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Abstract 

More recent concerns have been raised about the biological effects of all different weak magnetic 
fields (MFs) with the development of electric device era and information era. The biological effects 
due to weak MFs just like a hypomagnetic field (HMF) or near-null magnetic field is a very 
important subject for aerospace traveling and space station living. A large number of studies on 
the biological effects of other weak MFs have been carried out. The biological effects of different 
weak MFs can be negative or positive. Many mechanisms to explain the bioeffects of weak MFs 
have been given. Are there possible common mechanisms of the different biological effects in 
different weak MFs ? It’s unbelievable and sound impossible at first sight that different bioeffects 
of different weak MFs have common mechanisms. But possible common mechanisms can exist. In 
this study, the author proposes the relations between the singlet yield of the radical pair and the 
weak MFs are the possible common mechanisms. Giving one possible common mechanism of 
bioeffects of all different weak MFs including impulsed ones is the first to the author’s known. 
Here, the weak MFs are ones that cannot produce thermal bioeffects not only limited below 1mT. 
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1. Introduction 
Since at least the late 1950s, the public have raised the concerns about the potential biological effects of non-

ionizing radiation [1]. According to the European Commission, non-ionizing radiation are divided into static 
magnetic fields (0 Hz),extremely low-frequency (0 to 300 Hz), intermediate frequency (300 Hz to 100 kHz), and 
radio frequency (100 kHz to 300 GHz) fields [2].  

The static magnetic fields (SMFs) are classified as following four grades:(1) the weak grade (<1mT); (2) the 
moderate grade (1mT -1T); (3) the strong grade (1T-5T); and (4) the ultrastrong grade (>5T) [3]. 

Untill now a lot of biological effects of weak magnetic fields have been found and studied [4]. During the 
evolution process, all living organisms experienced the action of the Earth’s field(geomagnetic field, GMF) which is 
a natural component of their environment [5]. While, Interplanetary space is a natural hypomagnetic field(HMF) 
[5]. The range of a HMF is below 5uT [5]. Hypomagnetic field also can be called null or near-null magnetic field 
[6] .A hypomagnetic field(HMF) or near-null magnetic field is a very important subject for aerospace traveling 
and space station living [5]. Because of the difference on intensity between GMF(-50uT) and a HMF(<5uT) [5] 
many effects appear when animals, plants and microorganisms are in the HMF [5-16]. For example, a significant 
increase in anxiety-related behaviors was found when adult male C57BL/6 mice was in short-term HMF for 72h 
[8]. Usually, GMF and HMF are considered as part of static magnetic fields (SMFs). Because of their ranges of 
intensity, they are the entire weak grade. The biological effects of other SMFs (except for GMF and a HMF)are 
reported [17-20]. More recent concerns have arisen about the potential effects of all different weak magnetic fields 
with the development of electric device era and information era [1]. For example, more and more people have been 
attracted by the small increases in childhood leukemia for children living near power lines and possible increases in 
brain tumors for heavy use of cell phones [1]. The biological effects of extremely low-frequency (0 to 300 Hz) 
magnetic fields (ELF-MFs) are presented [21-34]. The biological effects of intermediate frequency (300 Hz to 100 
kHz) magnetic fields(IMF-MFs)are discussed [35-38]. The biological effects of radio frequency (100 kHz to 300 
GHz) magnetic fields (RF-MFs) are talked about [39-42]. The biological effects of pulsed magnetic fields are 
reported [43-47]. The biological effects of weak MFs can also be positive. For example ,a single session of Pulsed 
magnetic fields (parameters: 0.5 mT, 12 Hz, and 30 min) produced significantly greater increase in peripheral blood 
flow velocity in the dorsal foot [43]which may be used to treat some peripheral diseases. 

