
METHODOLOGY 
•  100	datasets	were	generated	with	5	input	features	and	3	output	features,	following	a	normal	

distribution,	with	each	of	100,	1,000,	10,000,	and	100,000	samples.	
•  Isotropic,	homoscedastic,	and	heteroskedastic	noise	was	added	to	each	dataset.	
•  TLS,	GTLS,	and	each	algorithm	were	used	to	fit	each	dataset.	
•  The	mean	and	standard	error	of	the	weight	recovery	error	and	data	reconstruction	error	were	

reported	

ABSTRACT 
Motivated	by	applications	as	a	kernel	of	nonlinear	regression	algorithms,	
the	row-wise	weighted	total	least	squares	regression	problem	is	examined	
to	find	a	consistent	and	accurate	estimator.	Specifically,	the	estimator	will	
have	a	time	complexity	linear	in	the	number	of	observations	and	a	space	
complexity	constant	in	the	same	value,	as	the	number	of	observations	can	
be	quite	large	in	many	modern	applications,	often	many	orders	of	
magnitude	larger	than	the	number	of	input	and	output	features.	Further,	to	
accommodate	large	data	sets,	an	algorithm	is	sought	to	update	an	
intermediate	representation	from	each	observation,	allowing	for	
parallelization	of	the	necessary	computation.	Four	related	algorithms	are	
proposed,	based	on	approximating	the	noncentral	second	moment	of	the	
underlying	data	by	a	weighted	mean,	requiring	only	linear	time	in	the	
number	of	observations.	Experimental	findings	show	the	proposed	
algorithm	to	be	competitive	with	existing	methods	intended	to	solve	other	
variants	of	the	Total	Least	Squares	problem.	Directions	for	continued	
iteration	and	further	investigation	are	proposed.	
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INTRODUCTION 
Motivation	
•  Linear	regression	is	useful	in	economics,	scientific	modeling,	signal	denoising,	and,	recently,	machine	learning.	
•  Neural	Networks	are	usually	trained	with	Stochastic	Gradient	Descent,	but	this	is	very	slow.	
•  Extreme	Learning	Machines	(ELMs)	(Huang	et	al.)	are	a	recent	method	of	training	neural	networks	very	quickly,	but	it	

only	works	for	Single-Layer	Feed-Forward	neural	networks,	a	very	restrictive	class.	
•  Extensions	to	deep	neural	networks	exist,	such	as	Multi-Layer	ELM	and	Deep	ELM,	but	they	ignore	second-order	

information,	allowing	noise	to	build	up	over	layers.	A	method	of	considering	which	directions	are	easier	or	harder	to	
modify	may	help	improve	these	methods.	

	
Background	
•  Ordinary	Least	Squares	(OLS)	is	one	common	method	of	linear	regression,	which	minimizes	the	sum	of	the	squared	

distances	of	the	points	from	the	regression	in	the	y-direction	only.		
•  This	is	equivalent	to	assuming	data	is	exact	in	the	x-direction,	but	noisy	in	the	y-direction,	and	the	amount	of	

noise	is	the	same	for	each	observation,	but	this	is	often	an	unreasonable	assumption.	
•  Total	Least	Squares	(TLS)	accounts	for	errors	in	input	variables	by	minimizing	the	sum	of	the	squared	distances	of	each	

point	to	the	regression	perpendicular	to	the	regression.	
•  This	is	equivalent	to	assuming	isotropic	noise	distributions	and	the	same	amount	of	noise	for	each	observation.	

Noisy	often	has	internal	correlations	this	doesn’t	account	for,	however.	
•  Generalized	Total	Least	Squares	(GTLS)	allows	the	noise	in	the	input	and	output	variables	to	be	correlated.	This	means	

the	noise	is	assumed	to	be	homoscedastic	(the	same),	but	not	isotropic	(uncorrelated)	for	all	samples.	
•  Row-Wise	Weighted	Total	Least	Squares	(RW-TLS)	expands	on	this,	allowing	each	sample	to	have	a	different	noise	

distribution.	This	is	called	heteroskedasticity,	and	it	provides	a	very	general	model,	applicable	to	many	situations.	

Approximating the Row-Wise Weighted Total 
Least Squares Linear Regression Solution 

 
Cole Plepel1 

1 Illinois Mathematics and Science Academy 

	

CRITERIA 
•  Time	complexity:	linear	in	number	of	observations,	ideally	parallelizable	

•  The	number	of	observations	can	be	far	greater	than	the	number	of	features	in	many	
applications	

•  Statistical	consistency:	convergence	to	the	underlying	regression	
•  Experimental	utility:	data	reconstruction	and	recovery	of	weight	matrix	

Figure 1. OLS Regression Error. 
OLS minimizes the sum of the 
squares of the red distances. 

Figure 2. TLS Regression Error. 
TLS minimizes the sum of the 
squares of the red distances. 

Figure 3. OLS Noise 
Distribution. OLS assumes noise 

exists only in the y direction, 
and that the variance is 

constant. 

Figure 4. TLS Noise 
Distribution. TLS assumes noise 

is isotropic with constant 
variance across data points. 

Figure 5. GTLS Noise 
Distribution. GTLS assumes 

noise follows the same 
distribution for each data point. 

Figure 6. RW-TLS Noise 
Distribution. RW-TLS allows the 

noise distributions to vary 
arbitrarily between data points. 
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PROPOSED APPROACH 
•  The	ideal	solution	could	be	recovered	from	the	covariance	matrix	of	the	underlying	data	

through	eigen-decomposition.	
•  Each	observation	provides	an	estimate	of	this	covariance	matrix.	
•  Estimate	the	underlying	covariance	matrix	as	the	mean	of	the	estimates,	weighted	by	their	

respective	precision	tensors.	
•  Alternatively,	use	a	scalar,	such	as	the	inverse	of	the	spectral	radius,	determinant,	or	trace	of	

the	noise	covariance	matrix	as	the	weight	

DISCUSSION 
•  Experimental	results	are	promising	for	the	proposed	algorithms.	
•  Routes	for	further	improvement	exist.	For	instance:	
•  The	mapping	from	E	to	the	estimated	weight	matrix	is	highly	nonlinear.	Accounting	for	

this	nonlinearity	may	allow	for	a	more	statistically	efficient	estimator.	
•  Other	weights	on	the	influence	of	each	M	matrix	on	the	estimate	of	the	covariance	

matrix	of	the	underlying	data	may	yield	further	improvements	in	accuracy	or	
computational	efficiency.	

CONCLUSION 
An	effective	and	efficient	algorithm	for	the	Row-Wise	Weighted	Total	Least	Squares	linear	regression	problem	would	
have	applications	in	various	fields,	such	as	economics,	image	processing,	statistical	modelling,	and	machine	learning.	
Approximating	the	covariance	matrix	of	the	underlying	data	appears	to	provide	an	effective	basis	for	such	a	solution.	
The	proposed	algorithms	perform	comparably	with	existing	methods,	and	variants	of	the	initial	algorithm	improve	
on	the	experimental	accuracy	of	the	algorithm,	outperforming	existing	methods	on	the	sample	datasets.	Routes	
exist	to	further	improve	on	the	proposed	algorithms.		Additional	routes	exist	which	may	further	improve	the	
accuracy	and	efficiency	of	the	proposed	algorithm.	


