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Multisession Radiosurgery for Hearing
Preservation
Abdul Rashid, PhD,* Sana D. Karam, MD, PhD,* Beenish Rashid, BS,*

Jeffrey H. Kim, MD,† Dalong Pang, PhD,* Walter Jean, MD,‡

Jimm Grimm, PhD,§ and Sean P. Collins, MD, PhD*

Clinically relevant dose-tolerance limits with reliable estimates of risk in 1-5 fractions for
cochlea are still unknown. Timmerman 's limits from the October 2008 issue of Seminars in
Radiation Oncology have served as the basis for clinical practice, augmented by updated
constraints in TG-101 and QUANTEC, but the corresponding estimates of risk have not yet
been well-reported. A total of 37 acoustic neuroma CyberKnife cases from Medstar George-
townUniversity Hospital treated in 3 or 5 fractionswere combinedwith single-fractionGamma
Knife data from the 69 cases in Timmer 2009 to form an aggregate dataset of 106 cochlea
cases treated in 1-5 fractions. Probit dose-response modeling was performed in the DVH
Evaluator software to estimate normal tissue complication probability. QUANTEC recom-
mends keeping single-fraction maximum dose to the cochlea less than 14 Gy to maintain less
than 25% risk of serviceable hearing loss, and our 17.9% risk estimate for 14 Gy in 1 fraction is
within their predicted range. In 5 fractions, our estimate of the Timmerman 27.5 Gy maximum
cochlea dose limit was 17.4%. For cases inwhich lower risk is required, the Timmerman 12 Gy
in 1 fraction and the TG-101 limit of 25 Gy in 5 fractions had an estimated risk level of 11.8%
and 13.8%, respectively. High-risk and low-risk dose tolerance with risk estimates in 1-5
fractions are all presented.
Semin Radiat Oncol 26:105-111 C 2016 Published by Elsevier Inc.

Radiosurgery or hypofractionated radiotherapy (stereotactic
body radiotherapy [SBRT]) is a well-established modality

for the management of acoustic neuromas (AN) that are slow-
growing benign tumors. These tumors arise from the cochlea-
vestibular nerve complex within the internal auditory canal
and can expand into the cerebellopontine angle. A “wait-and-

see” approach is an option but these tumors can grow causing
compression of the seventh and eighth cranial nerves and
brainstem, as well as hearing loss, andmany patients inevitably
require treatment.1-4 Régis et al3 found that only 78%, 43%,
and 14% of patients in the wait-and-see group maintained
tumor control and functional hearing at 1, 2, and 5 years,
respectively, whereas the Gamma Knife group had 88%, 79%,
and 60% of patients for the same endpoints and time periods.
Although AN usually grow slowly, Kondziolka et al4observed
that more than 95% of their patients in the “wait-and-scan”
group had measurable growth by the 10-year follow-up.
Common treatments of these tumors are microsurgical resec-
tion, radiation therapy, or conservative management with
radiologic surveillance.5,6 Potential complications following
SBRT for AN include trigeminal neuropathy, facial nerve
dysfunction, ataxia, and hearing loss.
Leksell7 and Norén et al8 were the first to treat AN with

Gamma Knife (Elekta Inc, Stockholm, Sweden) beginning in
the 1960s, with reports of very favorable results.7-9 In the mid-
1980s, with the worldwide availability of the Gamma Knife
and with the development of linear accelerators adapted for
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stereotactic irradiation, this noninvasive radiation treatment
became more popular. By the year 2000, several authors had
claimed excellent local control rates with radiosurgery, com-
parable with surgery, but with a high rate of preservation of
hearing and facial and trigeminal nerve function.9-12 Seeking a
potential fractionation benefit, several groups began fractio-
nated regimens on a stereotactic linac9,13-15 or CyberKnife
(Accuray Inc, Palo Alto, CA).16-19 However, despite more than
40 years of clinical use and numerous publications, quantita-
tive estimates of complication risks as a function of cochlea
dose remain elusive.
As SBRT is increasingly being applied for the treatment of

AN, it is important to determine reliable dose-tolerance limits
for the cochlea to guide clinical practice. The goal of this study
was to determine clinically relevant SBRT dose-tolerance limits
for hearing preservation, when treatments are given in 1-5
fractions, based on statistical analysis of clinical outcomes data.

