
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2022 Faculty Research 

5-17-2022 

Deep learning modeling m6A deposition reveals the importance Deep learning modeling m6A deposition reveals the importance 

of downstream cis-element sequences. of downstream cis-element sequences. 

Zhiyuan Luo 
The Jackson Laboratory, zhiyuan.luo@jax.org 

Jiacheng Zhang 

Jingyi Fei 

Shengdong Ke 
The Jackson Laboratory, shengdong.ke@jax.org 

Follow this and additional works at: https://mouseion.jax.org/stfb2022 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Luo, Zhiyuan; Zhang, Jiacheng; Fei, Jingyi; and Ke, Shengdong, "Deep learning modeling m6A deposition 
reveals the importance of downstream cis-element sequences." (2022). Faculty Research 2022. 100. 
https://mouseion.jax.org/stfb2022/100 

This Article is brought to you for free and open access by the Faculty Research at The Mouseion at the JAXlibrary. 
It has been accepted for inclusion in Faculty Research 2022 by an authorized administrator of The Mouseion at the 
JAXlibrary. For more information, please contact ann.jordan@jax.org. 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2022
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2022?utm_source=mouseion.jax.org%2Fstfb2022%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2022%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2022%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2022/100?utm_source=mouseion.jax.org%2Fstfb2022%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ann.jordan@jax.org


ARTICLE

Deep learning modeling m6A deposition reveals the
importance of downstream cis-element sequences
Zhiyuan Luo1, Jiacheng Zhang 2, Jingyi Fei 3,4 & Shengdong Ke 1✉

The N6-methyladenosine (m6A) modification is deposited to nascent transcripts on chro-

matin, but its site-specificity mechanism is mostly unknown. Here we model the m6A

deposition to pre-mRNA by iM6A (intelligent m6A), a deep learning method, demonstrating

that the site-specific m6A methylation is primarily determined by the flanking nucleotide

sequences. iM6A accurately models the m6A deposition (AUROC= 0.99) and uncovers

surprisingly that the cis-elements regulating the m6A deposition preferentially reside within

the 50 nt downstream of the m6A sites. The m6A enhancers mostly include part of the

RRACH motif and the m6A silencers generally contain CG/GT/CT motifs. Our finding is

supported by both independent experimental validations and evolutionary conservation.

Moreover, our work provides evidences that mutations resulting in synonymous codons can

affect the m6A deposition and the TGA stop codon favors m6A deposition nearby. Our iM6A

deep learning modeling enables fast paced biological discovery which would be cost-

prohibitive and unpractical with traditional experimental approaches, and uncovers a key cis-

regulatory mechanism for m6A site-specific deposition.
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The N6-methyladenosine (m6A) modification is the most
common internal modification in eukaryotic mRNA, and
widely distributed in various tissues1,2. It was first identi-

fied to be in mRNA during 1970s3–5. m6A is involved in diverse
biological processes including cell differentiation, cancer pro-
gression and neurological development6–10. Due to its functional
importance, m6A has been discovered to affect various aspects of
RNA biology, including splicing, polyadenylation, export, degra-
dation, and translation11,12. Its major function is believed to
regulate mRNA turnover13–16.

The m6A modification on mRNA is catalyzed by the m6A
methyltransferase complex (MTC), which is comprised of
METTL3 and METTL14 as the catalytic core17–19. Additional
components including WTAP, VIRMA, ZC3H13, and HAKAI
are also found to interact with METTL3-METTL14 and affect the
complex activity20–26. The m6A consensus sequence RRACH as a
stringent motif or RAC as a more inclusive motif (R=A or G,
H=A, C, or U) was first determined by biochemical
experiments27–30. Despite the wide prevalence of the m6A con-
sensus motif in transcripts, very few of them are methylated,
highlighting the site-specificity of m6A methylation. To investi-
gate the global m6A distribution at the transcriptomic level, the
m6A-seq and MeRIP-seq were first developed to map the m6A
peak regions (typically ~200 nt or longer) using commercially
available m6A antibodies1,2. To achieve single-nucleotide resolu-
tion mapping for m6A, m6A-CLIP/miCLIP/PA-m6A-seq cross-
linked m6A-antibody to its m6A mRNA target by UV and
achieved precise m6A mapping in transcripts by detecting the
reverse transcription errors due to the residual peptide cross-
linked to m6A (CIMS sites: crosslink induced mutational sites,
CITS sites: crosslink induced truncation sites)31–33. In addition,
the reverse transcription errors by m6A modification itself also
enabled the single-nucleotide resolution mapping (MITS sites:
m6A induced truncation sites)33. Though a few new precise m6A
mapping methods have recently been developed by exploring
alternative ideas34–38, the m6A-CLIP method has generated the
major share of precise m6A sites in human and mouse
transcripts8,14,32,33,39. The m6A mapping studies showed that
m6As were preferentially enriched in last exons, both their coding
region and 3'UTR (untranslated region), as well as in long
internal exons1,2.

Based on the existing m6A sites precisely determined by
experiments, computational methods have been developed to
model the m6A sites in mRNA, including the machine learning-
based methods (WHISTLE, SRAMP, and MethyRNA) and the
deep learning-based methods (TDm6A, DeepM6ASeq)39–43.
These bioinformatics methods mostly focused on the gradually
improvement for the m6A site modeling accuracy, but used the
relatively small-scale data integration and contributed little to
discovery of biological mechanisms.

Here we first described a new deep learning method, the
ResNet (residual neural network), for modeling the m6A
deposition in pre-mRNA. The ResNet avoids the vanishing gra-
dient problem in deep neural networks by the skip connections44.
Skip connections allow to skip some layers in the neural network
and feed the output of one layer as the input to the next layers44,
enabling us to build deeper neural networks (adding more layers)
and improve the accuracy of classification. In addition, it can
handle very large datasets to investigate more complex issues.
This deep learning method has been successfully used to handle
high-throughput sequencing data and model biological
processes45,46.

Our ResNet deep learning approach, the iM6A (intelligent
m6A), models the m6A site-specific deposition in the genome
with a state of art accuracy. Using saturated mutational analysis
to generate input sequence, we systematically perturbed the input

sequence to the iM6A deep learning model to see how it affects
the m6A deposition output. We discovered surprisingly that the
downstream 50 nt region of the m6A sites contained a high
density of the cis-elements for the m6A deposition. This pattern
was consistently true for both last exons and internal exons. We
further characterized m6A enhancers and silencers by imple-
menting linear regression to interpret the iM6A deep learning
output. The iM6A modeling as well as the identified functional
cis-elements were validated by independent experimental data
and evolutionary conservation. By a similar process of model
perturbation, we found that synonymous codon mutations can
affect m6A deposition and that the TGA stop codon may promote
the adjacent m6A deposition. The iM6A approach enabled high-
throughput and effective biological discovery which would be
cost-prohibitive for traditional experimental methods, and
uncovered a key cis-regulatory mechanism governing m6A site-
specific deposition.

Results
iM6A accurately models m6A deposition. As with any
nucleotide-related biological process, the question arises whether
the site-specificity of m6A deposition is determined in whole or
part by a “code” in flanking primary nucleotide sequences. Is
there an m6A cis-element code? To address this question directly,
we developed the iM6A (intelligent m6A, Fig. 1a), a deep residual
neural network (ResNet)44 to model the m6A site-specific
deposition at genome-wide level. We first collected a high-
quality set of m6A sites that were precisely determined by the
m6A-CLIP experiments in mouse transcriptome14,33. We used
pre-mRNA sequences as input: the m6A sites on pre-mRNA were
served as positive sites, while the remained nucleotides were
treated as negative sites. The whole dataset was divided into
training and test datasets. The training dataset contained all the
transcripts on most chromosomes except chromosome 9 (Chr9),
the transcripts of which were held out and reserved for the later
independent test of iM6A modeling. iM6A evaluated the full
length of transcripts, and the outputs of which were probabilities
of each nucleotide position being an m6A site (see details in the
Methods). iM6A modeled the m6A sites in the test set with an
accuracy of 0.991 as measured by the AUROC score (area under
receiver operator curves) (Fig. 1b). As the comparison, we also
implemented a traditional machine learning method, SVM
(Support Vector Machine)39 and an alternative deep learning
method CNN-RNN (Convolutional Neural Network-Recurrent
Neural Network)40 to modeling the m6A modification deposition
for the same training and testing datasets (see Methods for more
details). The comparisons showed that iM6A achieved better
performance than both SVM and CNN-RNN (Fig. 1b).

Alternatively, the performance of iM6A measured by the
AUPRC score (area under precision recall curves) showed iM6A
was also better than those of SVM and CNN-RNN methods
(Supplementary Fig. 1b). The m6A sites experimentally deter-
mined by m6A-CLIP were accurately identified from the non-
methylated sites by iM6A in the independent test (Fig. 1c). For
comparison with mouse, we implemented the iM6A strategy to
model the m6A site-specificity in human genome by using a high-
quality set of human m6A sites that were precisely determined by
the m6A-CLIP experiment8,14,32,33 and obtained the same high
AUROC and AUPRC performances (Supplementary Fig. 1a, c, d).

