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Abstract—Convection-enhanced delivery (CED) is a promising 

method to deliver therapeutic drugs directly into the brain that 

has shown limited efficacy, mainly attributed to backflow, in 

which the infused drug flows back along the needle track rather 

than forward into tissue. This study evaluates the effect of sharp 

and blunt needle tips on backflow length under different flow 

rates via CED. Infusions were performed in a transparent 0.6% 

(w/v) brain phantom agarose hydrogel. Backflow length was 

significantly higher using sharp-tip needles for higher flow rates. 

No significant differences were observed between tip shapes for 

lower flow rates. In conclusion, sharp-tip needles present 

limitations for higher flow rates, which are needed to deliver 

more drug during shortest times. 

 
Index Terms —backflow, brain phantom gel, convection-

enhanced delivery, drug infusion, needle insertion. 

 

Resumen— Convection-enhanced delivery es una técnica para 

suministrar drogas directamente en el cerebro para el 

tratamiento de enfermedades del sistema nervioso central. Este 

método ha mostrado una limitada eficacia atribuida 

principalmente al fenómeno de backflow, en el cual, la sustancia 

fluye hacia atrás por fuera de la aguja en vez de alcanzar la 

región del tejido delante de la punta. Este estudio evalúa el efecto 

de los tipos de punta plana y biselada sobre el fenómeno de 

backflow bajo diferentes caudales. Las infusiones experimentales 

se realizaron en gel de agarosa transparente al 0.6% (w/v). La 

longitud de backflow fue significativamente mayor para 

infusiones con aguja biselada a caudales mayores. No se 

observaron diferencias significativas entre ambos tipos de aguja 

para caudales menores. En conclusión, agujas con punta biselada 
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presentan limitaciones a mayores caudales, las cuales son 

requeridas para suministrar mayor cantidad de fármaco durante 

los procedimientos clínicos.  

 

Palabras claves— Backflow, entrega mejorada por convección, 

gel de agarosa, infusión de drogas, inserción de aguja. 

 

I. INTRODUCTION 

 

ONVECTION-ENHANCED delivery (CED) is a novel 

technique to bypass the blood-brain barrier and deliver 

therapeutic drugs over localized zones in the brain for the 

treatment of disorders and tumors [1]–[4]. This promising 

method generates a positive pressure at the tip of an infusion 

catheter to distribute molecules directly through the interstitial 

spaces of the brain tissue. Although several CED experimental 

studies have reported promising results[5]–[8], some clinical 

trials[9]–[12] have been largely unsuccessful due to poor drug 

distribution in target areas, mainly related with an undesirable 

effect of backflow, where  the infused drug preferentially 

flows thorough an annular zone around the needle, toward the 

surface of the brain rather than through of the tissue target 

[13]. Agarose gel has been reported as a suitable brain 

phantom to perform infusion experiments to evaluate the 

effect of infusion rate, insertion velocity, and needle size on 

the backflow length. These experiments are useful to propose 

improvements for clinical application of CED [14], [15].  

 

Panse et al. [16] reported experiments in a brain phantom 

gel using needles of different diameters and configurations 

aimed at reducing the backflow length. This study evaluated 

the importance of air bubbles on backflow. However, the 

potential effects of catheter shape on fluid distributions was 

not considered.  Casanova et al. [17] evaluated the influence 

of needle insertion velocity on backflow on the agarose gel. 

These experiments showed that faster insertions reduce the 

backflow length and damage. Nevertheless, one single tip 

shape was utilized during those experiments. 

 

Conventionally, needles with a blunt tip are used during 

insertions and infusions since the tissue reveals smaller 

damage compared to that produced with other needle tip 
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shapes [18], [19]. For instance, needles with a beveled tip 

might increase the risk of damaging or infection during the 

insertion into the brain. However, recent strategies include 

designing new shape tips as well as multiport catheters [20], 

[21] to overcome the limitations of drug distribution in the 

brain.  

 

Recently, an innovative sharp-tip needle that may reduce 

backflow by generating smaller local damage during insertion 

has been developed. Hence, the objective of this study was to 

evaluate whether a needle with a sharp tip reduces the 

backflow length during infusion into the agarose gel. We 

performed in vitro infusion experiments to measure the 

backflow lengths under combinations of two needle-tip shapes 

(blunt and sharp) and flow rates. From those experiments, we 

report the obtained distributions and the backflow lengths for 

each studied needle. The conducted investigation is relevant 

for the optimization of tip designs, and the new development 

of needles for CED applications. 

 

II. METHODS 
 

A. Infusions experiments in agarose gel 

Needle insertions and infusions experiments were 

performed in samples of 0.6 % (w/v) agarose hydrogel 

(TreviGel 5000, Trevigen Inc., Gaithersburg, MD) cast into 

100 ml Pyrex® beakers (internal diameter 45 mm, height 70 

mm). The dye infused into the gel was Evans blue albumin 

(1:2 molar ratio). The infusion system consisted of a syringe 

pump driving a 100 µl gas-tight syringe (Hamilton, Reno, NV) 

coupled to 400 mm of minimally compliant tubing (inner 

diameter 1 mm, outer diameter 1.58 mm) that was connected 

to the needle (Fig. 1). Two different needles were used: blunt 

and sharp tip with 0.36 mm outside diameter (50.8 mm length, 

Hamilton, Reno, NV) (Fig. 2). The needle was carefully 

driven by hand with a micrometer attached to a stereotaxic 

frame (Kopf, Tujunga, CA) to a 20 mm depth at 1.2 mm/s. 

