent operating variables are 
those that change as a result of a change in an independent variable. Below are the definitions of the major independent 
operating variables used for modeling the FCCU: 
1. Reactor Temperature: The temperature of the catalyst-oil reaction mixture in the reactor. 
2. Fresh Feed Rate: The bbls/day of non-catalytically cracked feed that are charged to the cat cracker.  
3. Recycle Rate: The bbls/day of cat cracked product that are returned to the reactor for further cracking. The products 
normally recycled are those heavier than light cycle oil although light cycle oil is sometimes recycled. 
4. Feed (preheat) temperature: The temperature of the feed (including recycle) to the cat cracker. 
5. Air to Regenerator: The air rate, usually given in SCFM (standard cubic feet per minute), required to support the 
combustion of the coke deposit on the catalyst in order  to remove the coke and thereby regenerate the catalyst. 

 

 
 

Figure 3. Major variables in the FCCU. 
 
 

In TUPRAS-FCCU, the main objective for productivity criterion is the octane-barrel amount. The main aim of the 
refinery is to maximize the octane-barrel amount. The equation for the octane-barrel amount is given in (1). 

 
Octane-Barrel Amount = (Corrected Gasoline) * (The Amount of Octane) / 0.159                   …(1) 
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Not only gas oil conversion but also the amount of octane must be high to get much more number of octane-barrel. As 

a matter of fact, while octane emphasizes on quality of gasoline, barrel shows amount of it. The productivity of FCCU is 
measured depending on this criterion so the octane-barrel amount is assigned as the dependent variable in the model of the 
FCCU of TUPRAS. A sample fluid catalytic cracking unit summary report of TUPRAS refinery is given in appendix D. 
 
5. SYSTEM MODELING APPROACH WITH FUZZY LOGIC 
 
The process of fuzzy modeling can be illustrated as the flowchart in Figure 4. 
 
 
 
 

 
 
 
 
 
 
 

Figure 4. Flow chart of fuzzy system modeling.  
 

The system identification is applied to the system modeling by Emami et al (1996-b). The fuzzy relational model can be 
represented as follows;  

Y1(k) = X1(k)oX2(k)o.......oXn(k)oR1  
...... 
Ym(k) = X1(k)oX2(k)o.......oXn(k)oRm                                                                                                            …(2) 
 
where 

{Xi(k), i = 1,…,n} fuzzy variables of system inputs; 
{Yj(k), j = 1,…,m}            fuzzy variables of system outputs; 
{Rj,      j = 1,…,m} fuzzy relations between system fuzzy inputs and outputs; 
symbol  o fuzzy composition operator. 

On account of above statements, the FCCU of TUPRAS can be defined with fuzzy modeling as:  
C = F(X1, X2, X3, X4, X5) 
F(·) = a fuzzy operator describing the fuzzy rule base 
C = Octane-Barrel Amount of Gasoline (OVM) 
X1 = Fresh Feed Rate (FR) 
X2 = Air to Regenerator (RHM) 
X3 = Feed Temperature (SRGS) 
X4 = Reactor Temperature (RS) 
X5 = Recycle Rate (RFR) 

therefore, 
 
Yj(k) = X1(k)oX2(k)oX3(k)oX4(k)oX5(k)oR,       j = 1,….c (c:the number of clusters)                      …(3) 

 
By using NCSS (Number Cruncher Statistical System) software program, the parameters in table 2 were identified 

entered for finding the number of cluster and intervals of selected variables.  The number of cluster was obtained based on 
output variable. Generally, most users use the Euclidian distance method. Scaling the data is important so that all values are 
in comparable units. The maximum number of iterations are allowed during the iteration procedure. Fuzzifier constant is 
the exponent of the membership in the objective function that is being minimized. Normally, this value is set to two. 
Stopping rule for the algorithm is the minimum change. Minimum number of clusters is 2 and maximum number of clusters 
is 30.  