Our iM6A training was using the experimentally determined
m6A sites by the m6A-CLIP method which identified a major
share of the single-nucleotide resolution m6A sites that had been
mapped so far (Supplementary Fig. 1l). To make sure that the
iM6A model was accurate for all m6A sites independent of the
experimental methods that precisely mapped them, we examined
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Fig. 1 iM6A models m6A deposition with single-nucleotide resolution. a iM6A architecture. The architecture started with a convolutional layer (Conv),
then was followed by four Residual Network (ResNet) blocks, where k, w, ar, and r are the number of convolutional kernels, window size, dilation rate of
each convolutional kernel in the layer, and repetition numbers respectively. Further, the output of every ResNet block was added to the input of penultimate
layer, connected with a convolutional unit with softmax activation. b Receiver operator curves (ROCs) and corresponding area under receiver operator
curves (AUROC) scores of iM6A, CNN-RNN (implemented in TDm6A40), and SVM (implemented in MethyRNA43). Here mouse chromosome 9 data was
used to test the iM6A, CNN-RNN, and SVM models, which were trained independently on data of other mouse chromosomes except chromosome 9
(similar result was obtained for human m6A modeling in Supplementary Fig. 1a). c Heatmap of the iM6A modeling and m6A-CLIP detected sites in mouse
chromosome 9. The modeled sites were sorted based on modeled score, the black line denoted whether methylation was identified at the sites by
m6A-CLIP14,33. d Heatmap of the iM6A modeling and MAZTER-seq detected sites. The modeled sites (conformed to RRACA) were sorted based on
modeled score, and the black line denoted whether methylation was identified at the sites by MAZTER-seq34. e The modeled probability by iM6A agreed
with the experimentally quantified m6A methylation level. Modeled probability by iM6A (left panel) and enrichment score quantified by m6A-CLIP (right
panel) at mouse m6A sites. The m6A sites were categorized into three groups based on their m6A peak enrichment value as the low (n= 63,0854),
medium (n= 76,111), and high (n= 3229) groups. Median and interquartile ranges are presented for the box plot. f Scatter plot of modeled probability for
m6A sites (n= 100,000) in mouse chromosome 9 using mouse RAC iM6A model versus mouse RRACH iM6A model. Each dot represented one site in
mouse chromosome 9 discovered by both models, and the labeled axes provided the probability values for that site by the two models.
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whether iM6A could identify m6A sites mapped by alternative
experimental methods (Supplementary Fig. 1g) including m6A-
label-seq36, MAZTER-seq34, m6ACE-seq35, and miCLIP247. The
m6A-label-seq method detected m6A sites by chemically
substituting the m6A with a6A (N6-allyladenosine) at the m6A
sites, MAZTER-seq identified a relatively small subset of m6A
sites that were in the m6ACA motifs by a methyl-sensitive RNase,
and m6ACE-seq detected m6A sites by its crosslinking to the
m6A-antibody and followed with the exonuclease digest to
achieve single-base resolution. In addition, miCLIP2 was an
optimized CLIP method that combined miCLIP with machine
learning to improve m6A detection47. The precisely mapped m6A
sites by all these alternative experimental methods were identified
with high probability values by iM6A (Fig. 1d and Supplementary
Fig. 1j, k for mouse, Supplementary Fig. 1e–i for human),
indicating that iM6A modeling was accurate and supported by a
variety of the m6A mapping experimental methods. Furthermore,
we investigated if the modeled m6A probability by iM6A for an
m6A site was quantitatively associated with its methylation level.
The m6A peak enrichment value quantifies its methylation level
by normalizing the m6A-IP read count to the input read count for
an m6A peak region1,2,14,33. We categorized the m6A sites into
three groups based on their m6A peak enrichment value as the
low, medium, and high groups, and found that the modeled m6A
probability by iM6A associated with the quantitative distribution
of the peak enrichment value across the three groups (Fig. 1e for
mouse, and Supplementary Fig. 1m for human). MAZTER-seq is
another method that could experimentally quantify m6A
methylation level for a small subset of m6A sites that were in
RRACA (R=A or G) motif, with the higher m6A methylation
level associated with the lower cleavage efficiency by a
methylation-sensitive RNase34. The modeled m6A probability
by iM6A also associated with the quantitative distributions across
the different cleavage efficiencies groups (Supplementary Fig. 1n
for mouse data, and Supplementary Fig. 1o for human data). All
the results above supported that the m6A probability score
generated by iM6A reflected quantitatively the methylation level
at the m6A site.

It is known that the m6A site consensus could be either
RRACH (H=A, C, or U) as a high stringent set or RAC as a
more inclusive set. Accordingly, to be comprehensive, we
independently trained the RAC iM6A model and the RRACH
iM6A model using either the RAC or the RRACH experimentally
determined m6A sites in most genes on chromosomes except
chromosome 9 (Chr9) as the training dataset, and tested the
performance of the RAC and the RRACH iM6A models on genes
from chromosome 9 (Chr9). The RAC iM6A model performed
very similarly to the RRACH iM6A model (Fig. 1f for mouse data,
and Supplementary Fig. 1p for human data). In addition, we
trained the iM6A model with 80, 400, 2 K, and 10 K sequence on
both sides, and the performance increased along with sequence
length (Supplementary Fig. 1q). For all the analysis in the
remaining result section, we implemented the RAC iM6A-10K
model to generate all the data.

Cis-elements that govern the m6A deposition locate largely
within 50 nt downstream of the m6A sites. Though iM6A as a
deep learning approach was powerful in accurately modeling the
m6A sites in the genome, this deep learning black box did not aid
understanding of the underlying cis-element rules, i.e., the m6A
cis-element code. To systematically identify the cis-elements that
determine m6A modification, we performed single nucleotide
saturation mutagenesis (Fig. 2a) to the sequences flanking the
m6A sites in last exon which contains about 70% of all m6A sites
in the transcripts33 and calculated the positional mutational

effects for the m6A deposition by iM6A. We found that the
mutations that either increased or decreased m6A probability
significantly (|ΔProbability | > 0.1) were largely enriched in the
downstream region of the m6A sites, especially within the 50 nt
downstream of m6A sites (Fig. 2b for mouse; and Supplementary
Fig. 2a for human), suggesting cis-elements that influence m6A
deposition locate largely in this region.

While the last exon hosts a majority of m6A sites, the long
internal exon also contains many m6A sites14. We applied the
same strategy to investigate the cis-elements flanking the m6A
sites in the long internal exon, and found that the downstream
50 nt region of the m6A sites again contained largely of the cis-
elements that regulate the m6A deposition (Fig. 2c for mouse; and
Supplementary Fig. 3b for human), suggesting that the m6A
deposition in both the last exon and the long internal exon may
follow a similar mechanism.

To systematically and quantitatively analyze the cis-element
effect on m6A deposition in the 50 nt downstream region, we
implemented a linear regression approach (Fig. 2d) which had
been demonstrated to be effective in identifying functional motifs
for microRNA targeting48 and pre-mRNA splicing regulation49: a
substitution was made which created and disrupted five over-
lapping 5-mers simultaneously and the net effect for each
pentamer motif was determined by the slope of the linear
regression equation when pooling all the data (see details in the
Methods). Based on their effect value and the statistical
significance, pentamer motifs were ranked, Top 20 enhancers
and silencers were showed. For the last exon, the m6A enhancers
included mostly part of the RRACH motif; the m6A silencers
mostly contained the CG/GT/CT dinucleotides (Fig. 2e, f for
mouse, and the virtually the same motif set for human,
Supplementary Fig. 2c, d). Almost the same set of the m6A
enhancers and the m6A silencers were obtained for the long
internal exon (Supplementary Fig. 2f, g). We also observed a
strong effect value correlation for all pentamers between the study
in the last exon and the study in the long internal exon (Fig. 2g
for mouse, and Supplementary Fig. 2e for human), supporting
that the same cis-element code governed m6A site-specific
deposition in both locations. Moreover, the strong effect
correlation was obtained for all pentamers between the study in
mouse and the study in human (Supplementary Fig. 2h for the
last exon, and Supplementary Fig. 2i for the long internal exon),
supporting that both mouse and human had the same cis-element
code in regulating m6A deposition for both the last exon and the
long internal exon.

We further investigated the m6A enhancer and silencer motif
distribution in the region flanking the m6A sites. The m6A
enhancers had a higher frequency around the m6A sites than the
control that had the exact RAC motif matched (Supplementary
Fig. 2h for mouse, and Supplementary Fig. 2j for human). In
contrast, the m6A silencers had a lower frequency around the
m6A sites than the control that had the exact RAC motif matched
(Fig. 2i for mouse, and Supplementary Fig. 2k for human). The
difference in the downstream region of the m6A sites was more
evident than upstream region (Fig. 2h, i for mouse, Supplemen-
tary Fig. 2j, k for human), supporting the hypothesis that the
functional cis-elements largely resided in the 50 nt downstream of
the m6A sites. Next, we examined the m6A enhancer and silencer
motif distribution on several sets of the experimentally mapped
m6A sites by different methods, including m6A-CLIP, m6A-label-
seq, m6ACE-seq, and MAZTER-seq. The m6A enhancers showed
consistently higher frequency in the positive m6A sites than the
control (Supplementary Fig. 3a, c, e, g, i, k, m) for both human
and mouse dataset, while the m6A silencers exhibited lower
frequency (Supplementary Fig. 3b, d, f, h, j, l, n). All of these
positional distribution investigations confirmed that the
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frequency difference for the m6A enhancers and silencers was
more evident in the downstream region of m6A sites than the
upstream region, and generally true regardless of the experi-
mental approaches that mapped the m6A sites.

