
(ARIPUC 23, 1981 p. 119-152)

SYNTAX, MORPHOLOGY, AND PHONOLOGY IN
TEXT-TO-SPEECH SYSTEMS

Peter Molbrek Hansen

The paper is concerned with the integration of linguistic informa
tion in text-to-speech systems. Research in synthesis proper is at
a stage where the need for systematic integration of comprehen
sive linguistic information in such systems is making itself felt
more than ever. A surf ace structure parsing system is presented
whose main virtue is that it permits linguists to express syntactic
as well as lexi.cal and morphological regularities and iTTegularities
of a langua.ge in a simple and easy-to-learn formalism. Most
aspects of the system are seen in the light of Danish and -
sporadically - English and Finnish surf ace structure.

I. INTRODUCTION

In recent years there has been considerable progress in the design of
automatic text-to-speech systems (henceforth TfS-systems) for many
languages. The development of advanced techniques and tools for gen
erating high-quality synthetic speech signals has gradually entailed a shift
of focus in speech synthesis research from technological to phonetic
aspects.

At the linguistic end of TfS-systems there has, however, been little
emphasis. on the development of general tools and formalisms, and the
exploitation of insights from computational linguistics has hitherto been
sporadic. All TfS-systems are faced with the problem of supplying the
synthesis component with sufficient phonetic information, typically in the
form of phonetic transcriptions derived from text, but there has been a
tendency to use rather diverse algorithms relying heavily on language
specific peculiarities instead of using formalisms and parser algorithms of
a more general nature. Incidentally, in most older systems syntactic and
morpholo~cal information is not exploited at all (Carlson & Granstrom

120 MOLBJEK HANSEN

1975), in other systems morphological and lexical information is exploited
but not combined with syntactic information (Molbrek Hansen 1983). In
some of the best systems, lexical as well as morphological and syntactic
information is integrated, but morphology and syntax appear as distinct
components, each with its own structure and algorithm (Allen et al. 1987,
p. 23ff).

As the acoustic quality of synthetic speech as such becomes comparable
to that of natural speech, the need for higher level linguistic information
of all kinds relevant to pronunciation increases, and it is therefore impor
tant to develop formalisms which permit linguists to express lexical, mor
phological, and syntactic structuring in linguistically meaningful ways, and
to develop parsing systems which can cope with information expressed in
such formalisms in an efficient way.

The major part of the present paper is the presentation of a set of con
ventions for declaring linguistic structures of various kinds in a linguist
oriented way: the declarative conventions permit the linguist to formulate
lexical (including morphophonemic), morphological, and syntactic struc
turing in a language independent formalism which is easy to learn. The
system is called SSPS (surface structure parsing system), and its main
components are a lexicon system, a constituent structure grammar, and a
chart-based parser. In SSPS no formal distinction is made between syntax
and morphology: surface structures are seen as tree structures - deep of
flat as the case may be - which can be described by a set of rewrite rules,
i.e. a production system, whose terminal symbols are morphemes and
whose root symbol may be any category which the linguist wishes to con
sider, e.g. STEM, WO RD, or SENTENCE. The system includes a
parser, which "understands" the declarations of the formalism and inter
prets them as a set of instructions for analyzing orthographic input and
for transforming it to another format, e.g. a morphophonemic representa
tion.

In Section II the basic declarative conventions of SSPS are introduced,
the linguistic phenomena which motivate them are illustrated, and the
system is classified typologically in relation to other formalisms. After
this introduction the individual components of SSPS are described in
detail.

In section III the use of SSPS in a ITS-system for Danish is illustrated.
In particular, the use of morphosyntactic features to reduce overgeneration
in both syntax and morphology is exemplified.

In section IV the SSPS parser is presented in outline, and I conclude the
paper in section V with a brief personal comment on the possibilities of
harmonizing the phonological components with the linguistic components
in ITS-systems.

SYNTAX, MORPHOLOGY, AND PHONOLOGY

II. THE SSPS FORMALISM
A. Basic Properties

121

The core of the formalism is a constituent structure grammar describing
what one might call "categorial surface structures". By this term I refer to
surface structures viewed as arrangements of traditional, structurally
motivated categories labelled word, root, stem, affix, etc.

An extremely simple grammar of this type - describing only morphologi
cal structure - might look like (1)

(1)
Word -> Root
Word -> Word Suffix
Word -> Prefix Word
Root -> ren (clean)
Prefix -> u (un-)
Suffix -> lig (-l y)
Suffix -> hed (-ness)

The grammar (1) has the well known formal properties of a context free
grammar, in this case one including recursive rules. Such a grammar is to
all intents and purposes powerfull enough to accomodate any structural
type one may want to operate with in morphology and surface syntax.

As can easily be seen, however, the particular grammar (1) overgenerates.
In addition to generating (or accepting) the word urenlighed "uncleanli
ness", assigning to it the structure (2), which is the natural one for this
word, it will assign several other structures to it, for instance (3), thus
coming out with several distinct "solutions".

(2)

Word

W~ffi x

Pre~ord

Wo~uffix

I
Root
I

u ren lig hed

122

(3)

u

Word

ord

W~ffix

~
Word Suffix
I

Root
I

ren lig hed

MOLBIEK HANSEN

Moreover, (1) will generate and accept incorrect word forms like
uuuurenliglighed Clearly (1) is too permissive. On the other hand, since
(2) can in fact be defended as a "correct" structural description of uren
lighed, the recursive constituent structure grammar seems to express at
least some morphological properties of Danish words in a satisfactory
way, and thus should not be dismissed off hand. What is needed, of
course, is some systematic way of expressing restrictions in the combinabil
ity of constituents.

As is well known, grammars like (1) usually leave out rewrite rules whose
right side consists of a single terminal symbol (the four lower rules in
(1)). Instead the preterminal symbols, i.e. the symbols on the left side of
the rewrite symbol in rules of the latter kind, appear formally as the ter
minal symbols of the grammar, and any such symbol is supposed to
represent an individual lexical item belonging to the category designated
by that symbol. In other words, the grammar presupposes the existence of
a lexicon whose items are marked off as belonging to one or more
categories. Technically, such a lexicon can be arranged in at least two
basic ways: 1. as a simple list of items each of which has one or more
categorial labels, or 2. as a set of lists such that each list has a categorial
label and such that all items in a particular list belong to the category
identified by the label of that list. In the former case a terminal symbol
in the grammar -refers to any item in the lexicon whose categorial label
corresponds with the symbol. In the latter case a terminal symbol in the
grammar refers to any item of the list whose categorial label corresponds
with the symbol. The former strategy is often chosen for syntactic parsing
systems where the terminal symbols of the grammar refer to word classes
like nouns, adjectives, verbs, etc. In such systems a lexical item like the
English word drink would appear in the lexicon as something like this:

drink noun, verb

SYNTAX, MORPHOLOGY, AND PHONOLOGY 123

In SSPS the latter strategy has been adopted: The lexicon is partitioned
into separate lists with labels of the type prefixes, roots, suffixes, endings,
etc., i.e. labels ref erring to distributionally defined morpheme types, and a
terminal symbol in the grammar refers to any item from lists having the
symbol as its label. Thus, a rule like

STEM -> pref root

presupposes the existence of two lexicon partitions labelled 'pref and
'root', respectively, and it says that a STEM may consist of an item from
the former followed by an item from the latter. Since the terminal sym
bols of the grammar refer (indirectly) to morphemes, a traditional syntac
tic rule like

NP-> adj noun

where the terminal symbols are word classes, must be expressed in a dif
ferent way in SSPS, where there is typically no lexical partitions labelled
'adj' or 'noun', since words are not in general coextensive with mor
phemes. If a linguist wishes to write an SSPS rule referring to a word
class, he must use features. In several recent formalisms - see e.g. Kart
tunen (1986) and Whitelock (1988) - grammar symbols are not atomic as
they are in the grammar (1) and in pure context free grammars. This is
also the case in SSPS. Lexical entries have an internal structure compris
ing a set of features which may designate, among other things, such pro
perties as word class, and the symbols in the grammar may refer to such
features. In fact the above-mentioned rule would typically be translated
into

NP-> WORD(?A) (?N)WORD

in an SSPS grammar for Danish. The contents of the parentheses express
restrictions in the combinability of two consecutive constituents of the
category WORD, namely restrictions referring to the feature composi
tions of the constituents. The technical details of these notational facili
ties will be described in section III.

The use of features does not mean that SSPS is formally stronger (in the
sense of the Chomsky hierarchy) than a context free grammar: the gram
mar and the lexicon system could in principle be translated into a context
free grammar with atomic symbols. But the advantages of relying on
featured constituents are 1) that it is a natural way to express individual
properties of morphemes, 2) that it is easy to modify algorithms for
atomic context free parsing in such a way as to take feature restrictions
into account, and 3) that such algorithms tend to be faster than parsers
for atomic context free grammar-lexicon systems with equivalent strength.

