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Identifying genetic determinants of inflammatory
pain inmiceusinga large-scalegene-targetedscreen
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Lynette R. Bowerg, Jason A. Bubiera, Marc Parisienh, Alexandr Bezginovb,i, Hamed Haselimashhadij, Jeremy Masonj,
Michayla A.Moorea, Michelle E. Stewartd, Dave A. Claryg, Daniel J. Delbarrek, Laura C. Andersona, Abigail D’Souzab,c,
Leslie O. Goodwina, Mark E. Harrisond, Ziyue Huangb,c, Matthew Mckaya, Dawei Qub,c, Luis Santosk,
Subhiksha Srinivasane, Rachel Urbana, Igor Vukobradovicb,c, Christopher S. Wardl, Amelia M. Willetta, The
International Mouse Phenotyping Consortium, Robert E. Brauna, Steve D.M. Brownk, Mary E. Dickinsonl,
Jason D. Heaneye, Vivek Kumara, K.C. Kent Lloydg,m, Ann-Marie Mallonk, Colin McKerliec,i, Stephen A. Murraya,
Lauryl M.J. Nutterb,i, Helen Parkinsonj, John R. Seavitte, Sara Wellsd, Rodney C. Samacoe,f, Elissa J. Cheslera,
Damian Smedleyn, Luda Diatchenkoh, Kyle M. Baumbauero, Erin E. Youngp, Robert P. Boninq, Silvia Mandillor,
Jacqueline K. Whitea,*

Abstract
Identifying the genetic determinants of pain is a scientific imperative given themagnitude of the global health burden that pain causes. Here,
we report a genetic screen for nociception, performedunder the auspices of the InternationalMousePhenotypingConsortium. Abiased set
of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical
nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an
inflammatory agent (complete Freund’s adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or
more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes
(Gria1andHtr3a) havebeenpreviously reportedwith nociception-relatedphenotypes ingenetically engineeredmousestrains and represent
useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the
knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1,
Cp,Mmp16,Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better
understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.

Keywords:Pain, Nociception, Nocifensive behavior, Sensitization, Formalin, Hargreaves, von Frey, Complete Freund’s adjuvant,
Single-gene knockout mouse, Screen, IMPC, Comorbidity, Autism

1. Introduction

Pain is a huge unresolved health burden with approximately 20% of
adults worldwide reported to suffer from chronic pain, defined as
lasting 12 or more weeks.25,26 An estimated 50 million Americans

suffer from chronic pain,13,60 which leads to increased health costs,
loss of productivity, and perceived lower quality of life. Pain can

present as the primary condition or as a comorbidity of conditions as

diverse as cancer,multiple sclerosis, human immunodeficiency virus
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infection,18 and neuropsychiatric conditions.8 Clinical pain percep-
tion is complex, involving physical, cognitive, contextual, and
emotional components. Despite this complexity, the heritability of
pain-related traits in mammals is well accepted.49

Nociception is defined as “the neural process of encoding
noxious stimuli.”35 Although animal models cannot capture all
components of clinical pain, the mouse has been used extensively
as a genetic model of nociception. For example, PainGenesdb41

reports 430 genes with published pain-related phenotypes
(queried March 11, 2021). Analysis of the correlation of common
nociception parameters in inbred mouse strains reveals at least 5
genetically dissociable categories of nociception and hypersensi-
tivity.42,48,51,76 For example, assays assessing baseline thermal
nociception, such as Hargreaves and tail flick, cluster together but
are under genetic control mechanisms distinct from assays
assessing spontaneous responses to noxious chemical stimuli,
such as formalin and capsaicin.42