Many mechanisms to explain the bioeffects of weak MFs have been given. Electromagnetic 
induction,ferrimagnetism and radical pair mechanisms of biological effects of a GMF are introduced [48-54]. 
Radical pair and magnetic moment mechanisms of biological effects of a HMF are suggested [7]; [55-57]. The 
mechanisms of biological effects of ELF-MFs which are cyclotron resonance theory and it’s new interpretation,the 
ion parametric resonance model and an interference of ions bound within proteins are proposed [58-61]. The 
radical pair mechanism of biological effects of RF-MFs are outlined [1]; [62, 63]. Because magnetic fields in the 
band of 300 Hz through 10 MHz between ELF-MFs and RF-MFs have not been sufficiently explored so far [64] 
the mechanisms of biological effects of an intermediate frequency magnetic fields(IMF-MFs) have not been 
reported to the author’s known. From the mechanisms of different biological effects of different magnetic fields, one 
can see the mechanisms are different too. Is there one common mechanism among the different biological effects of 
different weak magnetic fields? The study gives one possible answer. The hyperfine coupling radical pair 
mechanism in bird navigation is demonstrated [65]. The author thinks that the hyperfine coupling radical pair 
mechanism in bird navigation can be extended to explain biological effects of other weak magnetic fields. That is to 
say the hyperfine coupling radical mechanism or the relations between the singlet yield of the radical pair and the 
weak MFs may be common ones among the different mechanisms to explain different biological effects of different 
weak magnetic fields. In this study, the weak MFs are ones that cannot produce thermal bioeffects not only limited 
below 1mT. The reason is given in part 4. 

The presentation order of the contents of this paper is as follows. General radical pair model and the hyperfine 
coupling radical pair mechanism in bird navigation is shown in part 2; the hyperfine coupling radical pair 
mechanism of biological effects on weak MFs is presented in part 3; Part 4 is discussions of several questions on the 
hyperfine coupling radical pair mechanism of weak MFs; and the main contents are summarized in part 5.  
 

2. General Radical Pair Model and the Hyperfine Coupling Radical Pair Mechanism 
in Bird Navigation   

A radical can be a molecule that contains an odd number of electrons. A radical pair consists of two radicals 
that have been created simultaneously, usually by a chemical reaction [66]. The reaction scheme can be divided 
into three steps [67]. The first one is that an excited donor molecule transfers an electron to an acceptor molecule 
resulting in a radical pair. Once the radical pair is generated, its singlet and triplet states will be interconverted by 
the hyperfine interaction. The final one is that singlet and triplet pairs will react to give singlet or triplet products 
[67, 68]. 

The hyperfine coupling radical model in bird navigation is given as followed [65]. When considering that the 

vertical hyperfine coupling zA is relatively strong compared with ,0B and the horizontal hyperfine coupling 

0 yx AA is assumed, the singlet yield 
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can be obtained under the influence of the geomagnetic field with the corresponding eigenvalue,here,which is equal 

to 0B , where 0B is the intensity of the Earth’s magnetic field, and  describes its orientation to the basis of the 

hyperfine tensor and   is one constant [65]. When considering the horizontal hyperfine coupling 0 yx AA

,the results are similar to that without considering it Xu, et al. [65]. 
When considering the influence of an additional weak oscillating field, the singlet yield is given in Xu, et al. 

[65] 
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Where, k/1  is the radical pair lifetime.  is determined by the surrounding magnetic field of electron and the 

hyperfine coupling zA ,and rfB  is the strength of additional oscillating field with frequency .From Equation 3, it 

can be seen that if the radio frequency field is parallel to the geomagnetic field, i.e., ,0)(,0 '     it means that 

the parallel radio frequency field has no influence on the singlet yield. If the radio frequency field is not parallel to 

the geomagnetic field, i.e., ,0  the radio frequency field influences the singlet yield [65].  

