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Purpose: Cutaneous and unknown primary melanomas fre-
quently harbor alterations that activate the MAPK pathway. Wheth-
er MAPK driver detection beyond BRAF V600 is clinically relevant
in the checkpoint inhibitor era is unknown.

Experimental Design: Patients with melanoma were prospec-
tively offered tumor sequencing of 341-468 genes. Oncogenic
alterations in 28 RTK-RAS-MAPK pathway genes were used to
construct MAPK driver groups. Time to treatment failure (TTF)
was determined for patients who received first-line programmed
cell death protein 1 (PD-1) monotherapy, nivolumab plus ipilimu-
mab, or subsequent genomically matched targeted therapies. A Cox
proportional hazards model was constructed for TTF using driver
group and clinical variables.

Results: A total of 670 of 696 sequenced melanomas (96%)
harbored an oncogenic RTK-RAS-MAPK pathway alteration;
33% had =1 driver. Nine driver groups varied by clinical

Introduction

Retrospective studies of cutaneous melanomas and melanomas of
unknown primary have revealed frequent alterations, such as BRAF
V600 and NRAS Q61 mutations, that induce MAPK pathway signal-
ing (1). Several selective RAF and MEK inhibitors are now FDA
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presentation and mutational burden. TTF of PD-1 monotherapy
(N = 181) varied by driver, with worse outcomes for NRAS Q61
and BRAF V600 versus NF1 or other alterations (median 4.2, 7.5,
22, and not reached; P < 0.0001). Driver group remained sig-
nificant, independent of tumor mutational burden and clinical
features. TTF did not vary by driver for nivolumab plus ipili-
mumab (N = 141). Among 172 patients with BRAF V600 wild-
type melanoma who progressed on checkpoint blockade, 27 were
treated with genomically matched therapy, and eight (30%)
derived clinical benefit lasting >6 months.

Conclusions: Targeted capture multigene sequencing can detect
oncogenic RTK-RAS-MAPK pathway alterations in almost all
cutaneous and unknown primary melanomas. TTF of PD-1 mono-
therapy varies by mechanism of ERK activation. Oncogenic kinase
fusions can be successfully targeted in immune checkpoint inhib-
itor-refractory melanoma.

approved for use in patients with BRAF V600 melanoma. A minority
of chronically sun-exposed cutaneous melanomas also harbor KIT
alterations that can be targeted with kinase inhibitors, like imatinib (2).
While these results have prompted routine clinical testing for BRAF
and KIT mutations, the clinical utility of broader sequencing panels for
additional MAPK driver alterations in patients with melanoma
remains unknown (3).

The Cancer Genome Atlas (TCGA) performed a multi-omics anal-
ysis of 318 cutaneous melanomas and proposed a classification schema
on the basis of the presence of oncogenic mutations in BRAF, RAS (N/
H/KRAS), or NF1, with the remainder classified as “triple wild-type” (1).
Even after accounting for oncogenic alterations in KIT, GNAQ, and
GNA11, 12% of cutaneous melanomas were “triple wild-type,” and it is
unclear whether these tumors lack MAPK drivers or whether such
alterations went undetected because of stromal contamination or
variable sequencing depth (1). Although NFI was defined as a geno-
mically distinct subset, roughly one third of NFI mutants had MAPK
coalterations, most often BRAF non-V600. More recent functional
analyses have subdivided BRAF alterations into three classes based on
their dimer and RAS dependence: class 1, which includes all V600
variants, are dimer and RAS independent; class 2, which are dimer
dependent and RAS independent; and class 3, which are dimer and RAS
dependent and require upstream activation of RAS via coalteration to
induce MAPK activation (4, 5). These molecular insights suggest TCGA
driver subgroup classification may need refinement.