The International Mouse Phenotyping Consortium (IMPC) is a
global consortium tasked with identifying the function of every
protein-codinggene in themammalian genome through the creation
and phenotypic characterization of single-gene knockout mouse
strains.20 As of data release 15.0, phenotyping data were available
for 7824 genes (www.mousephenotype.org). The IMPC phenotyp-
ing pipeline is a hypothesis-generating screen designed to identify
gross abnormalities in neurobehavior, cardiac function, metabolism,
body composition, skeletal structure, vision, hearing, and blood
composition. This broad screen is not designed to explore
mechanistic underpinnings but is an invaluable first step in the
characterization of genetic models of human disease. The IMPC
pipeline does not include any screen for nociception. In the current
study, 5 IMPC centers assessed the feasibility of including such a
screen. Assays were selected from the genetically distinct classifi-
cations mentioned above48 and include (1) subacute/late phase
formalin, a tonic nociceptive test that induces an organized (licking)
nocifensive response; (2) von Frey and (3) Hargreaves, which are
evoked mechanical and thermal stimuli, respectively, that induce a
reflexivewithdrawal response; and (4) complete Freund’s adjuvant, a
chronic inflammatory agent that when coupled with von Frey and
Hargreaves can assess mechanical and thermal hypersensitivity,
respectively. Each center piloted the assays available to them on
strains from their active IMPC mouse colonies. Gene selection
criteria fell into 3 categories: (1) nominations fromdomain experts, (2)
functional evidence highlighted on GeneWeaver,2 and (3) unbiased
selection. This resulted in 110 single-gene knockout mouse strains
being screened for 1 or more nociception and hypersensitivity
assays. The results expand our understanding of genes underlying
nocifensive responses and may provide novel targets to accelerate
or refine the development of analgesics.

2. Methods

2.1. Ethical Approval

All institutes that generate, breed, and phenotype mice are
guided by local ethical review panels and national licensing and
accreditation bodies. Details of ethical review bodies and licenses
for the 5 contributing centers are as follows: Baylor College of
Medicine’s (BCM) Institutional Animal Care and Use Committee
approved license AN-5896; Medical Research Council Harwell’s
(HAR) AnimalWelfare and Ethical ReviewBody approved licenses
70/8015 and 30/3384; The Center for Phenogenomics (TCP)
Animal Care Committee approved animal use protocols 0153,
0275, 0277, and 0279; and The Jackson Laboratory’s (JAX)
Institutional Animal Care and Use Committee approved licenses

14004, 11005, and 99066. JAX AAALAC accreditation number
was 000096, NIH Office of Laboratory Animal Welfare assurance
number was D16-00170, and the University of California, Davis’s
(UCD) Institutional Animal Care and Use Committee approved
animal care and use protocol number was 19075. UCD AAALAC
accreditation number is 000029, and the NIHOffice of Laboratory
Animal Welfare assurance number is D16-00272 # (A3433-01).
Animal welfare was assessed routinely for all mice involved.

2.2. Animals

Mice carrying knockout alleles were generated from the KOMP/
EUCOMM-targeted embryonic stem cell resource or through
CRISPR/Cas9 mutagenesis using standard techniques.6,20

Mutant strain production details can be found at www.
mousephenotype.org by searching for the gene symbol. Cumu-
latively across 5 contributing centers, 110 unique single-gene
(listed in Table 1) knockout mouse strains were screened for their
nocifensive behavior using up to 3 phenotyping assays. All
knockout mouse strains were produced and maintained on a
C57BL/6N genetic background of substrains C57BL/6NJ (BCM
and most JAX strains, stock number JR005304), C57BL/6NTac
(HAR strains), C57BL/6NCrl (TCP andUCD strains), and B6N(Cg)
(B6N Complex Genomics designation, 3 JAX strains).

Homozygous animals were tested when viable and available
(76 knockout strains), including 3 X-linked genes for which the
zygosity is reported as homozygous (females) and hemizygous
(males). Heterozygous animals were tested for the remaining 34
knockout strains, primarily because theywere either homozygous
lethal or subviable (classed as less than 50% of the expected
number of homozygous progeny resulting from intercrossing
parents heterozygous for the allele of interest) (32 strains) or there
was a lack of available homozygous animals (2 strains). A full list of
zygosity is presented in Table 1. Target group size ranged from 8
to 12 mice per sex per strain depending on the contributing
center, and the minimum group size was defined as 5 mice per
sex per strain, belowwhich data were excluded from the analysis.