Furthermore, we conducted the study for the sequence
conservation flanking the m6A sites and found that the flanking
sequences of the m6A sites were more conserved than that of the
control (Fig. 2j for mouse, and Supplementary Fig. 2l for human).
Moreover, the functionally greater importance of the downstream
sequences flanking m6A sites compared with upstream sequences
was supported by their being more conserved cross species and
the fact that such conservation did not exist in the control. (Fig. 2j
for mouse, and Supplementary Fig. 2l for human).

At last, given that the enhancers surrounding the m6A sites
include mostly part of RRACH motif, which are potential motif
for methylation, we examined the distribution of methylated sites
flanking the m6A sites. We found that the RAC sites adjacent to
m6A sites have a higher frequency to be m6A sites (Supplemen-
tary Fig. 2m), indicating it’s more likely to be methylated. The
RAC sites adjacent to non-m6A sites have lower frequency to be
m6A sites (Extended Data Fig. 2n), indicating it’s unlikely to be
methylated. Moreover, both methylated and non-methylated
RAC sites are enriched in the downstream 50 nt region of m6A
site (Extended Data Fig. 2m), suggesting both could enhance m6A
deposition.

Taken together, our data strongly supported that the cis-
elements regulating m6A deposition largely reside within the
50 nt downstream of the m6A sites, with additional functional
subsequences being less concentrated in other regions (Fig. 2b, c,
and Supplementary Fig. 1q). Enhancers include mostly part of
RRACH motif, while silencers generally contain CG/GT/CT
motifs.

Experimental validation of the iM6A modeling. By an inde-
pendent experimental dataset, we validated the m6A deposition
modeling by iM6A. The lymphoblastoid cell lines (LCLs) were
from a collection of 60 Yoruba (YRI) human individuals. m6A
signals of LCLs were experimentally determined by m6A RIP-seq
method (m6A RNA immunoprecipitation and sequencing) in the
transcriptome50. Within the genomes of the 60 individuals, there
was adequate data to obtain a reference allele, alternate SNVs
(single-nucleotide variants), and heterozygote examples. It was
now possible to investigate how SNVs influence m6A deposition.
We implemented a computational method (see Fig. 3a and
Methods section) to quantify the association between a specific
SNV and the m6A level of an m6A peak region in which this SNV
located. The m6A peak regions that contained the m6A sites were
usually 200 nt or longer. iM6A calculated the effect of specific
SNVs on m6A deposition and identified 47 SNVs that either

increased or decreased the m6A deposition (|ΔProbability | > 0.1).
Among them, the statistical majority (33 SNVs out of 47,
P < 0.004, Binomial test, Fig. 3b) had the same directional change
in m6A deposition modeled by iM6A and as determined
experimentally. Furthermore, we examined the value correlation
between the iM6A modeled m6A deposition changes (ΔProb-
ability) and the experimentally measured m6A deposition changes
(ΔPeakEnrichment), and found that iM6A quantitatively mod-
eled the experimental m6A deposition changes (Fig. 3c,
P < 0.0003, Student’s t-test). Among the 47 SNVs, ten located
upstream of m6A sites, four were at the m6A site, and the
remaining 33 located within the downstream 50 nt of m6A sites
(Fig. 3d). Thus, SNVs that affected m6A deposition were statis-
tical biased towards downstream (P < 0.0002, Binomial test),
supporting that the downstream region of m6A sites contained
largely the cis-elements regulating m6A deposition. We also found
that the underlying cis-elements alterations for each SNV repre-
sented as the sum of the effective value changes for all the
involved pentamers (ten pentamers in total, five pentamers dis-
rupted and created simultaneously) quantitively agreed with the
experimental m6A deposition changes (Fig. 3e, P < 0.0001, Stu-
dent’s t-test). Four examples in which the m6A deposition was
affected by an SNV were shown in Fig. 3f–i. The rs7831 in
PDCD11 gene was an A to C mutation that was modeled by iM6A
to be at an m6A sites and decrease its m6A probability value from
0.8 to about 0, and indeed we observed an evident loss of
experimental m6A signal in the alternative allele data (C
nucleotide, blue color) in comparison to that of the reference
allele data (A nucleotide, red color) (Fig. 3f). The rs75907001 in
DOPEY2 gene was a T to C mutation which was modeled by
iM6A to decrease the m6A probability value of the m6A site from
0.6 to about 0.4, and an experimental m6A signal decrease was
observed (Fig. 3g). This T to C mutation located 4 nt downstream
of an m6A site, disrupted three m6A enhancer motifs (ACTCT,
CTTGG, and TTGGG), and simultaneously created four CG/GT/
CT-containing silencer motifs (ACTCC, CTCCT, TCCTG, and
CCTGG) (Fig. 3g). The rs9090 in PARM1 gene was a C to T
mutation which was modeled by iM6A to increase the probability
value of the m6A site from about 0 to 0.15, and an experimental
m6A signal increase was recorded (Fig. 3h). This C to T mutation
located three nucleotides downstream of an m6A sites, created
four enhancers (AGACT, GACTG, ACTGT, and CTGTT), and
one silencer (TGTTT) and simultaneously disrupted three silen-
cers (GACCG, ACCGT, and CCGTT), leading to an overall
increase of m6A signal supported by both the iM6A modeling and
the experimental data (Fig. 3h). Another example was the
rs1057278 located in TTLL3 genes. This G to A mutation located
eleven nucleotides downstream of an m6A sites according to
iM6A, disrupted four CG/GT/CT silencers (CAGGA, AGGGC,

Fig. 2 Cis-elements that regulate m6A deposition locate largely within 50 nt downstream of m6A sites. a Evaluate positional mutational effects to m6A
deposition by single nucleotide saturation mutagenesis. For each site in the sequences (−250 to 250) around the m6A site, the nucleotide was substituted
by each of three other nucleotides. The delta changes of m6A probability value (ΔProbability) after mutation was calculated according to iM6A.
b, c Positional plot of ΔProbability (cutoff= 0.1) for the m6A sites located in last exon (b) or long internal exon (c). Up panel: dot plot of ΔProbability for
the sequences (−250 to 250) around the m6A site. Bottom panel: dot plot of ΔProbability for the sequences (−50 to 50) around the m6A site. Red color
dots were mutational events that increased m6A probability; Green color dots were mutational events that decreased m6A probability. d The systematic
and quantitatively determination of the effect on m6A deposition for all cis-element pentamers by linear regression (See details in Methods). Total number
of m6A sites used was 1500. (The full list of effect values for each pentamer motif are listed in Supplementary Data 2). e, f Dendrogram showed clustering
of Top 20 enhancer and silencer motifs. Enhancers mostly contained part of RRACH motif, and silencers mostly contained CG/GT/CT motifs. g Scatter
plot for the effect correlation for all pentamers between the study in last exon and the study in long internal exon. The effect of each pentamer motif was
determined by the slope of linear regression equation, and each gray dot was a pentamer. h–j Positional plot for the frequency of Top 100 enhancers (h),
silencers (i), and conservation scores (j) in the sequences around the m6A sites. The plots were compared between the higher m6A probability (red color,
probability≥ 0.7) and the lower m6A probability (control, green color, probability < 0.1) of RAC sites. Data were presented as mean ± S.E.M. standard error
of the mean.
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GGGCT, and GGCTG) and simultaneously created five enhan-
cers (CAGGA, AGGAC, GGACT, GACTG, and ACTGA), col-
lectively contributing to an increase of m6A signal again
supported by both the iM6A modeling and the experimental data
(Fig. 3i). Altogether, the experimental data supported the m6A
deposition modeling by iM6A and that confirmed that the m6A
regulating cis-elements locate downstream of the m6A sites.