Single-Fraction Cochlea Dose
Tolerance
A PubMed search for cochlea AND ((stereotactic AND
radiation) OR radiosurgery) found 96 articles in June 2015,
but among them we found no dose-response models, and
could only find a single publication with cochlea doses and
hearing preservation outcomes for each patient, Timmer
et al20. The cochlea Dmax data from this Gamma Knife series
of 69 patients treated from June 2003-November 2007 at the
Radboud University Nijmegen Medical Center in The Nether-
lands are reproduced in Figure 1(A). Patient and treatment
characteristics are already described,20 so only the details most
important for interpreting our dose-response model are
summarized in Table 1. The Gardner-Robertson scale,21

shown in Table 2, includes 3 frequency pure tone average

(PTA) as well as speech discrimination scores. The Timmer
et al20 study didmeasure speech discrimination scores for each
patient but unfortunately theywere not published as a function
of dose for each patient like the PTAwas in Figure 1(A), so our
probit dose-response model could only be based on PTA
alone. The selected end point was 50 dB of hearing loss in
1 ear, which is part of the Gardner-Robertson scale for
serviceable hearing.

Statistical modeling
The probit model22,23 was used to estimate the normal tissue
complication probability (NTCP) dose-response for cochlea
Dmax in terms of the normalized slopem and the TD50(V) 50%
tolerance dose (TD) for a given partial volume (V) by

NTCP¼ 1ffiffiffiffiffi
2π

p
Z t

�1
e�x2=2dx ð1Þ
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Figure 1 Single-fraction cochlea tolerance. (A) Change in pure tone average (PTA) from study by Timmer et al as a function
of cochlea Dmax; the 6 data points shown are the ones exceeding 50 dB of hearing loss and the rest may be found in the
article by Timmer et al.20 (B) Corresponding dose-tolerance model for the end point of 50 dB hearing loss. AE, adverse
event; dB, decibel; MLE, maximum likelihood estimate. (Color version of figure is available online.)

Table 1 Summary of Patient and Treatment Characteristics

Characteristic Present
Study

Timmer
et al20

Number of cases 37 69
Median age, y 58 (31-85) 53 (24-76)
Median follow-up, mo 51 (15-108) 14.2 (3-56)
Median tumor
volume, cc

1.03 (0.14-7.60) 2.28 (0.02-10.20)

Number of cases per fraction
1 Fraction 0 69
3 Fractions 2 0
5 Fractions 35 0

Delivery method CyberKnife Gamma Knife
o50 dB hearing
preservation

4 6
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where t¼ðDv�TD50ðVÞÞ=ðm� TD50ðVÞÞ, m is the normal-
ized slope, and Dv is the dose to the given volume V. To
determine statistical dose-tolerance limits from the cochlea
data, we used the maximum likelihood parameter fitting
technique24,25 because of its effectiveness in extracting the
most information from limited datasets. Maximum likelihood
principles were derived by Fisher26 and have been proven in
many instances to be theoretically optimal. The maximum
likelihood parameter fitting technique has been applied to
NTCP modeling24,25 by

Lðγ1,γ2,⋯Þ¼ ∏
mcomplications

NTCPmðγ1,γ2,⋯Þ

� ∏
nno complications

ð1�NTCPnðγ1,γ2,⋯ÞÞ ð2Þ

For the model in Eq. (1), only 2 parameters need to be
solved, γ1¼m and γ2¼TD50ðVÞ. This analysis was performed
using the DVH Evaluator software tool (DiversiLabs LLC,
Huntingdon Valley, PA). Confidence bands were estimated
using the profile likelihood method.27,28 The result is plotted
in Figure 1(B) and summarized in Table 3.