Husbandry practices vary between centers and are detailed as
follows. All centers were specific pathogen-free barriers using a
12-hour light–dark schedule, and experiments were conducted in
the light phase. Mice had ad libitum access to water and food.
BCM used a housing density of 1 to 5 animals per cage in
individually ventilated cages {Tecniplast Sealsafe Plus (overall
dimensions of caging: [L 3 W 3 H]: 199 3 391 3 160 mm)}.
Envigo (formally Harlan) Teklad 2920X diet, quarter-inch corn cob
bedding substrate, and environmental enrichment of a nestlet
were provided. Room temperature was 20 to 21˚C, and humidity
was regulated at 30% to 70%. HAR used a housing density of 4 to
5 animals per cage in individually ventilated cages {Tecniplast IVC
Sealsafe Blue line U temp 1284L (overall dimensions of caging: [L
3 W 3 H]: 365 3 207 3 140 mm)}. Special Diet Services RM3
diet, Eco-Pure Aspen chips2 (Datesand, United Kingdom)
bedding substrate, and environmental enrichment of FDA Paper
shavings–single bale nesting material (Datesand, United King-
dom) and cardboard tunnels (small 75 3 38.1 3 1.25 mm;
Datesand, United Kingdom) were provided. Room temperature
was 19 to 21˚C, and humidity was regulated at 45% to 65%. The
Center for Phenogenomics used a housing density of 2 to 5
animals per cage in individually ventilated cages {Tecniplast
Sealsafe Plus (overall dimensions of caging: [L 3W 3 H]: 1993
391 3 160 mm)}. Envigo Teklad 2918X diet, quarter-inch corn
cob bedding substrate, and environmental enrichment of
shredded paper (EnviroPak) were provided. Room temperature
was 21 to 22˚C, and humidity was regulated at 30% to 55%. JAX
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used a housing density of 1 to 5 animals per cage in individually
ventilated cages {Thoren Duplex II Mouse Cage #11 and Thoren
Maxi-Miser PIV System (overall dimensions of caging: [L 3 W 3
H]: 308 3 308 3 162 mm)}. LabDiet 5K52 diet, aspen shavings
bedding substrate, and a cardboard tunnel for individually
housed animals were provided. Room temperature was 20 to
22˚C, and humidity was regulated at 44% to 60%. UCD used a
housing density of 1 to 3 males or 1 to 5 females in individually
ventilated cages {Animal Care Systems OptiMice (overall
dimensions of caging: [L 3 W 3 H]: 343 3 292 3 155 mm)}.
Envigo Teklad 2018 diet, quarter-inch corn cob bedding sub-
strate, and environmental enrichment of a nestlet and Enviro Dry
were provided. Room temperature was 20 to 26˚C, and ambient
environmental humidity was not regulated (typically between 25%
and 40%).

2.3. Gene selection

The 110 single-gene knockoutmouse strains included in this study
originated from the active mouse colonies within the IMPC. Before
phenotypic testing, GeneWeaver.org (RRID: SCR_003009) was
used independently at the 5 contributing centers to identify genes
within their active IMPC mouse colonies that had functional
genomics evidence supporting a role in pain. After the completion
of the study, a centralized post hoc analysis was run using the
current GeneWeaver database [database queried October 31,
2020] to identify the most up-to-date functional annotations to
pain-related evidence for the 110 genes selected. The GeneWea-
ver database was queried for nociception or pain-related gene
sets, and the query results added to a project in GeneWeaver. The
project contained 145 gene sets including 90 gene sets
corresponding to gene expression correlated with pain pheno-
types in mouse models, 31 lists of quantitative trait loci (QTL)
positional candidates frommouse and rat, PainGenesdb database
hits,41 3 gene sets of Mammalian Phenotype Ontology term
association to pain-related terms, 6 gene sets indexed in PubMed
to Medical Subject Headings related to pain, 5 gene sets derived
from genome-wide association studies, 3 pain-related Online
Mendelian Inheritance in Man gene sets, and 6 literature-based
studies. This GeneWeaver project of gene sets was hand curated
to remove gene sets that were duplicate database entries or had
been wrongly associated with nociception (eg, where pain-related
text in the abstract was not relevant to the content of the gene set).
Full GeneWeaver results are available as a Zenodo repository
(https://doi.org/10.5281/zenodo.5178015 74).

2.4. Formalin testing

Three contributing centers used formalin to study nocifensive
behavior in a total of 75 knockout mouse strains (18 strains at
BCM, 27 strains at HAR, and 30 strains at JAX). The number of
mice tested per sex per mutant strain ranged from 5 to 16. Mice
were acclimated to the testing room for at least 30 minutes
before testing. To optimize the consistency of injections in both
volume and site and to minimize stress, the mice were
anesthetized for formalin administration. Routinely, mice re-
covered consciousness from gas anesthesia within 1 minute of
being placed in the testing arena and were completely
ambulatory within 3 minutes. For this reason, the first 5 minutes
of video collected after the mouse was placed in the testing
arena was excluded from the analysis. The formalin test elicits 2
phases of nocifensive behavior: phase 1, which occurs
between 0 and 5 minutes after formalin administration, is
directly linked to peripheral sensitization through the

stimulation of primary sensory neurons and phase 2, which
occurs between 10 and 60 minutes after formalin administra-
tion, is triggered by inflammation and involves central sensiti-
zation.45 The use of gas anesthesia can mask the phase 1
response. For this reason, only the phase 2 centralized
sensitization results are reported herein. Although the standard
formalin procedure was executed at each center, subtle
differences in the method are described below.