124 MOLB/EK HANSEN

The strategy of having terminal grammar symbols refer to distributionally
defined morpheme types is a natural consequence of the fact that SSPS is
designed to describe both morphology and surface syntax: roots, prefixes,
etc. are the terminal constituents of words in much the same way as
nouns, adjectives, etc. are the terminal constituents of surface sentences.
The use of a single constituent structure grammar to cover both surface
syntax and morphology is in accordance with - and partly inspired by -
Selkirk's extended version of Chomsky's (1970) X-bar theory, cf. that Sel
kirk includes morphological constituents in the hierarchy of categorial
types (Selkirk 1982, p. 6f). The design of SSPS is not, however, seriously
committed to any specific linguistic theory.

In recent years Koskenniemi's (1983) two-level morphology has dominated
theory and practice in computational analysis of morphological structure.
I have argued elsewhere (Molbrek Hansen forthcoming) that this kind of
analysis is not well suited to systems where the specific format of the out
put of the morphological component is important. In a ITS-system the
output format is of course particularly important, because it is supposed
to contain the phonological information in string form, more particularly
as strings of morphophonemic segments and boundaries. As a conse
quence, the lexicon system of SSPS differs radically from that of two-level
morphology, particularly in that the output strings are entirely independent
of the parser algorithm and of the rules describing orthographic alternation
of morphemes.

As the linguistic component of a ITS-system, the SSPS parser has three
main tasks:
1) to identify input texts as sequences of morphemes in written form. In
this connection orthographically alternating forms of the same morpheme
must be taken into account, cf. e.g. that the morpheme {gammel} 'old'
appears in two different orthographic shapes, gammel and gaml.
2) to output structures which contain sufficient relevant phonological
information for the pronunciation of the text to be computed. This
implies, among other things, the conversion of the string format of the
terminal material, i.e. the matched morphemes, into a format which is
phonetically interpretable.
3) to confer the identified morpheme strings with lexical and grammatic
information in order to exclude incorrect analyses, such as ['man 'gn
'dre..'ff] *'the man door' as the interpretation of the input text manden
d~r, instead of the correct one: ['man'gn 'd0.'ff] 'the man dies'.

Of these tasks 3) is indisputably the most difficult one. Overgeneration,
i.e. the assignment of several structures to the same input, is a problem
for all parsing systems, especially for systems including morphological
analysis, and it might be argued that at least derivational and composi
tional morphology represents an unnecessary complication for a ITS
system, since the use of a lexeme-based lexicon comprising traditional dic
tionary forms would eliminate most sources of overgeneration at the
word level (such as the incorrect analyses kul-tur and kult-ur in addition

SYNTAX, MORPHOLOGY, AND PHONOLOGY 125

to the correct kultur 'culture'). This argument can not, of course, be
rejected on the grounds that a dictionary-based, morphology-free TTS
system would need a very large dictionary, since neither memory limita
tions nor lexical search time would be prohibiting factors in the light of
hardware and software facilities now available. But it can be rejected on
the grounds that morphological knowledge as such is needed anyway,
especially for the interpretation of unidentified input words such as neo
logisms and spontaneous formations of new compounds. In most
languages the inventory of morphemes is more well~defined than the
inventory of well-formed lexemes, and the morphological structure per se
is often crucial for pronunciation. Reduction - ideally elimination - of
overgeneration must be obtained by integrating as much linguistic
knowledge as possible, not by ignoring such knowledge. SSPS represents a
step in that direction, at least for ITS-systems.

B. The Lexicon System

Since the terminal symbols of the constituent structure grammar refer to
distributionally defined morpheme types, the lexicon is subdivided into
separate partitions, each comprising entries of a particular type. How
ever, the actual inventory of lexicon partitions in an SSPS system tends to
be slightly richer than suggested by the coarse description of the princi
ples given in the introduction. Thus in the SSPS-based TTS
implementation for Danish there are several prefix lists, several root lists,
etc. The main reason for this is that the basic morpheme types - in Dan
ish as well as in e.g. English - form distinct classes with respect to their
combinability within single words with other basic types: in general, pre
fixes of Latin or Greek origin do not combine with native roots and vice
versa, and there are other combinatorial restrictions as well which can be
most naturally expressed by lexicon partitioning. A few examples of these
combinatorial restrictions will make this point clear. (In the examples
'Latin' stands for 'of Latin origin', etc., and 'native' stands for 'inherited
from Old Danish or borrowed from Middle Low German')

Most Latin Prefixes must be followed by a Latin root, and most native
prefixes must be followed by a native root: absolution 'absolution' and
afl(/Jsning 'release', not *abl(/Jsning. and *afsolution.

Most Latin suffixes must succeed a Latin root or stem, and most native
suffixes must succeed a native root or stem: immunitet 'immunity' and
dumhed 'stupidity', (literally: 'dumb-ness'), not *dummitet and
*immunhed. These correlations are somewhat asymmetric, though:
*immunhed seems (to me at least) less ill-formed than *dummitet.

Many Latin roots do not occur without a Latin prefix: restaurere 'restore'
vs. * staurere.

Certain Latin suffixes, m particular -ere, may, however, succeed certain

126 MOLBIEK HANSEN

native roots: snedkerere 'to do carpentering' (snedker = 'carpenter').

Certain native suffixes may, likewise, succeed Latin roots or stems:
antikvarisk 'second-hand' (about purchase of books) and abrubthed
'abrubtness', cf. *immunhed above, and cf. the English -ness which
behaves similarly.

I do not intend to give an exhaustive treatment of these combinatorial
restrictions here, but for a lexicon system relying on distributionally
defined morpheme types such phenomena obviously appeal to a more
fine-grained partitioning than a mere division into 'prefixes', 'roots', etc.

1. MORPHOGRAPHEMIC ALTERNATION

In addition to the division of the lexicon according to the combinatorial
pattern of morpheme types, there may be a subdivision of the lexicon
partitions according to the morphographemic alternation pattern of lexical
items. Any parsing system whose input format is orthographic and whose
terminal symbols are morphemes, must cope with the fact that many mor
phemes appear in contextually conditioned orthographic variants, cf.
English heavy - heavier, fit - fitting. As far as Danish is concerned, roots
exhibit three basic graphemic patterns: some roots show an alternation
between single and double final consonants, cf. kat - katten 'cat - the cat';
others show an e - zero alternation before final l, n or r, cf. konvertibel -
konvertible 'convertible' (common gender, singular, indefinite vs. plural or
definite); most roots, however, are graphemically constant in all contexts,
cf. hus - huset 'house - the house'. Likewise, certain Latin prefixes exhibit
graphemic alternation (reflecting phonological processes (assimilations) in
Latin): inaugurere - immobil - irrelevant - illativ; adhrerere - assimilere -
allativ.

In Koskenniemi's two-level morphology (cf. above) the elimination of such
orthographic ("surface") variation is taken care of by a set of rules
expressing the contextually determined correspondences between "lexical"
strings and "surface strings" in a letter-by-letter fashion. In SSPS this job
is done in quite a different way which will be described below; but the
information on the alternation patterns is linked with a subdivision of the
lexicon partitions. In the Danish SSPS-system, for instance, there is a lex
icon partition labelled rn which contains native roots. This lexicon parti
tion is subdivided into four groups: rnrr, whose items exhibit no alterna
tion (hus - huse), rnrd, whose items exhibit alternation between single and
geminate final consonant (kat - katten), rnrsr, whose items exhibit simple
e - zero alternation before final l, n or r (frengsel - frengsler), and rnrsd,
whose items exhibit geminate consonant + e - single consonant + zero
alternation before final l, n or r (gammel - gamle).

Since SSPS is a declarative system, the main partitioning as well as the
subdivision according to graphemic alternation patterns and the exact

---------------------- -- --

SYNTAX, MORPHOLOGY, AND PHONOLOGY 127

nature of each alternation pattern must be declared explicitly to the sys
tem. This is done by writing lines in a lexicon declaration text according to
a set of naming conventions. A few examples - rather than extensive
prose - will make these conventions and their meaning clear. In order to
inform the system of the existence of the above-mentioned lexicon parti
tions containing native Danish roots, we simply write the following lines
in the lexicon declaration text:

LEX rnrr
LEX rnrd
LEX rnrsr
LEX rnrsd

These declarations tell SSPS that there exist four lexicon partitions and
that the terminal grammar symbols rnrr, rnrd, rnrsr, and rnrsd will match
items from the corresponding lexicon partition.