 

3. The Hyperfine Coupling Radical Pair Mechanism of Biological Effects on Weak 
MFs  
3.1. The Hyperfine Coupling Mechanism of Biological Effects on GMF  

Magnetic sensing to detect the Earth’s magnetic field, is still one of the most controversial animal senses 
because the exact molecules to sense GMF have not been found [51]. Some models have been proposed to solve 
the controversy [51]. The author thinks the primary physical mechanism of the ability to detect the Earth’s 
magnetic field is Equation 1 or 2 just as the same as the bird navigation in part 2. From Equation 2 and Equation 3 

one can see when the time-dependent field is parallel to the geomagnetic field, i.e., ,0)(,0 '    or it’s 

frequency is not equal to two folds of the corresponding eigenvalue,the biological effects are caused only by the 

geomagnetic (static)field. Only when the time-dependent field is not parallel to the geomagnetic field, i.e., ,0
and it’s frequency is equal to two folds of the corresponding eigenvalue,the biological effects are caused by both it 
and the geomagnetic (static)field.Here, the time-dependent field can either be external one made by human beings 
or one of the ambient alternating fields, because the wireless electromagnetic noise frequency of the surroundings 
can be below 1Hz [69] from 1Hz to 100KHz [70] from 9KHz to 10GHz and above 10GHz [71] and sometimes, 
the noise can be very important [72]. 
 

3.2. The Hyperfine Coupling Mechanism of Biological Effects on a HMF 
Because of the difference on intensity between GMF(~50uT) and a HMF(<5uT) [5] many effects appear when 

animals, plants and microorganisms are in the HMF [5-16]. For example, a HMF can significantly suppress 
Arabidopsis flowering in light [14]. Because of the HMF as a key environmental factor when long-term and long-
distance space mission in outer space, and also in some magnetic shielding conditions on the ground,the biological 
effect of the HMF should be seriously considered [73]. Some studies on the mechanisms underlying the biological 
effects of a HMF have been carried out [6]. These studies give the mechanism of the biological effects of a HMF at 
the cellular level [74-80] the mechanism at the molecular level [11]; [47]; [81-88] the mechanism at the tissue 
level [89, 90] and the physical mechanism respectively [55-57]. However, the underlying mechanisms remain 
unclear. In Ouyang and Li [7] the author and his partner gave the point: Equation 1 may be one quantum 
mechanism of biological effects on a HMF. Ambient alternating fields always exist [73, 74] can they influence the 
biological effects on a HMF ? The author thinks ambient alternating fields can influence the biological effects on a 
HMF just like on GMF as discussed in part 2.That is to say Equation 2 may be one possible quantum mechanism 

of the biological effects of a HMF when considering ambient alternating fields. In Zhang, et al. [73] the HMF( 0B ) 

is )(08.019.0 uT or )(07.014.0 uT .According to 000 2,   B ,the frequency of ambient alternating 

fields that can influence the biological effects is from 3076(Hz) to7550(Hz) or from1958(Hz) to5872(Hz). In Zhang, 
et al. [73] the ambient alternating fields is 2200-2700(Hz) or 2300-2900(Hz). Based on Equation 2, together with 
common range between 1958-5872(Hz) and 2300-2900(Hz), the biological effects are results of a HMF combined 
with ambient alternating fields.That is to say, ambient alternating fields can influence the biological effects of a 

HMF when the double eigenvalue 000 2,   B is included in the frequency of ambient alternating fields. 

Choleris, et al. [91] also gave the point that ambient alternating fields can influence the biological effects of a 

HMF. To the contrast ,if the double eigenvalue 000 2,   B is not included in the frequency of ambient 

alternating fields , the ambient alternating fields can not influence the biological effects of a HMF. Because 
Equation 2 is obtained based on the time-dependent perturbation theory [65] when ambient alternating fields is 

not much weaker compared with 0B , it can not be used. 

 

3.3. The Hyperfine Coupling Mechanism of Biological Effects on Other SMFS (Except for GMF and A HMF) 
Weak static magnetic field (500uT) increased total lipid content , including polar lipids, among them 

glycolipids and phospholipids was given in Novitskii, et al. [17]. Tenuzzo, et al. [92] results found apoptosis 
increased in some cells and decreased in the other when the cells were exposed in 6 mT static magnetic fields. 
Wang, et al. [93]  results showed that 1.00 T and 1.13 T SMFs could increase cellular adenosine triphosphate 
(ATP). The biological effects of other SMFs(except for GMF and a HMF) were shown in Novitskii, et al. [17]; 
Sullivan, et al. [18]; Tolosa, et al. [19]; Martino [20]. 

