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A conserved neuropeptide system links 
head and body motor circuits to enable 
adaptive behavior
Shankar Ramachandran1†, Navonil Banerjee1†‡, Raja Bhattacharya1†§, 
Michele L Lemons2, Jeremy Florman1, Christopher M Lambert1, Denis Touroutine1, 
Kellianne Alexander1, Liliane Schoofs3, Mark J Alkema1, Isabel Beets3, 
Michael M Francis1*

1Department of Neurobiology, University of Massachusetts Chan Medical School, 
Worcester, United States; 2Department of Biological and Physical Sciences, 
Assumption University, Worcester, United States; 3Department of Biology, University 
of Leuven (KU Leuven), Leuven, Belgium

Abstract Neuromodulators promote adaptive behaviors that are often complex and involve 
concerted activity changes across circuits that are often not physically connected. It is not well 
understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenor-
habditis elegans NLP- 12 neuropeptide system shapes responses to food availability by modulating 
the activity of head and body wall motor neurons through alternate G- protein coupled receptor 
(GPCR) targets, CKR- 1 and CKR- 2. We show ckr- 2 deletion reduces body bend depth during move-
ment under basal conditions. We demonstrate CKR- 1 is a functional NLP- 12 receptor and define its 
expression in the nervous system. In contrast to basal locomotion, biased CKR- 1 GPCR stimulation 
of head motor neurons promotes turning during local searching. Deletion of ckr- 1 reduces head 
neuron activity and diminishes turning while specific ckr- 1 overexpression or head neuron activation 
promote turning. Thus, our studies suggest locomotor responses to changing food availability are 
regulated through conditional NLP- 12 stimulation of head or body wall motor circuits.

Editor's evaluation
In this work, Ramachandran and colleagues investigate how the C. elegans cholecystokinin- like 
neuropeptide (NLP- 12) signaling pathway modulates animal posture during locomotion. They show 
that control over head- versus body- bending diverges at the level of two different NLP- 12 receptors 
and that this fine- tuning enables the animal to reach different behavioral goals i.e., local exploration 
versus long- distance traveling during food search.

Introduction
Neuromodulators serve critical roles in altering the functions of neurons to elicit alternate behavior. 
Disruptions in neuromodulatory transmitter systems are associated with a variety of behavioral and 
neuropsychiatric conditions, including eating disorders, anxiety, stress and mood disorders, depres-
sion, and schizophrenia (Bailer and Kaye, 2003; Kormos and Gaszner, 2013; Pomrenze et  al., 
2019). To achieve their effects, neuromodulatory systems may act broadly through projections across 
many brain regions or have circuit- specific actions, based on the GPCRs involved and their cellular 
expression. A single neuromodulator may therefore perform vastly different signaling functions across 
the circuits where it is released. For example, Neuropeptide Y (NPY) coordinates a variety of energy 
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and feeding- related behaviors in mammals through circuit- specific mechanisms. NPY signaling may 
increase or decrease food intake depending upon the circuit and GPCR targets involved (West and 
Roseberry, 2017; Zhang et  al., 2019). Due to the varied actions of neuromodulators across cell 
types and neural circuits, it has remained challenging to define how specific neuromodulatory systems 
act in vivo to elicit alternate behaviors. Addressing this question in the mammalian brain is further 
complicated by the often widespread and complex projection patterns of neuromodulatory trans-
mitter systems, and our still growing knowledge of brain connectivity.

The compact neural organization and robust genetics of invertebrate systems such as Caenorhab-
ditis elegans are attractive features for studies of neuromodulatory function. Prior work has shown that 
C. elegans NLP- 12 neuropeptides are key modulatory signals in the control of behavioral adaptations 
to changing environmental conditions, such as food availability or oxygen abundance (Bhattacharya 
et al., 2014; Hums et al., 2016; Oranth et al., 2018). The NLP- 12 system is the closest relative of the 
mammalian Cholecystokinin (CCK) neuropeptide system and is highly conserved across flies, worms, 
and mammals (Janssen et al., 2009; Janssen et al., 2008; Peeters et al., 2012). CCK is abundantly 
expressed in the mammalian brain; however, a clear understanding of the regulatory actions of CCK 
on the circuits where it is expressed is only now beginning to emerge (Ballaz, 2017; Lee and Soltesz, 
2011; Nishimura et al., 2015; Saito et al., 1980). Like mammals, the C. elegans genome encodes 
two putative CCK- responsive G protein- coupled receptors (GPCRs) (CKR- 1 and CKR- 2), though, prior 
to the present study, direct activation by NLP- 12 peptides had only been demonstrated for the CKR- 2 
GPCR (Frooninckx et al., 2012; Janssen et al., 2009; Janssen et al., 2008; Peeters et al., 2012). 
The experimental tractability of C. elegans, combined with the highly conserved nature of the NLP- 12/
CCK system, offers a complementary approach for uncovering circuit- level actions underlying neuro-
peptide modulation, in particular, NLP- 12/CCK neuropeptide signaling.

Sudden decreases in food availability or environmental oxygen levels each evoke a character-
istic behavioral response in C. elegans where animals limit their movement to a restricted area by 
increasing the frequency of trajectory changes (reorientations), a behavior known as local or area- 
restricted searching (ARS) (Bhattacharya et al., 2014; Gray et al., 2005; Hills et al., 2004; Hums 
et al., 2016; Oranth et al., 2018). ARS is a highly conserved adaptive behavior and is evident across 
diverse animal species (Bailey et al., 2019; Bell, 1990; Marques et al., 2020; Paiva et al., 2010; 
Sommerfeld et al., 2013; Weimerskirch et al., 2007). ARS responses during food searching in partic-
ular are rapid and transient. Trajectory changes increase within a few minutes after food removal, and 
decrease with prolonged removal from food (>15–20 min) as animals transition to global searching 
(dispersal) (Bhattacharya et al., 2014; Calhoun et al., 2014; Gray et al., 2005; Hills et al., 2004; 
Hums et al., 2016; Oranth et al., 2018; Wakabayashi et al., 2004). The clearly discernible behavioral 
states during food searching present a highly tractable model for understanding the contributions 
of specific neuromodulatory systems. NLP- 12 neuropeptide signaling promotes increases in body 
bending amplitude and turning during movement (Bhattacharya et al., 2014; Hums et al., 2016), 
motor adaptations that are particularly relevant for ARS. Notably, nlp- 12 is strongly expressed in only 
a single neuron, the interneuron DVA that has synaptic targets in the motor circuit and elsewhere 
(Bhattacharya et al., 2014; White et al., 1997). Despite the restricted expression of nlp- 12, there 
remains considerable uncertainty about the cellular targets of NLP- 12 peptides and the circuit- level 
mechanisms by which NLP- 12 modulation promotes its behavioral effects.

Here, we explore the GPCR and cellular targets involved in NLP- 12 neuromodulation of local food 
searching. Our findings reveal a primary requirement for NLP- 12 signaling onto SMD head motor 
neurons, mediated through the CKR- 1 GPCR, for trajectory changes during local searching. In contrast, 
NLP- 12 signaling through both CKR- 1 and CKR- 2 GPCRs contribute to NLP- 12 regulation of basal 
locomotion, likely through signaling onto head and body wall motor neurons. Our results suggest a 
model where NLP- 12 signaling acts through CKR- 1 and CKR- 2 to coordinate activity changes across 
head and body wall motor circuits during transitions between basal and adaptive motor states.

https://doi.org/10.7554/eLife.71747
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Results
NLP-12/CCK induced locomotor responses require functional CKR-1 
signaling
To decipher mechanisms underlying NLP- 12 regulation of local food searching, we sought to identify 
genes required for NLP- 12- mediated locomotor changes, in particular, the G protein- coupled recep-
tors (GPCRs) responsible for NLP- 12 signaling. The C. elegans genome encodes closely related CKR- 1 
and CKR- 2 (Cholecystokinin- like Receptors 1 and 2) GPCRs with sequence homology to the mamma-
lian Cholecystokinin receptors CCK- 1 and CCK- 2 (Figure 1—figure supplement 1A- B; Janssen et al., 
2009; Janssen et al., 2008; Peeters et al., 2012). Prior work demonstrated that NLP- 12 activates 
CKR- 2 in vitro (Janssen et al., 2008). Further, genetic studies provided evidence that NLP- 12 signaling 
mediates functional plasticity at cholinergic neuromuscular synapses through CKR- 2 modulation of 
acetylcholine release from motor neurons (Bhattacharya et al., 2014; Hu et al., 2015; Hu et al., 
2011). Surprisingly, however, deletion of ckr- 2 does not strongly affect local search behavior (Bhat-
tacharya et al., 2014). As functional roles for the CKR- 1 GPCR have not been previously described, 
we sought to determine whether CKR- 1 may be acting either alone or in combination with CKR- 2 
to direct NLP- 12 regulation of local searching. We first isolated a full- length ckr- 1 cDNA identical to 
the predicted ckr- 1 sequence. As expected, we found the ckr- 1 locus encodes a predicted protein 
containing seven transmembrane domains and sharing strong similarity to the CCK- like GPCR family 
(Figure 1—figure supplement 1).