Although I am concerned with the lexicon here, it may be expedient at
this point to mention an important convention concerning the use of ter
minal symbols in grammar rules, a convention which is closely linked with
the lexical naming conventions: Any terminal symbol in a grammar rule will
refer to lexical items from any concrete lexicon partition whose name begi.ns
with the symbol. In the Danish application of SSPS four other concrete
root lexicon partitions are declared (and exist), namely rfrr, rfrd, rfrsr,
and rfrsd:

LEX rfrr
LEX rfrd
LEX rfrsr
LEX·rfrsd

containing roots of foreign (Latin and Greek) origin. The convention just
mentioned means that the symbol r in a grammar rule will refer to any
item from these eight lexicon partitions (since their names all begin with
r); the symbol rf and the symbol rfr will refer to any item from the four
latter lexicon partitions; the four-letter symbol rfrsd, on the other hand,
will only refer to any item from the concrete lexicon partition rfrsd. This
naming convention enables the user to chose whatever degree of con
creteness he sees fit when formulating particular grammar rules contain
ing terminal symbols, i.e. rules referring to lexical items: since the alterna
tion pattern of items from e.g. a particular root type is typically irrelevant
in connection with the formulation of a rewrite rule referring to items of
the distributionally defined type in question, the linguist should not be
forced to worry about such matters when writing such a rule.

On the other hand, the declarations of the lexicon partitions rnrr etc. only

128 MOLB~K HANSEN

inform the system of the existence of such concrete lexicons, and a parser
confronted with an SSPS grammar and orthographic input must of course
cope with orthographic alternation, so the alternation patterns must be
declared to the system somehow. In two-level morphology this declara
tion is taken care of by rules referring to strings of pairs of lexical and
surface (orthographic) characters. In SSPS the alternation patterns are
linked to lexicon partitions. When a concrete lexicon partition has been
declared in the way just mentioned, the system will assume, unless other
wise informed, that its items exhibit no graphemic alternation. Thus, the
above-mentioned concrete lexicon partition rnrr, which contains non
alternating roots, needs no further declaration. But the alternation pat
tern of items which do alternate is declared in a particular alternation
specification text with a syntax of its own.

This text may start with a number of lines beginning with DEF, i.e. lines
defining classes, e.g.

DEF V "aeuioyce0a"

which declares that the symbol V in the remaining lines of the declaration
text stands for any of the characters a e u i o y re 0 a.

The alternation specifications proper are declared in lines beginning with
TYP. Lines of this kind express the alternation patterns of the items of
certain concrete lexicon partitions. Each such line is a series of fields.
The first field is an identification string which should be identical with the
final part of the label of some lexicon partition for which the user wants
to declare a particular alternation pattern: Thus, for each of the concrete
lexicon partitions whose labels end in d, sr, and sd in the Danish system
there is a line whose first field is the identifying string. The next fields
are abstract, symbolic expressions designating a. the identificational shape
of the items in the concrete lexicon partitions, i.e. the shape in which they
appear in their concrete lexicon partition, b. the other shapes in which the
items appear, and c. the contexts in which the alternants occur.

Four type definition lines and four alternation specification lines are
given in (4). The last four lines in (4) describe the behaviour of items
from lexicon partitions with names ending in d, from lexicon partitions
with names ending in sr, from lexicon partitions with names ending in sd,
and from lexicon partitions with names ending in w. (Items from the
latter partitions do not alternate themselves, but their orthographic shape
is relevant to the alternation pattern of preceding morphemes, and this
must be declared explicitly.)

SYNTAX, MORPHOLOGY, AND PHONOLOGY

(4)

DEF V
DEF C
DEF L
DEF W
TYP d
TYP sr
TYP sd
TYP w

"aeuioycE0a"
"rtpsdfgkl bnm"
"rl n"
"ei II

@10:VC>,@M:<!W @11:VC=C=>,@G:>W,@M:VC=C=<
@10:CL>,@G:>W,@M:CL< @11:Cel>,@M:<!W.
@10:VC=C=L>,@G:>W,@M:VC=C=< @11:C=C=el>,@M:<!W
@G:@M

129

The meanings of the keyword symbols appearing in these lines 1.e. the
symbols beginning with @ and the symbol , (comma) are:

@IO: announces the alternant found in the physical lexicon.

@11:, @12: etc. announce other alternants.

@G: announces a graphemic condition which must be satisfied for the
alternant to be legal and which is statable on the basis of the alternant in
question.

@M: announces a graphemic condition which must be satisfied for the
alternant to be legal and which is statable on the basis of the alternant in
question plus additional information based on some other part of the
word in question.

, is a separator between the description of an alternant and the descrip
tion of the corresponding structural condition.

The morphographemic relations themselves are declared by writing struc
tural descriptions of the alternants and of their contextual conditions. A
structural description is a string of a) class symbols representing the
classes defined in the DEF lines, b) concrete symbols, i.e. lower-case
letters representing concrete letters of orthographic strings, and c) one or
both of the symbols < and > representing the left and right boundary of
morphemes in an orthographic string. Each class symbol in a structural
description may be indexed by the symbol = which designates identity,
e.g. if C = occurs in a line, then all C = 's in that line refer to the same
consonant.

Each class symbol (whether indexed or not), each concrete symbol, and
each parenthesized string of such symbols is a substructure which may be
followed by one of the symbols ? , +, and * designating 'zero or one
occurrences', 'one or more occurrences', and 'zero or more occurrences'
of the substructure, respectively, and each substructure may be preceded
by the symbol ! which designates negation (complementation) of the

130 MOLBIEK HANSEN

strings represented by the substructure.

After this brief presentation of the formal declarative structure - a variety
of regular expressions - of the alternation specification text, let us
translate the lines whose first fields are the strings d and w, respectively,
into normal prose, in order to make clear what these lines actually tell
the system.

The line

TYP d @IO:VC>,@M:<!W @Il:VC=C=>,@G:>W,@M:VC=C=<

may be translated thus:

"Items from concrete lexicon partitions whose names end in d appear in
the concrete lexicon partition as strings ending in a vowel belonging to
the defined class V followed by a single consonant belonging to the
defined class C (@IO: VC >); this alternant occurs in orthographic words
on condition that some following morpheme to be checked later in the
word begins with a letter that does not belong to the defined class W
(@M: < !W). Such items also appear as strings ending in a vowel fol
lowed by two identical consonants (@11:VC=C= >); this alternant is only
legal if it is followed to the right by a letter belonging to the defined class
W (@G: > W) and on condition that some following morpheme to be
checked later in the input is preceded by a vowel followed by two identical
consonants (@M:VC=C= <)."

The line

TYPw @G:@M

may be translated thus:

"Items from concrete lexicon partitions whose names end in w do not
exhibit alternation. (This is the default assumption when no @IO, @11,
etc. are mentioned.) Such items are only legal if a condition based on
earlier parts of the input (@M:) is satisfied."

The difference between the meaning of the symbols @M: an @G: should
be noted: @M: expresses the fact that certain combinability restrictions
depend on morphographemic factors not deducible from the knowledge
of the alternation pattern of a single morpheme, whereas @G: expresses
the fact that other combinability restrictions are uniquely determinable by
such knowledge. To spell out the two examples given above: in roots
exhibiting alternation between single and geminate final consonant it may
be safely stated that the alternant with a final geminate can only occur
before shwa-initial suffixes and endings, and before the (native) suffixes

SYNTAX, MORPHOLOGY, AND PHONOLOGY 131

-ig, -isk, and -ing, i.e. before orthographic e and i. This does not mean,
however, that the alternant with final single consonant is excluded before
orthographic e and i; it may actually occur before these vowels if it is fol
lowed by another root ,in compounds, cf. skakentusiast 'enthusiastic
chessplayer', literally 'chessenthusiast', and glasindustri 'glass industry'.
Therefore such alternants can only be rejected if the e or the i turns out
to be initial vowels in items from lexicon partitions of the w-type men
tioned in (4) (shwa- or i-initial endings and suffixes).

Such facilities make it possible to state most alternation patterns in most
languages and to link them with concrete lexicon partitions. In an SSPS
implementation for Finnish, for instance, the inflectional and derivational
suffixes exhibiting vowel harmony would be placed in a lexicon partition
with an appropriate alternation identifier, say vh, as the final part of its
label, and rules of the kind shown in (4) would be set up to express the
alternation pattern characterising items from that lexicon partition.