Multisession Cochlea Dose
Tolerance
Patient characteristics anddetails of the treatments have already
been described19 and are only briefly overviewed here. A total
of 55 patients with vestibular schwannoma treated with
CyberKnife at Georgetown University Hospital were assessed.
All data were reviewed under an institutional review board
approved retrospective protocol. A minimum of 12-month
follow-up was required to be included in the analysis. Overall,
18 patients had either no (n¼ 9) orr1-year (n¼ 9) follow-up
data; 37 patients withZ1-year follow-up data were analyzed.
Pre- and posttreatment radiographic digital imaging was only
available on 32 patients. In all, 19 patients had pre- and
postaudiogram data for analyses, 14 of whom had serviceable
hearing before the radiation treatment. Hearing, facial nerve
function, and tumor volume or mass effect were analyzed with
the Gardner and Robertson,21 House and Brackmann,29 and

Koos et al30 scales, respectively. A total of 29 patients were
reached by phone and perception of hearing preservation, as
well as overall satisfaction with the treatment was evaluated.
Patient characteristics are summarized in Table 1. The

median age was 58 years (range: 31-85) with a 70% male
majority. The laterality was divided almost equally between left
and right side. None of the patients had received any prior
treatment for their tumor. Most patients (81%) presented with
hearing loss as an initial symptom, whereas ataxia or disequi-
librium and tinnitus were the presenting symptoms in 57%
and 46% of the patients, respectively. None of the patients had
any symptoms of the facial nerve involvement on presentation.
Treatment characteristics are also included in Table 1. The

median tumor volume was 1.03 cc with a range from 0.14-
7.60 cc. Most patients (95%) were treated with 25 Gy in 5
sessions, whereas only 2 patients were treated to 21 Gy in 3
fractions. Most tumors (54%) were Koos Grade 2.
Probit dose-response models of the 5-fraction data and the

aggregate data were generated using the DVH Evaluator
software, with the same end point and methodology as was
used for the single-fraction dataset. Figure 1(B) is in terms of
pure physical dose for the single-fraction dataset, and Figure 2
(A) is in terms of physical dose for the 5-fraction dataset.When
each dataset was analyzed individually, no biological effective
dose conversions were used, other than converting the two 3-
fraction cases to 5-fraction equivalent dose.
A 3-fraction regimen using linear quadratic (LQ) conversion

was chosen for the aggregate analysis to alleviate the uncer-
tainty of the α/β parameter, as 3 fractions are midway between
the fractionation of the 2 datasets. QUANTEC31 used α/β ¼
3 Gy, and we iteratively determined that the α/β parameter
with maximally likelihood fit was 4.2 Gy. However, the
maximal effect of α/β ¼ 4.2 Gy when converting any of the
single-fraction or 5-fraction published dose-tolerance limits to
3-fraction equivalent doseswas less than 3%, sowe usedα/β¼
3 Gy for the remainder of the analysis. The Timmerman32 limit
of Dmax¼ 12 Gy in 1 fraction had the largest difference; if α/β
¼ 4.2 Gy, the LQmodel equates this to 18.7 Gy in 3 fractions,
but if α/β ¼ 3 Gy, then it would be 19.2 Gy in 3 fractions,
resulting in a difference of 2.7%. For the purpose of this initial
dose-response study, we opted to use α/β¼ 3 Gy and the LQ
model for data conversion. The 3-fraction aggregate model is
shown in Figure 2(B), and this model was used to estimate all
the risk levels of the published dose-tolerance limits in the
DVH Risk Map33 in Figure 3.

Discussion
Hearing loss following AN radiotherapy is a critical quality of
life issue and the principle dose-limiting toxicity. Currently,

Table 2 Gardner-Robertson Scale21

Grade Description PTA, dB Speech
Discrimination, %

I Good-excellent 0-30 70-100
II Serviceable 31-50 50-69
III Nonserviceable 51-90 5-49
IV Poor 91-max 1-4
V None Not

testable
0

Table 3 Probit Dose-Response Model Results

Dataset Fractions Number of Cases TD50, Gy (68% CI) m (68% CI) LLmax

Timmer et al20 1 fx 69 23.98 (17.97-82.60) 0.3994 (0.28-0.65) �19.63
Present study 5 fx 37 37.64 (30.77-65.12) 0.3251 (0.22-0.53) �11.76
Aggregate 3 fx Equiv. 106 34.55 (28.71-53.43) 0.3764 (0.29-0.52) �31.53
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there are limited data on dosimetric predictors of hearing loss
following radiosurgery for AN. A better understanding of the
dose-response relationship would enable clinicians to provide
more realistic expectations to patients as they weigh their
treatment options. Hearing preservation rates in Table 2 of
QUANTEC ranged from 22%-94%,31 and crude rates of
hearing preservation in the present study and in Timmer
et al20 study are 89%and 91%, respectively, so these arewithin
the favorable range of results.
The present study has several identifiable limitations. The