Immune checkpoint inhibitors targeting programmed cell death
protein 1 (PD-1; e.g., nivolumab and pembrolizumab) and cytotoxic
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Translational Relevance

The Cancer Genome Atlas defined four groups of MAPK
alterations in cutaneous melanomas, BRAF, RAS, NF1, and “triple
wild-type,” that are widely used clinically. This system needs
refinement to better reflect the improved understanding of
mechanisms of ERK activation and to provide prognostic infor-
mation for the checkpoint inhibitor era. We utilized a large,
consecutive cohort of patients with cutaneous and unknown
primary melanomas to construct nine mutually exclusive MAPK
driver groups with distinct clinical features and tumor mutational
burden (TMB). TMB was associated with overall survival with
programmed cell death protein 1 (PD-1) treatment alone or with
cytotoxic T-lymphocyte antigen-4 inhibition. Time to failure of
PD-1 blockade was shorter for NRAS Q61 and BRAF V600
mutants versus NF1 or other alterations. Driver group remained
significantly associated with time to treatment failure, independent
of TMB and other clinical characteristics. For patients who prog-
ress on PD-1-based therapy, targeted inhibitors of rare kinase
fusions can achieve durable complete responses. These refined
MAPK driver groups offer prognostic information for clinicians
and can improve the validity of preclinical genomic models of
melanoma.

T-lymphocyte antigen-4 (CTLA-4; e.g., ipilimumab) are standard
treatments for advanced melanoma (6-8). In the prospective random-
ized trial comparing nivolumab plus ipilimumab with PD-1 mono-
therapy, combination therapy was associated with improved objective
response rate and progression-free survival at the expense of increased
toxicity (8). The impact on overall survival (OS) remains unclear; thus,
better predictive biomarkers are needed to select patients most likely to
require combination therapy. High tumor mutational burden (TMB)
has been linked to improved outcomes from checkpoint inhibitor
therapy in melanoma, but its association with other clinical features,
such as driver mutation status, age, sex, and primary tumor site, is not
well understood (9-11).

To explore these questions, we retrospectively analyzed a pro-
spective cohort of patients with melanoma who underwent clinical
tumor sequencing using the MSK-IMPACT assay, a capture-based
next-generation sequencing (NGS) platform (12). We integrated
prospectively collected tumor genomic data with clinical and treat-
ment response data to identify novel molecular drivers that could
be targeted therapeutically and serve as prognostic biomarkers of
benefit to PD-1-based therapy.

Materials and Methods

Institutional review board approval was obtained to collect clinical
and treatment data for all patients with cutaneous and unknown
primary melanoma sequenced using one of three versions (341, 410, or
468 genes) of MSK-IMPACT between January 2014 and April 2019 at
two centers (Memorial Sloan Kettering Cancer Center, New York, NY
and Lehigh Valley Medical Center, Bethlehem, PA; refs. 12, 13). All
patients provided written informed consent, and the study was con-
ducted in accordance with ethical principles described in the Decla-
ration of Helsinki. Samples were excluded if estimated tumor purity
was <20%, sequencing depth was <50 x, if it was a duplicate from the
same patient, or if the patient had received prior targeted therapy. For
patients with >1 sample analyzed, we included the sample that, in order

AACRJournals.org
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of priority, had higher purity, predated systemic treatment, and was
metastatic rather than primary. For all analyses regarding driver
alterations among 28 genes in the RTK-RAS-MAPK pathway (BRAF,
NF1, NRAS, KRAS, HRAS, KIT, PDGFRA, ERBB2, ERBB3, ERBB4,
FGFR2, FGFR3, ALK, ROS1, NTRK1, NTRK3, CBL, SOS1, PTPN11,
RASAIL SPREDI, ARAF, RAFI, RACI, MAP2K1, MAP2K2, GNAQ,
and GNA11), only variants predicted to be oncogenic by the OncoKB
knowledgebase (14) were included. There was no minimum variant
allele fraction required for inclusion. FACETSs (15), an allele-specific
copy-number algorithm, was used to infer clonality of nonsynon-
ymous variant driver mutations for a subset of samples with suffi-
ciently high-quality data.