To define potential roles for CKR- 1 and CKR- 2 in local searching, we took advantage of a strain we 
had previously generated that stably expresses high levels of the NLP- 12 precursor [nlp- 12(OE)] (Bhat-
tacharya et al., 2014). Overexpression of nlp- 12 in this manner elicits exaggerated loopy movement, 
increased trajectory changes, and enhanced body bend amplitude (Figure 1A, Figure 6C, Video 1). 
The average amplitude of bending is increased approximately threefold in comparison to wild type 
(Figure 1B), and body bends are more broadly distributed over steeper angles (Figure 1C–D). These 
overexpression effects are constitutive, offering experimental advantages for pursuing genetic strat-
egies to identify signaling mechanisms. We investigated the requirement for CKR- 1 and CKR- 2 in the 
locomotor changes elicited by nlp- 12 overexpression using available strains carrying independent 
deletions in each of these genes. The ckr- 2 deletion (tm3082) has been characterized previously and 
likely represents a null allele (Hu et al., 2011; Janssen et al., 2008; Peeters et al., 2012). The ckr- 1 
deletion (ok2502) removes 1289 base pairs, including exons 3–7 that encode predicted transmem-
brane domains 2–5 (Figure 1—figure supplement 1B- C) and therefore also likely represents a null 
allele. ckr- 1 and ckr- 2 single gene deletions each partially reversed the effects of nlp- 12 overexpres-
sion (Figure 1A,B,D, 6C), indicating that both CKR- 1 and CKR- 2 GPCRs are active under conditions 
when NLP- 12 peptides are present at high levels. Notably, ckr- 1 deletion showed slightly greater 
suppression of nlp- 12(OE) phenotypes compared with ckr- 2 deletion (Figure 1B,D, 6C). Combined 
deletion of ckr- 1 and ckr- 2 largely reversed the locomotor changes produced by NLP- 12 overexpres-
sion (Figure 1A,B,D, 6C), indicating that the GPCRs act in a partially redundant manner. Our genetic 
analysis of nlp- 12 overexpression confirms a role for the CKR- 2 GPCR in NLP- 12- elicited motor adap-
tations, and importantly, provides first evidence implicating the previously uncharacterized CKR- 1 
GPCR in NLP- 12 modulation of motor activity.

NLP-12 activates CKR-1 with high potency
To obtain direct evidence for NLP- 12 activation of CKR- 1, we used an in vitro bioluminescence- based 
approach. CKR- 1 was expressed in Chinese hamster ovarian (CHO) cells stably expressing the promis-
cuous G- protein alpha subunit Gα16 and a bioluminescent calcium indicator, aequorin (Caers et al., 
2014). The NLP- 12 precursor gives rise to two distinct mature peptides, NLP- 12–1 and NLP- 12–2. 
Application of either NLP- 12–1 or NLP- 12–2 synthetic peptides produced robust calcium responses 
in cells expressing CKR- 1. These responses were concentration- dependent with EC50 values of 3.5 
and 1.9 nM for NLP- 12–1 and NLP- 12–2 peptides, respectively (Figure 1E). These EC50 values are 
comparable to those measured for NLP- 12 activation of CKR- 2 (8.0 nM and 10.2 nM) (Figure 1F; 
Janssen et al., 2008), suggesting NLP- 12 peptides act with similar potency across CKR- 1 and CKR- 2 
GPCRs. Importantly, no other peptides from a library of over 350 synthetic C. elegans peptides elic-
ited CKR- 1 activation, nor did the NLP- 12 peptides evoke calcium responses in cells transfected with 

https://doi.org/10.7554/eLife.71747
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Figure 1. NLP- 12/CCK induced locomotor responses require functional ckr- 1 signaling. (A) Representative movement trajectories of wild- type (black), 
nlp- 12(OE) (red), nlp- 12(OE);ckr- 1(lf) (blue), nlp- 12(OE);ckr- 2(lf) (orange), and nlp- 12(OE);ckr- 1(lf);ckr- 2(lf) (green) animals during forward runs (30 s) on 
NGM agar plates seeded with OP50 bacteria. nlp- 12(OE) refers to the transgenic strain (ufIs104) stably expressing high levels of wild- type nlp- 12 
genomic sequence. Note the convoluted nlp- 12(OE) movement tracks are restored to wild type by combined ckr- 1 and ckr- 2 deletion. Scale bar, 1 mm. 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.71747
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empty vector (Figure 1—figure supplement 2), indicating that CKR- 1, like CKR- 2, is a highly specific 
receptor for NLP- 12.

CKR-1 is a key signaling component for local search behavior
To more deeply investigate roles for CKR- 1 and CKR- 2 in NLP- 12 regulation of movement, we quan-
tified body and head bending during basal locomotion (in the presence of food) using single worm 
tracking analysis. nlp- 12 deletion significantly reduced both body bending and head bending angles 
in comparison to wild type (Figure 2A–B). Similarly, single deletions in ckr- 1 and ckr- 2 each produced 
significant reductions in body bending, and combined deletion produced effects similar to nlp- 12 
deletion (Figure 2A). In contrast, head bending was strikingly affected by ckr- 1 deletion, while ckr- 2 
deletion did not produce a significant reduction (Figure 2B). The preferential involvement of CKR- 1 in 
head bending suggested the interesting possibility that CKR- 1 and CKR- 2 GPCRs differentially regu-
late specific features of locomotion.

To explore this possibility further, we investigated the involvement of CKR- 1 and CKR- 2 GPCRs 
in local search responses following removal from food. Specifically, we monitored worm move-
ment during a 35- min period immediately after removal from food and quantified turning behavior 

during the first (0–5, local searching, Video  2) 
and last (30–35, dispersal, Video 3) five minutes 
(Figure 3A). Post hoc video analysis proved most 
reliable for measuring turning behavior during 
local searching. We quantified changes in trajec-
tory (reorientations), that resulted in a change 
of >50° in the direction of movement, executed 
either through forward turns or reversal- coupled 
omega turns (Figure 3B, Figure 3—figure supple-
ment 1). For wild type, we noted an increase in 
reorientations immediately following removal 
from food compared to animals maintained on 
food (Figure 3—figure supplement 2A). Consis-
tent with our previous findings (Bhattacharya 
et  al., 2014), we found that deletion of nlp- 12 
significantly decreased reorientations immedi-
ately following removal from food (Figure 3C–D). 

Asterisks (*) indicate position of worm at start of recording. (B) Average body bend amplitude (indicated in schematic by blue arrow between orange 
lines, midbody centroid [green] of worm) for the genotypes as indicated. Bars represent mean ± SEM. In this and subsequent figures. ****p<0.0001, 
***p<0.001, ANOVA with Holms- Sidak post hoc test. wild- type n=19, nlp- 12(OE): n=14, nlp- 12(OE);ckr- 1(lf): n=27, nlp- 12(OE);ckr- 2(lf): n=25, nlp- 
12(OE);ckr- 1(lf);ckr- 2(lf): n=20. (C) Schematic representation of measured body bending angle, for shallow (top) and deep (bottom) body bends. Solid 
orange circles indicate the vertices (head, midbody, and tail) of the body bending angle (blue) measured. (D) Frequency distribution of body bending 
angle (indicated in blue in (C)) for the genotypes indicated. Kolmogorov- Smirnov test: wild- type versus nlp- 12(OE)**, wild- type versus nlp- 12(OE);ckr- 
2(lf)**, nlp- 12(OE) versus nlp- 12(OE);ckr- 1(lf);ckr- 2(lf)**, **p<0.01. wild- type: n=12, nlp- 12(OE): n=10, nlp- 12(OE);ckr- 1(lf): n=10, nlp- 12(OE);ckr- 2(lf): n=12, 
nlp- 12(OE);ckr- 1(lf);ckr- 2(lf): n=12. (E, F) Concentration- response curves of the mean calcium responses (% activation ± SEM) in CHO cells expressing 
either CKR- 1 (E) or CKR- 2 (F) for different concentrations of synthetic peptides NLP- 12–1 (solid blue circles) or NLP- 12–2 (solid black squares). Solid lines 
indicate curve fits to the data (n=6). 95% confidence intervals (nM), CKR- 1: NLP- 12–1, 1.79–7.07; NLP- 12–2, 0.93–3.77 and CKR- 2: NLP- 12–1, 5.16–12.51; 
NLP- 12–2, 6.43–16.73. NGM, nematode growth media.

The online version of this article includes the following figure supplement(s) for figure 1:

Source data 1. Source data for body bending amplitude (Figure 1B).

Source data 2. Source data for frequency of bending angles (Figure 1D).

Source data 3. Source data for in vitro analysis of CKR- 1 activation (Figure 1E).

Source data 4. Source data for in vitro analysis of CKR- 2 activation (Figure 1F).

Figure supplement 1. CKR- 1 and CKR- 2 GPCRs share similarity with vertebrate CCK GPCRs.

Figure supplement 2. NLP- 12 peptides activate CKR- 1 and CKR- 2 in vitro.

Figure supplement 2—source data 1. Source data for in vitro controls (ratio of total calcium response).

