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Role of extracellular DNA in 
Enterococcus faecalis biofilm 
formation and its susceptibility to 
sodium hypochlorite

Objective: This study investigated the role of extracellular deoxyribonucleic 
acid (eDNA) on Enterococcus faecalis (E. faecalis) biofilm and the susceptibility 
of E. faecalis to sodium hypochlorite (NaOCl). Methodology: E. faecalis biofilm 
was formed in bovine tooth specimens and the biofilm was cultured with or 
without deoxyribonuclease (DNase), an inhibitor of eDNA. Then, the role 
of eDNA in E. faecalis growth and biofilm formation was investigated using 
colony forming unit (CFUs) counting, eDNA level assay, crystal violet staining, 
confocal laser scanning microscopy, and scanning electron microscopy. 
The susceptibility of E. faecalis biofilm to low (0.5%) or high (5%) NaOCl 
concentrations was also analyzed by CFU counting. Results: CFUs and biofilm 
formation decreased significantly with DNase treatment (p<0.05). The 
microstructure of DNase-treated biofilms exhibited less structured features 
when compared to the control. The volume of exopolysaccharides in the 
DNase-treated biofilm was significantly lower than that of control (p<0.05). 
Moreover, the CFUs, eDNA level, biofilm formation, and exopolysaccharides 
volume were lower when the biofilm was treated with DNase de novo when 
compared to when DNase was applied to matured biofilm (p<0.05). E. faecalis 
in the biofilm was more susceptible to NaOCl when it was cultured with DNase 
(p<0.05). Furthermore, 0.5% NaOCl combined with DNase treatment was as 
efficient as 5% NaOCl alone regarding susceptibility (p>0.05). Conclusions: 
Inhibition of eDNA leads to decrease of E. faecalis biofilm formation and 
increase of susceptibility of E. faecalis to NaOCl even at low concentrations. 
Therefore, our results suggest that inhibition of eDNA would be beneficial in 
facilitating the efficacy of NaOCl and reducing its concentration.
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Introduction

Enterococcus faecalis (E. faecalis) is a bacterium 

frequently recovered from infected root canal 

systems.1,2 This bacteria is difficult to remove since it 

is able to form biofilms and survive under a wide range 

of acidic and basic conditions and prolonged periods of 

nutritional deprivation.3,4 E. faecalis biofilms consist of 

exopolysaccharides, proteins, lipids, and extracellular 

deoxyribonucleic  acid (eDNA).5,6 The dense and 

protected environment of a biofilm may facilitate gene 

transfer and enhance biofilm stability.7 As a major 

structural component of many different microbial 

biofilms, the importance of eDNA was first reported in 

Pseudomonas aeruginosa.5 The eDNA is released via 

autolysis in a fratricidal or suicidal manner and/or active 

release through membrane vesicles and nanofibers in 

E. faecalis biofilms.6,8 Previous reports have attributed 

a crucial role to eDNA in the formation, mechanical 

stability, and maturation of bacterial biofilms in general 

and E. faecalis biofilms in particular.9-11 Irrigation is 

critical to remove microorganisms from root canal 

systems. NaOCl is the most frequently used material 

for endodontic treatment, it is an antiseptic and 

inexpensive lubricant that has been used at dilutions 

ranging from 0.5% to 5.25%.12 Usually, it is assumed 

that a higher concentration of NaOCl increases 

the efficacy in removing bacteria within root canal 

systems; however, severe complications of NaOCl 

extrusion during endodontic treatment can occur at 

high concentrations.13 NaOCl is a strong oxidizing 

agent and may cause significant damage when in 

direct contact with tissue, including rapid hemolysis 

and ulceration, inhibition of neutrophil migration, 

and destruction of endothelial and fibroblast cells.14 

Therefore, there have been several alternative 

approaches proposed to improve the effectiveness 

of lower-concentration NaOCl solutions to avoid 

extensive tissue damage; however, these options 

have many limitations, including the requirement of 

inconvenient equipment.15-19 Since eDNA is an essential 

component of E. faecalis biofilm, it can be speculated 

that its inhibition using a simple agent can be another 

strategy for effective biofilm removal. However, to our 

knowledge, there has been little information regarding 

the effect of eDNA on E. faecalis biofilm in endodontic 

study models. Therefore, the aim of this study was 

to investigate the role of eDNA in the formation of E. 