BRAF mutation classes were assigned as described previously (4, 5).
TMB was estimated by calculating the number of nonsynonymous
variants and dividing by the total sequenced exon length (13). Log,,
transformation was used for all TMB analyses.

Clinical features collected included sex, age, primary tumor site,
Eastern Cooperative Oncology Group (ECOG) performance status,
and lactic dehydrogenase (LDH). Details on treatment initiation and
survival were collected for patients who received first-line therapy with
PD-1 inhibitor +/— ipilimumab for advanced or unresectable disease
without prior adjuvant RAF or checkpoint inhibitors. Time to treat-
ment failure (TTF) was defined as the interval between initiating
therapy and the earliest of clinical progression, new locally directed or
systemic treatment, or death, as described previously (16). OS was
defined from initiation of therapy. Patients alive and free of treatment
failure at last follow-up were censored.

Association between categorical variables was tested using Fisher
exact test. For continuous variables, a nonparametric Wilcoxon rank-
sum test or Kruskal-Wallis test was used for 2 and >2 groups,
respectively. The multivariate Cox proportional hazards model was
built by using backward selection of variables significant (P < 0.05) on

Table 1. Demographics.

Total patients n = 696

Melanoma type
Cutaneous
Unknown primary

556 (80%)
140 (20%)

Age, median (range) 61(8-95)
Sex

Male 461 (66%)

Female 235 (34%)
Sample type

Recurrent/metastatic 592 (85%)

Primary 104 (15%)
Sequenced sites

Primary 104 (15%)

Regional LN/in-transit 271 (39%)

Distant LN/soft tissue 96 (14%)
Lung 88 (13%)
Brain 52 (7.5%)
Liver 36 (5.2%)
Bone 16 (2.3%)
Other visceral metastasis 33 (4.7%)

Cutaneous primary site
Face
Trunk
Upper extremity
Lower extremity
Not available

162 (29%)
181 (32%)
102 (18%)
10 (20%)
1(<1%)

Abbreviation: LN, lymph node.
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univariate analysis. Differences in TTF and OS were evaluated using
log-rank tests and Kaplan-Meier methods. All analyses were per-
formed in R version 3.4.4.

All genomic and clinical data are accessible through the cBio-
Portal for Cancer Genomics (ref. 17; http://cbioportal.org/study?
id=mel_ mskimpact_2020) and the MAF file is available as Sup-
plementary Table S1.

Results

Between January 2014 and March 2019, 792 cutaneous and
unknown primary melanomas were analyzed. Of these, 756 (95.4%)
tumors were successfully sequenced, and 696 tumors from unique
patients met inclusion criteria (Supplementary Fig. S1). Median
sequencing depth was 709x.

Patient demographics are summarized in Table 1 and Supplemen-
tary Table S2. A total of 556 patients (80%) had cutaneous melanomas,
whereas 140 (20%) patients had melanomas of unknown primary.

The majority of patients were men (66%). Median age at initial
melanoma diagnosis was 61 years (range, 8-95). A total of 104
(15%) were primary melanomas; 46% were from distant metastatic
sites. Cutaneous melanoma primary sites were relatively evenly
divided between trunk, face, and the extremities.

Identification of RTK-RAS-MAPK pathway driver mutations

A total of 216 of 696 samples (31%) harbored BRAF V600E/K/R
mutations. Non-V600 BRAF alterations were present in 97 tumors. A
total of 55 (18%) of all BRAF alterations were class 2 mutants and 30
(10%) were class 3 mutants. Activating alterations in NRAS, HRAS,
and KRAS were identified in 29%, 2%, and 1.3% of patients, respec-
tively. Mutations in MAP2KI or MAP2K2 were identified in 7% of
patients. Predicted loss-of-function NFI alterations were identified in
23% of patients. Activating mutations in KIT, GNAQ, and GNA11 were
identified in 4%, 1%, and 0.4% of samples, respectively. In sum, 670
(96%) harbored a known or likely oncogenic alteration in =1 of
28 genes predicted to increase MAPK pathway activation (Fig. 1A).
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Figure 1.