Many pathogenic SNVs are associated with m6A deposition
changes. Even though a number of studies have revealed that
the dysregulation of m6A impacts various diseases51, little is
known about how nucleotide variants impact m6A deposition.
To address this question, 68286 SNVs were extracted from
the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/)
(see details in the Methods). As shown previously (Fig. 2),
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flanking sequence can influence m6A deposition. We selected
the SNVs in the 500 nt region flanking the m6A sites. The
clinical significance of these SNVs were categorized based on
the ClinVar annotation. We found that many SNVs were
modeled to alter m6A deposition, either enhancing or dam-
pening (Fig. 4a). Though a large proportion of SNVs don’t
affect m6A deposition, some do have evident effects on m6A
deposition (Fig. 4a). We focused on the events that could change the
m6A probability (|ΔProbability | ≥ 0.1) (Fig. 4b), and found that
many of these were also highly enriched in the region 50 nt
downstream of the m6A sites (Fig. 4c), as was found previously for
SNVs created by single nucleotide saturation mutagenesis (Fig. 2b, c,

and Supplementary Fig. 2a, b) and the SNV experimental validation
data (Fig. 3d). To exclude the effect of SNVs on change of protein-
coding sequence, we focused on the SNVs that only cause synon-
ymous mutations, and these SNVs that could change the m6A
probability (|ΔProbability | ≥ 0.1) were also highly enriched in the
region 50 nt downstream of m6A sites (Supplementary Fig. 4a, b).
We further categorized all the SNVs (68286 SNVs in ClinVar
database) into two groups (m6A probability change or no change)
based on ΔProbability (|ΔProbability | ≥ 0.1 or |ΔProbability | < 0.1),
and we found that the pathogenic SNVs had greater prevalence in
the group for which m6A probability significantly changed
(P < 0.001, Fisher’s exact test, Fig. 4d), demonstrating that

Fig. 3 Experimental validation of iM6A modeling. a The workflow of the validation of iM6A by m6A-QTLs dataset (See details in Methods). b The change
direction of experimentally measured m6A peak changes agreed with that of the iM6A modeling on the related SNVs. The expected value was 23.5 in
random situation, and the observed value was 33. The p-value (<0.004) was calculated based on Binomial distribution. c The change quantity of
experimentally measured m6A peak changes (ΔPeakEnrichment) agreed with that of the iM6A modeling on the related SNVs. The R-value was calculated
by Pearson Correlation Coefficient, and p-value (<0.0003) was determined by two-sided Student’s t-test. d Bar plot of SNVs distribution over the
corresponding m6A site. 10, 4, and 33 SNVs were located upstream, at, or downstream of the corresponding m6A site respectively. The p-value (<0.0002)
was calculated based on Binomial distribution. e The change quantity of pentamer effective value changes (ΔEffectiveValue) agreed with experimentally
measured m6A peak changes (ΔPeakEnrichment) on the related SNVs. The R-value was calculated by Pearson Correlation Coefficient, and p-value
(<0.001) was determined by two-sided Student’s t-test. f–i Examples of SNVs affecting m6A deposition. rs7831 (Fig. 2f), rs75907001 (Fig. 2g) abolished or
dampened m6A deposition respectively. rs9090 (Fig. 2h) and rs1057278 (Fig. 2i) enhanced m6A deposition. The m6A site was marked by red color, the
mutation site was marked by blue color. The enhancers and silencers were marked by red and green lines, respectively. The m6A RIP-seq data for
homozygote of the major allele, heterozygote, homozygote of the minor allele, and Input were marked by red, green, blue, and black color, respectively. The
dot plot showed the probability value of the m6A with major allele or minor allele.

Fig. 4 Many pathogenic SNVs are associated with m6A deposition changes. a Strip plot of ΔProbability caused by SNVs, which were categorized by
clinical significance in ClinVar. VUS means uncertain significance SNVs (gray), Benign means benign and likely benign SNVs (green), and Patho. means
pathogenic and likely pathogenic SNVs (pink). b Scatter plot of modeled probability for m6A sites with major allele (ProbREF) or minor allele (ProbALT).
Red color dots were mutational events that increased m6A probability (ΔProbability≥ 0.1); Green color dots are mutational events that decreased m6A
probability (ΔProbability≤−0.1). c Positional plot of ΔProbability (cutoff= 0.1) for m6A sites with major allele or minor allele. Red color dots were
mutational events that increased m6A probability; Green color dots were mutational events that decreased m6A probability. Agreeing with the finding in
Fig. 2, cis-elements that regulated m6A deposition located largely within 50 nt downstream of m6A sites. d Bar plot of log2(odd ratio, m6A probability
change group over no change group) of the percentage of SNVs with different clinical significances in ClinVar. The SNVs were categorized into two groups
(m6A probability change or no change) based on ΔProbability (|ΔProbability |≥ 0.1). The p-value (<0.001) was calculated by Fisher’s exact test.
e–h Saturation mutagenesis of the sequence flanking the m6A sites in DARS2, SOX10, TUBA1A, and KCNJ2. The heatmaps visualized ΔProbability of each
mutation event, and were annotated with SNVs from ClinVar.
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pathogenic SNVs were more likely to alter m6A deposition than
non-pathogenic SNVs.

Four examples in which m6A deposition was affected by the
pathogenic SNVs were shown in Fig. 4e–h. For rs121918205 and
rs121918213 in DARS2 gene, the rs121918205 was a C to G
mutation that broke the C in the RAC consensus of an m6A site,
leading to a decreased m6A probability value of −0.3 according to
iM6A. The rs121918213 was a T to A mutation that led to a
decreased m6A probability value of −0.3 (Fig. 4e). The DARS2
encodes mitochondrial aspartyl-tRNA synthetase, and its defi-
ciency may be involved in leukoencephalopathy52. The two SNVs
above could affect the m6A modification in the DARS2 transcript
as a novel disease cause. The rs760539449 located in SOX10 gene
was an A to G mutation that led to a decrease m6A probability
value of −0.4 (Fig. 4f). The rs760539449 was annotated as likely
pathogenic SNV in ClinVar. The iM6A modeled this mutation to
result in a loss of the m6A deposition as a potentially new disease
mutation insight. The rs1555162327 in TUBA1A gene was a C to
T mutation that generated an increased m6A probability value of
0.6 according to iM6A (Fig. 4g). Another example was the
rs199473377 located in KCNJ2 gene, and this G to A mutation
caused m6A probability increase to 0.4 by iM6A (Fig. 4h). In
summary, iM6A worked as a method to annotate the disease-
related SNVs that could affect m6A deposition. Even though all
the SNVs showed in Fig. 4e–h also cause missense mutation,
iM6A could help to annotate the effect of pathogenic SNVs on
m6A deposition beyond protein-coding sequence mutations. In
ClinVar database, the missense and nonsense SNVs are more
likely to be annotated as pathogenic for their convenience in
inferring protein functional disruption. In other words, the
pathogenic SNVs that are documented currently in ClinVar
primarily focus on protein sequence disruption. Our iM6A
annotation provides an alternative angle to interpret these
disease-causing SNVs from the m6A RNA modification perspec-
tive. As the m6A disease research grows mature in the future, the
ClinVar database could include pathological SNVs that was
affected by m6A deposition alone and our iM6A work could
promote the disease research discovery in this direction. Defining
the disease-associated mutations among millions of SNVs is a
grand challenge. The database like RMvar53, RMDisease54

collected the genetic variants which might be associated with
m6A modification, while iM6A could provide synergistic
contribution to decipher the cis-element mechanisms and could
provide a new perspective in understanding the diseases caused
by RNA modifications.

Synonymous codons may influence m6A deposition. Since
many m6A sites locate in the coding region, an open hypothesis is
whether synonymous codon usage affects m6A deposition and
serves as a new layer of regulation. To test this hypothesis, we
performed saturation synonymous codon swap (Fig. 5a) for the
coding sequences flanking the m6A sites in the last exon and cal-
culated with iM6A the positional mutational effects on m6A
deposition. We found the mutational events that either increased or
decreased the m6A probability significantly (|ΔProbability | > 0.1)
were also highly enriched in the downstream region of the m6A
sites (Fig. 5b for mouse; and Supplementary Fig. 5a for human),
supporting that synonymous codons that influenced m6A deposi-
tion located in this region. Next, we systematically and quantita-
tively analyzed the effect of the synonymous codons on m6A
deposition in the 15 downstream codons (15 × 3 nt= 45 nt, cover-
ing the downstream 50 nt region). Similar to the pentamer analysis
in Fig. 2d, we implemented the linear regression approach (Fig. 5c)
to identify the effect of synonymous codon on m6A deposition: each
synonymous codon substitution created one codon and disrupted

the original codon simultaneously, the effect for each synonymous
codon was determined by the slope of the linear regression equa-
tion. Based on their effect value and the statistical significance,
synonymous codons were ranked for their effect in m6A deposition.
Top 10 enhancing or silencing synonymous codons and their
corresponding amino acids were showed: the m6A enhancing
synonymous codons include mostly part of the RRACH motif; the
m6A silencing synonymous codons mostly have the CG/GT/CT
motifs, agreeing with the pentamer motif property of the m6A
enhancers and the m6A silencers (Fig. 5d for mouse, and the vir-
tually the same codon set for human, Supplementary Fig. 5b).
Interestingly, we saw that many sets of synonymous codons
encoding the same amino acids contained codons with opposing
effects on m6A deposition. For example, both AGA and CGT
encoded arginine (R) with the former enhancing m6A deposition
and the latter silencing m6A deposition (Fig. 5e). More examples
included the synonymous codon pair GAC and GAT for the
aspartic acid (D) and the pair ACT and ACC for the threonine (T)
(Fig. 5e). We also observed a strong effect correlation for all
synonymous codons between the studies in mouse and in human,
supporting that the same synonymous codon bias influenced m6A
site-specific deposition in both mouse and human (Fig. 5f). We
further investigated the positional distribution of the m6A enhan-
cing and silencing synonymous codons in the region flanking the
m6A sites. The m6A enhancing synonymous codons had a higher
frequency around the m6A sites than the control (Fig. 5g for mouse,
and Supplementary Fig. 5c for human). In contrast, the m6A
silencing synonymous codons had a lower frequency around the
m6A sites than the control (Fig. 5h for mouse, and Supplementary
Fig. 5d for human). The density difference for the enhancing/
silencing synonymous codon is more evident in the downstream
region of an m6A site than its upstream region (Fig. 5g, h for
mouse, and Supplementary Fig. 5c, d for human), arguing that the
functional cis-elements fall more often in the 50 nt downstream of
the m6A sites.