faecalis biofilm in bovine root canal systems through 

DNase, a known eDNA inhibitor. Moreover, this study 

highlights the susceptibility of the bacteria to NaOCl 

by eliminating eDNA in the biofilm.

Methodology

Preparation of specimens
This study used recently extracted single-rooted 

bovine central incisors. The teeth were immersed in 

1% NaOCl solution for 24 h for surface disinfection. 

Following, each tooth was horizontally sectioned 5 

mm in length below the cementoenamel junction 

using a diamond saw (AEU-25, Aseptico, Woodinville, 

WA, USA) at 15,000 rpm. The root canals of the 

cylindrical specimens were enlarged using a 3.1 mm 

diameter round bur. Next, each specimen was vertically 

sectioned with a diamond saw into cylindrical halves 

(Figure 1a). Finally, the smear layer was removed 

using 17% ethylenediaminetetraacetic acid solution. 

To prevent bacterial contamination, the specimen 

was steam-sterilized in an autoclave (LAC-5101SD, 

DAIHAN Lab Tech, Namyangju, Korea) at 121°C for 

20 minutes. To ensure dentin contamination only 

through the main root canal wall, the outer surface of 

the sectioned specimens was varnished with a double 

layer of nail polish.

Infection of the specimens and DNase treatment
E. faecalis (bacterial strain ATCC 29212) was 

aerobically cultured in sterile brain heart infusion 

(BHI; Difco Laboratories, Detroit, MI, USA) medium 

at 37°C. The BHI plates contained 1.5% (wt/vol) of 

agar (Difco Laboratories). The specimens were placed 

vertically in a 48-well plate (SPL, Daejeon, Korea), 

and E. faecalis (6×105 CFU/mL) was transferred to 

each well. Following, the plates were incubated at 

37°C for 2 days and divided into 3 groups (n=9): (i) 

E. faecalis in BHI (control), (ii) E. faecalis in BHI with 

DNase (ELPIS, Daejeon, Korea) treatment at 2 U/μl/

ml for 1 h after 2-day incubation (DNase-1h), and (iii) 

E. faecalis and DNase (2 U/μl/ml) in BHI (DNase-2d).

Colony forming unit (CFU) counting and eDNA 
measurement

The specimens were washed with sterile water 

and then transferred into a 1.5 ml tube containing 

1 ml of sterile water. Following, the specimens were 

sonicated to collect eDNA using a sonifier (10 s, two 
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times at 20% energy level) (VCX 130PB; Sonics & 

Materials, Newtown, CT, USA). CFU counting was 

performed by plating serial dilution of an aliquot (0.1 

ml) of each specimen on BHI agar plates. The rest 

were centrifuged at 10000×g at 4°C for 10 min and 

the supernatant was filtered. For eDNA measurement, 

the supernatant was treated with DNA-binding dye, 

SYBR Green (Invitrogen, Carlsbad, CA, USA). eDNA 

concentration was measured with excitation at 485 

nm and emission at 535 nm using a fluorescence 

microplate reader (HIDEX, Turku, Finland).

Crystal violet staining
Crystal violet staining was performed to assess the 

biofilm mass in the specimens. The specimens were 

washed with sterile water and added 0.1% crystal 

violet (Sigma-Aldrich, St. Louis, MO, USA). Following, 

the specimens were kept at room temperature for 10 

min. Next, they were rinsed with sterile water, treated 

with 30% acetic acid (Fisher Scientific, Fair Lawn, 

NJ, USA), and transferred to a 96-well plate. The 

absorbance at 595 nm was then measured (µQuant, 

Biotek Instrument, Winooski, VT, USA).