The wireless electromagnetic noise frequency of the surroundings can be below 1Hz [69] from 1Hz to 
100KHz [70] from 9KHz to 10GHz and above 10GHz [71]. Sometimes, the noise can be very important [72]. 
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Based on 000 2,   B , when 0B  equals  0.01mT, 02   is about 300KHz; when 0B  equals  1mT, 

02   is about 30MHz ; when 0B  equals  100mT, 02   is about 3GHz; when 0B  equals  10T, 02   is 

about 300GHz. 
Because of the frequency richness of the wireless electromagnetic noise of the surroundings and the weakness 

of it’s intensity,usually the double eigenvalue 000 2,   B is included in the frequency of ambient alternating 

fields and the ambient alternating fields is much weaker compared with 0B .  

From these that can be seen, the biological effects of other SMFs(except for a HMF and GMF) can be 
explained by Equation 2. That is to say,the biological effects of other SMFs(except for GMF and a HMF) are 
caused by both the wireless electromagnetic noise of the surroundings and the SMFs usually. Here, because of no 

external alternating field, the wireless electromagnetic noise of the surroundings is the alternating field, 0B  is the 

sum both GMF and SMFs when GMF and SMFs have the same directions. When they have different directions, 

0B  is smaller than the sum both GMF and SMFs.  

 

3.4. The Hyperfine Coupling Mechanism of Biological Effects on ELF-MFs  
Because of industrialization, characterized by an increasing production, distribution, and consumption of 

electricity, occupational exposure to ELF-MFs in the frequency range of 3 Hz to 300 Hz is common and many 
workers are occupationally exposed to these fields Jalilian, et al. [94]. Bawin, et al. [95]; Bawin and Adey [96] 
provided important initial findings of non-thermal ELF-MFs that Ca2+ efflux from chick embryo brain tissue was 
influenced by ELF-MFs.Importantly, Blackman, et al. [97] later confirmed these results. An increased risk of 
amyotrophic lateral sclerosis (ALS) in workers occupationally exposed to ELF-MFs were observed in Huss, et al. 
[21]. Kleijn, et al. [22]; Zhang, et al. [23]; Schüz, et al. [24]; Tang, et al. [25]; Fixler, et al. [26]; Wang, et al. 
[27]; Prato, et al. [28]; Corbacio, et al. [29]; Vanderstraeten and Gillis [30]; Bowman, et al. [31]; Prato, et al. 
[32]; Burda, et al. [33]; Burger, et al. [34] reported the other biological effects of ELF-MFs (0 to 300 Hz) fields. 
Smith, et al. [58]; Lednev [59]; Blanchard and Blackman [60]; Binhi [61] proposed the mechanisms of biological 
effects of ELF-MFs which are cyclotron resonance theory and it’s new interpretation,the ion parametric resonance 
model and an interference of ions bound within proteins. These mechanisms can not explain the role of light in the 
course of biological effects appearing [82]. The radical pair mechanism is valid for static MFs, but is also 
applicable to power frequency MFs: for radical recombination times, which are in the order of tens of nanosecond 
to few microseconds, 50/60 Hz fields may be regarded as static [98]. Based on this, the author thinks almost ELF-
MFs effects can be explained through Equation 2. 

Here, 0B  is the sum both GMF and amplitude of ELF-MFs. Just like the case of GMF or HMF, the author 

thinks ambient alternating fields can influence the biological effects on ELF-MFs. That is to say, ambient 

alternating fields can influence the biological effects of ELF-MFs when the double eigenvalue 000 2,   B is 

included in the frequency of ambient alternating fields. 

To the contrast, if the double eigenvalue 000 2,   B is not included in the frequency of ambient 

alternating fields, the ambient alternating fields can not influence the biological effects of ELF-MFs. Because 
Equation 2 is obtained based on the time-dependent perturbation theory [65] when ambient alternating fields is 

not much weaker compared with 0B , it can not be used just like the case of GMF or a HMF. 