Figure 1 continued

Video 1. Representative 20- s video showing 
locomotion on food of animal overexpressing nlp- 12. 
Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video1

https://doi.org/10.7554/eLife.71747
https://elifesciences.org/articles/71747/figures#video1
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Figure 2. CKR- 1 and CKR- 2 differentially regulate head and body bending during basal locomotion. Schematics showing body bending (A) and head 
bending (B) angles (solid orange circles indicate the vertices and measured angle in blue) quantified during single worm track analyses of movement 
(5 min) in the presence of food. Each data point in the scatterplots represents the average body or head bend angle for a single animal from analysis 
of 5 min of locomotion. Horizontal red bar indicates mean, shading indicates SEM for wild- type (blue) and mutants (orange). ****p<0.0001, ***p<0.001, 
*p<0.05, ns, not significant. ANOVA with Holms- Sidak post hoc test. wild- type: n=19, nlp- 12(ok335): n=16, ckr- 1(ok2502): n=16, ckr- 2(tm3082): n=16, ckr- 
1(ok2502);ckr- 2(tm3082): n=8.

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Source data for body bending measurements during single worm tracking of basal locomotion (Figure 2A).

Source data 2. Source data for head bending measurements during single worm tracking of basal locomotion (Figure 2B).

Video 2. Representative 20- s video showing 
locomotion of wild- type animal during area restricted 
search (0–5 min off food). Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video2

Video 3. Representative 20- s video showing 
locomotion of wild- type animal during dispersal 
(30–35 mi off food). Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video3

https://doi.org/10.7554/eLife.71747
https://elifesciences.org/articles/71747/figures#video2
https://elifesciences.org/articles/71747/figures#video3
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Figure 3. NLP- 12/CCK food search responses are mediated through the GPCR CKR- 1. (A) Schematic of the food search assay indicating the time 
intervals when reorientations were scored. Wild- type animals increase reorientations during the first 5 min (0–5 min) after removal from food (local 
search) and reduce reorientations during dispersal (30–35 min). Asterisks (*) indicate the position of worm at the start of recording. (B) Frame grabs 
showing worm position and posture prior to, during and after reorientation. Angle (blue) between the black (original trajectory) and white (new 
trajectory) dashed lines indicates the change in trajectory. Frame numbers and time points indicated are relative to the first image in each sequence, 
which represents the start point (frame 0, time 0 s) when the reorientation event began, and the last frame was when the reorientation was completed. 
Trajectory changes were scored as reorientations if changes in trajectory were greater than 50°. (C) Quantification of reorientations during 0–5 min 
following removal from food for the genotypes indicated. Rescue refers to transgenic expression of wild- type ckr- 1 in ckr- 1 mutants. Bars represent 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.71747
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In particular, we noted a significant reduction in the forward reorientations of nlp- 12 mutants, but no 
appreciable effect on reversal- coupled omega turns (Figure 3—figure supplement 2B). Deletion of 
ckr- 2 produced no appreciable effect on reorientations (Figure 3C–D; Bhattacharya et al., 2014); 
however, single deletion of ckr- 1 decreased reorientations to a similar level as observed for nlp- 12 
deletion (Figure 3C–D). Similar to nlp- 12(lf), we found that ckr- 1(lf) significantly impacted forward 
reorientations, but did not affect reversal- coupled omega turns (Figure 3—figure supplement 2B). 
Combined deletion of ckr- 1 and ckr- 2 provided no additional decrease beyond that observed for 
single ckr- 1 deletion (Figure 3C–D). In addition, combined deletion of nlp- 12 and ckr- 1 did not further 
decrease reorientations compared with either of the single mutants (Figure 3C–D). Expression of wild- 
type ckr- 1, but not ckr- 2, rescued reorientations in ckr- 1(lf);ckr- 2(lf) double mutants (Figure 3—figure 
supplement 3A). Expression of wild- type ckr- 1 also restored normal reorientation behavior in ckr- 1(lf) 
animals when expressed under the control of native ckr- 1 promoter elements (3.5 kb) (Figure 3C), 
but not when expressed under the ckr- 2 promoter (Figure 3—figure supplement 3B). These findings 
show that nlp- 12 and ckr- 1 act in the same genetic pathway and point to a selective requirement 
for NLP- 12 signaling through CKR- 1 in regulating trajectory changes during local searching. Dele-
tion of nlp- 12 did not produce significant changes in dispersal behavior, but we noted a modest 
decrease in reorientations during dispersal in ckr- 1 mutants (Figure 3E). This may indicate additional 
roles for CKR- 1 during dispersal. Taken together, our genetic and behavioral studies implicate CKR- 1 
and CKR- 2 GPCRs as targets of NLP- 12 signaling under conditions of overexpression and during 
basal locomotion. In contrast, we find that NLP- 12 modulation of local searching is primarily achieved 
through CKR- 1 activation.

mean ± SEM. ****p<0.0001, **p<0.01, ns, not significant, ANOVA with Holms- Sidak post hoc test. wild- type: n=25, nlp- 12(ok335): n=27, ckr- 1(ok2502): 
n=24, nlp- 12(ok335);ckr- 1(ok2502): n=10, ckr- 1 rescue: n=18, ckr- 2(tm3082): n=10, ckr- 1(ok2502);ckr- 2(tm3082): n=25. (D) Representative body curvature 
kymographs for worm locomotion during basal locomotion and area restricted searching (ARS). Head to tail orientation along the horizontal axis in 
each kymograph is left to right as indicated for wild type. Time is indicated along the vertical axis from 0 min to 1 min. (E) Total number of reorientations 
during an interval of 30–35 min following removal from food for the genotypes as shown. Each bar represents mean ± SEM. *p<0.05, ANOVA with 
Holms- Sidak post hoc test. wild- type: n=10, nlp- 12(ok335): n=10, ckr- 1(ok2502): n=10, ckr- 2(tm3082): n=10, ckr- 1(ok2502);ckr- 2(tm3082): n=11. (F) 
Trajectory changes (reorientations) scored in response to photostimulation of DVA. Percent change in the number of high angle turns elicited during 
1 min of blue light exposure compared to prestimulus (no blue light). Bars represent mean ± SEM. ***p<0.001, **p<0.01, ns, not significant, compared 
to +ATR control, ANOVA with Holms- Sidak post hoc test. ATR, all- trans retinal.

The online version of this article includes the following figure supplement(s) for figure 3:

Source data 1. Source data for reorientations quantified during area restricted search (0–5 min off food, Figure 3C).

Source data 2. Source data for reorientations quantified during dispersal (30–35 min off food, Figure 3E).

Source data 3. Source data for % change in reorientations from mean quantified for DVA photostimulation (Figure 3F).

Figure supplement 1. Sequential snapshots of frames from a representative reorientation, for forward reorientations (A) and reversal- coupled omega 
turn mediated reorientations (B).

Figure supplement 2. NLP- 12 signaling through CKR- 1 promotes forward reorientations.

Figure supplement 2—source data 1. Source data for reorientations quantified on food and during area restricted search (0–5 min off food, 
Figure 3—figure supplement 2A).

Figure supplement 2—source data 2. Source data for reorientations quantified during area restricted search (0–5 min off food, Figure 3—figure 
supplement 2B).

Figure supplement 3. NLP- 12 released from DVA acts selectively through CKR- 1 to promote reorientations.

Figure supplement 3—source data 1. Source data for reorientations quantified during area restricted search (0–5 min off food, Figure 3—figure 
supplement 3A).

Figure supplement 3—source data 2. Source data for reorientations quantified during area restricted search (0–5 min off food, Figure 3—figure 
supplement 3B).

Figure supplement 3—source data 3. Source data for reorientations quantified during area restricted search (0–5 min off food, Figure 3—figure 
supplement 3C).

Figure 3 continued

https://doi.org/10.7554/eLife.71747
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Acute stimulation of DVA promotes reorientation behavior and 
requires NLP-12 and CKR-1
We next addressed the question of how neuronal release of NLP- 12 promotes area restricted searching. 
We measured trajectory changes elicited by acute depolarization of the DVA neuron. We used the 
nlp- 12 promoter to drive cell- specific expression of Channelrhodopsin- 2 (ChR2) (Nagel et al., 2003) 
in DVA and tracked worm movement during a 1- min period of blue light (470 nm) photostimulation. 
We found that animals reorient more frequently with depolarization of DVA compared to pre- stimulus 
control (Figure  3F). Importantly, light exposure did not increase reorientations in the absence of 
retinal (–ATR) (Figure  3F). Depolarization of the DVA neuron in nlp- 12 mutants failed to produce 
a similar enhancement (Figure 3F), offering support for the idea that reorientations primarily arise 
due to the release of NLP- 12 peptides. Single ckr- 1 deletion or combined ckr- 1 and ckr- 2 deletion 
also abrogated DVA- elicited increases in reorientation behavior, while single ckr- 2 deletion produced 
more variable responses that were not clearly distinguishable from control (Figure 3F). Our photo-
stimulation experiments provide direct evidence that NLP- 12 release from the DVA neuron promotes 
reorientation behavior, and, in addition, provide evidence for central involvement of NLP- 12 signaling 
through the CKR- 1 GPCR in directing reorientations. While NLP- 12 expression has also been recently 
reported in PVD neurons (Tao et  al., 2019), expression of nlp- 12 under a PVD specific promoter 
(ser- 2prom3) did not restore reorientations in nlp- 12(lf) animals (Figure 3—figure supplement 3C), 
pointing toward DVA as the primary source of NLP- 12 in promoting reorientations.