After making the analysis of fuzzy clustering, the following table result was found. As seen in table 3, the best cluster 
number is 21. One of the most difficult tasks in cluster analysis is to choose the appropriate number of clusters. Average 
silhouette is used to aid in the search for the appropriate number of clusters by selecting the number of cluster that 
maximizes this value. The value should be positive and be greater than 0.5. The fuzzy algorithm used by this program is 
applied according to Kaufman methodology (http://www.ncss.com) 

Rule Generation 

Input Selection 

Inference-Parameter Adjustment 

Membership Function Tuning 

Structure  
Identification 

Paramete
r Identification 

System 
Identification 

Reasoning 
Mechanism 

Fuzzy System  
Modeling 
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Table 2. Necessary parameters 
 

Distance method Euclidean Minimum change 0.0000001 
Scaling method Standard deviation Minimum clusters 2 
Max. iterations 15 Maximum clusters 30 
Fuzzifier constant 2 

 
 

Table 3. The Number of cluster 
 

Number of 
Clusters 

Average 
Silhouette 

Number of 
Clusters 

Average 
Silhouette 

Number of 
Clusters 

Average 
Silhouette 

2 0,55 12 0,49 22 0,48 
3 0,56 13 0,48 23 0,50 
4 0,50 14 0,52 24 0,52 
5 0,50 15 0,53 25 0,54 
6 0,52 16 0,47 26 0,57 
7 0,50 17 0,51 27 -0,98 
8 0,51 18 0,57 28 -0,98 
9 0,46 19 0,53 29 0,43 

10 0,46 20 0,58 30 0,42 
11 0,49 21 0,60   

 
For making a validation test (sensitivity analysis) of whether the number of cluster found is true or not, one by one in 

terms of rules, data set of the Refinery is trained and tested in MATLAB 6.5 software. Minimum difference (Real system 
output – Fuzzy model output) was found as 21 after trial and error. For example, as known,  21 cluster was found as the 
best cluster after making fuzzy clustering in NCSS software. For 21 cluster and 21 rules, according to the difference 
(absolute value of deviation)  in table 4, the best suitable cluster is seen as 21 cluster.   
 
 

Table 4. Validation test (Sensitivity analysis) 
 

Number of 
Cluster and Rules 

Difference 
 

Number of 
Cluster and Rules 

Difference 
 

Number of 
Cluster and Rules 

Difference 

3 559785 10 547653 17 442651 
4 624421 11 504861 18 487651 
5 503653 12 514861 19 516651 
6 527421 13 542860 20 485651 
7 479031 14 650551 21 418651 
8 526653 15 557419   
9 542653 16 457443   

 
In MATLAB software, fuzzy logic parameters have been used in table 5 as follows; 

 
 

Table 5. FIS input parameters 
 

And Method: Min. Aggregation: Max. Implication: Min. Or Method: Max. Defuzzification: Centroid 

The most commonly used defuzzification methods are the center of gravity (COG) and the centroid defuzzifier in spite 
of being used different types of defuzzification methods (Drienkov, et. al., 1996). The centroid defuzzifier method is used 
here. Mamdani's fuzzy inference method is the most commonly seen fuzzy methodology. Mamdani's method was among 
the first control systems built using fuzzy set theory. 
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Figure 5. Fuzzy inference system (FIS) editor screen (inputs and output of the FCCU) 
 

Mamdani-type inference expects the output membership functions to be fuzzy sets. After the aggregation process, there 
is a fuzzy set for each output variable that needs defuzzification. It's possible, and in many cases much more efficient, to 
use a single spike as the output membership function rather than a distributed fuzzy set. This is sometimes known as a 
singleton output membership function. It enhances the efficiency of the defuzzification process because it greatly simplifies 
the computation required by the more general Mamdani method, which finds the centroid of a two-dimensional function. 
More information can be found in MATLAB guide of the software. After training the data set of refinery, rules table was 
found as in table 6. For example, 

If Reactor Temperature (X4=RS) = 530 (C°) and Feed Temperature (X3=SRGS) = 272 (C°) and Air to Regenerator 
(X2=RHM) = 49400 (m3/hour) and Fresh Feed Rate (X1=FR) = 1880 (tons/day) and Recycle Rate (X5=RFR) = 157 
(tons/day) then octane-barrel amount of gasoline (C=OVM) = 575000 (Octane-Barrels) 

 
 

Table 6. Rule table for FCCU of TUPRAS 
 

 
 
 

 
 

Figure 6. Testing results of fuzzy modeling for FCCU of TUPRAS. 
 