Infusion started immediately after insertion. In all 

combinations, the infusion volume was 5.0 µl at a flow rate of 

0.3, 0.5, 1, and 2 µl/min.  

 

 

 

 
 

Fig. 1.  Schematic of experimental setup for needles testing by CED infusion 

experiments into agarose gel. 

 

The experiments were repeated ten times for each 

combination, with 80 measurements in total. Following the 

infusion, backflow was measured as the length from the 

needle tip to the point of maximum dye penetration back along 

the needle track. The measurement was accomplished using 

the micrometer of the stereotactic frame. In the cases when 

backflow reached the external surface of the gel, the backflow 

length was taken to be 20 mm.  

 

B. Statistical analysis 

 

Two-way analysis of variance (ANOVA) was conducted to 

test whether the means of groups were equal. Means of 

backflow lengths were compared for the two needle tips (blunt 

and sharp) and the four flow rates (0.3, 0.5, 1, and 2 µl/min) 

by using the Tukey's test. Data is shown as mean ± 1 standard 

deviation and p-values <0.05 were considered significant. 

 

 
Fig. 2.  Needle tips evaluated in the infusion experiments into agarose gel 

(outside diameter: 0.36 mm). (a) Sharp and (b) blunt tip. 

 

III. RESULTS 
 

A. Backflow length during infusions  

Representative dye distributions were spherical and 

symmetrical for lower flow rates (0.3 and 0.5 µl/min) and both 

needle tips. In contrast, infusions with higher flow rates (1 and 

2 µl/min) showed irregular dye spreads for both type of 

needles (Fig. 3).  

 

The ANOVA revealed significant main effects and 

interaction effects. Backflow length was significantly smaller 

for the 0.3 µl/min flow rate compared to those for the other 

three flows (p-values = 0.01, 0.00, and 0.00 for 0.5, 1, and 2 

µl/min, respectively.) The average backflow length was 

9.7±5.44, and 13.9±6.66 mm for the blunt and sharp tip, 

respectively. For the flow rates 0.3, 0.5, 1, and 2 µl/min the 

average backflow length was 5.2±2.3, 11.9±5.5, 14.0±5.5, and 

16.0±5.6 mm, respectively. 

 

 

Simple main effects analysis showed that for the sharp tip 

needles, the backflow length was significantly greater for 

higher flow rates, while for the blunt tip needles, only the 

backflow length for 0.3 µl/min was significantly smaller than 

that for the 2 µl/min flow rate. (p-value = 0.021). For the 1 

µl/min and 2 µl/min flow rates, the backflow length was 
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significantly higher for sharp tip needles than that for blunt tip 

and no significant differences with respect to needle tip type 

were found at the 0.3 and 0.5 µl/min flow rate (Fig. 4).  

 

 

 
 
Fig. 3.  Typical dye distributions in agarose gel for each needle tip: (a) blunt 

tip with low flow rate, (b) sharp tip with low flow rate, (c) blunt tip with high 

flow rate, (d) sharp tip with high flow rate.  

 

 

 
 

Fig. 4.  Average backflow length for each needle tip type at different flow 
rates with n = 10 (* indicates p-value < 0.05). 

 

IV. DISCUSSION 

 

In the present study, we performed infusions in agarose gel 

with two needle tip types and four different flow rates to 

determine the effect of each tip on the backflow length. The 

dye distributions and the backflow lengths were similar for 

both tips at lower flow rates. The greater backflow produced 

during the infusions with sharp tip needle might be related to 

the lack of symmetry of the needle and the local damage 

generated during the insertion. In this process with sharp tip 

needle, the agarose gel is mainly compressed on one side and 

might produce a wider gap between the external surface of the 

needle and the phantom tissue.  

 

Similar results with both needles were obtained for low 

flow rate values, however, as the flow rate was increased, 

backflow was greater for sharp tip needle. In contrast, the 

increase of flow rate using blunt tip needle did not 

significantly affect the backflow lengths. This is a relevant 

result for future clinical applications, since higher flow rates 

provide high amount of therapeutic and reduce the operation 

time. 

 

The mechanical response of phantom material during the 

insertion for each needle tip might explain the differences on 

fluid distributions. The axial force in the sharp tip could have 

been higher during penetration into the agarose gel than the 

blunt tip. Gerwenet al. [18] reported variations in the axial 

forces for different needle tip shapes during insertion into 

distinct materials. Based on this, a blunt needle cuts more 

easily than a sharp one, hence sharp needles tend to create 

more damage in the material during the insertion. Shergold et 

al. [22] reported different behavior of the axial force with 

sharp needle in comparison with blunt needle. In those 

experiments, they documented that the sharp tipped needle 

penetrates by the formation and opening of a planar crack, 

while a blunt needle penetrates by the propagation of a ring 

crack and subsequent higher deformation of the tissue. These 

findings might explain why often backflow appears during the 

infusion with the sharp needle contrasted with the blunt 

needle, where the fluid is restricted by the radial compressive 

deformation after insertion.  

 

In conclusion, our results suggest that sharp tip needle is not 

a suitable catheter for insertions and CED infusions into brain 

phantom gel for higher flow rates. However, future infusions 

in animal brain tissue should be carried to determine whether 

this tip might be appropriate for CED in brain tissue.  
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