 

3.5. The Hyperfine Coupling Mechanism of Biological Effects on an IMF-MFs 
The intermediate frequency magnetic fields in the context of protecting human exposure have received public 

concerns in recent years because of the growing emergence of technology or products using those fields and a 
number of studies have been carried out Yamazaki, et al. [64]. Kumari, et al. [35] findings suggest that exposure 

to a 7.5 kHz, 120 μT MF may lead to mild learning and memory impairment possibly through an inflammatory 
reaction in the hippocampus. From Navarro, et al. [37] results, it seems that a low intensity 2 kHz exposure 
modifies short-term working memory, as well as perception, binary decision, motor execution, and sustained 
attention. Barbault, et al. [38]; Capstick, et al. [39] reported that cancer cell growth may be altered by very low 
level magnetic fields modulated at specific frequencies in humans. 

Because IMF-MFs is 300 Hz through 100KHz or10 MHz [2]; [64] ELF-MFs is 0Hz through 300Hz and the 
author thinks ELF-MFs may be regarded as static and corresponding effects can be explained through Equation 2 
in part 3.4, and one band of IMF-MFs (near ELF-Mfs) may be regarded as static and can be explained through 
Equation 2 just like the case of ELF-MFs. 

When the frequency is so larger that IMF-MFs may not be regarded as static, how corresponding effects can 
be explained? This problem can be conquered together with RF-MFs. 
 

3.6. The Hyperfine Coupling Mechanism of Biological Effects on RF-MFs  
With the development of the globally advancing digitalization, the use of mobile communication systems and 

the mobile devices is more and more, which results in a rise of RF-MFs exposure of the human body Köhler, et al. 
[99]. Valentini, et al. [100] concluded that mobile phone RF-MFs may influence normal physiology. Apollonio, et 
al. [101] reported the other biological effects of RF-MFs. For a long time, there have been substantial concerns 
over the possible effects of RF-MFs at exposure levels that do not lead to significant increases in temperature [62]. 
Possible health effects of RF-MFs on the human body are still in discussion and have not finally been verified [100, 
101]. Thermal effect which leads to temperature increase in cells and tissue and is based on dielectric heating is the 
undisputed and possibly only interaction of RF-MFs with biological cells and tissue [99]; [101]. However, the 
occurrence of non-thermal effects within cells, tissue and organism are still one controversial discussion [63]; [99-
101]. Nevertheless, one mechanism that explains the observed effects with certainty is not known [40-42]. 
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Based on 000 2,   B , when 0B  equals  0.01mT, 02   is about 300KHz; when 0B  equals  1mT, 

02   is about 30MHz ; when 0B  equals  100mT, 02   is about 3GHz; when 0B  equals  10T, 02   is 

about 300GHz. The wireless electromagnetic noise frequency of the surroundings can be below 1Hz [69] from 
1Hz to 100KHz [70] from 9KHz to 10GHz and above 10GHz [71]. Sometimes, the noise can be very important 
[72]. 

From these the author thinks , the biological effects of an IMF-MFs or a RF-MFs can be explained by 
Equation 2. 

   Here, because of IMF-MFs or RF-MFs as external field, the wireless electromagnetic noise of the 

surroundings and external field all can be the alternating field, and 0B  is the sum both GMF and amplitude of low 

frequency part of the wireless electromagnetic noise that may be regarded as static just like the case of part 3.3. 
 