x| Fraction | sarticant degieson [} Significant enrichmert [ No signsicance

A, Oncoprint of 696 cutaneous and unknown primary melanomas naive to targeted therapy depicting nine mutually exclusive classes of RTK-RAS-MAPK pathway
drivers and their relationship to primary site, percentage of mutations attributable to a UV signature, and TMB. B, Plotting the frequency of oncogenic and presumed
oncogenic RTK-RAS-MAPK alterations and how often they are coaltered with other RTK-RAS-MAPK driver alterations identifies a rough dichotomy between “sole
drivers,” such as BRAF V600, NRAS Q61, BRAF class 2 alterations, and MAP2KI indels, and frequently coaltered “backseat drivers,” such as NRAS non-Q61 alterations,
CBL, RACT, and other RTKs. C, Plotting the frequency of specific pairs of validated alterations identifies an enrichment for NF1 coalterations with BRAF class 3
alterations, CBL, PTPN11/RASA], and RTKs. D, Clonality was calculated among 428 cases with driver mutations only (no fusions or copy-number changes) and
adequate sequencing quality. Of those, 92% had only clonal mutations, 5% had clonal and subclonal, and 3% had subclonal driver alterations only.
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Figure 2.

A, The relationship between mutually exclusive driver class, primary site of melanoma, and TMB. NF1 is the driver with highest TMB and is enriched in head/neck
primary sites. BRAF V60OE and NRAS Q61 tumors are depleted in head/neck primary sites. B, TMB gradually rises with increasing patient age at time of primary
melanoma diagnosis. C, Patients with BRAF V600E melanomas have the youngest median age at diagnosis, whereas those with KIT-mutant melanomas have the
oldest median age.
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The rate of MAPK drivers appeared similar between cutaneous
melanomas and melanomas of unknown primary (Supplementary
Fig. S2A).

Concurrent alteration of more than one of the 28 MAPK pathway
genes was observed in 233 patients (33%), with coalteration rates
varying by gene and in some cases by codon (Fig. 1B). Tumors with
BRAF V600E mutations were less likely to harbor MAPK coalterations
than tumors with other BRAF V600 alleles (K/R; 11.6% vs. 37%,
respectively; P = 0.0003). Tumors with class 3 BRAF mutations were
more likely to have a concurrent alteration in the MAPK pathway than
tumors harboring class 2 alterations (97% vs. 38%, respectively; P —
3.4e-08). Similarly, NRAS Q61-altered samples harbored MAPK
coalterations less frequently than tumors with other RAS alterations
(29% vs. 70%, P = 7.9¢-07; Fig. 1B). When specific drivers were
compared, NF1 was most often coaltered with RTK genes, BRAF class 3

alterations, or CBL. In contrast, class 1 or 2 BRAF alterations, NRAS
Q61 mutations, and MAP2K1 indels were likely to be the sole drivers of
RTK-RAS-MAPK activation (Fig. 1C). MAP2KI missense mutations,
however, commonly cooccurred with other MAPK drivers.

We investigated clonality in a subset of 428 samples with sufficient
quality for FACETS analysis and at least one mutation in the 28 genes.
Of these, 394 (92%) had only clonal alterations, 22 (5%) had both
clonal and subclonal, and only 12 (3%) had exclusively subclonal
MAPK alterations (Fig. 1D).