The stop codon TGA may favor the m6A deposition nearby.
We investigated the hypothesis if different stop codons could
affect the m6A deposition. We categorized all the coding genes
based on their stop codon (TAA/TAG/TGA), and investigated
the m6A probability value distribution in the region flanking the
stop codon (Fig. 6a). We found three positions at which the m6A
sites could be adjacent to the stop codon. If TRR is the stop
codon, then (1) Position −2 (Fig. 6a), straddled by motif
NRACTRR; (2) position 1, straddled by TRACN; and (3) position
3, straddled by TRRACN. All the three positions showed rela-
tively higher m6A probability than other positions near stop
codons (Fig. 6a for mouse, Supplementary Fig. 6a for human).
Interestingly, transcripts with the TGA stop codon had higher
m6A probability as calculated by iM6A for all the three positions
in comparison to transcripts with the TAA or TAG stop codon,
particularly for the Position −2: NRACTRR and the Position 2:
TRACN (Fig. 6a for mouse, Supplementary Fig. 6a for human).
Next, we performed stop codon swaps and evaluated the resulting
impact on m6A deposition (Fig. 6b). We found that the m6A
probability at all the three locations decreased when the stop
codon was changed to TAA or TAG, particularly for Position −2:
NRACTRR and Position 2: TRACN (Fig. 6b, c for mouse, Sup-
plementary Fig. 6b, c for human). Conversely, m6A probability at
the three locations increased when TAA or TAG was changed to
TGA, again particularly for Position −2: NRACTRR and Position
2: TRACN (Fig. 6b, d for mouse, Supplementary Fig. 6b, d for
human). Both stop codon swap experiments support that the
TGA stop codon may favor m6A deposition at and adjacent to a
stop codon location. We further categorized the transcripts into
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two groups according to their stop codons (TGA or non-TGA),
and found that transcripts with the m6A sites at and adjacent to
stop codons were statistically enriched with the TGA stop codon
(P < 1 × 10−4, Fisher’s exact test) (Fig. 6e for mouse, and Sup-
plementary Fig. 6e for human). As evolution conservation pro-
vides evidence for functional importance, we further explored the
conservation of stop codons in all the transcripts. Indeed, the stop
codon of a transcript was more conserved if it was a part of an
m6A site, supporting its functional importance (Fig. 6f and
Supplementary Fig. 7a for mouse, Supplementary Figs. 6f, 7b for
human). In the situation that the stop codon of a transcript was
be part of an m6A site, the TGA stop codons were more con-
served than the non-TGA stop codons, supporting that the TGA
stop codon may favor the m6A deposition at and adjacent to stop

codon (Fig. 6f and Supplementary Fig. 7a for mouse, Supple-
mentary Figs. 6f, 7b for human). Moreover, the TGA as a trimer
motif may promote m6A deposition in comparison to TAA and
TAG trimers (Supplementary Table 1).

Evidence for an evolutionarily conserved m6A regulatory code
in mouse and human. For all the findings in this work, our data
consistently suggests that the same m6A cis-element code governs
m6A deposition in both human and mouse. To comprehensively
address this hypothesis, we implemented a head-to-head test
comparison for the human iM6A model and the mouse iM6A
model, both of which were trained on that species’ genes from
most chromosomes except chromosome 9. Thus, the genes from
human chromosome 9 and mouse chromosome 9 offered two

Fig. 5 Synonymous codons may influence m6A deposition. a The saturation synonymous codon swap strategy. For each codon in codons (−15 to +15
codons, −45 nt to +45 nt) around the m6A site, the codon was substituted by each of its synonymous codons. The delta changes of m6A probability value
(ΔProbability) after swap was calculated by iM6A. b Positional plot of ΔProbability (cutoff= 0.1) for saturation synonymous codon swap. Red color dots
were those codon swap events that increased m6A probability; Green color dots were those codon swap events that decreased m6A probability. c The
systematic and quantitatively determination of the effect on m6A deposition for all codons by linear regression (See details in Methods). Total number of
m6A sites used was 1473. (The full list of effect values for each synonymous codon are listed in Supplementary Data 3). d Bar plot of effect values for top
10 enhancer codons and top 10 silencer codons, its corresponding amino acids were also labeled. e Synonymous codon pair in enhancing and silencing m6A
deposition. The amino acids (the first column) were coded by the synonymous codons (the second and third columns, respectively), which the enhancer
codons enhancing m6A deposition, and the silencer codons silencing m6A deposition. f Scatter plot for the effect correlation for all synonymous codons
between the study of human synonymous codons and the study of mouse synonymous codons. The effect of each synonymous codon was determined by
the slope of its linear regression equation, and each gray dot was a synonymous codon. g, h Positional plot for the frequency of Top 20 enhancer codons
(g) or silencer codons (h) in the sequences around the m6A sites. The plots were compared between higher m6A probability sites (red color,
probability≥ 0.7) and lower m6A probability sites (the exact RAC motif matched control, probability < 0.01). Data were presented as mean ± SEM. (Using
other top number of enhancer or silencer codons generated similar results).
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independent testing datasets being untouched for both the human
and mouse iM6A models during their training. Human and
mouse iM6A model performed comparably on both chromosome
9 transcripts (Fig. 7a, b), supporting that a common cis-element
code governed the m6A deposition in both human and mouse. To
further investigate the possibility of a common cis-element code,
we compared the protein sequence conservation between human
and mouse for the known components of the m6A methyl-
transferase complex including METTL3, METTL14, WTAP, and
VIRMA (Fig. 7c), and found that >95% of amino acids were

identical for each of the four proteins between human and mouse,
supporting their functional conservation and, therefore, the
likelihood of the cis-elements code commonality.

Our iM6A method modeled the m6A site-specific deposition in
the pre-mRNA transcript, showing that the cis-elements regulat-
ing m6A deposition located preferentially within 50 nt down-
stream of m6A sites. It also identified which pentamers were m6A
enhancers and silencers with the former mostly being part of
RRACH motif and the latter mostly containing CG/GT/CT
dinucleotides (Fig. 7d).
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Discussion
In this study, we used experimentally determined m6A sites from
mouse and human as the training dataset to build our iM6A deep
learning model, the modeling of which was confirmed to be
accurate with AUROC= 0.99 by the independent testing dataset
and by using m6A sites experimentally determined by a variety of
precise m6A mapping methods. Taking advantage of the high
modeling accuracy of the iM6A deep learning model, we imple-
mented saturated mutagenesis on input transcripts to system-
atically perturb the iM6A deep learning black box. This led to
discovering that the downstream 50 nt of the m6A sites located a
high density of cis-elements regulating m6A deposition. Applying
the linear regression model as a machine learning method to the
saturated mutagenesis data, we were able to systematically

identify m6A enhancers and silencers in the region. Thorough
bioinformatics characterization of these cis-elements including
positional plot and sequence conservation analysis confirmed
their designated function. Our finding was further supported by
independent experimental validations, and uncovered a key cis-
regulatory mechanism for m6A site-specific deposition.

Though deep learning modeling is powerful in integrating large
datasets and accurate in modeling compared to traditional
machine learning methods, it is hard to interpret the underlying
biological insights from its deep learning model as a black box.
Conversely, traditional machine learning approaches such as
linear regression are useful for connecting model parameters to
the biological function. In this study, we took advantage of both
deep learning and machine learning: we first implemented the

Fig. 6 Stop codon TGA may favor m6A deposition at and adjacent to Stop codon. a Positional plot of average modeled m6A probability around the stop
codon, the position 0 was the T nucleotide for the stop codons. The red, green, and blue lines represented genes with TAA, TAG, or TGA as its stop codon
respectively. Up panel: regions 500 nt upstream and downstream from 0 position. Bottom panel: regions 10 nt upstream and downstream from 0 position.
b Positional plot for stop codon swap. First panel: illustrator of stop codon swap. Second panel: positional plot for TGA to TAA or TAG. Third panel:
positional plot for TAA to TGA. Fourth panel: positional plot for TAG to TGA. c Cumulative distribution function (CDF) plot of modeled probability for TGA
to TAA or TAG. The p-values were calculated by the Kolmogorov–Smirnov test (KS-test). (the left, middle, and right panel for NRACTRR, TRACN, and
TRRACN motifs). d Cumulative distribution function (CDF) plot of modeled probability for TAA or TAG to TGA. The p-values were calculated by the
Kolmogorov–Smirnov test (KS-test). (the left, middle and right panel for NRACTRR, TRACN, and TRRACN motifs). e The m6A sites were categorized into
two groups (m6A or non-m6A) based on its probability value (the cutoff= 0.05), donut plot of percentage of stop codon for m6A sites and non-m6A sites
(Left panel). Bar plot of log2(odd ratio, m6A sites over non-m6A sites) of percentage of stop codon (Right panel). The p-value was calculated by the Fisher’s
exact test. f Box plot of conservation score of stop codons with or without m6A sites (n= 1311 for TGA with m6A sites, n= 1562 for TGA without m6A
sites, n= 726 for non-TGA with m6A sites, n= 1125 for TGA without m6A sites). Median and interquartile ranges are presented for the box plot. The p-
values were calculated by the one-sided Student’s t-test (Significance: **P < 0.01, ***P < 0.001).