Confocal laser scanning microscopy (CLSM)
One μM of Alexa Fluor 647-labeled dextran 

conjugate (Molecular Probes, Eugene, OR, USA) was 

added to the BHI broth with E. faecalis (6×105 CFU/

ml), and then incubated for 2 days at 37°C. The 

fluorescence-labeled dextran was incorporated during 

exopolysaccharide matrix synthesis over the course 

of biofilm development. After 2 days, 2.5 μM SYTO 

9 green fluorescent nucleic acid stain (480/500 nm; 

Molecular Probes) was added and incubated for 30 

min to label the bacteria in the biofilms. Following, 

CLSM imaging was conducted using an LSM 510 

META microscope (Carl Zeiss, Jena, Germany) (EC 

Plan-Neofluar 10×/0.30 M27). Three independent 

experiments were performed and seven image stacks 

(512×512 pixel tagged image file format) were 

collected per experiment. For the measurement of 

exopolysaccharides thickness, 512×512 pixel fields 

were collected in a stack of seven slices at a 7.86 

µm interval. The exopolysaccharides volumes were 

quantified from the confocal stacks using COMSTAT 

(www.comstat.dk; Kongens Lyngby, Denmark).20

Scanning electron microscopy (SEM)
The biofilm formed on the specimens was rinsed 

with phosphate buffered saline (Sigma-Aldrich) and 

fixed in 2.5% glutaraldehyde (Sigma-Aldrich) for 2 h 

at 4°C. Following, the specimens were dehydrated in 

a graded series of ethanol (25–100%) and air-dried 

them at room temperature for 1 h. The samples were 

coated with gold-palladium and observed using SEM 

(Hitachi, Tokyo, Japan). The images were obtained 

on a Hitachi SU-70 using BSE detector with 10.0 Kv 

voltage acceleration.

NaOCl treatment and CFU counting
To study the E. faecalis susceptibility to NaOCl in 

biofilm treated with DNase, the specimens with E. 

faecalis (6×105 CFU/ml) and DNase (2 U/μl/ml) were 

cultured for 2 days at 37°C. After incubation, the 

biofilms formed on the specimens were treated with 

0.5% or 5% NaOCl for 5 min. Next, the specimen was 

transferred to a 1.5 ml tube that contained 1 ml of 

sterile water and sonicated to break the biofilms. CFU 

counting was performed by plating serial dilution of an 

aliquot (0.1 ml) of each specimen on BHI agar plates.

Statistical analysis
All experiments were performed at least three 

times. Data was analyzed using 1-way analysis of 

variance, followed by Tukey’s test. The data were 

presented as mean and standard deviation.  Statistical 

significance was considered when p>0.05. These 

analyses were performed with the SPSS software 

(SPSS 12.0 K for Windows; SPSS Inc., Chicago, IL, 

USA).

Results

Effect of eDNA on E. faecalis biofilm formation 
and stability

The DNase-treated groups exhibited significantly 

fewer CFUs when compared to the control (p<0.05) 

(Figure 1b). Furthermore, the DNase-2d group 

showed fewer CFUs when compared to the DNase-

1h group (p<0.05). eDNA levels collected from the 

specimens of each group showed that there was 

also a significant decrease in DNase treated groups 

(p<0.05) (Figure 1c). Crystal violet staining showed 

significantly decreased biofilm formation by 13% 

(DNase-1h) and 15% (DNase-2d) when compared to 

the control (p<0.05) (Figure 1d). Similar to the CFU 

counting results, there was a significant difference 

between the two experimental groups (p<0.05). As 
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Figure 1- (a) Schematic illustration of the bovine root canal specimen. (b) CFUs of E. faecalis biofilms from the specimens. (c) eDNA 
measured using SYBR green. (d) Biofilm formation measured by crystal violet staining. Control: cultured only in BHI for 2 days, DNase-
1h: treated with DNase for 1 hour after 2-day culture in BHI, and DNase-2d: cultured with DNase for 2 days. *Statistical significance was 
determined at p<0.05