TMB varies as a function of MAPK driver

The median TMB (range) of all samples was 16.3 mutations
(mut)/Mb (0-243 mut/Mb). To explore the association between
TMB and the biologic basis of MAPK pathway activation, tumors
were placed into nine mutually exclusive driver groups with BRAF

A  PD-1monotherapy by driver class B PD-1combo by driver class Figure 3.
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V600, NF1, and NRAS Q61 given the greatest weight within the
classifier: BRAF V600E, BRAF V600K/R, NF1 alterations, NRAS
Q61, other RAS family alterations, KIT, BRAF non-V600, other
known driver, or “unknown driver.” The median TMB varied
significantly (P = 9.5e-56) among driver groups (Fig. 2A). TMB
was lowest, 7-8 mut/Mb, in BRAF V600E and unknown driver
tumors; intermediate (14-18 mut/Mb) in tumors harboring BRAF
V600K or non-V600 alterations, NRAS Q61, or other known
drivers; high-to-intermediate, 22 mut/Mb, in other RAS-mutant
tumors, excluding NRAS Q61; and highest in KIT-mutant (n = 14;
37 mut/Mb) and NFI-mutant (1 — 155; 43 mut/Mb) tumors.

Median TMB was significantly higher for primary melanomas
located on the head (349 mut/Mb) versus the upper extremity
(18.6 mut/Mb), lower extremity (11.6 mut/Mb), or trunk (10.5
mut/Mb; P = 3.7e-21; Fig. 2A). The association between sex and
driver alteration varied by primary site; for example, head/neck
melanomas were enriched for males (72% vs. 66% overall) and NFI
alterations at the expense of NRAS Q61 and BRAF V600E alterations.
Conversely, lower extremity melanomas were more likely to arise in
females (52% vs. 34% overall) and lacked NFI alterations (Fig. 2A).
Overall, melanomas in males had a higher median TMB than females
(17.6 vs. 14.9; P = 0.024; Supplementary Fig. §2B). The fraction of
alterations associated with a UV signature also varied significantly by
driver group and primary site, with the lowest rates in BRAF V600E
and lower extremities (70% and 749%, respectively) and the highest
rates in NF1 and the head (88% and 85%, respectively; P < 1.0e-9 for
both; Supplementary Fig. S2C and SCD).

The median TMB at age of diagnosis increased steadily by decade,
from 4.7 mut/Mb in those younger than 20 years up to 25.6 mut/Mb for
those older than 80 years (Fig. 2B). Median age at initial diagnosis
varied by driver group (Fig. 2C), with BRAF V600E enriched in
younger patients (50 years) and KIT alterations more often present
in older patients (72 years).

Checkpoint inhibitor therapy outcomes vary by mechanism of
ERK activation

A total of 322 tumors were collected prior to initial treatment with
PD-1 monotherapy (pembrolizumab or nivolumab, n = 181) or
combined nivolumab plus ipilimumab (n = 141; Supplementary
Table §3). The median follow-up among those free of treatment failure
was 36 months for PD-1 monotherapy and 39 months for nivolumab
plus ipilimumab.

TTF varied significantly by TMB as a log,, transformed contin-
uous variable for both PD-1 monotherapy [HR, 0.43 for every 10-
fold mut/Mb increase, 95% confidence interval (CI), 0.29-0.62; P <
0.0001] and combined nivolumab plus ipilimumab treatment
(HR, 0.51 for every 10-fold mut/Mb increase; 95% CI, 0.31-0.84;
P = 0.008). TMB was also significantly associated with OS for both
PD-1 monotherapy-treated (HR, 0.6 for every 10-fold mut/Mb
increase; 95% CI, 0.37-0.97; P = 0.039) and combined nivolumab
plus ipilimumab-treated patients (HR, 0.47 for every 10-fold mut/
Mb increase; 95% CI, 0.25-0.89; P = 0.021).