At HAR, mice were anesthetized with inhaled sevoflurane (5%
flow; Zoetis, United Kingdom)45 followed by subcutaneous
injection of formalin (20 mL of 5% formalin solution; Sigma;
United Kingdom, Product number: 252549) into the plantar
surface of the right hind paw. The mouse was then placed in an
acrylic glass testing arena ([L 3 W 3 H]: 400 3 360 3 130 mm)
consisting of 3 mirrored and 1 transparent wall (built in-house).
The arena was placed in the Home Cage Analyzer system (Actual
Analytics, Edinburgh1), with the transparent wall facing the
camera. Video was recorded for 60 minutes after a mouse
entered the arena, after which the animals were humanely
euthanized. Experimenters who were blinded to the genotype
manually annotated the videos using Simple Video Coder.3 The
following nocifensive behaviors were scored: duration and
number of bouts of licking or biting behavior as well as duration
and number of bouts of dragging or limping behavior. For
statistical analysis, the duration data were summed between 10
and 60 minutes after formalin administration.

BCM adopted the same protocol as HAR with the exception
that inhaled isoflurane (3% flow; Henry Schein IsoThesia, Melville,
NY; Product number: 1169567762) was used to anesthetize the
mice, and the left hind paw was injected. In addition to licking or
biting and dragging or limping behavior, BCM manually scored
duration and number of bouts of flinching behavior. Manual
scoring was performed using Behavioral Observation Research
Interactive Software (BORIS24).

At JAX,micewere anesthetizedwith inhaled isoflurane (4% flow;
Henry Schein IsoThesia; Product number: 1169567762) followed
by subcutaneous injection of formalin [30 mL of 2.5% formalin
solution, formaldehyde solution (Sigma-Aldrich, Burlington, MA;
Product number: 15512), and sterile saline solution (Henry Schein;
Product number: 002477)] into the plantar surface of the right hind
paw. The testing arenawas a clear acrylic animal enclosure ([L3W
3H]: 22032163127mm; IITCLife Science,WoodlandHills, CA,
Product number 433) containing 4 separate arenas divided by
opaque black walls. This tetrad was placed atop a clear glass
surface, and a video camera (black and white camera, Bosch,
Dinion; Noldus media recorder v4 software, Noldus) was
positioned 16 cm below the glass surface directly underneath
the tetrad to provide a clear view of the paws. Four such tetrads
were set up allowing 16 mice to be tested simultaneously. After
formalin injection,micewere placed individually into a testing arena
and video recorded for 90 minutes, after which the animals were
humanely euthanized. Video recording was extended beyond the
typical 60-minute experimental duration to capture strain differ-
ences in the timing of peak behavior. However, we observed
consistently that the peak responsewas capturedwithin the first 60
minutes after formalin administration and licking or biting behavior
was observed to level off from 60 to 90 minutes postinjection. For
this reason, we restricted behavioral analysis to the period of 10 to
60 minutes postinjection, as is standard in the field. A machine
learning algorithm developed in-house and published indepen-
dently73 was used to automatically score the duration and number
of bouts of licking or biting behavior. For statistical analysis, the
duration data were summed between 10 and 60 minutes after
formalin administration.
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As licking or biting was the common behavior scored by all
contributing centers and is reported to be themost important and
reliable measure of nocifensive behavior,33,50 data analysis
focused specifically on licking or biting. All unprocessed data
are available as a Zenodo repository (https://doi.org/10.5281/
zenodo.5178015 74).

2.5. Complete Freund’s adjuvant
inflammatory administration

Three contributing centers used complete Freund’s adjuvant (CFA)
to induce a delayed thermal and mechanical hyperalgesia response
in a total of 43 knockoutmouse strains (9 strains at JAX, 13 strains at
TCP, and 21 strains at UCD). Complete Freund’s adjuvant was
administered while the mice were under anesthesia to maximize the
consistency of both the injection site and the volumedelivered and to
reduce stress for the mice. Mice were provided supplementary heat
(26.6-38˚C) to support recovery from anesthesia. Typically, mice
regained consciousness from anesthesia within 1 minute of CFA
injection and were fully ambulatory within 3 minutes. Although the
standard CFA protocol was executed at each center, subtle
differences in the method are described below.