In order to give this claim substance, I will show how the vowel harmony
rules for Finnish set up by Koskenniemi (1983, p. 76) would be
"translated" to the SSPS formalism. The suffixes exhibiting vowel har
mony would be placed in a concrete lexicon partition declared in the lexi
con declaration text as, say

LEX sfvh

and there would be a section in the alternation specification text looking
like this:

(5)

DEF Hm "aouaoy"
DEF Vnb "aoyie"
DEF Vf "aoy"
DEF Vb "aou"

TYP vh @IO=<!Hm*Vf,@G:Vnb!Hm*< Il=<!Hm*Vb,@G:Vb!Hm*<

The latter specification says that items from lexicon partitions whose label
end in vh have a lexical alternant which begins with zero or more letters
not belonging to the defined class Hm (the segments which are neutral in
relation to vowel harmony) followed by a front vowel (@IO: < !Hm*Vf);
this alternant is only legal in the input if it is preceded by a member of
the defined class Vnb followed by zero or more letters not belonging to
the defined class Hm (@G:Vnb!Hm*<). Such items also appear as
strings which begin with zero or more letters not belonging to the defined
class Hm followed by a back vowel (@11: < !Hm*Vb); this altemant is
only legal in the input if it is preceded by a member of the defined class

132 MOLBIEK HANSEN

Vnb followed by zero or more letters not belonging to the defined class
Hm (@G:Vnb!Hm*<).

These examples should demonstrate that the structural description of gra
phemic alternation patterns may be declared in a general and reasonably
simple language independent format.

Thanks to the formalism the linguist need not worry about how a parser
program handles the information, but it may be mentioned that a parser
which "understands" these conventions can be so constructed as to avoid
superfluous lexical searching in cases where the declarations mention the
@G: condition: thus in the analysis of an input word like anklage 'accuse'
the Danish SSPS parser will never try to match the first four letters with
items from the lexicon partition rnrsr (because the @G: condition of the
sr-line in (4) will tell it that these letters should have been followed by an
e in order for a search in that lexicon partition to be successful if the item
ends in consonant + /). If the parser had not exploited this information it
would have looked for a match in that lexicon partition, it would have
found that these letters actually match the item ankel 'ankle' whose lexical
alternant is ankl, and a hypothesis to the effect that this item is a correct
identification of the first part of the word would have been set up only to
be rejected later in the parse. This treatment of alternation differs cru
cially from the strategy of analysis in two-level morphology, where lexical
search is based on single-symbol identity of the initial search paths of
several items (letter trees, cf. e.g. Koskenniemi 1983, p. 107ff) and there
fore "blind" to the individual orthographic properties of lexical items at
search time.

2. THE STRUCTURE OF LEXICAL ITEMS

The formal declaration of individual lexical items is fairly simple: An item
is declared as a line containing four elements: i. an input string identifier,
ii. an output string, iii. a left feature specification, and iv. a right feature
specification.

The excerpt (6) from the lexicon partition endw (containing endings) in
the Danish TSS-system illustrates the declaration structure for lexical
items.

SYNTAX, MORPHOLOGY, AND PHONOLOGY 133

(6)

i ii iii iv

en- +On NCA / NCA /
en- -On NCB / NCB /
er- +Or PER / PER/
et- +Od NNA / NNA /
et- -Od NNB / NNB /
e- !O AE / AE I
e- -0 PE / PE I
ne- no PER PE / PD I
ene- +OnO SER PNO / PD I
s- +s N A P /GEN/
t- !t AN / AN I

NCA / NCA /

Element i, the input string identifier, is one of the graphemic alternants
of the morpheme. For items which do not exhibit such alternation this
string is simply the orthographic form of the morpheme; for alternating
items the input string identifier is that alternant whose structure is
described as @IO in the alternation specification text of the lexicon parti
tion to which the item belongs, cf. above. The items in (6) all end in the
~ (tilde). This is because they happen to be endings: the tilde matches
"end-of-word", i.e. any sequence of blanks or an "end-of-input" signal. In a
parsing system without any distinction between morphology and syntax
such a character is necessary, since any character is taken to be a relevant
part of the orthographic surface structure.

The input string identifier of a lexical item may be an empty string. In the
Danish lexicon system a lexicon partition declared as bssr contains items
occurring as "linking morphemes" between two parts of a compound.
This lexicon partition only contains three items which are declared as in
(7):

(7)

e
s

-0#
+s#

CD I I
CE / /
CS I I

The first of these items has an empty string as its input string identifier.
For reasons of readability an empty string is identified as the symbol '.
The "morpheme" in question is used to take care of the fact that several
Danish roots appear without any (non-empty) linking morpheme.

134 MOLBJEK HANSEN

Formally it is a genuine lexical item, and its left feature specification, CD,
is in fact responsible for the accept of a compound like vandr~r 'water
pipe' and the rejection of an ill-formed compound like *buksvand.

Element ii is the output representation of the item, i.e. that representation
of the morpheme which is concatenated with the corresponding represen
tations of neighbouring morphemes in the parsed structure. In the TIS
system for Danish the output representation of lexical items is morpho
phonemic in the linear sense of SPE-like phonological descriptions,
(Chomsky & Halle 1968), i.e. it is a sequence of phonetically interpretable
symbols optionally su"ounded by bounda.ry symbols. This output format is a
sensible choice in such a system, due to the trivial fact that the phonetic
representation of a single morpheme in a specific context can not be
determined independently of that context, which is the very reason why a
phonological component is needed. In principle, however, any output
representation is the linguist's choice.

A comparison with the format of the lexical strings which are the output
representations in two-level morphology is in order here. In two-level
morphology the lexical representations contain certain arbitrary symbols
("features", see Koskenniemi 1983, p. 24) whose function is to form con
texts for alternation rules which influence the accept or rejection of a
given item in a given word form, i.e. the lexical representations are partly
determined by factors relevant to the morphemic identification, hence to
the result of the morphological analysis itself. In SSPS - where graphemic
alternation is declared in the alternation specification text - there is no
connection whatsoever between the analysis and the specific format of the
output representation. The linguist is free to base the output representa
tions on whatever considerations he sees fit, but in ITS-systems some
sort of morphophonemic representation is the natural choice.

Elements iii and iv are the feature specifications of 'the item. In order for
the system to treat features correctly, the features - like the lexicon parti
tions and their alternation patterns - must be declared in the declaration
text. Features are declared by entering lines consisting of the keyword
FEATURE followed by a feature name which must be a string of capital
letters, e.g. thus:

FEATURENNA

Each feature name declared in the declaration text refers to a unary
feature, i.e. to a single-valued property; in other words, the SSPS feature
system is not of the attribute-value type used in e.g. the D-PA TR formal
ism (Karttunen 1986). It is possible, however,_ to refer to groups of
defined features, because a feature symbol in lexical items and in grammar
rules refers to all defined unary features whose names begin with the symbol.
In other words, the convention for referring to lexicon partitions holds for
feature references too: if four features are defined in the declaration file
as

SYNTAX, MORPHOLOGY, AND PHONOLOGY

FEATURE NNA
FEATURE NCA
FEATURE NNB
FEATURE NCB

135

then the feature symbol N in a feature specification in the grammar or in
the lexicon refers to all four features, NN refers to NNA and NNB, NC
refers to NCA and NCB, NNB refers only to NNB, etc. A feature specifi
cation in the declaration of a lexical item is a sequence of blank
separated feature names delimited to the right by the character /. An
exclamation mark - designating "presence of all features" - is also legal as
a feature specification, as in (7). This may be used to express "free combi
nability" of sister constituents, cf. subsection II C.

The linguist may use features for whatever purposes he likes, but for
parsing purposes features can be fruitfully used to combine combinatorial
and categorial properties. The combinatorial viewpoint is primarily
relevant for the morphological behaviour of items, whereas the categorial
viewpoint is relevant to the syntactic properties of the items and of the
higher-level constituents into which they enter as terminal constituents, cf.
subsection II C and section III. The division of lexical feature specifica
tions into a right part and a left part is primarily motivated by the com
binatorial properties of morphemes within the word: this division reflects
the fact that many morphemes have "janus properties" from the point of
view of their combinability with other morphemes. This is most obvious
in the case of suffixes: a suffix like -ning which forms noun stems from
verbal roots is entered (in its appropriate lexicon partition) as

mng *niN+ V / NCA PER CSS /

The left feature specification is here simply V which specifies that this
item is combinable with left sister constituents with verbal features
(features whose name begin with V) in their right feature specification,
cf. section II C. The right feature specification contains features specify
ing the nominal properties of the suffix, namely that it acts like a com
mon gender noun (NCA) with plural -er (PER) and with obligatory -s- as
a linking morpheme when it occurs as the first part of a compound
(CSS), cf. redningen - redninger - redningsbcelte 'salvation (sing. and plur.)
- lifebelt'. This "directional" use of features is related to Whitelock's
(1988) treatment of "signs".