There are 5 inputs and one output variable in the system. It is known that modeling and inference is more 

straightforward for the MISO (Multi Input-Single Output) fuzzy systems. The system identification is applied for fuzzy 
modeling. 98 training and 18 testing data are used to train and test the system during modeling process, respectively. After 
making fuzzy clustering using the NCSS software, 21 clusters (21 rules) are found. The rules are generated in the MATLAB 
Fuzzy Toolbox. Figure 6 illustrate the testing results of the fuzzy model of TUPRAS-FCCU. The RMSE for the testing data 
is calculated as 4.50E+04. 
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6.  SYSTEM MODELING APPROACH WITH ANN 
 
For the ANN model of TUPRAS-FCCU, a back-propagation neural network with one hidden layer is used. The input 
variables to the network are Fresh Feed Rate, Air to Regenerator, Feed Temperature, Reactor Temperature, and Recycle 
Rate. The output variable of the network is Octane-Barrel Amount of Gasoline. 98 training patterns and 18 testing patterns 
are used to train and test the network respectively. The parameters used for neural network modeling is as follows. The 
detailed description and information about the structure of Artificial Neural Network (ANN) is given in appendix B. 

 
Table 7. The performance criteria used for neural network 

 
Training properties Stopping criteria Training algorithm Activation function 
learning rate:0.1 
 

epochs:100000 
 

network topology:  
online backpropagation 

input: logistic 
 

momentum:0 
 

Average RMSE (Root Mean Square 
Error): 0.01 

hidden layers: 1 
 

output: logistic 
 

input noise:0 Max RMSE: 0.01 input hidden 1: 5  
weight decay:0 Max error:0.01   
error margin:0.1 percent correct:100   
pattern clipping:1    

 
All performance criteria in the Qwiknet software were tried time and again. The best results was obtained according to 

conditions in table 7.  Qwiknet results after testing are given in Figure 7. The RMSE for the testing data is calculated as 
3.90E+04. 

 

 
 

Figure 7. Testing results of neural network modeling for FCCU of TUPRAS 
 
 
7. SYSTEM MODELING APPROACH WITH FNN 

 
CANFIS(Co-active Neuro-Fuzzy Inference System) model integrates adaptable fuzzy inputs with a modular neural network 
to rapidly and accurately approximate complex functions. Fuzzy inference systems are also available as they combine the 
explanatory nature of rules (membership functions) with the power of “black box” neural networks. For the FNN model of 
TUPRAS-FCCU a back-propagation fuzzy neural network is used. The input variables to the network are Fresh Feed Rate, 
Air to Regenerator, Feed Temperature, Reactor Temperature, and Recycle Rate. The output variable of the network is 
Octane-barrel Amount of Gasoline. 98 training patterns and 11 testing patterns are used to train and test the network 
respectively. The parameters used for evaluating the system are selected as in table 8. After being tried all performance 
criteria by trial and error in the Neuro solutions software, the best conditions as seen in table 8 was obtained. Figure 10 
illustrates testing results of FNN model of TUPRAS-FCCU. The RMSE for the testing data is found as 3.51E+04.  

 
Table 8.The performance criteria used for FNN 

 
Membership function:Bell Learning rule:Quickprop Max.epochs:100000 
Fuzzy model:TSK Step size:1 Termination:MSE Threshold:0.01 
Transfer function: Linear axon Momentum:0 Hidden layers:1 

 
 

Detailed description about the fuzzy neural network is presented in appendix C. 
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Figure 8.   Testing results of FNN model. 
 
 

8. SYSTEM MODELING APPROACH WITH TRADITIONAL METHODOLOGY 
 

Kurihara (1967) model is used as the traditional model. To be able to find the Octane-Barrel amount, Ygl equation in the 
yield equation of Kurihara (1967) is used. The yield model is over-simplified but is satisfactory for evaluating the system. 
Fgl=1 and lgl=0.9 are taken among kinetic unit fitting parameters in steady-state situation. Ctf with every moment from 
FCCU summary report is obtained. Afterwards, Octane-Barrel amount is calculated according to Kurihara model.  Detailed 
equations are given in appendix A. The results are shown in Fig. 11.  The RMSE for the testing data is calculated as 
9.25E+04. 

 
 

Figure 9. Traditional model results. 
 