patient populationwas derived from a single-institution cohort
that can limit the translation of our work to the general
population. In our study, we analyzed only patients with 12
months or more of follow-up, and the median follow-up was
51 months, up to 108 months. The Timmer et al20 study
showed shorter follow-up, with some patients having only 3
months of follow-up, whichmight not have been long enough
for some complications to materialize. The differences in
ranges of tumor volumes and the irradiated volumes of cochlea
between the 2 datasetsmay also be an important factor, but the
individual dose-volume data for the tumor and cochlea were
not available. For the most accurate comparisons, full hearing
audiometry should be evaluated consistently for several
hundred patients for a predetermined length of follow-up
such as 5 years. These limitations make it difficult to directly
compare the results by Timmer et al20 to those of our own
patient population, so instead we simply created an aggregate
model in 1-5 fractions. Despite the limitations, we feel that the
present study provides a useful initial aggregate model for
hearing preservation in 1-5 fractions, to guide clinical practice
as the more rigorous results are forthcoming.
Perhaps the largest difference between the present study and

the study by Timmer et al20 is pretreatment serviceable
hearing. In our previous study, the crude rate of hearing
preservation of all 37 patients with at least 12 months of
follow-up was 89%, and of the 26 patients with serviceable
hearing pretreatment, the rate was 73% at median 5-year

follow-up via telephone survey. In the study by Timmer et al20

the crude rate of hearing preservation of all 69 patients was
91% but only 32 of the patients had serviceable hearing
pretreatment, and among those patients hearing preservation
withTokyo class34 A, B, orCwas only 41%.However, Timmer
et al20 did not specify which Dmax doses corresponded to the
patients with serviceable hearing pretreatment, and they did
not provide Tokyo class data as a function of Dmax, so we can
only analyze the overall hearing preservation. Nevertheless,
it is remarkable that the study by Timmer et al20 is the only
one we could find that presented doses and outcomes per
patient, so we are very appreciative of the data they did
provide.
Fractionation offers to minimize radiation-associated tox-

icity by allowing normal tissue repair between treatments. If
the 73% hearing preservation at a 5-year median follow-up
could be compared with 41% hearing preservation with no
patients followed to 5 years, it would be encouraging for the
fractionated approach, but there are too many differences to
make any such claims. The telephone survey is a useful
indicator of patient-reported outcomes, but cannot be com-
pared directly to the Tokyo classification or audiograms or the
Gardner-Robertson scale. A more reasonable comparison is
that among 14 fractionated cases with serviceable hearing and
with audiograms, the hearing preservation rate was 78% at a
median follow-up of 18 months. This length of follow-up is
more similar to the median 14.2 month follow-up shown by
Timmer et al,20 but differences still remain in terms of the
grading scales and other factors we have mentioned. These
findings are particularly important, given that hearing loss is
one of the principal dose-limiting toxicities, and further
investigation is urgently needed to resolve the remaining
questions conclusively.QUANTECmade insightful comments
regarding several of the grading scales and provided an
extensive set of recommendations for improved follow-up
metrics that could help to discern outcomes more clearly in
future studies.31

Figure 2 Dose-tolerance model for the end point of 50 dB hearing loss (A) for the 5-fraction patients in the present study in
terms of physical dose, and (B) aggregate model of Timmer et al20 single-fraction data with our 5-fraction data, modeled
together in terms of 3-fraction equivalent dose. 3fx, 3 fraction; 5fx, 5 fraction; AE, adverse event; dB, decibel; MLE,
maximum likelihood estimate. (Color version of figure is available online.)

A. Rashid et al108

Downloaded for Anonymous User (n/a) at Lehigh Valley Health Network from ClinicalKey.com by Elsevier on March 04, 
2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.