Besides expressing combinatorial and categorial properties of lexical
items, the feature specifications play an important role in connection with
the grammar rules, as will be made clear in the next section.

136 MOLBJEK HANSEN

C. The Grammar Formalism

The grammar formalism permits the linguist to write a constituent struc
ture grammar with facilities for expressing combinability restrictions and
feature percolation (cf. e.g. Lau & Perschke 1987), i.e. lexical feature
specifications may be moved to mother nodes under conditions controlled
by the grammar writer.

The skeleton of the grammar formalism is a context free grammar, i.e. a
set of rules which rewrite nonterminal symbols on the left side of the
rewrite symbol (in the examples the symbol->) as a sequence of symbols
specified on the right side of the rewrite symbol. The usual notational
conventions for specifying optionality and repetition are legal: + after a
right-side symbol means one or more occurrences of that symbol; ?
means zero or one occurrence, and * (Kleene star) means zero or more
occurrences. Likewise, the usual convention of designating terminal sym
bols by initial lowercase-letters and nonterminal symbols by initial upper
case letters is followed. As mentioned above, terminal symbols refer to
lexical items from lexicon partitions whose names consist of or begin with
the symbol.

In the following I presuppose familiarity with the basic formal properties
of context free grammars, and I will confine myself to explaining those
properties of the SSPS grammar formalism which are non-trivial. Exam
ples are taken from the existing TTS-implementation for Danish.

1. SYLLABLE COUNT

After the left-side symbol of a rule there may follow a number. Such a
number designates the minimal number of syllables (defined as ortho
graphic vowels) required for the structure (subtree) represented by the
left side symbol to be possible. From the point of view of Danish word
structure a rule like (8) expresses the fact that stems composed of a pre
fix and a root always contain at least two syllables.

(8)

STEM 2 -> pn rn

From the point of view of parsing this facility represents an optimization:
rule (8) tells the parser not to try to build this structure if the remaining
part of the input text contains less than two syllables.

SYNTAX, MORPHOLOGY, AND PHONOLOGY 137

2. FEATURE PERCOLATION

Every lexical item in SSPS has two feature specifications, a left one and a
right one, and so has every constituent in the tree structures described by
the grammar.

Before I describe how constituents, i.e. nodes in the tree structures
described by the grammar, acquire their feature specifications, I must
explain an important convention for the interpretation o't rewrite rules:

(9) It is implicitly assumed that the structure described by a rewrite rule is
legal if and only if it is true of any constituent (represented by any right-side
symbol in the rule) that its left feature specification is compatible with the
right feature specification of its left sister and that its right feature specifica
tion is compatible with the left feature specification of its right sister. For
two feature specifications to be compatible they must share at least one
unary feature, i.e. the set-theoretical intersection of the two feature specifica
tions must not be empty.

How do constituents acquire their feature specifications? Terminal con
stituents inherit their feature specifications from the lexical items with
which they match, and I will therefore illustrate the meaning of this with
rule (8) considered in connection with two strings of terminal material:
ufri and uga. Since u appears in the lexicon partition pn, and fri and ga
appear in the lexicon partition rn, rule (8) would generate both these
words (and the parser would accept them) if (9) were ignored. However,
the right feature specification of u is A (standing for adjectival features,
i.e. formally any feature whose name begins with A), and features of this
kind (actually features named AC, AE, and AN) are also present in the
left feature specification of fri, but not in the left feature specification of
ga. As a consequence, since convention (9) is actually assumed, ufri is a
legal structure, but uga is not, and the parser would accept the string ufri
as the corresponding word, but reject uga.

Nonterminal constituents acquire their feature specifications in either of
two ways: If no explicit features are mentioned in a rule (cf. below), a set of
default conventions guarantees that any nonterminal constituent gets both
a left and a right feature specification. These implicit conventions may be
stated as follows:

(10) Any mother constituent acquires the right feature specification of her
rightmost daughter.

(11) Any mother constituent copies her left feature specification from her
right feature specification.

Principles (10) and (11) represent implicit feature percolation.

(10) expresses "rightheadedness" as a default principle (Selkirk 1982).

138 MOLBJEK HANSEN

This principle guarantees, for example, that suffixed words like redning
get the feature specification of their right member, in this case that the
stem as such gets a right feature specification with the features NC etc.,
(cf. above) percolated from -ning.

3. EXPLICIT FEATURE MANIPULATION IN RULES

A basic grammar symbol is a string of letters, the first of which is upper
case if the symbol is nonterminal, otherwise lower-case. Before and after
a basic grammar symbol a modifier may appear. A modifier is either a
percolator or a restriction. A percolator is one of the symbols-" >. Ares
triction has the following formal syntax:
a left parenthesis + an optional restrictor sequence + a right parenthesis.
A restrictor sequence consists of one or more restrictors separated by
semicolons.
A restrictor consists of a restrictor operator optionally followed by a restric
tor operand.
A restrictor operator is one of the symbols = # ? % : & + -.
A restrictor operand consists of one or more feature symbols separated by
commas.
A feature symbol is a string of capital letters or an exclamation mark, i.e.
its formal structure is that of lexical feature specifications.

A restrictor sequence which mentions features refers to the features of
the left feature specification of the constituent in question if the restrictor
sequence is written at the left side of the basic symbol, and to the right
feature specification if it is written at the right side of the symbol. A
basic grammar symbol with a right-sided restriction may, for instance,
look like this:

STEM(:NN,PN) >

where the basic symbol is STEM which is modified by the right-side res
triction (:NN,PN) and the percolator >.

The function of percolators and restrictions is to override the above
mentioned default conventions concerning the combinability of sister con
stituents and th~ feature percolations to mother constituents. Let me
illustrate the most important functions of such explicit modifiers:

Explicit percolation may be horizontal (designated by the percolator sym
bol >) or vertical (designated by the percolator symbol 1''). Explicit hor
izontal percolation copies the feature specification of a constituent to the
corresponding feature specification of its right sister, carries out a logical
AND-operation with the sister's feature specification, and leaves the
result, i.e. the intersection of the two original feature specifications, as
the sister's feature specification. A rule like

SYNTAX, MORPHOLOGY, AND PHONOLOGY 139

Word-> STEM> endw

declares for instance, that if STEM has inherited the right feature specifi
cation AAA BBB and endw has inherited the right feature specification
BBB CCC, then, in the subtree described by the rule, endw must have the
right feature specification BBB (due to the explicit horizontal percola
tion). Word, too, must have the BBB as both right and left feature
specification, due to default feature percolation from the rightmost
daughter (10) and to the copying convention (11).

Explicit vertical percolation is used to override the default "rightheaded
ness" principle. A rule like

NP-> "N" PP

makes N the head of NP in that both its left and right features (instead
of the features of the rightmost daughter PP) are percolated to the
mother NP. Note that this is the natural description of e.g. English noun
phrases like 'the man with the red hat'. The entire noun phrase has the
features of 'man', including e.g. features designating 3. person and singular
which are relevant for subject-verb agreement in English. Rightheaded
ness is predominant in morphology, it is not so frequent in syntax. The
rule

NP-> "N PP

overrides the principle that a mother copies her left feature specification
from her right feature specification. In this case NP gets the left feature
specification of N (due to explicit percolation) and the right feature
specification of PP (due to implicit percolation).

The restrictors all have an operator and a feature operand. In the expla
nations given below of the functions of restrictors the following abbrevia
tions will be used:
CON = the basic grammar symbol representing the constituent subject to
the restriction.
OF = the original, i.e. inherited or percolated, feature contents of the
relevant (left or right) feature specification of the constituent in question.
GF = the feature operand of the restrictor.
RF = the feature contents of the relevant feature specification resulting
from the operation. Note that OF etc. have the formal syntax FFF (in
the case of a single unary feature) or FFF,GGG, ... (in the case of a com
bination of unary features) where FFF and GGG are feature symbols.

The operators =, #, ?, and % express conditions for the acceptability of
the constituent in the subtree corresponding to the rule.

CON(= GF) means "CON is only legal if OF = GF"
_ CON(#GF) means "CON is only legal if OF = / = GF"

140 MOLBJEK HANSEN

CON(?GF) means "CON is only legal if GF is included in OF"
CON(%GF) means "CON is only legal if GF is not included in OF"

The operators :, &, +, and -, express explicit deviations from the default
feature specifications of the constituent in question.