 
9. CONCLUDING REMARKS 

 
This study provides an important added value with a huge literature review for academicians and practitioners studying in 
the area of FCC. In this paper, the most appropriate model was tried to be found and identified for FCCU comparing with 
Fuzzy, ANN, FNN and traditional techniques by looking at RMSE (Root Mean Square Error) values for the testing data. 
For all techniques, the actual values are utilized in calculating the RMSE values. The model obtained after training in the 
intelligent models are compared with testing values. At the end of modeling, according to the RMSE values, all models 
obtained from intelligent and traditional techniques are compared with each other. Thus, RMSE is the same in all cases 
evaluated. During fuzzy clustering, the most efficient control rules dependent on given data set of the TUPRAS-FCCU are 
generated by the help of fuzzy cluster means algorithm in NCSS software. Three intelligent modeling techniques are 
compared to not only with each other but also with traditional approach. The model that is developed using fuzzy neural 
network can be applicable to fluid catalytic cracking unit in an oil refinery to maximize the gasoline yield and it is shown to 
be better than the other modeling techniques according to the RMSE values of the models. All parameters in the Neuro 
solutions and qwiknet Softwares was tried to find out the best results by trial and error. According to the data set obtained 
from TUPRAS oil refinery, all analysis was performed. This study should be performed for other industrial systems to 
indicate the best modeling technique. As seen in table 9, the FNN model is the most robust process model. That is, FNN 
model has the best performance (robustness) compared to the other models as it has the smallest RMSE value. Kurihara’s 
model has the highest RMSE value if compared to the other intelligent models. Here, only Kurihara’s model was used and 
tested. Of course, the other traditional models should be tested for the future attempts. In this study, this is a proof that 
intelligent techniques are superior to the traditional techniques to the modeling non-linear systems as told in the literature. 
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This study can be used as a basis for the control and optimization of FCCU. The continuation of this study is planning to 
calculate the net profit to be obtained from the system with the process control and optimization based on the FNN model.   

 
Table 9. RMSE values of Fuzzy, ANN, FNN and Traditional models of the TUPRAS-FCCU 

 
Models RMSE 
Fuzzy 4.50E+04 
ANN 3.90E+04 
FNN 3.51E+04 
Kurihara (1967 ) 9.25E+04 
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APPENDIX A - TRADITIONAL MODELLING EQUATIONS 
 

Rate Equations 
Roc=1.75 Dtf Rtf Ctf     
Ctf/l-Ctf=KcrPraHra/Rtf 
Kcr=kcr / (CcatCcr)exp{-∆Ecr/R(Tra+460)} 
Rcf=KccPraHra 
Kcc=kcc/(CcatCrc)exp{∆Ecc/R(Tra+460)} 
Rcb=(Rai/Cl)(2l-Ofg)/100 
Ofg=2lexp{-PrgHrg/[Rai(l/Kod+100/KorCrc)]} 
Kod=C2R2ai 
Kor=C3exp{(∆Eor/R)[l/1560-l/(Trg+460)]} 
 
Yield Equations 
Ygl=Fgl/1-lgl[(1-Ctf)lgl-(1-Ctf)] 
Yco=l-Ctf 
Yck=0.571 Rcf/RtfDtf 
Ygs=l-YglDgl/Dtf-YcoDco/Dtf-Yck 

 

Table 10. Symbols of Equations 
 

Roc:Gas oil cracking rate 
Dtf :Density of total feed 
Tra:Reactor temperature 
Rcf:Total carbon forming rate 
Pra:Reactor pressure 
Hra:Reactor Catalyst Holdup 
kcr, kcc:Spesific unit 
Kor:Oxygen reaction coefficient 
Eor :Activation energy of oxygen 

reaction 
Rcb:Coke burning rate 
Rai:Rate of regenerator air 
Ofg :Flue gas oxygen 
Prg : Regenerator pressure 
Ygs:Gas yield 
Yck: Coke yield  
Dgl:Density of gasoline 