Elevated CKR-1 signaling enhances turning and body bending in an 
Nlp-12 dependent manner
To further define the role of CKR- 1, we next asked whether increased CKR- 1 signaling would be suffi-
cient to induce local search- like behavior. To address this question, we pursued an overexpression 
strategy similar to our above approach for nlp- 12. We generated transgenic lines where the ckr- 1 
genomic sequence including native ckr- 1 promoter elements was injected into wild- type animals at 
high concentration.

We found that ckr- 1 overexpression produced striking increases in turning and large head to tail 
body bends (Figure 4A, 6C, Video 4), qualitatively similar to the effects of nlp- 12 overexpression 
(Figure 1A, Video 1). ckr- 1(OE) animals made steep bends during runs of forward movement, with 
angles approaching 200°, whereas bending angles in wild type rarely exceeded 75° (Figure  4B). 
Notably, these high angle bends often produced spontaneous reorientations during forward move-
ment and sometimes elicited sustained coiling. The amplitude of body bends during movement also 
increased by approximately threefold in ckr- 1(OE) animals compared to wild type (Figure 4C). These 
increases in bending angles and body bend depth were returned to wild- type levels by nlp- 12 dele-
tion (Figure 4A–C), offering support that NLP- 12 peptides are the major CKR- 1 ligands required to 
elicit these characteristic changes in movement. Taken together, our genetic studies define NLP- 12/
CKR- 1 as a novel ligand- GPCR pathway that controls trajectory changes and body bending to produce 
adaptive behavior.

ckr-1 is expressed in many neurons that do not receive direct synaptic 
inputs from DVA
To identify cells where CKR- 1 may act to promote local searching, we generated strains expressing 
a ckr- 1 reporter transgene that included the complete ckr- 1 genomic locus and ~3.5 kb of upstream 
regulatory sequence SL2 trans- spliced to sequence encoding GFP (green fluorescent protein) or 
mCherry. We found that ckr- 1 is broadly expressed in the nervous system, showing expression in a 
subset of ventral nerve cord motor neurons, amphid and phasmid sensory neurons, premotor inter-
neurons, and motor neurons in the nerve ring (Figure 5A–B). We identified many of these neurons, 
largely from analysis of ckr- 1 co- expression with previously characterized reporters (Supplementary 
file 2). In the ventral nerve cord, we found that ckr- 1 is expressed in cholinergic, but not GABAergic, 
ventral cord motor neurons (Figure 5—figure supplement 1A- B, Supplementary file 2). Amongst 
head neurons, the ckr- 1 reporter is expressed in GABAergic RMEV, RMED, AVL and RIS neurons, 
cholinergic SMDV, SMDD, and RIV head motor neurons, the interneuron RIG, the serotonergic NSM 
neuron, and in the interneurons AIA and AIB (Figure 5B, Supplementary file 2). Additional studies 
using DiI uptake indicated that ckr- 1 is also expressed in the amphid sensory neurons ASK and ASI and 

https://doi.org/10.7554/eLife.71747
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Figure 4. Elevated CKR- 1 signaling enhances bending angle and amplitude in an nlp- 12 dependent manner. (A) 
Representative movement trajectories of wild- type (black), ckr- 1(OE) (blue) and ckr- 1(OE); nlp- 12(lf) (green) animals 
for 30 s on NGM agar plates seeded with OP50 bacteria. ckr- 1(OE) refers to high copy expression of the wild- type 
ckr- 1 genomic locus (ufEx802). Note the increased frequency of high angle turns and convoluted track for ckr- 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.71747
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the phasmid sensory neurons PHA and PHB (Supplementary file 2). With the exception of the ventral 
cord cholinergic neurons, the ckr- 1 reporter almost exclusively labeled neurons that do not receive 
direct synaptic input from DVA, suggesting that NLP- 12 acts at least partially through extrasynaptic 
mechanisms. Notably, ckr- 1 and ckr- 2 expression showed little overlap (Figure 5—figure supplement 
2).

CKR-1 functions in the SMD head motor neurons to modulate body 
bending
We next pursued cell- specific ckr- 1 overexpression to gain insight into which ckr- 1- expressing neurons 
defined above may be primary targets for modulation during local searching (Supplementary files 
3- 4). We focused our analysis on body bending amplitude because this was the most easily quanti-
fiable aspect of movement to be modified by ckr- 1 overexpression. Transgenic strains where pan- 
neuronally expressed ckr- 1 (rgef- 1 promoter) was injected at high concentration displayed increased 
body bending amplitude, similar to overexpression using the native promoter (Figure 5C). In contrast, 
ectopic ckr- 1 expression in muscles produced no appreciable change, consistent with a primary site 
of CKR- 1 action in neurons (Figure  5C). Surprisingly, ckr- 1 overexpression in cholinergic (unc- 17β 
promoter) or GABAergic (unc- 47 promoter) ventral nerve cord motor neurons did not elicit an appre-
ciable change in body bend depth (Figure 5C). We therefore next targeted the head neurons identi-
fied by our ckr- 1 reporter, using several different promoters for ckr- 1 overexpression in subsets of head 
neurons (Figure 5C, Supplementary files 3- 4). ckr- 1 overexpression using either the odr- 2(16) or lgc- 
55 promoters produced a striking (2.5- fold) increase in body bend depth, comparable with ckr- 1 over-
expressed under its endogenous promoter. In contrast, ckr- 1 overexpression in GABAergic neurons, 
including RMED and RMEV (unc- 47 promoter), did not produce an appreciable effect. Likewise, ckr- 1 
overexpression in RIV, RIG, NSM, AIA, AIB, or amphid neurons failed to significantly enhance body 
bend depth. The lgc- 55 promoter drives expression in AVB, RMD, SMD, and IL1 neurons, as well 

as neck muscles and a few other head neurons 
(Pirri et al., 2009), while the odr- 2(16) promoter 
primarily labels the RME and SMD head neurons 
(Chou et  al., 2001; Supplementary files 2- 3). 
The overlapping expression of the odr- 2(16) and 
lgc- 55 promoters in SMD neurons suggested that 
these neurons may be centrally involved. SMD 
co- labeling by ckr- 1::SL2::mCherry and Plad- 
2::GFP (Wang et  al., 2008) provided additional 
evidence for ckr- 1 expression in these neurons 
(Figure  5—figure supplement 1C). In contrast 
to ckr- 1, ckr- 2 was either absent or more vari-
ably expressed in a subset of the SMD neurons, 
the SMDDs (Figure 5—figure supplement 1D). 
Intriguingly, we noted that NLP- 12::Venus clus-
ters in the nerve ring region of the DVA process 
(Figure  5D) are concentrated in the vicinity of 
SMD processes (Figure 5E).

1(OE). These movement phenotypes are reversed by nlp- 12 deletion. Scale bar, 1 mm. (B) Frequency distribution 
of body bending angles (mean ± SEM) during forward runs (30 s) on plates thinly seeded with OP50 bacteria. 
Kolmogorov- Smirnov test: wild- type versus ckr- 1(OE)**, ckr- 1(OE) versus ckr- 1(OE); nlp- 12(ok335)**, wild- type 
versus ckr- 1(OE); nlp- 12(ok335) ns. **p<0.01, ns, not significant. wild- type: n=8, ckr- 1(OE): n=10, and ckr- 1(OE);nlp- 
12(lf): n=10. (C) Comparison of the average body bend amplitude for the indicated genotypes. Bars represent 
mean ± SEM. ****p<0.0001, ns, not significant, ANOVA with Holms- Sidak post hoc test. wild- type: n=12, ckr- 1(OE): 
n=15, ckr- 1(OE);nlp- 12(ok335): n=16. NGM, nematode growth media.

The online version of this article includes the following figure supplement(s) for figure 4:

Source data 1. Source data for frequency of bending angles (Figure 4B).

Source data 2. Source data for body bending amplitude (Figure 4C).

Figure 4 continued

Video 4. Representative 20- s video showing 
locomotion on food of animal overexpressing ckr- 1. 
Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video4

https://doi.org/10.7554/eLife.71747
https://elifesciences.org/articles/71747/figures#video4
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Figure 5. ckr- 1 functions in the SMD head motor neurons to modulate body bending. (A) Confocal maximum intensity projection of adult expressing 
the Pckr- 1::ckr- 1::SL2::GFP reporter. Note that the expression in multiple head neurons (white box) and a subset of ventral nerve cord motor neurons 
(white arrowheads). (B) Confocal maximum intensity projection of the head region of adult expressing the Pckr- 1::ckr- 1::SL2::GFP reporter. Scale bar, 
10 μm. See Figure 5—figure supplement 1 and Supplementary file 2 for additional expression information. (C) Quantification of average body bend 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.71747
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The four SMDs (dorsal- projecting SMDDL and SMDDR and ventral- projecting SMDVL and SMDVR) 
are bilateral motor neuron pairs that innervate dorsal and ventral head/neck musculature, and also 
form reciprocal connections with one another (White et al., 1997). They have been previously impli-
cated in directional head bending and steering (Gray et al., 2005; Hendricks et al., 2012; Kaplan 
et al., 2020; Kocabas et al., 2012; Shen et al., 2016; Yeon et al., 2018). To better define the behav-
ioral effects of SMD modulation, we more closely examined body bending in animals overexpressing 
ckr- 1 under control of the odr- 2(16) promoter, and also using a second promoter, flp- 22∆4, that was 
recently shown to drive selective expression in the SMD neurons (Yeon et al., 2018). For both over-
expression strains, we observed significant increases in body bending amplitude and bending angle 
compared to wild type (Figures 5C and 6A–C, Video 5). These increases were dependent on NLP- 12 
signaling (Figure  6, Figure  6—figure supplement 1A- B) and were similar to those observed for 
native ckr- 1 (Figures 4 and 6C, Video 4) and nlp- 12 overexpression (Figures 1 and 6C, Video 1). 
Thus, the actions of CKR- 1 in the SMD motor neurons recapitulate many of the behavioral effects of 
NLP- 12 overexpression.