To investigate the relationship between TTF and driver group, a
simplified four-group system was investigated: BRAF V600 (median
TMB, 9.3 mut/Mb), NRAS Q61 (15.3 mut/Mb), NF1 (43 mut/Mb), and
other (17.6 mut/Mb). TTF for PD-1 monotherapy varied significantly
by driver group (P <0.0001; Fig. 3A). The median TTF was shorter for
BRAF V600- and NRAS Q61-mutant tumors (7.5 and 4.2 months)
and longer for NF1 (22 months) and other (not reached). In contrast,
no significant difference in TTF by driver group was detected in those
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Table 2. Multivariate analysis of TTF with PD-1 monotherapy.

Variable HR (95% CI) P
Log,y (TMB) 0.41 (0.25-0.67) <0.001
Driver class NRAS Q61 138 (0.83-2.29) 0.20 <0.001
NF1 1.04 (0.54-1.99) >0.9
Other/unknown 0.35 (0.18-0.67) 0.002
BRAF V600 Reference
ECOG performance 2-3 498 (2.29-10.8) <0.001 0.001
status 1 1.33(0.86-2.04) 0.20
0 Reference
Stage M1d 1.90 (1.09-3.33) 0.025 <0.001
Mic 0.97 (0.57-1.64) 0.90
M1b 0.46 (0.27-0.81) 0.007
MO-Mla Reference

receiving nivolumab plus ipilimumab (Fig. 3B). For OS, these differ-
ences were not significant (Supplementary Fig. S3).

TTF with PD-1 monotherapy also varied when stratified by primary
site (Fig. 3C); it was highest for patients with melanomas arising on the
face, intermediate for other known cutaneous primary sites, and lowest
for melanomas of unknown primary (P = 0.019). In contrast, primary
site was not associated with TTF of nivolumab plus ipilimumab
(Fig. 3D).

To investigate whether differences in TTF of PD-1 monotherapy
among MAPK driver groups persisted after controlling for TMB and
clinical features, a multivariate Cox proportional hazards model was
built incorporating MAPK driver groups, log,o (TMB), primary site,
ECOG performance status, LDH, American Joint Committee on
Cancer (AJCC) 8th edition stage, and select hematologic parameters.
TTF was significantly associated with MAPK driver groups after
adjusting for TMB, ECOG performance status, and AJCC stage
(Table 2; Supplementary Table 54).

Identification and treatment of patients with rare targetable
drivers

A total of 172 patients with BRAF V600 wild-type tumors required
systemic therapy beyond PD-1 and CTLA-4 blockade. Of these, 27
(16%) were treated with a therapy matched to the patient’s MSK-
IMPACT result. Genomically matched therapies included inhibitors of
MEK or ERK targeted against RAS alterations (n = 13) or BRAF class 2
alterations (n = 6) and TRK inhibitors for tumors harboring NTRK
tusions (n = 3; Supplementary Table S5). The median TTF of matched
therapies was 3.2 months (range, 0.4-43.7 months). Eight patients
remained free from treatment failure for greater than 6 months
(Fig. 4A and B).

Four patients achieved complete responses to a genomically
matched therapy given after progression on nivolumab plus ipili-
mumab: trametinib for BRAF K601E (class 2) and MEKI
(MAP2K1) E203K mutations, crizotinib for a ROS1 fusion, laro-
trectinib for an NTRK1 fusion, and PLX8394 for a BRAF fusion
(class 2; Fig. 4C-F).

Overall, excluding the use of FDA-approved therapies for BRAF
V600-mutant tumors, 99 samples were sequenced for each patient
who derived 6 or more months of benefit from genomically matched
therapy. Among patients who required additional therapy beyond PD-
1 and CTLA-4 with known BRAF V600 wild-type tumors, the number
needed to be sequenced was 21.
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A, Swimmer plot of 27 patients treated with genomically matched therapy, following progression on PD-1+/— CTLA-4 therapy. Eight patients had a TTF >6 months
and 4 patients achieved durable complete responses. B, Kaplan-Meier curve depicting a median TTF of 3.2 months. C, Radiographic partial response and pathologic
complete response to crizotinib in a cutaneous melanoma harboring a ROS1 fusion. D, Rapid metabolic complete response to larotrectinib in a cutaneous melanoma
with in-transit metastases harboring an NTRKT fusion. E, Rapid metabolic complete response in bone and liver to trametinib in a cutaneous melanoma harboring
BRAF K601E and MEK1 (MAP2KT) E203K missense mutations. F, Metabaolic complete response to PLX8394 in a patient with M1b cutaneous melanoma harboring a

BRAF-AGK fusion.

