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Abstract 

 

 Tiles are one of the building materials with various types that can make a residence more elegant, 

attractive, and colorful. However, not all people know about the types of tiles and their advantages. 

Therefore, a Convolutional Neural Networks (CNN) based method is proposed to make it easier for people 

to accurately recognize tiles based on their types and know their advantages. The purpose of this paper is 

to classify the types of tiles using CNN which is based on VGG16 model. The proposed method classifies 

tiles into 6 classes, namely granite, limestone, marble, motifs, mosaics, and terrazzo. This research uses 

186 training data, 96 validation data and 60 test data with image resolution of 224x224. Based on the 

experiments, the training process produces 100% of training accuracy and 94% of validation accuracy. 

The testing process achieves 98.33% accuracy which can be concluded that the proposed CNN model able 

to classify the types of tiles well. 
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INTRODUCTION 
Tiles are craft objects made of non-metallic elements that have undergone a heating process in 

their manufacture. The process of manufacturing, for example ceramic tile consists of several 

steps namely clay preparation, molding, glaze preparation, drying, glazing and decorate the tile, 

kiln firing, and quality classification [1]. Selection of the tiles is in accordance with the needs of 

the buildings. The process of selecting tiles usually based on the shape, size, and color of the tiles. 

This study aims to determine the type of tiles based on the images provided by the user. 

Current technological developments can be applied to solve the tile classification problem. Using 

computer vision approach, the first step of the procedure is to take pictures of tiles with a camera. 

The images will be classified using Convolutional Neural Networks (CNN) to recognize the type 

of tiles [2]. CNN was used because several recent studies on computer vision task that use CNN 

have obtained good results, namely research that classify vehicle types [3], batik patterns [4], face 

[5], leather types [6][7] and so on [8][9]. This research was conducted because there are many 

types of tiles so not all people know about the types of tiles and their advantages. There are several 

types of tiles such as ceramic, natural granite, marble, mosaic, porcelain, glass, cement, limestone, 

and others with different advantages [10]. However, in this study only 6 types of tiles were used, 

namely terrazzo, limestone, natural granite, motif, mosaic, and marble because these types of tiles 

are popular and widely used in general. 

In this study, VGG16-based CNN model is implemented, namely, to classify the types of tiles. 

CNN method is very good at finding good features in the next layered image to form a non-linear 

hypothesis and can increase the complexity of a model [11]. Accuracy results in image 

classification using CNN are mostly better than the other traditional methods such as K-Nearest 

Neighbor, Support Vector Machine and others [12][13][14]. 
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METHODS 

Convolutional Neural Network (CNN) 
Convolutional Neural Network is a branch of deep learning that carry out direct classification 

learning on two-dimensional models such as images [15]. CNN is very good when used to find 

patterns in an image then recognize the object in the image. CNN consists of two stages, namely 

feature learning and classification [16]. Feature learning is the stage where the features of input 

image are extracted to learn the value/pattern of the image [17]. At this feature learning stage, it 

is very dependent on the depth of the convolutional layers, the deeper the convolutional layer, the 

more extraction results are obtained so that the pattern is clearer [18]. This value will be converted 

into a vector and used in the classification stage. In the classification stage, some fully connected 

layers will be used to classify the features into several classes [19]. 

Fig. 1 shows the Convolutional Neural Network architecture that divided into two stages. The 

feature learning stage in general has three layers namely convolution layer, activation, and pooling 

layer. The sequence of these three layers does not always have to be the same, in the sense that 

the process can be modified as needed. However, in general, the feature learning process begins 

with a convolution process between the input matrix and the kernel at a certain size. The 

classification layers usually consist of several fully connected layers with the last layer serves as 

the predictor.   

 

Fig. 1. An illustration of CNN [20]. 

The Proposed Method 
The proposed method uses VGG16 [21] as the model in the feature extraction stage and add some 

fully connected layers to classify the features into 6 types of tiles. Fig. 2 shows the procedure of 

the proposed method where the blue lines indicate the training steps, and the orange lines indicate 

the test steps. The output is category label that represent the type of tiles.  

 

Fig. 2. The procedure of the proposed method. 
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Based on Fig. 2, the tile images dataset is collected then proceed to the preprocessing step, by 

cropping the image to get the ROI of tiles object which aims to speed up the computational 

process. The image data then divided into training data and test data. Training data will become 

the input in the training step and test data will become the input in the testing step. In the training 

step, the training data will be split further to generate validation data to assist in the training 

process. Next is the augmentation step which aims to improve images in the training data in order 

to get high accuracy results. The proposed model is built using VGG16 model as the feature 

extractor and fully connected layers as the classifier. The VGG16 architecture is shown in Fig. 3.  
 

 

Fig. 3. VGG16 architecture. (image source: [22]) 

The VGG16 model will be trained from scratch without using the pre-trained weights from 

ImageNet [23]. After performing average pooling in the last convolutional layer of VGG16, three 

fully connected layers are used to classify the features into 6 types of tiles. The architecture of the 

proposed method is shown in Fig. 4.  

 

 

Fig. 4. The proposed VGG16-based CNN architecture. 

Based on Fig. 4, the input layer takes an image with dimensions of (224, 224, 3). After the image 

is processed at each layer in the VGG16 model, global average pooling is applied, and the features 



61 

MF  E-ISSN: 2714-6685  

 

Classification of Tiles Using Convolutional Neural Network 
Ramadayanti, Prahara 

dimension become 512. The features then further processed by two fully connected layers with 

4096 units followed by batch normalization and ReLU activation function. The final fully 

connected layer classifies the features into 6 category labels using SoftMax activation function.  