To ask if the SMD neurons are required for the locomotor changes produced by ckr- 1 overexpression, 
we expressed the photoactivatable cell ablation agent PH- miniSOG in the SMD neurons (Pflp- 22∆4) of 
animals overexpressing ckr- 1 (native promoter). When activated by blue light (470 nm) PH- miniSOG 
produces reactive oxygen species and disrupts cellular function (Xu and Chisholm, 2016). Following 
photoactivation of miniSOG in animals overexpressing ckr- 1, we observed striking decreases in 
bending angles (Figure 6D–E) and amplitude (Figure 6F) during movement. We confirmed successful 
SMD ablation by examining morphological changes in GFP- labeled SMD neurons following photoac-
tivation of miniSOG (Figure 6D). Expression of miniSOG did not have appreciable effects on the body 
bending of ckr- 1(OE) animals under control conditions (without light exposure) (Figure  6—figure 
supplement 1C). In addition, stimulation of control animals without the miniSOG transgene did not 
appreciably alter body bending (Figure 6E) or SMD neuron morphology (Figure 6—figure supple-
ment 1D). These results indicate that SMD motor neurons are required for the locomotor effects of 
ckr- 1 overexpression, and, importantly, raise the possibility that the SMD neurons are key targets for 
NLP- 12 neuromodulation during local searching in wild type.

NLP-12/CKR-1 excitation of the SMD neurons promotes local searching
To further investigate the site of CKR- 1 function, we examined rescue of area restricted searching 
in ckr- 1 mutants by generating additional transgenic lines providing for SMD- specific expression of 
wild- type ckr- 1 (injected at fivefold lower concentration than used for overexpression above). Injection 
of wild- type animals with the SMD::ckr- 1 transgene at this lower concentration did not appreciably 
increase bending depth or angle (Figure 7—figure supplement 1A). However, expression in ckr- 1 
mutants restored reorientations during food searching to roughly wild- type levels (Figure 7A), indi-
cating that CKR- 1 function in the SMD neurons is sufficient to support NLP- 12 modulation of local 
searching.

To investigate how increased SMD activity may impact movement, we photostimulated the 
SMDs in animals expressing Podr- 2(16)::Chrimson (Klapoetke et al., 2014). Prior to photostimula-
tion, animals demonstrated long forward runs with relatively few changes in trajectory (Figure 7B). 

amplitudes (mean ± SEM) for ckr- 1 overexpression in the indicated cell types. Promoters used for listed cell types: pan- neuronal Prgef- 1, muscle Pmyo- 3, 
GABA motor neurons Punc-47, cholinergic ventral cord motor neurons Punc- 17β. See Supplementary file 3 for details about cellular expression 
of promoters used for head neurons. ****p<0.0001, ***p<0.001, ANOVA with Holms- Sidak’s post hoc test. Numbers within bars indicate n for each 
genotype. (D) Confocal maximum intensity projection of the nerve ring region of a transgenic animal expressing Pnlp- 12::NLP- 12::Venus. Note the 
high levels of NLP- 12::Venus in the nerve ring. White box indicates approximate nerve ring region where close localization of NLP- 12 clusters to SMD 
processes has been shown in panel (E). Scale bar, 5 µm. (E) Confocal maximum intensity projection of the nerve ring region of a transgenic animal 
expressing Pnlp- 12::NLP- 12::Venus (DVA) and Pflp- 22∆4::mCherry (SMD). Note the close localization of NLP- 12::Venus dense core vesicle clusters to the 
SMD process. Scale bar, 1 µm.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Source data for body bending amplitude (Figure 5C).

Figure supplement 1. Neuronal expression of CKR- 1 and CKR- 2.

Figure supplement 2. CKR- 1 and CKR- 2 expression are largely non- overlapping.

Figure 5 continued

https://doi.org/10.7554/eLife.71747
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Figure 6. Ablation of SMD motor neurons abolishes the effects of ckr- 1 overexpression. (A) Representative tracks (1 min) for indicated genotypes. 
Asterisks indicate the position of animal at the beginning of recordings. Note that the increased reorientations and body bending depth in the tracks 
with cell- specific ckr- 1 overexpression. Scale bar, 1 mm. (B) Average body bending angle distribution (mean ± SEM) for the indicated genotypes. High 
level expression of ckr- 1 in SMDs using the odr- 2(16) or flp- 22∆4 promoters increases bending angle. Kolmogorov- Smirnov test: wild- type versus Podr- 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.71747
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Following the onset of photostimulation, Chrimson- expressing animals rapidly increased reorienta-
tions (Figure  7B–C, Video  6), while control animals (- Retinal) did not increase trajectory changes 
during the light stimulation period (Figure 7C). SMD photostimulation also elicited a modest increase 
in body bending (Figure 7—figure supplement 1B). Conversely, transient and inducible silencing of 
the SMDs by histamine- gated chloride channel expression significantly reduced reorientations during 
food searching (Figure 7D). Thus, direct activation or inhibition of SMD neurons alter turning and 
reorientations, consistent with a potential mechanism for NLP- 12/CKR- 1 modulation of local searching 
through signaling onto the SMD neurons.

To explore the dynamics of SMD neuronal activity during searching, we next measured combined 
calcium responses from SMD neurons of behaving animals. We simultaneously recorded GCaMP6s 
and mCherry fluorescence (flp- 22∆ promoter) during ARS (0–5 min off food) and dispersal (30–35 min 
off food) (Video 7). We observed a striking elevation of wild- type SMD activity during ARS compared 
with dispersal (Figure 8A, B, D and E, Figure 8—figure supplement 1). Though overall calcium levels 
during ARS were positively correlated with reorientation frequency (Figure 8D, Pearson’s correlation 
r=0.54), discrete events where the peak fluorescence ratio was elevated were not well correlated with 
specific episodes of behavior. This would be predicted for our measurements of combined fluores-
cence from SMDD and SMDV neurons that themselves have distinct patterns of activation (Kaplan 
et al., 2020). By comparison, SMD activity of ckr- 1(lf) animals remained low throughout the ARS period 

(Figure  8C–E), supporting a model (Figure  9) 
where NLP- 12/CKR- 1 signaling promotes local 
searching by biasing SMD head motor neurons 
toward increased activation.

Discussion
Neuropeptidergic systems have crucial roles in 
modulating neuronal function to shape alternate 
behavioral responses, but we have limited knowl-
edge of the circuit- level mechanisms by which 
these alternate responses are generated. Here, 
we show that the C. elegans NLP- 12 neuropep-
tide system, closely related to the CCK system 
in mammals, shapes adaptive behavior through 
modulation of motor circuits dedicated to control 
of either head or body wall musculature. We 

2(16)::ckr- 1(OE)**, wild- type versus Pflp- 22∆4::ckr- 1(OE)*, **p<0.01, *p<0.05. wild- type n=9 (black circles), Podr- 2(16)::ckr- 1(OE): n=9 (blue squares), 
Pflp- 22∆4::ckr- 1(OE): n=11 (orange triangles). (C) Representative body curvature kymographs for worm locomotion during basal locomotion for indicated 
genotypes. Head to tail orientation along the horizontal axis in each kymograph is left to right as indicated for wild- type. Time is indicated along the 
vertical axis from 0 min to 1 min. (D) Top, representative fluorescent images of SMD motor neuron in ckr- 1(OE) animals without (left) or with (right) 
miniSOG expression 16 hr following photoactivation. Bottom, representative 30 s track for control ckr- 1(OE) (−miniSOG, left) animal or SMD ablated 
ckr- 1(OE) (+miniSOG, right) animal 16 hr after photostimulation. Scale bar, 1 µm. (E) Average body bending angle distribution (mean ± SEM) for control 
ckr- 1(OE) (green circles, n=11) and SMD ablated ckr- 1(OE) (brown squares, n=11) animals. SMD ablation reduces the frequency of large bending angles 
produced by ckr- 1(OE). Kolmogorov- Smirnov test: *p<0.05. (F) Comparison of average body bending amplitude for control ckr- 1(OE) (n=11) and SMD 
ablated ckr- 1(OE) (n=11). SMD ablation significantly reduces the enhanced body bending amplitude observed by ckr- 1(OE). Bars represent mean ± 
SEM. ***p<0.001, Student’s t- test.

The online version of this article includes the following figure supplement(s) for figure 6:

Source data 1. Source data for frequency of bending angles (Figure 6B).

Source data 2. Source data for frequency of bending angles (Figure 6E).

Source data 3. Source data for bending amplitude (Figure 6F).

Figure supplement 1. Effects of ckr- 1(OE) are dependent on NLP- 12 and miniSOG expression alone does not alter SMD morphology or behavior.