Fig. 7 Evidence for an evolutionarily conserved m6A regulatory code in mouse and human. a, b Scatter plot of modeled probability for the m6A sites
(n= 100,000) in mouse chromosome 9 (a) or human chromosome 9 (b) using mouse iM6A model versus human iM6A model. Both mouse and human
iM6A models were trained independently on data of other chromosomes except chromosome 9 in mouse and human genome respectively. Each dot
represented one site in mouse chromosome 9 discovered by both models, and the labeled axes provided the probability values for that site by the two
models. c The protein sequences conservation of METTL3, METTL14, WTAP, and VIRMA between human and mouse. The full length of the proteins was
illustrated by the gray box with individual different amino acids marked as black lines. d Cis-elements that regulate m6A deposition locate majorly within
50 nt downstream of m6A sites. The m6A enhancers mostly contained part of the RRACH motif; the m6A silencers mostly contained the CG/GT/CT
dinucleotides.
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iM6A deep learning model to accurately model m6A deposition,
then applied linear regression as a machine learning approach to
systematically characterize the cis-element contribution in the
high-throughput saturated mutagenesis data from the iM6A deep
learning modeling. Our joint method of combining both deep
learning and machine learning may be applicable to other bio-
logical investigations.

Our work revealed that m6A cis-elements are largely located
within the 50 nt region downstream of the m6A site. This 50 nt
range echoes that of several other RNA processing events. A
typical exon length is usually at least 50 nt or longer though tiny
exons do exist55. The cis-elements that regulates cleavage and
polyadenylation generally locate within 50 nt of the cleavage
site56. The size 50 nt may reflect the physical sizes of the different
RNA processing complexes. A detailed investigation of the
molecular mechanism underlying the 50 nt range would be an
interesting and useful future research project based on thorough
biochemistry experiments. Also, our work revealed that the cis-
elements regulating the m6A deposition include the RRACH
enhancers and the CG/GT/CT silencers. What are the trans-
factors that recognize these cis-elements and how they regulate
m6A deposition are all potentially worth directions for future
molecular mechanism investigations.

The iM6A modeling introduced here should prove effective in
future mechanism investigations of m6A regulation and deposi-
tion because it not only enables accurate modeling of the m6A
deposition but also offers a high-throughput, fast and efficient
mechanism discovery which would be cost-prohibitive and time-
impractical for traditional laboratory experimentation. Antici-
pating broad interests in our iM6A strategy, we have deposited
our iM6A source code at GitHub (https://github.com/ke-
laboratory/iM6A) as well as the probability values of m6A can-
didates in human and mouse genes (https://doi.org/10.5281/
zenodo.4734266).

Methods
iM6A Model
Model architecture. The iM6A is based on a deep residual neural network44. The
basic unit of iM6A is the Residual Network (ResNet) block and we implemented
the ResNet structure according to the CNN Architectures and implementations by
MLT (https://github.com/Machine-Learning-Tokyo/CNN-Architectures), which is
composed of batch-normalization (BatchNorm) layers, rectified linear units (Relu),
and convolutional (Conv1D) layers organized in a specific manner (Fig. 1a). In
ResNet block, k, w, ar, and r are the number of convolutional kernels, window size,
dilation rate of each convolutional kernel in the layer, and repetition numbers,
respectively. The current combination of k, w, ar, and r-values are showed in
Fig. 1a, which were obtained by hyperparameter search (Supplementary Data 1).
iM6A starts with a Conv1D, then is followed by four ResNet blocks. The output of
every ResNet block is added to the input of penultimate layer (Cropping1D),
connected with a Cov1D layer with softmax activation.

The training input of iM6A for each gene is the full length of the pre-mRNA
sequence with 5000 nucleotides on each side, covering the transcript from 5 kb
upstream of TSS (transcription start site) to 5 kb downstream of TES (transcription
end site).The sequence is transformed by One-Hot-Encoding, which N, A, C, G,
and T are encoded as [0,0,0,0], [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1]
respectively. Then, the one-hot-encoded nucleotide sequence was split into blocks
of length 5000+ 5000+ 5000 in such a way that the ith block is consisted of the
nucleotide sequence position from 5000(i−2) +1 to 5000i+ 5000. Along with the
sequence input, the location for the positive training set of individual m6A sites was
marked out, and the output label was also split into block of length 5000 in such a
way that ith block consists of the positions from 5000(i−1) +1 to 5000i.
Information of input and output was jointly feed into the ResNet deep learning
network for training. A similar input strategy has been implemented in SpliceAI45

that implemented deep learning to model splice sites in pre-mRNA. The output of
the model is the probability value of each position being an m6A site.

Model training and testing. We downloaded the gene annotation tables (vM7 for
mouse, v19 for human) from GENCODE (https://www.gencodegenes.org/) and
extracted the longest transcript for each gene. Both mouse and human m6A sites
were collected from published data8,14,32,33, which were determined by m6A-CLIP
experiments. The consensus motif for an m6A site could be either RRACH as a
high stringent set or RAC as a more inclusive set. We generated two separate iM6A

models using either stringency: the RRACH dataset for RRACH iM6A model and
the RAC dataset for RAC iM6A model. The transcripts with its m6A sites were kept
as input (mouse RRACH: 8475 genes, 41,551 m6A sites; mouse RAC: 8939 genes,
57,712 m6A sites; human RRACH: 8598 genes, 54,354 m6A sites; human RAC:
10,314 genes, 81,519 m6A sites). We used pre-mRNA sequences as input: the m6A
sites on pre-mRNA were served as positive sites, while the remained nucleotides
were treated as negative sites. The whole dataset was divided into training and test
datasets. The training dataset contained all the transcripts on most chromosomes
except chromosome 9, the transcripts of which were held out and reserved for the
test later on.

The iM6A were trained for 10 epochs with a batch size of 30 on NVIDIA GPU.
By pulling singularity container (tensorflow-19.01-py2) from NVIDA official
website, we created an environment for model training and testing. Extra packages
(biopython: 1.76; scikit-learn: 0.20.3, matplotlib: 2.2.4, keras: 2.0.5) were installed
into an external path by pip. For training, Adam optimizer was used to minimize
the categorical cross-entropy loss between the target and modeled outputs. The
learning rate of the optimizer was set as 0.001 for the first 6 epochs, and then
reduced by a factor of 2 in every subsequent epoch. We trained the model for five
times and obtained five trained models. For testing, each input was evaluated using
all five trained models, while the average score of their outputs was used as the
modeled value.

Comparison of iM6A with other methods. We compared the modeling performance
of iM6A with that of the machine learning-based SVM method39 and that of the
deep learning-based CNN-RNN method40. Both SVM and CNN-RNN models
were trained on the same training samples used for iM6A, and the m6A and non-
m6A sites were conformed to the RRACH motif in the same way as in Chen et al.,
2019. For the positive training data, the input is the sequence centered on the m6A
sites (39,138 sites). For the negative training data, the input is the sequence cen-
tered on the non-m6A sites, which were randomly selected from the non-m6A sites
on the same full transcripts that contained the positive sites. The sequence length
for SVM model was 41 nt as described in Chen et al., 2019, while the sequence
length for CNN-RNN model was 1001 nt as in Wang and Wang, 2020. Moreover,
the positive-to-negative ratio was 1:1. For independent testing, the sequence cen-
tered on the m6A and non-m6A sites in chromosome 9 were used to quantify the
modeling performance of the models, and ROC (receiver operator curves) curves
and AUROC (area under receiver operator curves) scores were used as the per-
formance evaluation metrics.

Validation of iM6A modeling by experimentally detected m6A sites. We downloaded
the gene annotation tables (vM7 for mouse, v19 for human) from GENCODE
(https://www.gencodegenes.org/) and extracted the longest transcript for each
coding gene (mouse: 22,357 genes, human: 20,536 genes). The probability value of
each nucleotide being an m6A site in the pre-mRNA of the transcripts were
modeled by iM6A, and the sites selected were those conforming to the RRACH
(the iM6A RRACH model) or the RAC (the iM6A RAC model). We collected the
m6A sites detected by the experimental methods including m6A-CLIP8,14,32,33,
m6A-label-seq36, MAZTER-seq34, and m6ACE-seq35. The heatmap was used to
visualize the experimentally detected sites in all modeled sites. The modeled sites
were ranked by its probability value, and the black line denoted whether methy-
lation was identified by the experimental method at the site (Fig. 1c, d).