Rtf :Rate of total feed 
Ctf :Conversion on total feed 
Ccat:Catalytic reaction carbon 
R:Gas law constant 
Crc :Carbon on regenerated 

catalyst 
Cl, C2, C3 :Fitting constants 
Trg :Regenerator dense phase 

temperature 
Ygl :Gasoline yield  
R : Gas law constant 
Hrg :Heat of coke burning 

regeneration 
Kod :Oxygen diffusion coefficient 
Fgl :Gasoline yield factor 
lgl : Gasoline recracking intensity 
Yco:Cycle oil yield 
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APPENDIX B - ARTIFICIAL NEURAL NETWORK MODELING 
 
Artificial neural networks (ANNs) are computational tools that have the structure of the neurons in the brain. In an ANN, 
each neuron has multiple inputs and a single output. The output of the neuron is given as 
 

                                                                             …(4) 

 
where t is the time, n is the number of inputs,  yt is the output, xit is the ith input, wi is a weight, θ is the bias of the neuron 
and f(•) is the activation function. The activation function can be linear or nonlinear. Weight wi takes the positive value in 
the case of excitation and takes the negative value in the case of inhibition. In an ANN, neurons can be organized in two 
forms: recurrent net and a feed-forward net. In a recurrent net all the neurons are interconnected to each other. In a feed-
forward net neurons are organized in layers: one input layer, hidden layers and one output layer. Data flows through input 
layer to output layer. The structure of ANNs enables them to learn, approximate functions, and classify patterns. These 
abilities of ANNs make them powerful tools for modeling control systems. To model control systems mostly feed-forward 
nets with sigmoidal, signum or Gaussian activation function and so on are used. The weights in these nets are commonly 
updated using back-propagation learning algorithm. Defining an error as the difference between the desired output of the 
network and the actual output of the network, back-propagation learning algorithm minimizes the sum of the mean square 
error using a gradient search technique. Back-propagation is the most commonly used training algorithm for neural 
networks.  In a back-propagation algorithm the weights are updated as follows: 
 

                                                              …(5) 

where η is the learning rate, α is the momentum, and E(t) is the error. Figure 12  illustrates the topology of the back-
propagation neural network. 

 

 

 
 
 

 
APPENDIX C – FUZZY NEURAL NETWORK 
 
The utility of fuzzy sets lies in their capability in modeling uncertain or ambiguous data so often encountered in real life. 
There have been several attempts recently in making a fusion of fuzzy logic and neural networks for better performance in 
decision making systems. The uncertainties involved in the input description and output decision are taken care of by the 
concept of fuzzy sets while the neural net theory helps in generating the required decision regions. Fuzzy sets are powerful 
tools to model uncertainty. A fuzzy set is a function from a set of objects to [0, 1]. Since control systems have to deal with a 
highly uncertain environment, fuzzy sets are very good tools to model control systems. But fuzzy sets do not have learning 
capabilities to adjust themselves according to the dynamic nature of a control system. This limitation of fuzzy sets inspired 
researchers to combine the learning ability of ANNs and the quantification of uncertainty ability of fuzzy sets in fuzzy 
neural network models (FNN).  In a FNN structure as seen in figure 13, fuzzy neurons are used. Fukuda and Shibata (1992) 
gives as an example Ichihashi’s (1991)  model where Aip and wp represent the membership function of the ith input in the 
pth rule and consequence of the pth rule respectively. The result of the pth rule, µp, and the output, y, are given as 
 

Figure 11. A Structure of a FNN Figure 10. Topology of the back-propagation   neural network 
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                                                                                    …(6) 

 
 

 APPENDIX D: A SAMPLE FLUID CATALYTIC CRACKING UNIT SUMMARY REPORT 
OF TUPRAS REFINERY (5-February-1997) 