Figure 2- (a) Exopolysaccharides volume in the biofilms. (b-d) Representative CLSM images for measuring exopolysaccharides. Control: 
cultured only in BHI for 2 days, DNase-1h: treated with DNase for 1 hour after 2-day culture in BHI, and DNase-2d: cultured with DNase 
for 2 days. *Statistical significance was determined at p<0.05
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shown in Figure 2a-d, CLSM analysis showed that 

the exopolysaccharides volume in the DNase-treated 

biofilm was significantly lower than the control 

(p<0.05). Moreover, there was a statistical difference 

between the DNase-1h and DNase-2d groups in 

terms of exopolysaccharides volume (p<0.05). In 

SEM observation, DNase-treated biofilms exhibited 

more porous and disintegrated characteristics when 

compared to the untreated control (Figure 3).

Effect of DNase on the susceptibility of E. 
faecalis in the biofilm to NaOCl

To investigate whether removal of eDNA from 

biofilms enhanced the susceptibility of E. faecalis to 

Figure 3- SEM images of E. faecalis biofilm formed in the bovine root canal specimens. (a-c): cultured only in BHI for 2 days (Control), (d-f): 
treated with DNase for 1 hour after 2-day culture in BHI (DNase-1h), and (g-i): cultured with DNase for 2 days (DNase-2d). Magnification: 
(a, d, and g) - 30X, (b, e, and h) - 1000X, and (c, f, and i) - 50000X

Figure 4- CFU assay with NaOCl treatment. E. faecalis were cultured in BHI without DNase (gray bar) or with DNase (black bar) for 2 days, 
and then the biofilms were treated with 0.5 or 5% of NaOCl for 5 minutes. Control: cultured only in BHI for 2 days without NaOCl treatment. 
*Statistical significance was determined at p<0.05
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NaOCl within the biofilms, 0.5% and 5% NaOCl were 

used to treat the biofilms with or without DNase for 2 

days. As shown in Figure 4, the biofilms treated with 

NaOCl had significantly fewer CFUs when compared 

to the control that received no NaOCl treatment 

(p<0.05). Regardless of the concentration, NaOCl had 

significantly higher efficiency in eliminating E. faecalis 

when it was used with DNase (p<0.05). Furthermore, 

5% NaOCl exhibited a higher bactericidal effect against 

E. faecalis than 0.5% with or without DNase. However, 

0.5% NaOCl with DNase showed similar efficacy to 5% 

NaOCl without DNase (p>0.05).

Discussion

eDNA is an important component in the extracellular 

matrix of E. faecalis biofilms.5,6 Researchers have 

investigated the function of eDNA to control biofilm 

formation since bacterial biofilms are related to 

persistent infections and provide strong bacterial 

resistance against antimicrobial agents.21-25 E. 

faecalis is commonly isolated from failed root canal 

systems due to its ability to survive conventional 

endodontic treatment and periods of nutrient limitation 

and other challenging growth conditions.3,26 The 

sensitivity of E. faecalis biofilms – particularly early 

in development – to DNase has been previously 

reported.5,27 We hypothesized that a clinical model of 

EF biofilm formation would show decreased biomass 

by combining eDNA reduction and NaOCl treatment.