At JAX, mice were anesthetized with inhaled isoflurane (4%
flow; Henry Schein IsoThesia; Product number: 1169567762)
followed by subcutaneous injection of CFA (30 mL of undiluted
CFA [InvivoGen, San Diego, CA; Product number: vac-cfa-60])
into the plantar surface of the right hind paw.

At TCP and UCD, mice were anesthetized with inhaled
isoflurane (5% flow; CDMV; Product number: USP 108737)
followed by subcutaneous injection of CFA (20 mL of undiluted
CFA [Sigma Aldrich; Product number: F5881]) into the plantar
surface of the right hind paw.

All strains were tested for mechanical (von Frey test) and
thermal (Hargreaves test) hyperalgesia before CFA injection to
establish baseline sensitivity, then at 2 time points after CFA
administration.

2.6. von Frey testing

Three contributing centers assessed CFA-induced mechanical
hypersensitivity by performing the von Frey test on a total of 43
knockout mouse strains (9 strains at JAX, 13 strains at TCP, and 21
strains atUCD). A fourth center,HAR,performed the vonFrey test on
28 knockout mouse strains in the absence of CFA or any other
sensitizing agents. The number of mice tested per sex per mutant
strain ranged from 5 to 13. While JAX followed the von Frey method
first described byChaplan,14 all other centers used the simplified up-
down (SUDO)method.7Center-specific details aredescribedbelow.

JAX used a base plate attached to a self-standing perforated
metal platform (Ugo Basile, Italy; Product codes 37000-003 and
37450-005) on which clear acrylic animal enclosures were placed
(Ugo Basile, Italy; Product code 37000-006), each divided by a gray
acrylic inset to create 4 testing arenas ([L 3W 3 H]: 100 3 100 3
127 mm). Three such enclosures could be used simultaneously
allowing 12 mice to be tested per session. The range of von Frey
filaments (Stoelting, Wood Dale, IL; Touch-Test Sensory Evaluator,
kit of 12, Product number: 58011) used was 0.02 to 1.4 target force
ingrams (equivalent to filament number 2 through9andhandle value
2.36-4.17).Micewere acclimated to the testing arena for 60minutes
before testing. When all 4 feet were touching the platform, the von
Frey filament was pressed against the plantar surface of the right
hind pawwith enough force to cause the filament to bend, then held
in place for up to 3 seconds. A positive responsewas recorded if the
animal withdrew from the stimulus, including sharp withdrawal,

licking, flicking, or flinching responses. After a positive response, the
subsequent trial was conductedwith the next smaller size of filament
in the series. In the absence of a paw withdrawal response, the
subsequent trial was conducted with the next larger size of filament
in the series. Testing began with the filament giving a target force of
0.4 g (filament number 6 andhandle value 3.61), and aminimumof 6
consecutive trials were conductedwith an intertrial interval of at least
2 minutes. Testing completion required at least 2 changes in
response. Pawwithdrawal threshold (PWT)was calculated using the
equation Xf1 kd,14 where Xf is the starting filament handle value, k is
taken from the lookup tables14,21 and is based on the pattern of
positive and negative responses observed for the mouse, and d is a
constant defined as the mean difference between the range of
filaments used in the test (d5 0.289 when using filament number 2
through 9). Log base 10 of the mean PWT in grams was used in
analysis for each time point. Baseline measurements were collected
24 hours before CFA administration, and mice were retested at 24
and 48 hours after CFA administration.