3.7. The Hyperfine Coupling Radical Pair Mechanism of Biological Effects on Pulsed Magnetic Fields 
Chen, et al. [44] results suggested that early an impulsed electromagnetic field therapy produced early and 

significant benefit in central nervous  regeneration. Sun, et al. [43]; Hei, et al. [45]; Zhai, et al. [46]; Martino, et 
al. [47] reported other biological effects of an impulsed magnetic field. Because an impulse signal can be divided 
into different frequency parts, an impulsed MF is combined with ELF-MFs, IMF-MFs and RF-MFs, and the 
biological effects of an impulsed MF is comprehensive results with ELF-MFs, IMF-MFs and RF-MFs. That is to 
say, the biological effects of impulsed MFs can be explained by Equation 2. Here, because of  impulsed MFs as 
external field, the wireless electromagnetic noise of the surroundings and external field all can be the alternating 

field, and 0B  is the sum both GMF and amplitude of low frequency part of the wireless electromagnetic noise plus 

the base or harmonics of the impulsed MFs that may be regarded as static. Prato [82] showed that induction of 
analgesia could be very significantly increased if an impulsed magnetic field was used rather than a sinuidal field. 
The result can be explained very well using the hyperfine coupling radial pair mechanism.Because the harmonics of 

the impulsed MFs satisfied the double eigenvalue 000 2,   B
,the difference of results between a pulsed 

magnetic field and a sinuidal field is caused based on Equation 2.  
 

4. Discussion 
Some references [1]; [25]; [29]; [36]; [42]; [62]; [87]; [94]; [101]; [102] discussed the problems of the 

irreproducible bioeffects of weak magnetic fields. Some references [1]; [36]; [62]; [101];  [102]  explained the 
reasons in different view points. What are the primary physical mechanisms of the problems? In this study the 
author gives one possible common mechanism of bioeffects of weak magnetic fields. In this mechanism, the noise 
can be very important sometimes. Because of the differences of the noise in different time and different place, some 
bioeffects experimental results on weak magnetic fields may be not same.  

In the different bioeffects experiments of different weak magnetic fields, only ones of hypomagnetic(or near-
null magnetic) fields are good in reproduction to the author’s knowledge. Why is this? It is one aim of next 

research. In part 2, rfB is much weaker compared with 0B is assumed, so the time-dependent perturbation theory 

can be used to calculate the yield of the singlet state. When rfB is not much weaker compared with 0B ,that is to say 

the noise is not very much weak compared with external magnetic fields, what is the influence of the noise 
accordingly? It is the the other aim of next research. 

In part 2, zA is assumed relatively strong compared with the external field in Xu, et al. [65] Equation 2 is 

given. When zA is not relatively strong compared with the external field, Equation 2 is not the mechanism of 

bioeffects of weak magnetic fields.  
In part 1,the arthor gives that in this study, the weak MFs are ones that can not produce thermal bioeffects not 

only limited below 1mT.Why? Though [67] expressed that for strong magnetic fields (>100mT) singlet-triplet 
interconversion can occur by virtue of the different Zeeman interactions,that is to say,the hyperfine coupling 
radical pair mechanism may have weaker influence in biological effects compared to the magnetic fields below 1mT, 
Hore and Mouritsen [66] pointed out that tiny interactions can have profound effects but only if the system has 
previously been brought into an appropriate state. The author thinks the weaker influence of the hyperfine 
coupling radical pair mechanism may be the tiny interaction when the magnetic fields is stronger than 1mT. 

When the static magnetic field is stronger than 200mT, water can be magnetized [103]. Magnetized water 
maybe have some magnetic bioeffects along with above hyperfine coupling radical pair mechanisms in organisms. 
When the magnetic field is so strong that it can produce thermal bioeffects, the bioeffects produced through above 
hyperfine coupling radical pair mechanisms may be mixed with thermal ones. 
 

5. Summary 
The primary physical mechanism which can be related to the biological effects of weak magnetic fields is one 

key problem and has not been clarified. In this article,the author builds one bridge that has connected the bird 
navigation and bioeffects of other magnetic fields in possible common explanatory mechanisms, because the author 
expands Equations 1 and 2 to be used to other weak magnetic fields including impulsed ones.That is to say the 
author proposes one hyperfine coupling radical pair mechanism in all weak magnetic fields and explains the reasons 
of the irreproducible bioeffects of them . Giving one possible common mechanism of bioeffects of all different weak 
MFs including an impulsed ones is the first to the author’s known. Here, the weak MFs are ones that can not 
produce thermal bioeffects not only limited below 1mT. 
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