Figure supplement 1—source data 1. Source data for frequency of bending angles (Figure 6—figure supplement 1B).

Figure supplement 1—source data 2. Source data for frequency of bending angles (Figure 6—figure supplement 1C).

Figure 6 continued

Video 5. Representative 20- s video showing 
locomotion on food of animal overexpressing ckr- 1 in 
the SMD motor neurons. Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video5

https://doi.org/10.7554/eLife.71747
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Figure 7. NLP- 12/CKR- 1 excitation of the SMD neurons promotes reorientations. Total reorientations measured 
during 0–5 min following removal from food for the genotypes indicated. ckr- 1 rescue refers to expression of 
wild- type ckr- 1 (5 ng/µl) in ckr- 1(ok2502) animals using the indicated promoters. Bars represent mean ± SEM. 
****p<0.0001, ***p<0.001 ANOVA with Holms- Sidak post hoc test. wild- type: n=38, ckr- 1(lf): n=32, Podr- 2(16)::ckr- 1 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.71747
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demonstrate that NLP- 12 modulation of these circuits occurs through distinct GPCRs, CKR- 1 and 
CKR- 2, that primarily act on either head or body wall motor neurons, respectively. Under basal condi-
tions, we suggest that NLP- 12 modulation of the body wall motor circuit predominates, influencing 
the depth of body bends during sinusoidal movement through CKR- 1 and CKR- 2 GPCRs located on 
body wall motor neurons. NLP- 12 activation of head motor neurons through CKR- 1 becomes predom-
inant in the absence of food, promoting reorientations. We propose that changes in food availability 
reconfigure functional connectivity in the NLP- 12 system by differentially engaging GPCRs across the 
head and body wall motor circuits. Intriguingly, the involvement of two GPCRs in nematode NLP- 12 
signaling is reminiscent of the organization of the CCK system in rodents, which relies on signaling 
through CCK1 and CCK2 GPCRs (Janssen et al., 2009). New details about central CCK signaling and 
the brain GPCRs involved are continuing to emerge (Ballaz, 2017; Chen et al., 2019; Crosby et al., 
2018; Lee and Soltesz, 2011; Li et al., 2014; Miyasaka and Funakoshi, 2003; Nishimura et al., 
2015; Saito et al., 1980). Our findings may point toward similar utilization of specific CCK- responsive 
GPCRs to coordinate activity across mammalian brain circuits.

NLP- 12 neuropeptides act as key modulators in a range of C. elegans behaviors. Local search 
responses to varying oxygen levels and decreased 

rescue: n=12, Plgc- 55::ckr- 1 rescue: n=12, Pflp- 22(∆4)::ckr- 1 rescue: n=9. (B) Representative tracks (1 min) on thinly 
seeded NGM agar plates prior to (left) and during photostimulation (right) for transgenic animals expressing 
Podr- 2(16)::Chrimson. Scale bar, 1 mm. Asterisks (*) indicate the position of worm at the start of recording. 
(C) Left, quantification of reorientations for individual animals over 1 min durations prior to (prestimulus) and 
during photostimulation (+ATR). Right, quantification of reorientations for individual animals prior to and during 
photostimulation in control animals (−ATR). Black circles, reorientations during prestimulus. Orange circles, 
reorientations during photostimulation. Numbers adjacent to circles indicate number of overlapping data points. 
**p<0.01, ns, not significant. Paired t- test. ATR, all- trans retinal. (D) Quantification of reorientations for wild- type 
and transgenic animals, (Pflp- 22∆4::His- Cl1::SL2::GFP), in the presence and absence of histamine. Note reduced 
reorientations with SMD silencing in transgenics (+histamine). **p<0.01, *p<0.05, ANOVA with Holms- Sidak post 
hoc test. wild- type: −Histamine: n=8, +Histamine: n=7, pSMD::HisCl1::SL2::GFP: −Histamine: n=8, +Histamine: 
n=8. NGM, nematode growth media.

The online version of this article includes the following figure supplement(s) for figure 7:

Source data 1. Source data for reorientations quantified during area restricted search (0–5 min off food, 
Figure 7A).

Source data 2. Source data for reorientations quantified during SMD photostimulation (Figure 7C).

Source data 3. Source data for reorientations quantified during area restricted search upon SMD silencing 
(0–5 min off food, Figure 7D).

Figure supplement 1. SMD activation modestly impacts body bending.

Figure supplement 1—source data 1. Source data for frequency of bending angles (Figure 7—figure 
supplement 1A).

Figure supplement 1—source data 2. Source data for body bending amplitude quantified during SMD 
photostimulation (Figure 7—figure supplement 1B).

Figure 7 continued

Video 6. Representative 20- s video showing 
locomotion on food of animal in the absence (left) and 
during SMD photostimulation (right). Video has been 
sped up 4×.

https://elifesciences.org/articles/71747/figures#video6

Video 7. Representative 20- s video showing 
simultaneous post hoc tracking of mCherry and 
GCaMP6s fluorescence for ratiometric calcium imaging 
analysis. Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video7

https://doi.org/10.7554/eLife.71747
https://elifesciences.org/articles/71747/figures#video6
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Figure 8. Elevated activity in SMD motor neurons during ARS promotes reorientations. (A–C) Representative heat maps showing activity of SMD 
neurons in transgenic animals (Pflp- 22∆4::GCaMP6s::SL2::mCherry) during ARS (A) and dispersal (B) for wild type, and ARS for ckr- 1(ok2502) (C). Each 
row represents one animal over a duration of 1 min. Corresponding behaviors (forward, reversal, omega turn, forward reorientation) are annotated by 
color- coded (as indicated in legend) horizontal bar below each heat map. The SMD GCaMP6s/mCherry fluorescence ratio is elevated during wild- type 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.71747
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food availability both involve NLP- 12 signaling (Bhattacharya et  al., 2014; Hums et  al., 2016). 
Additionally, NLP- 12 signaling has been implicated in various aspects of proprioceptive signaling 
and postural control (Hu et al., 2015; Hu et al., 2011). However, the mechanisms by which NLP- 12 
peptides exert their influence over these diverse behavioral responses have remained unclear. Our 
work addresses these mechanistic questions by defining roles for CKR- 1 and CKR- 2 GPCRs during 
basal locomotion and ARS. ARS is a complex motor behavior, involving rapid trajectory changes that 
serve to maintain the animal within a restricted area of their immediate environment (Bhattacharya 
et al., 2014; Calhoun et al., 2014; Gray et al., 2005; Hums et al., 2016). Reorientations during 
searching are produced through high angle forward turns (Bhattacharya et al., 2014; Broekmans 
et al., 2016; Pierce- Shimomura et al., 1999) and reversal- coupled omega turns (Bhattacharya et al., 

ARS, compared with either ckr- 1(lf) ARS, and wild- type dispersal. (D) Number of reorientations plotted against mean SMD GCaMP6s/mCherry ratio for 
the individuals in (A–C). Black line indicates linear fit for wild- type ARS values, with Pearson’s correlation coefficient (r), *p=0.02. (E) Quantification of 
mean SMD fluorescence ratio (GCaMP6s/mCherry) during ARS or dispersal for the genotypes indicated. ****p<0.0001, ANOVA with Holms- Sidak post 
hoc test. ARS wild- type: n=18, ARS ckr- 1(ok2502): n=7, Dispersal wild- type: n=7. ARS, area- restricted searching.

The online version of this article includes the following figure supplement(s) for figure 8:

Source data 1. Source data for GCaMP6s/mCherry ratio during SMD calcium imaging (Figure 8A–D).

Source data 2. Source data for mean GCaMP6s/mCherry ratio during SMD calcium imaging (Figure 8E).

Figure supplement 1. Representative calcium signals (GCaMP6s/mCherry ratio) for wild- type ARS, wild- type dispersal, and ck- 1(lf) ARS.

Figure 8 continued

Figure 9. Proposed model for NLP- 12 action through CKR- 1 and CKR- 2. During basal locomotion, NLP- 12 
activation of CKR- 1 and CKR2 GPCRs in ventral nerve cord motor neurons regulates body bending. During local 
searching, NLP- 12 acts primarily through CKR- 1 in SMD motor neurons to promote increased turning, trajectory 
changes and enhance body bending. Solid arrows indicate known synaptic connections, dotted arrows indicate 
extrasynaptic. Sensory neurons (green), head interneurons (orange), and motor neurons (red). Olfactory sensory 
neurons: AWA, AWB, AWC, and ASE.

https://doi.org/10.7554/eLife.71747
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2014; Gray et al., 2005). We previously demonstrated a requirement for NLP- 12 in promoting reori-
entations during local searching. (Bhattacharya et al., 2014). Our analysis here shows that loss of 
nlp- 12 also has modest effects on body posture during normal exploratory movement, indicating 
NLP- 12 regulation of motor targets under basal conditions. Intriguingly, the behavioral requirement 
for NLP- 12 is far more apparent during local searching compared with basal locomotion, suggesting 
enhanced involvement of NLP- 12 signaling for performance of local searching. Similar observations 
about NLP- 12 involvement in chemotactic responses to varying oxygen levels suggested a model for 
graded NLP- 12 regulation of movement (Hums et al., 2016). Based on our observations, we specu-
late that increased engagement of head motor neurons through CKR- 1 activation may be a generaliz-
able mechanism for dynamic NLP- 12 regulation of behavior over changing external conditions.