Calculation of the m6A probability and the enrichment score for the m6A sites
derived from m6A-CLIP. The peak enrichment value for the m6A sites in mouse
(mouse embryonic stem cell, mESC) and human (the A549 cell line) were quan-
tified by the m6A-CLIP14,33. Based on the enrichment score, the m6A were cate-
gorized into three groups (low: score < 5, medium: 5 ≤ score < 20, high: score ≥ 20).
The probability of the site being an m6A site was modeled by the iM6A, and the
box plot was used to visualize the peak enrichment value and the modeled m6A
probability (Fig. 1e and Supplementary Fig. 1h).

Calculation of the m6A probability and the cleavage efficiencies for the m6A sites
derived from MAZTER-seq. The m6A sites identified by MAZTER-seq34 were
downloaded. According to their supplemental tables, the m6A sites were categor-
ized into the groups of control, low, intermediate, high, and highest confidence. We
filtered the dataset to retain the sites conforming to the RRACA motif and
extracted the normalized cleavage efficiency of the sites from the table. Box plot
was used to visualize the normalized cleavage efficiency and the modeled m6A
probability (Supplementary Fig. 1i, j).

Comparison of the RRACH model with the RAC model. Both RRACH and RAC of
the iM6A models for mouse (Fig. 1f) were trained independently on the genes of all
the other chromosomes except those of the chromosome 9 (Chr9). The m6A sites
in Chr9 were modeled by either the RRACH iM6A model or the RAC iM6A model,
and the scatter plot was used to visualize the modeled probability of the m6A sites
between the RRACH model and the RAC model. Each dot represented one site in
Chr9 discovered by both models, and the labeled axes provided the probability
estimate for that site by the two models. The R-value was calculated by Pearson
Correlation Coefficient. The same analysis was performed for human (Supple-
mentary Fig. 1k).
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Positional mutational effects on m6A deposition implemented by single nucleotide
saturation mutagenesis. For the m6A sites in last exon, we modeled its probability
by iM6A. The sites were sorted based on probability value, and a single m6A site
with the highest probability value were kept for each gene. In addition, the
probability should be ≥0.4. Then, we selected the sites which located at least 250 nt
away from both last exon start and last exon end. We obtained 2048 sites for mouse
and 2724 sites for human in the last exon region. The same strategy was applied to
the m6A sites in long internal exon, and we obtained 893 sites for mouse (the m6A
sites in Plekhm3 gene was excluded for its unusual sequence property) and 806 sites
for human.

For each position in the sequence (−250 to 250) flanking the m6A site, the
nucleotide was substituted by each of the three other nucleotides (Fig. 2a). The
delta changes of m6A probability value (ΔProbability) after mutation was
calculated by iM6A (Fig. 2a).

Quantify the effect of all cis-element pentamers by linear regression. To prepare the
m6A sites in last exon for the systematic effect analysis of all pentamers, we first
modeled the m6A probability by iM6A for all m6A sites in last exons. In addition,
the probability should be ≥0.4. All of these sites were sorted based on their m6A
probability value, and only a single m6A site with the highest probability value was
kept for each gene. We further selected the m6A sites which located at least 50 nt
away from both last exon start and last exon end. We obtained 5292 sites for mouse
and 4772 sites for human from which we randomly selected 1500 sites for both
mouse and human, as 1500 sites was sufficient for our analysis. The same strategy
is applied to the m6A sites in long internal exon (length > 100 nt), and we got
1460 sites for mouse and 1416 sites for human.

For each position in the downstream region of an m6A site (i.e., from position 3
to position 46), the nucleotide was substituted by each of three other nucleotides.
The resulted probability change (ΔProbability) of this m6A site is calculated by
iM6A. Each substitution created and broke 5 overlapping 5-mers simultaneously,
and −1 or 1 was assigned to each of the five created or broke 5-mers. Linear
regression was implemented to each 5-mers (total 1024 pentamers) when pooling
all the data, then the effect of each motif was ranked based on the slope of linear
regression equation and the statistical significance was quantified by p-value
(Fig. 2d).

Positional plot of pentamers in sequences flanking m6A sites. For the potential m6A
sites in the RAC consensus at the last exons of each gene, we calculated their m6A
probability values by iM6A. The m6A sites were sorted based on their m6A
probability value, and a single m6A site with the m6A highest probability value
were kept for each gene. We selected the m6A sites with the higher m6A probability
values (probability ≥ 0.7) as the positive sites, while the control was the exact RAC
motif matched site with a lower m6A probability value (probability < 0.1). For the
m6A enhancer and silencer positional plot, we randomly selected 1000 positive sites
or control sites located in the last exon, and extracted the 50 nt upstream and
downstream sequence flanking the m6A site. The pentamers were enumerated from
the 5' end to the 3' end of the 101 nt sequence. For the positional plot, we counted
the numbers of top 100 enhancers and top 100 silencers at each position of the
101 nt sequence (see details in the section for quantifying the effect of all cis-
element pentamers). The frequency of the enhancers or silencers were also cal-
culated. The plots were compared between the positive sites and the control, and
the data were presented as mean ± S.E.M. standard error of the mean (Fig. 2h, i).

In parallel, we collected the m6A sites detected by different experimental
methods, including m6A-CLIP8,14,32,33, m6A-label-seq36, m6ACE-seq35, and
MAZTER-seq34. The experimentally determined m6A sites (m6A-CLIP, m6A-
label-seq, m6ACE-seq, and MAZTER-seq) served as the positive sites while the
control was the exact RAC motif matched site which was not determined by the
experimental methods. Moreover, those control sites did not overlap with the m6A
peak regions14,33 and came from the transcripts that also contained the positive
sites. For the sites detected by MAZTER-seq, we intersected it with the sites
determined by other methods (m6A-label-seq, m6ACE-seq, and m6A-CLIP) to get
the high-quality sites as to lower the multiple technical noises of MAZTER-seq as
discussed in Garcia-Campos et al. 201934. The overlapped sites were served as the
positive sites while the control was the exact RAC motif matched site which was
not determined by the MAZTER-seq. In addition, those control sites did not
overlap with the m6A peak regions14,33 and came from the transcripts that also
contained the positive sites. For the m6A enhancer and silencer positional plot, we
selected the positive sites or control sites located in the last exon, and extracted the
50 nt upstream and downstream sequence flanking the m6A site. The pentamers
were enumerated from the 5' end to the 3' end of the 101 nt sequence. For the
positional plot, we counted the numbers of top 100 enhancers and top 100 silencers
at each position of the 101 nt sequence (see details in the section for quantifying the
effect of all cis-element pentamers). The frequency of the enhancers or silencers
were also calculated. The plots were compared between the positive sites and the
control, and the data were presented as mean ± S.E.M. (Supplementary Fig. 3).

Conservation analysis for the sequence flanking the m6A sites. For the potential m6A
sites in the RAC consensus at the last exon, we calculated their m6A probability
values by iM6A. The m6A sites were sorted based on their m6A probability value,
and a single m6A site with the m6A highest probability value were kept for each

gene. We selected the m6A sites with the higher m6A probability values (prob-
ability ≥ 0.7) as the positive sites, while the control was the exact RAC motif
matched site with a lower m6A probability value (probability < 0.1). In addition,
these RAC sites were located in the noncoding region of last exon (at least 50 nt
from the stop codon). We calculated the phyloP score of each nucleotide flanking
the RAC sites. The average phyloP score for the sequence flanking the RAC sites
were calculated, the plots were compared between the positive sites and the control,
and the data were presented as mean ± S.E.M. (Fig. 2j).

Experimental validation of iM6A modeling by the m6A profiling in the lympho-
blastoid cell lines (LCLs) of 60 Yoruba (YRI) individuals. The m6A levels were
profiled across the transcriptome in LCLs derived from 60 YRI individuals50. We
downloaded raw sequencing data from Gene Expression Omnibus (GEO) reposi-
tory (GSE125377). Raw sequencing data was mapped to the hg19 reference genome
by HISAT2 with the parameter “-known-splicesite-infile <splice-file extract from
Refseq hg.19 GTF file >−k 1 —no-unal”. The BAM files obtained from the
alignment were used as an input file for BigWig file, which were visualized by
UCSC Genome Browser (Fig. 3).

The m6A profiling dataset in the LCLs of 60 YRI individuals was downloaded
from Zenodo (https://doi.org/10.5281/zenodo.3870952), which includes the bed file
of m6A peaks, the normalized enchainment score of each peak of 60 samples, and
the imputed genotype data of 60 samples. We downloaded all SNP sites from
dbSNP database (https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_
GRCh37p13/BED/), and extracted all the SNVs located in the m6A peaks. The
corresponding genotype of each SNV for 60 samples were also extracted. For each
SNV, 0, 0.5, and 1 were assigned to homozygote of the major allele, heterozygote,
and homozygote of the minor allele. The association between SNV and m6A level
was tested by linear regression. We obtained 3297 SNVs that were strongly
correlated with m6A level (p-value ≤ 0.1). Then, we calculated the effects of these
SNVs on m6A deposition by iM6A, and found 47 SNVs which could affect m6A
deposition significantly (|ΔProbability | ≥ 0.1). The delta changes of peak
enrichment (ΔPeakEnrichment) of these 47 SNVs corresponding m6A peaks were
calculated using the m6A profiling experimental data (Fig. 3).