Discussion

This cohort of patients with cutaneous and unknown primary
melanoma represents the largest clinically annotated group to date
with multigene sequencing results. Integration of clinical and molec-
ular data revealed novel associations between genomic features, suchas
MAPK driver alteration status and TMB, and clinical features, such as
age, sex, and primary melanoma location. Using the MSK-IMPACT
platform, we detected a driver alteration in one of 28 genes predicted to
activate the MAPK pathway in 96% of melanomas. A significant
minority harbored more than one alteration in an MAPK pathway
gene, and the vast majority of detected drivers were clonal. The rate of
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coalteration varied significantly among driver genes and occasionally
within the same gene. Among BRAF-mutant tumors, MAPK driver
coalteration was present in only 12% of V600E-mutant samples, but in
37% of V60OK/R and in 97% of class 3 BRAF mutants, such as D594N.
These findings validate prior findings in smaller cohorts (4, 5, 18).
These coalterations might represent intrinsic resistance mechanisms
for KIT, BRAF, or MEK inhibitors.

We hypothesize that the mechanism and magnitude of ERK
activation by a driver alteration influence TMB by dictating how
many additional alterations the melanocyte requires to become an
invasive melanoma. This presumably influences the degree to which it
is “immune edited” and can be successfully treated with PD-1
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blockade. For example, BRAF V600E alterations signal as monomers,
strongly activate ERK, and are insensitive to ERK-mediated feedback
inhibition of RAS (19); hence, they frequently initiate benign nevi (20),
require few additional alterations to become melanomas in younger
patients with lower TMB, and have a shorter time to failure of PD-1
blockade. In contrast, NF1 alterations are relatively weaker activators
of ERK (21) and require additional RTK or BRAF alterations to
activate or disinhibit RAS. Thus, they are not found in benign nevi (20),
arise in older patients with chronically sun-damaged skin with more
UV-induced alterations, and appear more likely to be successfully
treated with PD-1 monotherapy. One hypothesis for why adding
ipilimumab to nivolumab significantly improved PFS for patients
with BRAF-mutant, but not BRAF wild-type, tumors in a recent
randomized trial is the lower median TMB in this subgroup (8).
Among patients with cutaneous and unknown primary melanomas
receiving first-line PD-1 monotherapy or combination therapy,
increasing TMB is associated with a longer TTF and OS. This contrasts
with the findings of a smaller cohort containing multiple melanoma
subtypes and heterogeneous exposure to first-line CTLA-4 blockade
that suggested this association with TMB and PD-1 blockade efficacy
was confounded by histologic subtype (22).