Prior studies had implicated the CKR- 2 GPCR in NLP- 12 function (Hu et al., 2015; Hu et al., 2011; 
Janssen et al., 2008), but roles for CKR- 1 had not been previously described. Our genetic analyses 
and heterologous expression studies firmly establish CKR- 1 as a functional target for NLP- 12 signaling 
with an activation profile similar to CKR- 2. CKR- 2 shows slightly broader expression compared with 
CKR- 1, but both GPCRs are expressed across a variety of neuron classes, including many that do not 
receive direct synaptic inputs from DVA. We noted very little overlap in CKR- 1 and CKR- 2 expression, 
consistent with the idea that the two GPCRs serve distinct roles in modulating behavior. NLP- 12 
activation of CKR- 2 stimulates neurotransmission through coupling with egl- 30 (Gαq) and egl- 8 (PLCβ) 
likely by DAG interaction with the synaptic vesicle priming factor UNC- 13 (Hu et al., 2015; Hu et al., 
2011). Given the sequence homology between CKR- 1 and CKR- 2, it seems likely that CKR- 1 also 
functions to positively regulate neuronal activity through egl- 30. In support of this idea, we found 
that SMD- specific CKR- 1 overexpression and SMD neuron photostimulation produced qualitatively 
similar behavioral effects. The DVA neuron makes a single synapse with SMDVL (Worm wiring). While 
it is possible that this single synapse accounts for NLP- 12 elicited behavioral changes during local 
searching, it seems likely that extrasynaptic signaling to other SMD neurons also contributes.

Prior studies have indicated SMDs are cholinergic and their stimulation is sufficient to produce 
Ca2+ transients in head/neck muscles, consistent with proposed roles in head bending (Pereira et al., 
2015; Shen et  al., 2016). Prior studies of worms immobilized using microfluidic chips and freely 
moving animals noted anti- phasic activity between SMDD and SMDV neurons and opposing head/
neck musculature during head bending (or head casting) (Hendricks et al., 2012; Kaplan et al., 2020; 
Shen et al., 2016; Yeon et al., 2018). Our Ca2+ imaging studies did not offer sufficient cellular resolu-
tion to directly address this point. However, combined with our silencing, photostimulation and CKR- 1 
overexpression experiments, our SMD Ca2+ imaging provides strong evidence that NLP- 12 activation 
of CKR- 1 modulates functional connectivity between SMD neurons and their partners. Physiolog-
ical regulation of SMD activity is complex and involves reciprocal connections with RIA interneurons, 
reciprocal signaling with RME motor neurons, as well as proprioceptive feedback (Hendricks et al., 
2012; Ouellette et al., 2018; Shen et al., 2016; White, 2018; White et al., 1997; Yeon et al., 2018). 
In particular, inhibitory signaling from the GABAergic RME neurons onto the SMDs is implicated in 
modulation of head bending amplitude to optimize head bends for forward movement. While the 
precise role of NLP- 12 modulation of SMD activity remains unclear, one intriguing possibility is that 
NLP- 12- elicited increases in SMD activity uncouple the SMDs from RME inhibitory regulation, perhaps 
promoting large amplitude head swings that couple to forward reorientations during searching. We 
propose that elevated SMD activity is permissive for reorientations to occur, perhaps acting in concert 
with SMD proprioceptive functions (Yeon et al., 2018) or other neurons implicated in the regulation 
of head movement and turning, such as SMB (Oranth et al., 2018).

Surprisingly, selective ckr- 1 overexpression using the odr- 2(16) or flp- 22∆4 promoters increased 
body bend depth, raising the question of how altered SMD activity might translate into increased 
body bending. Recent work suggests an interesting functional coupling between the activity of SMD 
neurons and ventral cord B- type motor neurons (Kaplan et  al., 2020). B- type motor neurons are 
suggested to act as a distributed central pattern generator for the propagation of body bends (Gao 
et al., 2018; Xu et al., 2018). CKR- 1 activation of SMDs may therefore influence body depth directly 
by altering body wall motor neuron excitability through a gap junction connection between VB1 and 
SMDVR or through neuromuscular synapses located in the sub- lateral processes.

The similar potency of NLP- 12 peptides for activating CKR- 1 and CKR- 2, suggests that differential 
contributions of these GPCRs during basal locomotion and search responses do not arise due to 

https://doi.org/10.7554/eLife.71747
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dramatic differences in NLP- 12 potency to acti-
vate each receptor. This raises important ques-
tions about how a bias toward CKR- 1 modulation 
of the head motor circuit during local searching 
may occur. We envision that NLP- 12 regulation 
of the SMD neurons acts in parallel with other 
neural pathways previously shown to promote 
reversals during local searching. For example, 
olfactory information about food availability 
is conveyed by sensory neurons such as AWC 
and ASK to premotor interneurons (AIA, AIB, 
AIY) and ultimately transformed into patterns of 
motor neuron activity that drive reversals (Gray 
et al., 2005; Hills et al., 2004; Ouellette et al., 
2018; Sawin et  al., 2000). The SMD neurons 
also receive synaptic information from this circuit 
(e.g., through synaptic connections from the AIB 
and RIM neurons) (White et  al., 1997), raising 
the possibility that a pathway activated by food 
removal may enhance SMD sensitivity to CKR- 1 
activation. In this case, SMD neurons may be a site 
for integration of information encoding reversals 
and forward reorientations during local searching. 
A shift to CKR- 1 modulation of head neurons 
during searching could also be triggered by dopaminergic stimulation of DVA. Prior work implicated 
dopaminergic signaling from PDE neurons in the regulation of NLP- 12 and motor responses (Bhat-
tacharya et al., 2014; Oranth et al., 2018). In this case, elevated levels of NLP- 12 secretion, perhaps 
from release sites in the nerve ring region, would be predicted to bias the system toward enhanced 
activation of the SMD neurons and elicit increased turning. Notably, PDE also regulates an antago-
nistic peptidergic circuit, mediated by FLP- 1 neuropeptides, through inhibitory connections with AVK 
interneurons (Oranth et al., 2018), suggesting potentially more distributed behavioral regulation.

Our studies of the nematode NLP- 12 system offer new mechanistic insights into neuropeptide 
modulation of behavior. Our findings provide a key first step in defining roles for two NLP- 12- 
responsive GPCRs in coordinating motor control across changing conditions. We propose that the 
NLP- 12 system conditionally engages GPCRs expressed in head or body motor neurons to modify 
specific features of locomotion, most notably reorientations during searching and body bend depth 
during basal locomotion. Brain CCK has been increasingly implicated as a key regulator in diverse 
aspects of behavior, including feeding, satiety, memory, nociception, and anxiety (Ballaz, 2017; 
Chandra and Liddle, 2007; Liddle, 1997; Miyasaka and Funakoshi, 2003; Lajtha and Lim, 2006; 
Rehfeld, 2017). Thus our studies elucidating mechanisms for NLP- 12 regulation of circuit function in 
the compact nematode nervous system may have important and broadly applicable implications for 
neuromodulation in more complex systems.

Materials and methods
Strains
All nematode strains (Supplementary file 1) were maintained on OP50 seeded agar nematode 
growth media (NGM) at room temperature (22–24°C). N2 Bristol strain was used as wild type. Trans-
genic animals were generated by microinjection into the germ line and transformation was monitored 
by co- injection markers. Multiple independent extrachromosomal lines were obtained for each trans-
genic strain and data were presented from a single representative transgenic line. Stably integrated 
lines were generated by X- ray integration and outcrossed at least four times to wild type.

Video 8. Representative 20- s video showing tracking 
locomotion of animal overexpressing nlp- 12 in 
WormLab to analyze body bending. Video has been 
sped up 4×.

https://elifesciences.org/articles/71747/figures#video8

https://doi.org/10.7554/eLife.71747
https://elifesciences.org/articles/71747/figures#video8
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Molecular biology
All plasmids, unless specified, were generated 
by Gateway cloning (see Supplementary files 
1–5). p- ENTR plasmids were generated for all 
promoters used (Supplementary file 5). The ckr- 1 
minigene construct (pRB12/pRB13) was gener-
ated by cloning the ckr- 1 coding sequence (start 
to stop), with introns 1, 8, and 9. For cell- specific 
overexpression or rescue, the ckr- 1 minigene was 
recombined with entry vectors containing the 
relevant cell- specific promoters (Supplementary 
files 3- 4).

Behavioral assays and analyses
All behavioral assays were carried out using staged 
1  day adult animals on Bacto- agar NGM agar 
plates seeded with a thin lawn of OP50 bacteria 
(50 µl) unless otherwise noted. Video recordings 
for behavioral analyses were obtained using a 
Firewire camera (Imaging Source) and ICCapture2.2. Animals were allowed to acclimate for 30 s prior 
to video recording. Post hoc locomotor analysis was performed using WormLab (MBF Bioscience) 
(Video 8). Videos were thresholded to detect worms, and worm movement was tracked. Body bend 
amplitude was quantified as the average centroid displacement over the duration of a locomotion 
track (Figure 1B). Body bending angle was measured, at the midbody vertex, as the supplement of 
the angle between the head, mid- body, and tail vertices (Figure 1C). Bending angles were measured, 
continuously for each frame tracked, over 30 s (900 frames @30 fps). The measured bending angles 
were binned to generate a frequency distribution of body bending angles. Kymographs were gener-
ated from worm body curvature data (WormLab) in MATLAB (MathWorks, Natick, MA).