 
RESULT AND DISCUSSIONS 
The proposed method is built using Python, running on Google Collab notebooks with additional 

TensorFlow, OpenCV, and Scikit-learn library. The VGG16 and other models used in this 

research are taken from the built-in models provided by TensorFlow library [24].  

Dataset 

The specification of tiles dataset that used in this research is shown in Table 1. Based on Table 1, 

there are 6 types of tiles namely granite, limestone, marble, motifs, mosaics, and terrazzo. Each 

category consists of 57 images and the total is 342 images. The tile images are collected from the 

internet and taken directly from the local tile shops. Tiles dataset is divided into three namely 

training data, validation data and test data with each of them consists of 186, 96, and 60 images 

respectively. The images are resized into 224x224 before trained by the model. Data augmentation 

is performed to enrich the training data by flipping horizontal, rotation in range of 90 degrees, 

shear by factor 0.2, and scaling by factor 0.2. 

  

Table 1. Tiles dataset specification. 

No Tiles type Data type Qty Image source Image samples 

1 Granite jpg 57 
Internet and 

tile shop 
   

2 Limestone jpg 57 Internet 
   

3 Marble jpg 57 
Internet and 

tile shop 
   

4 Motif  jpg 57 Internet 

   

5 Mosaic jpg 57 
Internet and 
tile shop 

   

6 Terrazzo jpg 57 Internet 
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Training Results 
Before conducting the training process, some hyperparameters need to be configured. The model 

is trained using Adam optimizer with 0.0001 learning rate and runs in 100 epochs. Fig. 5 shows 

the result of training process namely accuracy and loss of training data (orange lines) and 

validation data (blue lines). Accuracy is the value used to determine the level of success of the 

model that has been made while loss is a measure of the error that has been made with the aim of 

minimizing it. Based on Fig. 5, the accuracy of the training data reached 100% with 0.0049 of 

loss while the accuracy of validation data reached 94%. 

 

 

(a) Accuracy measurement    (b) Loss measurement 

Fig. 5. Accuracy and loss of training data (orange) and validation data (blue).  

As the model performed well in validation data, we tested the model on the test data to measure 

the accuracy of the trained model. The test data consists of 60 images with 10 images for each tile 

category namely granite, limestone, marble, motifs, mosaics, and terrazzo. Table 2 shows the 

confusion matrix of prediction results in test data. Based on Table 2, there is only one false 

positive where a marble is classified as limestone. The model achieves 98.33% of accuracy 

according to the confusion matrix in Table 2. 

    
Table 2. Confusion matrix of the prediction results. 

 
Prediction 

Granite Limestone Marble Motive Mosaic Terrazzo Total 

Actual 

class 

Granite 10 0 0 0 0 0 10 

Limestone 0 10 0 0 0 0 10 

Marble 0 1 9 0 0 0 10 

Motive 0 0 0 10 0 0 10 

Mosaic 0 0 0 0 10 0 10 

Terrazzo 0 0 0 0 0 10 10 

 

Overall accuracy =
total correct prediction on class data

number of class data
=

59

60
= 98.33% 

We also perform training and test for several models to compare the proposed CNN which based 

on VGG16 model with the other CNN models namely ResNet50 [25], InceptionV3 [26], 

InceptionResNetV2 [27], and MobileNetV2 [28] that provided by TensorFlow library [24]. The 

other models also used as the feature extractor with the same hyperparameters configuration. The 
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purpose of this experiment is to know which model produces the best accuracy. The performance 

evaluation result is shown in Table 3 (we round up the accuracy score). Based on Table 3, 

although InceptionV3 achieves the highest accuracy on validation data which is 98% but the 

performance on the test data only achieves 25%. Meanwhile, the proposed VGG16-based CNN 

model only achieves 94% accuracy on validation data but achieves the highest accuracy on test 

data which is 98% compared with the other models. Therefore, the performance of the proposed 

CNN method is superior than the other models in this dataset. Based on the classification result, 

we can get the usage and the advantages of the corresponding tile from the database to show the 

detail information to the user. 

  
Table 3. Performance evaluation comparison of several CNN models. 

No Model name Reference Epoch 
Accuracy 

Validation data Test data 

1 
Proposed VGG16-

based CNN model  
 100 94% 98% 

2 ResNet50 [25] 100 97% 33% 

3 InceptionV3 [26] 100 98% 25% 

4 InceptionResNetV2 [27] 100 97% 18% 

5 MobileNetV2 [28] 100 97% 20% 

 
CONCLUSIONS 
The proposed VGG16-based CNN model in this study shows a good performance in classifying 

6 types of tiles namely granite, limestone, marble, motifs, mosaics, and terrazzo tiles. The best 

accuracy result produces by the proposed VGG16-based CNN model where in the training process 

achieves 100%, in the validation process achieves 94% and, in the testing, process achieves 

98.33%. From the experiment results, it can be concluded that the application of deep learning 

using the Convolutional Neural Networks can classify tiles well. The classification result then can 

be used to get the usage and advantages of the corresponding tiles from the database and shows 

the detail information to the user. In the future research, it is expected to expand the classification 

for more types of tiles.  
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