 
Fresh feed rate m3/d 2218 t/d 2017   LABORATORY TEST RESULTS  
Recycle feed rate m3/d 103 t/d 111   Raw Oil  
Total feed rate m3/d 2319 t/d 2128   Gravity  API  24 
Combined feed rate m3/m3 1.05     Viscosity  ssu at 122 F 139.8 
Gas oil conversion vol % 84.30 wt % 82.41   Conradson Carbon wt %  0.11 
380 conversion vol % 87.12 wt % 85.36   Pour point  deg F  +95 
       UOP K factor   11.80 
       Sulphur  wt%  - 
YIELDS  m3/d t/d vol% wt% 
Secondary absorber off gas 5381/hr 124 - 6.14  Secondary Absorber Off Gas 
Liquefied petroleum gas 634 358 28.61 17.77  Spesific Gravity   0.781 
Gasoline  1418 1053 63.98 52.20  Hydrogen  vol %  11.41 
Corrected gasoline  1481 1112 66.80 55.15  Inerts  vol%  14.85 
Light cycle gasoil  191 185 8.62 9.19  C3+Heavier vol%  4.09 
Heavy cycle gasoil  0 0 0 0  Nitrogen  vol%  13.99 
Clarified oil  157 169 7.08 8.39  H2 to C1 Ratio   0.51 
Coke  - 111 - 5.52   
        Whole Crack Naphta 
Liquid recovery  2400 - 108.30 -  Gravity   API 59.10 
Liq. recovery (gas included) - - 126.91 -  Astm Dist. 10%  deg. C 48 
Weight recovery  - 2001 - 99.21  Astm Dist. 50%  deg. C 95 
       Astm Dist. 90%  deg. C 178 
PROCESS OPERATING VARIABLES     Astm Dist. E.point deg C    deg. C 228 
Blower outlet press.  Kg/cm2  3.11   RVP   PSI 9.8 
Blower outlet temp.  C  212   Octane    F-1  clear 94.6 
Hydrogen on coke  wt%  14.71    
Air to coke ratio  t/t     Light Cycle Gasoil 
Air to regenerator  m3/hr 51905    Gravity  API  14.4 
Air to atmosphere  m3/hr 0    Astm Dist 10% deg. C  242 
Torch oil  m3/d 0    Astm Dist 50 % deg C  260 
Cat. stripping steam  kg/hr         1800    Viscosity  ssu at 122F 32.1 
   Lb/mlb cat. 1.75   Pour point  deg. F <-5 
Cat. Circulation rate  t/min 17.18    Clarified Oil 
Cat. To oil ratio  t/t 11.63    Gravity  API  -0.4 
Compressor  rpm 9800    Viscosity  ssu at 122  236 
Blower  rpm 4390    FB* Catalyst content lb./usg  0.014 
Valve open. Of LRC-1   % 46    Liquified Petroleum Gas 
                TRC-1  % 58  Density  at 15 deg. C 0.565 
Pressue drop     LRC-1  kg/cm2 0.37    C3  vol %  37.84 
                TRC-1 kg/cm2 0.17   C4  vol %  59.84 
       Equilibrium Catalyst 
REACTOR OPERATING VARIABLES     LECO Carbon wt%  - 
Raw oil preheat out temp. C 227    Bulk density t/m3  0.9032 
Raw oil furnace out  C 254    Flue Gas Analysis 
Combined feed  C 251    CO2/CO in Flue Gas mol/mol  1.76 
Riser outlet  C 533    CO in Fue Gas vol %  5.8 
Vapor outlet  C 528     O2 in Flue Gas vol %  0.8 
Cat.bed dense phase  C 538         
Cat. bed dilute phase  C 533    REGENERATOR OPERATING VARIABLES 
Cat.bed dense phase Temp C 667    cat. Bed dilute phase  C 690 
Catalyst bed level  meters 2.06    flue gas east stack  C 690 
Catalyst bed density  t/m3 0.28    flue gas west stack  C  
Pressure  kg/cm2 2.27    cat. Bed. Level  meters 2.91 
Preheat furnace fuel  m3/hr *    cat. Bed density  t/m3 0.45 
Fuel oil equivalent  m3/d *    Pressures   kg/cm2 2.85 
         
FRACTIONATOR OPERATING VARIABLES    CATALYST TYPE&INVENTORY   
       Reduxion T wt%  39.56 
Temperatures&Pressures C kg/cm2    Advance 88 TI wt%  59.44 
Top   141    Octidyne Extra wt%  1 
LCGO Draw off  240     Reactor  t  13.52 
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HCGO draw off  319     Regenerator t  33.96 
Bottom  368 2.14    Stripper  t  22.62 
Reflux drum  36 1.27    Total  t  70.1 
7G-4 outlet   8.30    Loaded  kg/d avg.  1467 
       withdrawn  kg/d avg.  952 
       Losses  kg/d avg.  645 
       Usage rate  lb/bbl ff  0.253 
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