CON(:GF) means "assign GF to RF"
CON(&GF) means "assign the intersection of OF and GF to RF"
CON(+ GF) means "assign the union of OF and GF to RF"
CON(-GF) means "assign (OF minus GF) to RF"

If there are several (semicolon-separated) restrictors in a restrictor
sequence, the operations may be thought of as being carried out in the
order left to right. Thus CON(&FFF,GGG;-HHH) means "replace the
original (inherited or percolated) contents of the right feature specifica
tion of CON with the intersection of those contents and FFF,GGG; then
subtract HHH from the result and assign the new result to RF".
Regarded as a declaration of the legality of a constituent in a subtree,
such a restrictor series should be interpreted as the final result, i.e. the
declaration says that the constituent is legal if the relevant feature specifi
cation has the contents which would be the result of this series of opera
tions.

After this tour de force through the main formal properties of the lexicon
and grammar formalism, we are in a position to study their use in the
description of Danish surface structure.

ill. SSPS AND DANISH SURFACE STRUCTURE

In this section I will illustrate the use of the SSPS formalism in declara
tions of morphological and surface syntactic structures in Danish. The
rules and declarations may also be interpreted as instructions to the SSPS
parser, cf. section IV.

I will illustrate various aspects of the SSPS formalism by presenting a
sample SSPS grammar (12) which describes simple sentences as having a
rather "flat" structure. Some of the constituent names refer to fields in
Diderichsen's (1962) structural field grammar which is of the "slot and
filler" type (Winograd 1983, p. 79). For ease of reference the rules of the
grammar are numbered.

SYNTAX, MORPHOLOGY, AND PHONOLOGY 141

(12)

1 s 2 -> NP(:!) (?VFA)WORD NP?(:!) PREP?
2 NP 2 -> DETR?> (-N)DESC? KERN(:!) PREP?
3 PREP 2 -> prep NP
4 DETR 1 -> detr
5 DETR 2 -> detr?> NUM(&A,PE)
6 DETR 1 -> NP gen i (: !)
7 NUM 1 -> numri numr*
8 DESC 1 -> (?A)WORD+
9 KERN 1 -> (?N,P)WORD
10 WORD 1 -> STEM endw
11 WORD 2 -> STEM bssw(:!) (: !)STEM endw
12 WORD 3 -> STEM bssw(:!) (:!)STEM bccw(:!) (:!)STEM endw
13 STEM 1 -> rnr
14 STEM 1 -> STEM snr
15 STEM 2 -> pnr(?V) (?V)STEM
16 STEM 2 -> pnr(?V) (%V)STEM(:VED,VET)
17 STEM 2 -> pnr STEM(-V)

These 17 rules describe simple sentences, partly in field grammar terms,
with an NP (the subject) in the "front field" (Diderichsen's fundamentfelt),
with a finite verb as the only filler in the "verbal field" (Diderichsen's nex
usfelt), and with an optional noun phrase (the direct object) followed by
an optional prepositional phrase in the "content field" (Diderichsen's
indholdsfelt).

The meanings of the non-trivial constituent names of the NP are the fol
lowing:
DESC is a "descriptor field" (Diderichsen's beskriverfelt)
DETR is a "determiner field" (Diderichsen's bestemmerfelt)
KERN is a "kernel field" (Diderichsen's kemefelt)
The names of the nonterminal morphological constituents are self
evident, I hope. The terminal symbols refer to items from the lexicon
partitions listed in (13):

142

(13)

prep
detr
numr
numri
geni
endw
rnr
bssw
bccw
snr
pnr

MOLBIEK HANSEN

prepositions
determiners (articles, quantifiers, etc.)
numeral morphemes
numeral morphemes occurring initially
the genitive ending
declensional endings
native root morphemes
linkers in simple compounds
linkers in "deep" compounds
native suffixes
native prefixes

A remark on the use of features will help the reader to better understand
some of the examples given in this section.

Formally, a declared feature name signifies nothing but the existence in
the system of a certain unary feature, and it is the SSPS user's responsi
bility to use features consistently and meaningfully. A special hint for
users of SSPS is, however, in order here: in many cases the same feature
may be used with different interpretations in morphology and syntax,
since these two levels - though formally indistinct in SSPS - are in most
languages complementary as to the roles of features. There is nothing to
prevent the user from using a feature XX as, say, a conjugation class
marker in morphology and as, say, a marker of definiteness in syntax.
Endings play a particular role in this respect in the SSPS description of
Danish used for the ITS-parser: Since left and right feature specifications
are distinct, endings may be assigned morphologically relevant left
features and syntactically relevant right features.

The features mentioned in this section are listed in (14) with two
interpretations, one for morphology (M) and one for syntax (S).

SYNTAX, MORPHOLOGY, AND PHONOLOGY 143

(14)

VFA
PE
PD
AC
AE
AN
NNA
NNB
NCA
NCB

M

past tense in -te
p 1 ura 1 in e
p 1 ura 1 in er
adjectival zero
adjectival e
adjectival t
neutra 1 noun in zero
neutra 1 noun in e
common noun in zero
common noun in e

s

finite verb
indefinite noun, plural
definite noun, plural
common indefinite adj. sing.
definite or plural adj.
neutral indefinite adj. plur.
neutral indefinite noun, sing.
neutral definite noun, sing.
common indefinite noun, sing.
common definite noun, sing.

In the grammar (12) rules 1 - 9 describe the syntactic part of such struc
tures. Rules 10 - 17 describe the "morphological" part. I do not intend to
explain every detail in (12), but I will comment on a handful of charac
teristic properties of a some of these rules.

The restrictor (:!) after the initial NP in rule 1 declares that a noun
phrase combines freely with a finite verb. This is the SSPS way of stating
the fact that there are no agreement-like dependences between subject
and verb in Danish.

The finite verb is represented by the symbol (?VFA)WORD in rule 1, i.e.
the word class property of the category WORD appears as a feature
(VFA meaning "finite") which is percolated from the internal constituents
of the category, ultimately from lexical items. Likewise, note the identifi
cation of a noun as a (N,P)WORD, i.e. a word with the (left) feature
symbols N or P in rule 9. These symbols "unify" nominal features refer
ring to singular and plural declensional classes which are relevant in the
morphological part of the grammar, but this "unification" is accomplished
simply by the "abstract" use of feature symbols made possible by the nam
ing conventions mentioned in section II. In this case all unary features
whose names begin with N or P are covered, but the only thing that
matters from a syntactic point of view is to identify a noun as such, so the
full "morphological" specification is simply left out here; cf. also the iden
tification of one or more adjectives as (?A)WORD+ in rule 8.

Another illustrating aspect of this grammar is the treatment of the depen
dency between the constituents DETR, DESC, and KERN in the NP of
rule 2. A Danish noun phrase is either definite or indefinite. The defi
niteness is expressed in either of two ways, depending on the structure of
the NP: if the noun phrase consists of an isolated noun, the definite form
of that noun (manden 'the man' vs. mand 'man') is responsible for the

144 MOLBJEK HANSEN

definiteness. If, however, the NP is modified by a determiner followed by
an adjective, the definiteness or indefiniteness is expressed solely by that
determiner, and in this case the noun is always in the indefinite form,
whereas the form of the adjective depends on the determiner. If the
determiner is indefinite, the adjective must agree in number and gender
with the noun: en god mand 'a good man'; et godt skib 'a good ship'; nogle
gode ski,be 'some good ships', and this is also the case if there is no deter
miner at all: godt vejr 'good weather', god kaffe 'good coffee', gode skibe
'good ships'. If the determiner is definite, however, the adjective must
agree in definiteness with the determiner: den gode mand 'the good man';
det gode ski,b 'the good ship'.

I will show in some detail how the choice of features in the lexicon and
the manipulation of features in the grammar may be combined to take
care of these phenomena.

Consider the following fragments from lexicon partitions (LP's) in (15).

(15)

LP: rnrr (* non-alternating roots*)
god go:d ! / AC AN AE /
dreng dr~N / NC PE CE /

LP: detr (* non-alternating, unstressed determiners*)
den- d~nh% / AE /
det- de% / AE /
en- enh% / NC AC/
et- eth% / NN AN I
de- di% / PE /
nogle- nol0% / PE /

LP: endw (*endings*)
NC / NCA /
NN / NNA /
AC/ AC/

e- -0 AE / AE NC NN PE/
e- -0 PE / PE /
t- +t AN/ AN/
ne- no p / PD

Consider next the NP 1. den gode dreng 'the good boy': due to principles
(10) and (11) of section II, and due to the fact that no rules below the
NP-level in (12) override these principles for the structure in question,

SYNTAX, MORPHOLOGY, AND PHONOLOGY 145

the lexical feature specifications of the terminal constituents of this NP
are percolated through the "middle" constituents (STEM and WORD) to
the higher constituents DETR, DESC, and KERN, as illustrated in (16)
where - for reasons of space - the irrelevant feature specifications at the
top level and the feature specifications of the terminal (lexical) and mid
dle constituents are omitted.