Characterization of m6A associated SNVs. We downloaded data from ClinVar
database (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_
summary.txt.gz), and extracted the SNVs located in last exons. We obtained 68286
SNVs, and utilized iM6A to calculate their effects on m6A deposition. To characterize
SNVs that altered m6A deposition, we selected the SNVs located within 500 nt
upstream or downstream of an m6A site. Then those SNVs were categorized by
clinical significance according to ClinVar, and we only kept the sites annotated with
uncertain significance/benign/likely benign/pathogenic/likely pathogenic. We singled
out uncertain significance as the first group (VUS), grouped benign and likely benign
as the second group (Benign), and grouped pathogenic and likely pathogenic as the
third group (Patho.)(Fig. 4). Then, the SNVs were categorized into two groups (m6A
probability changed group or no change group) based on ΔProbability (|ΔProb-
ability | ≥ 0.1 for the changed group). Bar plot was used to show the log2(odd ratio,
m6A probability changed group over no change group) for the percentages of SNVs
with different clinical significances in ClinVar, and the p-value was calculated by the
Fisher’s exact test. To visualize the effect of SNVs on m6A deposition, saturation
mutagenesis was performed in the region −100 to +100 nt up- and downstream of
m6A sites, and the ΔProbability of each mutation event was displayed as a heatmap
(Fig. 4).

Saturation synonymous codon swap. For the m6A sites in last exons, we calculated
m6A probability values by iM6A. Then the m6A sites were sorted based on their
probability value, and a single m6A site with the highest probability value was kept
for each gene. Then, we selected the m6A sites which located at least 60 nt away
from both the last exon start and the end of the coding sequence. In total, we
obtained 1473 m6A sites for mouse and 1532 m6A sites for human in the last exon
region. For each codon position in the codons (−15 to +15 codons,
−45 nt to +45 nt) flanking the m6A site, the codon was substituted by each of its
synonymous codons (Fig. 5a). The delta changes of the m6A probability value
(ΔProbability) after the codon swap was calculated by iM6A.

Quantify the effect of all synonymous codons on m6A deposition by linear regression.
To prepare the m6A sites in last exons for the systematic effect analysis of all
pentamers, we first modeled the m6A probability value by iM6A for all m6A sites in
last exons. These sites were sorted based on their m6A probability value, and only a
single m6A site with the highest probability value was kept for each gene. We
further selected the m6A sites which located at least 60 nt away from both the last
exon start and the coding sequence end. In total, we obtained 1473 sites for mouse
and 1532 sites for human. For each codon position in the downstream region of an
m6A site (from position 1 to position 15), the codon was substituted by each of its
synonymous codons. The resulted probability change (ΔProbability) of this m6A
site was calculated by iM6A. Each codon substitution created one codon and
simultaneously broke the original codon. A value of 1 or −1 was assigned to the
created codon or the broken codon accordingly. Linear regression was imple-
mented to each codon (total 64 codons) when pooling all the data together, then
the effect of each synonymous codon was ranked based on the slope of the linear
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regression equation and the statistical significance was quantified by p-value
(Fig. 5c).

Positional plot of trimers in sequences flanking m6A sites. For the potential m6A
sites in the RAC consensus at the coding region of the last exon for each gene, we
modeled its probability value by iM6A. We selected the m6A sites with relatively
high probability values (probability ≥ 0.7) as the positive sites, while the control was
the exact RAC motif matched site with lower m6A probability (probability < 0.01).
For the trimers enumeration, we extracted the 50 nt upstream and downstream
sequences of each m6A site. The trimers were enumerated from the 5' end to the 3'
end of the 101 nt sequence. For the positional plot, we counted the numbers of the
top 20 enhancers codons and the top 20 silencers codons at each position of the
101 nt sequence (see details in the section for quantifying the effect of all synon-
ymous codons on the m6A deposition by linear regression). The frequency of
enhancers or silencers were also calculated. The plots were compared between the
positive sites and control, and the data were presented as mean ± S.E.M. (Fig. 5g, h
and Supplementary Fig. 5c, d).

Distribution of m6A probability value around stop codon. All the coding genes were
categorized by their stop codons (three groups: TAA/TAG/TGA). To plot the
distribution of m6A probability value around stop codon (the position 0 was the T
nucleotide for stop codons), we first calculated the m6A probability value of each
nucleotide flanking the stop codon (−500 nt to +500 nt) by iM6A. The total
probability value for each position was summed, and the average probability value
was computed by dividing the total number of transcripts at each position (Fig. 6a).

For the stop codon swap, the TGA stop codon was substituted by the TAA or
the TAG stop codon (Fig. 6b). Similarly, TAA or TAG was replaced by TGA. The
average m6A probability value around the stop codon was also calculated by the
iM6A. For the m6A sites adjacent to the stop codon (Position −2: NRACTRR,
Position 2: TRACN, Position 3: TRRACN), we evaluated the m6A probability value
changes by the CDF (Cumulative Distribution Function) plot, and the p-values
were calculated by the KS-test (Kolmogorov-Smirnov test).

Conservation analysis of stop codons with or without m6A sites. For the RAC sites
adjacent to the stop codons (NRACTRR, TRACN, and TRRACN, and TRR
represented the stop codon), we calculated the average phyloP score of its corre-
sponding stop codon. The m6A sites were categorized into two groups (m6A or
non-m6A) based on its probability value (the cutoff= 0.05), while its corresponded
stop codon was also categorized into two groups (TGA or non-TGA). The donut
plot was used to show the percentage of stop codon for the m6A sites and the non-
m6A sites, and the p-value was calculated by the Fisher’s exact test. The con-
servation score of stop codons for each group was compared by the box plot, and
the p-value was determined by the Student’s t-test.

Conservation analysis of stop codons with or without m6A-CLIP sites. For the RAC
sites adjacent to or at the stop codons (NRACTRR, TRACN, and TRRACN,
and TRR represented the stop codon), we calculated the average phyloP score
of its corresponding stop codon. The stop codons adjacent to or with the
m6A-CLIP sites were the stop codons that overlapped with either the m6A sites
detected by m6A-CLIP at the three positions or the m6A peak region8,14,32,33.
The control was the stop codons that was neither adjacent to nor at the
m6A-CLIP sites nor overlapped with the m6A peak regions14,33, and we further
require the control stop codons to come from the transcripts with the
m6A-CLIP sites (i.e., these transcripts had adequate expression level to have
m6A sites detected by the m6A-CLIP). Moreover, the stop codons were cate-
gorized into two groups (TGA or non-TGA). The conservation score of stop
codons for each group was compared by the box plot, and the p-value was
determined by the Student’s t-test.

Comparison of mouse iM6A model with human iM6A model. Both mouse and
human iM6A models were trained independently on the genes of all the other
chromosomes except the chromosome 9 (Chr9) in mouse and human, respectively.
The m6A sites in Chr9 of mouse or human were modeled by either mouse iM6A
model or human iM6A model independently, and the scatter plot was used to
visualize the modeled probability of the m6A sites between the mouse and human
models (Fig. 7a, b). Each dot represented one site in chromosome 9 (Chr9) dis-
covered by both models, and the labeled axes provided the probability estimate for
that site by the two models. The R-value was calculated by Pearson Correlation
Coefficient.

Comparison of the protein sequence conservation of METTL3, METTL14, WTAP,
and VIRMA between mouse and human. The mouse and human protein sequence
of METTL3 (Mouse: Q8C3P7, Human: Q86U44), METTL14 (Mouse: Q3UIK4,
Human: Q9HCE5), WTAP (Mouse: Q9ER69, Human: Q15007), and VIRMA
(Mouse: A2AIV2, Human: Q69YN4) were downloaded from Uniport (https://
www.uniprot.org/). The MEGA (Molecular Evolutionary Genetics Analysis)
software57 was used to align the protein sequences. We visualized the sequence
conservation with the heatmap. The full length of the protein was illustrated by the
gray box, while the individual amino acids that differed between mouse and human

were marked as black lines. The percentage of conserved amino acids between
mouse and human proteins was also calculated accordingly (Fig. 7c).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets of the probability for the m6A candidates are deposited to available at Zenodo
(https://doi.org/10.5281/zenodo.4734266). ClinVar dataset is available at https://ftp.ncbi.
nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz. dbSNP dataset is available
at https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/BED/. The m6A
profiles of 60 YRI samples were available with the Gene Expression Omnibus repository
under accession no. GSE125377 and https://doi.org/10.5281/zenodo.3870952.

Code availability
The source code of iM6A is available at GitHub (https://github.com/ke-laboratory/
iM6A).
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