Stereotactic radiosurgery (SRS) in a single session is an
accepted standard of care for the treatment of AN. A recent
analysis of the patterns of care for ANshas shown an increase in
the use of radiotherapy, particularly for patients with tumors
under 2 cm in size.35 However, the optimal radiotherapy
approach (Gamma Knife SRS, fractionated stereotactic radio-
therapy, single-fraction linear accelerator-based radiosurgery,
and proton-based radiotherapy) remains unclear and there are
no randomized studies comparing either surgery or radio-
therapy, or a radiotherapeutic approach with another.
The size limitations for single-fraction SRS are generally

recommended to be approximately 1.5-3 cm, with a known
increase in side effects to normal tissue with increasing size.36

The recommended dose in most institutions is r13 Gy. By
allowing normal tissue repair between treatments, fractionated
radiotherapy converts the radiobiological benefit of fractiona-
tion into a wider therapeutic window. In this study, we show
low rates of hearing loss associated with fractionated radio-
therapy. It can be difficult to compare results across the
literature because of the differences in classifying progressive
disease, as well as differing follow-up regimens and duration.
Additionally, only smaller series are available with this concept
of fractionated radiotherapy (RT) with no randomized clinical
trials available. However, a recentmeta-analysis of 449 patients
that pooled data from 3 large German Centers showed
comparable local control outcomes.37 Similarly, at median
follow-up of 67 months, loss of useful hearing was equivalent

between the groups (16% for the SRS group and 14% for the
fractionated RT group). These good control rates with fractio-
nated radiation therapy deepen the controversy of the radio-
biology of ANs. It also raises the question on whether size
criteria should exist to guide clinicians in the application of
single-fraction vs multisession fractionated RT.
The LQ model was originally developed for modeling of

survival curves of cell lines38-40 and eventually became the
most widely used tool for describing time-dose relationships
for conventional fractionation.41-43 Intensive debate has arisen,
however, regarding whether LQ is applicable at large doses per
fraction or not,44,45 and the debate continues to the present
time.46-54 Certainly, we could not resolve such a controversy
with Dmax doses of just a critical structure from only about a
hundred cases. We took steps to mitigate the uncertainty, by
first modeling the single-fraction data in pure physical dose by
itself and also by modeling the 5-fraction data in physical dose
by itself. Then by comparing these to a 3-fraction aggregate
model, we could see that therewere somedifferences, but none
too alarming. The maximum likelihood fitted α/β was 4.2 Gy,
and by comparing dose conversions with the α/β ¼ 3 Gy
nominal value, differences in conversions of published dose-
tolerance limits were all less than 3%. The largest percentage
difference was for the Timmerman 2008 Dmax o 12 Gy in 1-
fraction limit, which equated to 18.7 Gy or 19.2 Gy in
3 fractions depending on whether α/β ¼ 4.2 Gy or α/β ¼
3 Gy was used, respectively. Note that Timmerman 2008 used

Figure 3 DVH Risk Map for cochlea in 1-5 fractions. (Color version of figure is available online.)
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20 Gy for the 3-fraction limit,32 based on biological effective
dose conversions using the universal survival curve,55,32 and
that is only about 4% different than 19.2 Gy. It is possible that
alternate models such as universal survival curve, linear
quadratic cubic,56 or others,57-59 may fit better, but it would
require a large amount of data for testing. In the meantime, we
have provided a probit model of cochlea dose tolerance in 1-5
fractions with LQ conversions, which should help clinical
practice until these issues are more fully resolved. Future
studies should also analyze the volume effects.

Conclusions
Emami et al60 specified conventionally fractionated dose-
tolerance limits for most grade 3 adverse events following
radiotherapy in terms of TD 5/5 and TD 50/5 dose-tolerance
limits—the 5% and 50% risk levels at 5 years. However, 50%
risk of hearing loss is higher than desired—the QUANTEC
guidance of 25% risk is more reasonable. Based on a dose-
response model of 2 clinical datasets, the 14 Gy in 1-fraction
limit and the 27.5 Gy in 5-fraction limit had 17.9% and 17.4%
risk, respectively. For cases in which a lower risk is required,
the 12 Gy in 1-fraction limit and the 25 Gy in 5-fraction limit
had 11.8% and 13.8% risk, respectively. Caveats include the
limited amount of data as well as the wide variety of grading
and follow-up. Data from more patients and longer follow-up
is required to determine the true dose tolerance, but these
findings support current clinical practice for SBRT.
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