First, we investigated the effects of eDNA inhibition 

on the growth of E. faecalis per se and its biofilm 

formation. With DNase, the inhibitor of eDNA used 

in this clinical model, it was important to determine 

the duration of its application into the infected root 

canal system. For this end, we cultured E. faecalis 

with DNase for 2 days or treated the biofilms that had 

formed for 2 days with DNase for 1 hour. The results 

showed that E. faecalis and its biofilm, as well as 

eDNA, were removed more effectively when cultured 

in the presence of DNase when compared to treatment 

with DNase after biofilm formation (Figure 1b-d). A 

recent study reported that DNase treatment does not 

disperse 24-hour matured E. faecalis biofilms formed 

in root canal systems.28 Furthermore, some studies 

have demonstrated that eDNA played an important role 

in the early stage of biofilm formation.6,10 Our results 

are consistent with a model in which early exposure 

of DNase to the biofilm may be more effective for E. 

faecalis biofilm formation inhibition when compared to 

the short-term treatment of DNase to matured biofilm.

Next, we identified the structure of the E. 

faecalis biofilm by CLSM and SEM according to 

DNase treatment. We detected exopolysaccharides 

surrounding bacterial cells in situ using CLSM to further 

confirm the potential of biofilm formation in E. faecalis. 

The results showed that the DNase-treated groups 

exhibited a significantly lower exopolysaccharides 

volume when compared to the control group (Figure 

2a-d). Moreover, the exopolysaccharides volume of 

the DNase-2d group was significantly lower than 

that of the DNase-1h group. In fact, polysaccharides 

are believed to be a major prerequisite for biofilm 

formation.29 Notably, there have been several studies 

showing the existence of a correlation between 

eDNA and exopolysaccharides.30-32 In this regard, 

the dimensional evaluation of exopolysaccharides 

may reflect the amount and integrity of the biofilm. 

Furthermore, this evaluation can be an alternative 

method for the crystal violet staining. The staining 

quantification is known to be less useful in determining 

clinically-relevant biofilm factors, although being0 

generally used to evaluate biofilm biomass in toto.33 In 

SEM observation, the microstructure of DNase-treated 

biofilms exhibited more disintegrated characteristics 

when compared to the control (Figure 3). Previous 

studies demonstrated that eDNA was required to 

stabilize the biofilm structure, and the addition of 

exogenous DNases could prove a potent strategy for 

controlling biofilm growth.7,34 Therefore, it can be 

suggested that DNase might hamper biofilm formation 

by producing structure defects in the extracellular 

matrix. Corroborating previous studies, our results 

obtained by CLSM and SEM indicate that eDNA 

removal may interfere with the structural integrity of 

the nascent biofilm.

Lastly, we investigated the effect of eDNA removal 

from the biofilm on the susceptibility of E. faecalis 

to NaOCl. NaOCl is the most widely used material 

to irrigate in dental procedures due to its high 

antimicrobial activity and capacity to dissolve organic 

tissue.35 However, NaOCl has drawbacks including an 

unpleasant odor and high toxicity that induces irritation 

when in contact with surrounding tissue.36 Therefore, 

in an attempt to reduce the NaOCl concentration, 

we used DNase and investigated whether DNase 

increases the efficacy of NaOCl against E. faecalis 
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in biofilms. According to the results of this study, 

5% NaOCl exhibited a higher antibacterial effect 

against E. faecalis than 0.5% with or without DNase. 

However, the gap in elimination efficiency between 

5% and 0.5% NaOCl became smaller when DNase 

was used, mainly for potentiation of the effect of 

the low NaOCl concentration. Notably, 0.5% NaOCl 

combined with DNase exhibited statistically similar 

values to 5% NaOCl without DNase, suggesting that 

DNase adjunctive treatment could represent a useful 

strategy for improving antimicrobial action while 

reducing NaOCl concentration.

Conclusions

The results suggest that inhibition of eDNA leads to 

decrease of E. faecalis biofilm formation and increase 

E. faecalis susceptibility to NaOCl especially at low 

concentration (0.5%). Therefore, our results suggest 

that inhibition of eDNA would be beneficial for removal 

of E. faecalis biofilm, especially by facilitating the 

efficacy of NaOCl and reducing its concentration for 

safer clinical use.
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