(16)

()DETR(NC,AE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE)

< ~

~D\

detr STEM endw
I

I
I
I

den-

I

I

god
I

e-

(NC)KERN(NC)
<

I

dreng

(16) shows what the structure just below the NP-level would have looked
like if the right-percolator (>) to the right of DETR and the "subtractor"
restrictor (-N) to the left of DESC in rule 2 had not been there, that is if
rule 2 had looked like

2 NP 2-> DETR? DESC? KERN(:!) PREP?

All the lower level constituents simply percolate their right feature specif
ications to their mothers according to (10), and the mothers copy their
right feature specifications to their left ones according to (11), as indi
cated by the arrows.

Consider now the following NP's of which most are illegal:

2. *det gode dreng 3. *en gode dreng 4. *et gode dreng 5. *de gode dreng 6.
*nogle gode dreng 7. *den god dreng 8. *det god dreng 9. en god dreng 'a
good boy' 10. *et god dreng 11. *de god dreng 12. *nogle god dreng 13. *den
godt dreng 14. *det godt dreng 15. *en godt dreng 16. *et godt dreng 17. *de
godt dreng 18. *nogle godt dreng 19. *den gode drenge 20. *det gode drenge
21. *en gode drenge 22. *et gode drenge 23. de gode drenge 'the good boys'
24. nogle gode drenge 'some good boys' 25. *den gode drengene 26. *det
gode drengene 27. *en gode drengene 28. *et gode drengene 29. *de gode
drengene 30. *nogle gode drengene

146 MOLBJEK HANSEN

On the assumption, still, that rule 2 has been changed in the indicated
way, the situation at the level in question for these structures may be
schematized as in (17):

(17)

1. DETR(AE,NC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN
2. DETR(AE,NN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN
3. DETR(NC,AC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN
4. DETR(NN ,AN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN
5. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN
6. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (NC)KERN

7. DETR(AE,NC) (NC,AC)DESC(NC,AC) (NC)KERN
8. DETR(AE,NN) (NC,AC)DESC(NC,AC) (NC)KERN
9 . DETR(NC,AC) (NC,AC)DESC(NC,AC) (NC)KERN
10. DETR(NN,AN) (NC,AC)DESC(NC,AC) (NC)KERN
11. DETR(PE) (NC,AC)DESC(NC,AC) (NC)KERN
12. DETR(PE) (NC,AC)DESC(NC,AC) (NC)KERN

13. DETR(AE,NC) (NN,AN)DESC(NN,AN) (NC) KERN
14. DETR(AE,NN) (NN,AN)DESC(NN,AN) (NC)KERN
15. DETR(NC,AC) (NN,AN)DESC(NN,AN) (NC)KERN
16. DETR(NN,AN) (NN,AN)DESC(NN,AN) (NC)KERN
17. DETR(PE) (NN,AN)DESC(NN,AN) (NC)KERN
18. DETR(PE) (NN,AN)DESC(NN,AN) (NC)KERN

19. DETR(AE,NC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE)KERN
20. DETR(AE,NN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE)KERN
21. DETR(NC,AC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE)KERN
22. DETR (NN, AN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE)KERN
23. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE) KERN
24. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PE)KERN

25. DETR(AE,NC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN
26. DETR(AE,NN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN
27. DETR(NC,AC) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN
28. DETR(NN,AN) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN
29. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN
30. DETR(PE) (AE,NC,NN,PE)DESC(AE,NC,NN,PE) (PD)KERN

Of the illegal NP's 13 - 18 and 25 - 30 would be rejected as they should:
13 - 18 would be rejected because the right feature specification (NN) of
DESC is not compatible with the left feature specification (NC) of KERN
(cf. principle (9)), and 25 - 30 would be rejected for similar reasons. But
there would still be considerable overgeneration: the illegal NP's 2-8, 10-
12, and 19-22 would be accepted, because any two contiguous right and

SYNTAX, MORPHOLOGY, AND PHONOLOGY 147

left feature specifications are compatible (share at least one unary
feature).

Consider now the effect of (and the motivation for) the restrictions of the
"real" rule 2, namely the right-side horizontal percolation (>) of DETR
and the left-side "subtractor" restrictor (-N) of DESC, cf. (18), where the
illegal structures are marked with *.

(18)

1. DETR(AE,NC) (AE,PE)DESC(AE,NC) (NC)KERN
2. DETR(AE,NN) (AE,PE)DESC(AE,NN) (NC)KERN *
3. DETR(NC,AC) (AE, PE)DESC(NC) (NC)KERN *
4. DETR{NN,AN) {AE,PE)DESC(NN) {NC)KERN *
5. DETR{PE) (AE,PE)DESC(PE) (NC)KERN *
6. DETR{PE) (AE, PE)DESC(PE) (NC)KERN *

7. DETR(AE,NC) (AC)DESC(NC) (NC)KERN *
8. DETR(AE,NN) (AC) DESC () (NC)KERN *
9 . DETR{NC,AC) (AC)DESC(NC,AC) (NC)KERN
10. DETR{NN,AN) (AC) DESC () (NC)KERN *
11. DETR(PE) (AC) DESC () (NC)KERN *
12. DETR{PE) {AC) DESC () {NC)KERN *

13. DETR{AE,NC) {AN)DESC() {NC)KERN *
14. DETR(AE,NN) (AN)DESC(NN) (NC)KERN *
15. DETR{NC,AC) (AN)DESC() (NC)KERN *
16. DETR(NN,AN) (AN)DESC(NN,AN) (NC)KERN *
17. DETR(PE) (AN) DESC () (NC)KERN *
18. DETR{PE) (AN) DESC () (NC)KERN *

19. DETR{AE,NC) (AE,PE)DESC{AE,NC) (PE)KERN *
20. DETR{AE,NN) (AE,PE)DESC(AE,NN) (PE)KERN *
21. DETR{NC,AC) {AE, PE)DESC(NC) {PE)KERN *
22. DETR(NN,AN) (AE,PE)DESC(NN) (PE)KERN *
23. DETR(PE) (AE, PE)DESC(PE) (PE)KERN
24. DETR(PE) (AE,PE)DESC(PE) (PE)KERN

25. DETR(AE,NC) (AE,PE)DESC(AE,NC) (PD)KERN *
26. DETR(AE,NN) (AE,PE)DESC(AE,NN) (PD)KERN *
27. DETR(NC,AC) (AE, PE)DESC(NC) (PD)KERN *
28. DETR{NN,AN) (AE,PE)DESC(NN) {PD)KERN *
29. DETR{PE) (AE,PE)DESC(PE) (PD)KERN *
30. DETR(PE) (AE,PE)DESC(PE) {PD)KERN *

Thanks to the restrictions of rule 2, all the legal structures are accepted,

148 MOLB.tEK HANSEN

and all the illegal ones are rejected.

I am aware that this may be hard to see from the grammar (mainly
because of the implicitness of feature percolation), but I only use this
example to demonstrate the ability of SSPS to express rather complicated
dependencies in a compact way. Incidentally, this property is relevant to
the speed of the parser, which depends more on the number of rules to
try than on the conceptual complexity of the rules. Note that the percola
tor > and the restrictor (-N) in rule 2 are not just ad hoe formal devices:
the natural linguistic interpretation of the horizontal percolator > may be
formulated thus: "If the determiner field and the describer field are both
present, they combine to form the definiteness value of a Danish noun
phrase", and the natural linguistic interpretation of the restrictor (-N)
may be formulated thus: "If the determiner field and the describer field
are both present, nominal agreement features of the describer field are
ignored in a Danish noun phrase".

In the morphologi,cal part of the grammar (12) attention should be paid to
rules 15-16. These rules are recursive and describe the structure of such
"deep" morphological structures as (19), where both the input and output
formats of the terminal constituents are shown, and where the most
relevant (abstract) left and right features are shown in parentheses.

(19)

(N)STEM(N)

-----------/--\
(A)STEM(A)

------------,.... -~

(V)STEM(V)

~-----pnr(V) (A)STEM(V)
-~

pnr(A) (A)STEM(A)
l .,,.,--~,

\

rnr(N) (N)snr(A) (V)snr(A) (A)snr(N)
I I

for u ro lig
I I

et hed
for;% u= ro: *lig *Od #he:d

Notice the restrictors in rules 15 and 16. In normal prose, what rule 15
says is: a STEM may consist of a native prefix with verbal right features
followed by a native root; if the root has verbal left features, normal
rightmost daughter percolation takes place, i.e. the STEM will be a verbal

SYNTAX, MORPHOLOGY, AND PHONOLOGY 149 .

stem like be-s()g 'visit'. This guarantees that STEM will have the conjuga
tion class of the root s()g, in particular it will be marked for the past end
ing -te (the feature VFA in its morphological interpretation, cf. (14)
above).