Area restricted search behavior
For quantification of local search behavior, single well- fed animals were transferred to an intermediate 
unseeded plate. After 1 min, animals were repicked without bacteria and transferred to an unseeded 
behavior assay plate. Digital movies were captured over the first 5 min (local search) and after 30 min 
(dispersal) following removal from food. Reorientations were manually scored post hoc from moni-
toring movement direction, over sequential frames (~200 frames for forward reorientations, ~ 600 
frames for reversal- coupled omega turns) from the start of the reorientation (original trajectory) to 
when the animal completed the reorientation (new trajectory) (Figure 3B, Figure 3—figure supple-
ment 1). A forward reorientation was scored after animals moved a minimum of 3 s (~100 frames @30 
fps) along a new trajectory. We scored forward trajectory changes >50° and reversal coupled omega 
turns as reorientations (examples of each in Figure 3B, Figure 3—figure supplement 1). Trajectory 
changes where animals initially performed head bends >50°, but then resumed the original path of 
movement or altered immediate trajectory <50° were not scored as reorientations. Trajectory changes 
were quantified (in degrees) using the angle tool (ImageJ, National Institutes of Health) to measure 
the angle between the original and new trajectory (Figure 3B, Figure 3—figure supplement 1). We 
excluded reversals and post reversal changes in trajectory that did not involve omega turns.

Single worm tracking
Single worm tracking was carried out using Worm Tracker 2 (Yemini et  al., 2011). Animals were 
allowed to acclimate for 30  s prior to tracking. Movement features were extracted from 5 min of 
continuous locomotion tracking (Video 9). Worm tracker software version 2.0.3.1, created by Eviatar 
Yemini and Tadas Jucikas (Schafer lab, MRC, Cambridge, UK), was used to analyze movement (Yemini 
et al., 2013). Worms were segmented into head, neck, midbody, hips, and tail. The body bend angle 
is angle measured at the midbody vertex, between the neck and hip skeleton vertices (Figure 2A). 
Head bend angles were measured as the largest bend angle prior to returning to a straight, unbent 
position (Figure 2B). Absolute midbody bending (Figure 2A) and head bending (Figure 2B) angles 

Video 9. Representative 20- s video showing single 
worm tracking of wild- type animal during basal 
locomotion on food to analyze body bending and head 
bending. Video has been sped up 4×.

https://elifesciences.org/articles/71747/figures#video9
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https://elifesciences.org/articles/71747/figures#video9


 Research article      Neuroscience

Ramachandran, Banerjee, et al. eLife 2021;10:e71747. DOI: https:// doi. org/ 10. 7554/ eLife. 71747  23 of 28

were quantified. Single worm tracking affords higher resolution and allows for rich quantification of 
relatively subtle postural changes. However, the continuous tracking of animals was difficult to achieve 
using this approach during the numerous steep turns performed during ARS, or with NLP- 12 or CKR- 1 
overexpression. Post hoc analysis of videos to measure body bending (as described above) proved 
most reliable.

SMD ablation
Conditions for cell ablation by miniSOG activation were adapted from Xu and Chisholm, 2016. 
MiniSOG activation was achieved by stimulation with repetitive 2 Hz 250 ms blue light pulses for 
12  min (200 mW/cm2, 488  nm 50  W LED [Mightex Systems]). Experiments were performed on 
unseeded plates using larval stage four ckr- 1(OE) animals expressing miniSOG and GFP transgenes 
under the flp- 22∆4 promoter. Following stimulation, animals were allowed to recover in the dark on 
NGM OP50 plates for 16 hr prior to behavioral analysis or imaging.

Photostimulation experiments
All- trans retinal (ATR) plates were prepared (100 mM stock in ethanol, final working 2.7 mM in OP50). 
Plates were stored at 4°C under dark conditions and used within 1 week. Animals were grown on +ATR 
OP50 plates in dark and L4 animals were transferred to a fresh +ATR plate prior to the day of experi-
ment. Experiments were performed using 1- day adults. For ChR2 photostimulation, experiments were 
conducted using a fluorescent dissecting microscope (Zeiss stereo Discovery.V12) equipped with a 
GFP filter set. Behavior was recorded for a 1- min period prior to photostimulation and during a subse-
quent 1 min period during photostimulation. Data are expressed as % change in reorientations across 
these time intervals. Chrimson photostimulation (26 mW/cm2) experiments were conducted using a 
625 nm 50 W LED (Mightex Systems). Animals were video recorded for 1 min in the absence of light 
stimulation (prestimulus) and subsequently for 1 min with light stimulation. Control experiments (−
ATR) were performed in the same manner.

SMD silencing
ARS assays were performed on unseeded Histamine (10 mM) and control Bacto- agar NGM plates 
using staged 1- day adults. For SMD silencing, transgenic animals were placed on Histamine plates, 
seeded with 100 µl OP- 50, for 1 hr prior to experiment. ARS was quantified as described previously.

Imaging
Fluorescent images were acquired using either BX51WI (Olympus) or Yokogawa (PerkinElmer) spin-
ning disc confocal microscopes. Data acquisition was performed using Volocity software. Staged 
1- day adult animals were immobilized using 0.3 M sodium azide on 2% agarose pads. Images were 
analyzed using ImageJ software.

SMD calcium imaging
Calcium imaging was performed in behaving transgenic animals, expressing GCaMP6s::SL2::mCherry 
under flp- 22∆4 promoter, on 5% agarose pads on a glass slide. Animals were treated as described for 
ARS and dispersal assays. Animals were tracked and videos captured, with continuous and simulta-
neous dual- channel (GCaMP6s and mCherry) fluorescence monitoring (Video 7), in the time windows 
of ARS (0–5 min) and dispersal (30–35 min off food). Imaging was carried out on an Axio Observer A1 
inverted microscope (Zeiss) connected to a Sola SE Light Engine (Lumencor) with an Olympus 2.5× 
air objective, and a Hamamatsu Orca- Flash 4.0 sCMOS camera. Simultaneous GCaMP and mCherry 
acquisition were achieved using the optical splitter Optisplit- II (Cairn Research) with filters ET525/50M 
and ET632/60M, and dichroic T560Iprx- UF2 (Chroma). Image acquisition was performed using Micro-
manager, at 66 ms exposure (approximately 15 fps).

ROIs encompassing cell bodies in the nerve ring, labeled by mCherry, were tracked post hoc using 
MATLAB (Neuron Activity Analysis, Mei Zhen, Video 7). Frames where tracking issues were encoun-
tered due to stage movement were excluded from analysis. The background subtracted calcium signals 
were plotted as a ratio (GCaMP6s/mCherry). We encoded corresponding behavior into four catego-
ries: forward locomotion, reversals, forward reorientations, and omega turns. Wild- type animals that 
did not perform searching (<4 reorientations during ARS) were excluded from the analysis. Correlation 

https://doi.org/10.7554/eLife.71747


 Research article      Neuroscience

Ramachandran, Banerjee, et al. eLife 2021;10:e71747. DOI: https:// doi. org/ 10. 7554/ eLife. 71747  24 of 28

analysis, including linear fits and calculation of Pearson’s coefficient, was performed in Graphpad 
Prism. For display, heat maps were plotted in Graphpad Prism (Figure 8) and representative traces 
(Figure 8—figure supplement 1) were interpolated with a smoothing spline in Igor Pro (Wavemetrics, 
Portland, OR).

in vitro GPCR characterization
The GPCR activation assay was performed as previously described (Caers et al., 2014; Peymen et al., 
2019; Van Sinay et al., 2017). Briefly, CHO- K1 cells stably expressing the luminescent Ca2+ indicator 
aequorin and the promiscuous Gα16 protein (ES- 000- A24 cell line, PerkinElmer) were transiently trans-
fected with ckr- 1/pcDNA3.1, ckr- 2/pcDNA3.1, or empty pcDNA3.1 vector. Cells were transfected 
with Lipofectamine LTX and Plus reagent (Invitrogen) at 60–80%  confluency and grown overnight 
at 37°C. After 24 hr, they were shifted to 28°C overnight. On the day of the assay, transfected cells 
were collected in bovine serum albumin (BSA) medium (DMEM/F12 without phenol red with L- glu-
tamine and 15 mM HEPES, Gibco, supplemented with 0.1% BSA), at a density of 5 million cells per 
ml, and loaded with 5 µM coelenterazine h (Invitrogen) for 4 hr at room temperature. Compound 
plates containing synthetic peptides in DMEM/BSA were placed in a MicroBeta LumiJet luminometer 
(PerkinElmer). After loading, the transfected cells were added at a density of 25,000 cells/well, and 
luminescence was measured for 30 s at a wavelength of 469 nm. After 30 s, 0.1% triton X- 100 (Merck) 
was added to lyse the cells, resulting in a maximal Ca2+ response that was measured for 30 s. To consti-
tute concentration- response curves of NLP- 12 peptides, peptide concentrations ranging from 1 pM to 
10 µM were tested in triplicate on 2 independent days.
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