We classified cutaneous and unknown primary melanomas using a
detailed nine-driver group hierarchy that reflects the mechanism of
ERK activation, the rate of pathway coalterations, and median TMB:
BRAF V600E; BRAF V600K/R; NF1; NRAS Q61; other RAS; KIT;
BRAF non-Ve00; another known driver (e.g, MAP2KI1); and
unknown driver. As more samples are analyzed, the two latter het-
erogeneous groups should be better defined. Some of these groups were
too small to investigate outcomes to PD-1 blockade using this nine-
group system. Using a simpler four-driver group system reliant on
three genes, we show tumors that harbor BRAF V600 or NRAS Q61
alterations are associated with a shorter TTF with anti-PD-1 mono-
therapy than those with NF1 or other driver alterations. Driver class
remained significantly associated even after accounting for TMB,
ECOG performance status, and AJCC stage. One potential explanation
is the mechanism of ERK activation may have downstream effects on
T-cell inflammation, which has been independently associated with
outcomes to PD-1 blockade (23). For example, NRAS Q61 strongly
activates downstream PI3K signaling, which has been associated
with reduced rates of tumor-infiltrating lymphocytes compared
with BRAF V600-mutant melanomas (24, 25). These relationships
between driver alteration, primary site, and TTF did not hold for
patients receiving nivolumab plus ipilimumab. This may be due to
the higher risk disease treated with PD-1 combination versus PD-1
monotherapy in this nonrandomized cohort, but also likely reflects
distinct immunologic mechanisms underlying response to these
agents (26, 27). These findings require validation in additional
datasets, and a more detailed analysis of how the melanoma tumor
microenvironment varies by MAPK driver is required to under-
stand how it influences outcomes to checkpoint inhibition inde-
pendently of TMB.

In the few extraordinary responses to targeted inhibition that we
described, the tumors either had oncogenic fusions (NTRK, ROS1, and
BRAF) or a coalteration in BRAF K601E and MEK1 E203K. MEK1
E203K is sensitive to feedback inhibition of RAF, in contrast to indels
in the MAP2KI inhibitory domain from amino acids 98-113 (28).
Thus, this tumor requires both BRAF K601E, a class 2 RAS-
independent kinase intact mutation, and MEK1 E203K, a RAF-
dependent amplifier, to maximally amplify ERK output. This may
explain why the tumor was uniquely sensitive to the allosteric MEK
inhibitor, trametinib. Unfortunately, these durable responses were
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uncommon. In routine clinical practice at a tertiary care center,
patients with BRAF V600 wild-type melanoma resistant to PD-1
and/or CTLA-4 inhibition have a roughly one in 21 chance of
harboring a driver alteration on MSK-IMPACT testing that can be
treated successfully for over 6 months. The largest unmet need remains
successful targeting of the RAS pathway in RAS- and NFI-mutant
tumors.

This analysis has some limitations. BRAF V600E-mutant tumors
were likely underrepresented because patients were unlikely to be
offered MSK-IMPACT if prior testing had detected this alteration.
This series also had a relatively high rate of unknown primary
melanomas, which may reflect referral bias to a tertiary cancer center.
Nevertheless, this report shows cutaneous and unknown primary
melanomas have a similar genomic profile. TTF for checkpoint
inhibition in BRAF V600-mutant melanomas may be influenced by
the unique availability of effective BRAF-MEK inhibitor therapy in the
second-line setting. PD-L1 status was unknown for most samples, so
its association with other clinical features could not be assessed.
Mutation calls may vary by bioinformatic pipeline, so additional
analyses using other NGS platforms should be performed to assess
the reproducibility of these clinical-genomic correlations.

In summary, multigene tumor molecular profiling can identify
MAPK driver alterations in almost all cutaneous and unknown
primary melanomas. Strong ERK activators insensitive to RAS-
mediated feedback inhibition, such as BRAF V600E, BRAF fusions,
NRAS Q61, and MAPZK1 indels, were typically the sole oncogenic
alterations in the MAPK pathway, whereas melanomas with altera-
tions reliant on RAS-mediated output, such as class 3 BRAF alterations
and MAP2K] missense mutations, often contained alterations in other
MAPK pathway drivers, such as NFI truncations. While melanomas
with oncogenic fusions are rare, patients with these fusions exhibited
deep, durable responses to the appropriate kinase inhibitor. This
suggests broader panel NGS should be considered in all patients with
BRAF V600 wild-type melanomas who progress through PD-1-based
therapy. Finally, a hierarchical mutually exclusive driver classification
system defined distinct groups of cutaneous and unknown primary
melanomas that derived varying benefit from PD-1 monotherapy.
Current trials enrolling PD-1-resistant melanomas will likely be
enriched with RAS-activating mutations.
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