Rule 16 says: a STEM may consist of a native prefix with verbal right
features followed by a native root; if the root has no verbal left features,
its right feature specification will be the combination (VED, VET) which
are percolated implicitly to the mother STEM. This rule caters for the
fact that many nominal and adjectival roots (and stems) may be "verbal
ized" by verbal prefixes, and that such verbs have the unmarked conjuga
tion (past tense -ede and past participle -et), as expressed by the features
VED and VET, cf. e.g. afkviste 'to cut off twigs', literally "to off-twig".

These comments have, I hope, served as good illustrations of the expres
sive facilities of SSPS, and of the linguistic meaningfulness (interpretabil
ity) of restrictors and percolators.

IV. THE SSPS PARSER IN OUTLINE

The parser used in the Danish TTS-system is tuned to the SSPS formal
ism. I will limit myself to outlining its main general features. The parser
is based on the active chart principle (Earley 1970; Winograd 1983, p.
116ff is a good introduction), and proceeds in a top-down, depth first, first
rule first, first solution only, left to right fashion.

The top-down principle was chosen on empirical grounds: a bottom-up
version exists and has been used, but tests showed that the overgenera
tion of hypotheses at the lower level characteristic of bottom-up parsing
exceeded the overgeneration near the top of the top-down version consid
erably. This undoubtedly has to do with the inclusion of morphology,
which means that the terminal constituents are not given in advance, but
must be identified during parsing. For the same reason, optimizations a la
Wiren (1987) are not possible.

The depth first and first rule first principles were chosen because they are
easy to combine with the principle of selecting the first solution found,
and because they enable the user to order his grammar rules according to
e.g. his knowledge of the frequency or probability of certain structures.
This is possible because the parser simply processes the subtrees in the
order of the corresponding rules in the grammar. Most Computational
linguists today would contend that the grammar writer should be allowed
to write his grammar without considerations of how a parser would han
dle the grammar in connection with input (the principle of purely declara
tive systems). I agree in the sense that the grammar writer should not be
forced to consider how a parser or any other program "understanding" the
formalism will treat a specific input. But SSPS gi.ves the grammar writer the

150 MOLBJEK HANSEN

option to exploit the first rule first principle in that he may order his
rewrite rules in such a way as to arrive at a preferred structural interpre
tation first, which is quite different from being forced to consider parsing
schedule. This possibility is important in a practical TTS- system, because
only one solution should be handed down to the phonological and
phonetic components and further down to the synthesis component. The
first rule first principle is also well chosen in connection with unidentified
input: The ITS-system must "say" something, and this requirement may
be met by putting very "permissive" root symbol rules at the bottom of the
grammar, so that they are tried after all "structured" rules, cf. a rule like

S -> (:!)WORD(:!)*

which simply says: "let any sequence of words be accepted". This is the
SSPS way of arriving at preferred structural interpretations in cases of
ambiguous input without necessarily rejecting improbable or downright
illegal structural interpretations in cases of ill-formed input. To take an
example: why should not a ITS-system for Danish assign the "pronuncia
tion" [drn'go:og'sgi.'b'sajlA]? to an improper input sentence like *den
gode skib sejler? Most Danish speakers would read it aloud that way.

The left-right strategy may not be the best one, cf. that "island parsing"
seems to give good results in other fields of recognition of structure,
especially speech recognition.

For the benefit of readers familiar with chart parsing, I may add that the
evaluation of restrictions takes place in connection with the "subsump-

, tion" of complete edges by active ones: active edges about to "clone"
themselves check the restrictions and act according to the results, which
often is that the cloning is cancelled.

The parser performs fast enough to be functional in the ITS-system,
where the bottleneck as far as execution time is concerned is still the syn
thesis component.

The inclusion of syntactic rules has meant a considerable reduction of
misinterpretations of input which is ambiguous from a word-level point of
view: in Danish heterophonic homographs (hul, bad, sa, d(Jr, bred, etc.)
typically belong ~o different word classes (and thus have different feature
specifications, cf. section III), and can therefore in many cases be disam
biguated by a moderate surface syntactic analysis. With the grammar
(12) and the present morpheme lexicon which comprises about 9000 -
judiciously featured - items, the parser finds the correct interpretation of
e.g. the input sentence "en mand med en hul r0st bag en bred d(Jr med et
hul dpr" 'a man with a hollow voice behind a wide door with a hole (in it)
dies'.

SYNTAX, MORPHOLOGY, AND PHONOLOGY 151

V. PHONOLOGY IN TTS-SYSTEMS

The transformation of the linearized morphophonemic parser output
strings to a phonetic transcription is described in another formalism,
namely a trimmed and otherwise adapted phonological version of the
SPL-language described by Holtse (1982) and closely related to the older
SPE-like formalism of Carlson & Granstrom (1975). I will not describe
the formalism here, since its properties are in a sense trivial, especially to
readers familiar with ITS-methodology.

Rather, I would like to stress the fact that the extremely linear conception
of phonology implicit in SPE-based formalisms is becoming obsolete in
view of recent phonological theories, and, more importantly, in view of
the hierarchical structure of both morphology and syntax. The SSPS
framework permits the user to express hierarchical structuring of surface
syntax and morphology, but the projection of such information on a line
(in the form of more or less fancy (strings of) boundary symbols, cf. the
examples of output formats in previous sections) is not particularly
elegant, and it entails a good deal of clumsiness in formulations of e.g.
phenomena like syntactically and semantically conditioned unit accentua
tion in Danish (see Rischel 1982).

One of the most important tasks for present-day speech technology is to
design phonological (and phonetic) formalisms permitting the user to
express the relations between syntactic surface structure and prosody - in
particular stress patterns - in appropriate ways.

REFERENCES

Allen, J., Hunnicutt, S. M., and Klatt D. 1987: From text to speech: the
MITalk system, Cambridge University Press.

Carlson, R. and Granstrom, B. 1975: "A text-to-speech system based on a
phonetically oriented programming language", Speech Transm. Lab.,
Quart. Prog. and Status Rep. 1/1975, p. 17-26.

Chomsky, N. 1970: "Remarks on Nominalization", in Noam Chomsky:
Studies on Semantics in Generative Grammar, Mouton.

Chomsky, N. and Halle, M. 1968: The Sound Pattern of English, Harper
and Row.

Diderichsen, P. 1962: Elementcer Dansk Grammatik, Gyldendal.

Earley, J. 1970: "An Efficient Context-free Parsing Algorithm," Communi
cations of the Association for Computing Machinery, 13(2), p. 94-102.

152 MOLB.tEK HANSEN

Holtse, P. 1982: "Speech Synthesis at the Institute of Phonetics" Ann. Rep.
Inst. Phon. Univ. Cph. 16, p. 117-126.

Karttunen, L. 1986: "D-PATR: A Development Environment for
Unification-based Grammars", Proceedings of the 11 th International
Conference of Computational Linguistics, p. 74-80. International Com
mitee on Computational Linguistics.

Koskenniemi, K. 1983: TWO-LEVEL MORPHOLOGY: A General Com
putational Model for Word-Fonn Recognition and Production, University
of Helsinki Publications, No. 11.

Lau, P. and Perschke, S. 1987: "Morphology in the Eurotra Base Level
Concept," Proceedings of the Third Conference of the European Chapter
of the Association for Computational Linguistics, p. 19-25. The Associa
tion for Computational Linguistics.

Molbrek Hansen, P. 1983: "An Orthography Normalizing Program for
Danish", Ann. Rep. Inst. Phon. Univ. Cph. 17, p. 87-110.

Molbrek Hansen, P. (Forthcoming): "Nogle svagheder ved toniveaumor
fologien", will appear in Skrifter om Anvendt og Matematisk Lingvistik
14.

Rische!, J. 1982: "On unit accentuation in Danish - and the distinction
between deep and surface phonology", Ann. Rep. Inst. Phon. Univ. Cph.
16, p. 191-240.

Selkirk, E. 0. 1982: The Syntax of Words, MIT Press.

Whitelock, P. J. 1988: "A Feature-based Categorial Morpho-Syntax for
Japanese", in U. Reyle and C. Rohrer (eds.): Natural Language Parsing
and Linguistic Theories': p. 230-261.

Winograd, T. 1983: Language as a Cognitive Process, Volume 1: Syntax,
Addison-Wesley Publishing Company.

Wiren, M. 1987: "A Comparison of Rule-Invocation Strategies in
Context-Free Chart Parsing", Proceedings of the Third Conference of the
European Chapter of the Association for Computational Linguistics, p.
226-233. The Association for Computational Linguistics.