TCP used a mesh stand with hexagonal perforations measuring
8 mm corner to corner (IITC Life Science; Product number 410) on
which clear acrylic animal enclosureswere placed (IITC Life Science,
Product number 433), each divided by a white opaque acrylic inset
to create 4 testing arenas ([L 3 W 3 H]: 100 3 100 3 125 mm).
Three such enclosures could be used simultaneously allowing
testing of 12 mice per session. The range of von Frey filaments (IITC
Life Science; Aesthesio, Precise Tactile Sensory Evaluator 20-piece
Kit, Product number: 514000-20C) used was 0.02 to 1.4 (target
force ingrams; equivalent to filament number 2 through9andhandle
value 2.36-4.17). The test was conducted as described above for
JAX except that testing began with the filament giving a target force
of 0.16 g (filament number 5 and handle value 3.22). Five
consecutive trials, with an intertrial interval of at least 2 minutes,
were conducted to complete 1 run. Two runs were performed for
each time point. The average PWT for each time point was
calculated using the SUDOmethod approach.7 In brief, the equation
log10(PWT) 5 x*SUDO score 1 B was used, where x and B are
constants derived specifically for themouse filament set (x5 0.24,B
5 22.00) and SUDO score is the number of the final presented
filament corrected using a 60.5 adjustment factor (positive
adjustment for no response and negative adjustment for paw
withdrawal). Log base 10 of the mean PWT in grams was used in
analysis for each time point. Baseline measurements were collected
2 hours before CFA administration, and mice were retested at 24
and 144 hours (6 days) after CFA administration.

UCD adopted the same protocol as TCP with the exception
that only 1 run of 5 consecutive trials was performed at each time
point to calculate PWT.

HARused ameshstandwith square perforationsmeasuring53
5 mm on which clear acrylic animal enclosures were placed, each
divided by an opaque acrylic inset to create 4 testing arenas ([in-
house] [L3W3 H]: 803 603 100 mm). Three such enclosures
could be used simultaneously allowing 12 mice to be tested per
session. The range of von Frey filaments (Stoelting; Touch-Test
Sensory Evaluator Kit of 12, Product number: 58011) used was
0.04 to 4.0 target force in grams (equivalent to filament number 3
through 11 and handle value 2.44-4.56). The test was conducted
as described above for JAX except that testing began with the
filament giving a target force of 0.6 g (filament number 7 and handle
value 3.84). Five consecutive trials, with an intertrial interval of at
least 2minutes, were conducted to complete 1 run. In the absence
of administration of a sensitizing substance, both hind paws were
tested at each time point, left hind paw first, followed by the right
hind paw in a separate run. The average PWTwas calculated using
the SUDO method approach as described above; however, the
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range of filaments used was different which resulted in different x
and B constants (x 5 0.24, B 5 22.03). Measurements were
collected at time 0 (habituation), 24, and 48 hours.

2.7. Hargreaves testing

Immediately after the von Frey testing described above, using the
samemice on the same testing days, 3 contributing centers went

on to assess thermal nociception by performing the Har-
greaves28,30 test on a total of 27 knockout mouse strains (7

strains at JAX, 13 strains at TCP, and 7 strains at UCD). The

number of mice tested per sex per mutant strain ranged from 5 to

13. All 3 centers used the Plantar Test equipment from IITC Life

Science, including the Model 400 Heated Base with an elevated

heated glass platform (Product number 400 G), the 390 Plantar

Test head (light and heat source; Product number 300 TH), and

Table 1

Metadata for 110 genes screened for nociception or hypersensitivity.

Abhd13

(3), HOM; VH

Cntnap2

(3), HOM; FVo
Lgals4

(2), HOM; F

Oxa1l

(1), HET; F

Slc9a7

(0), HOM/HEMI; Vo

Acod1

(0), HOM; FV

Col20a1

(1), HOM; VH

Lrrc55

(1), HOM; F

Pah

(3), HET; VH

Slc9a9

(2), HOM; F

Acox3

(1), HOM; F

Col9a3

(3), HOM; VH

Maged1

(4), HOM/HEMI; V

Pdcd6ip

(3), HOM; V

Stk36

(0), HET; FVH

Adamtsl3

(3), HOM; VH

Cp

(2), HOM; FVH

Mdh1

(3), HET; F

Pex14

(3), HET; F

Taf13

(1), HET; F

Agbl1

(2), HOM; F

Dnmt3b

(1), HET; VH

Med27

(1), HET; F

Piezo2

(1), HET; FVH

Tecpr2

(0), HOM; FVH

Akr1b3

(2), HOM; F

Dusp16

(1), HOM; VH

Mkrn3

(0), HOM; VH

Pink1

(4), HOM; FVo
Tedc1

(0), HET; VH

Alad

(1), HET; VH

Eif2d

(5), HOM; V

Mme

(2), HOM; V

Pip4k2c

(4), HOM; F

Timp1

(1), HOM/HEMI; FVo

Alg6

(1), HET; VH

Emp1

(3), HOM; V

Mmp16

(1), HOM; FVo
Polr1d

(1), HET; F

Trak2

(2), HOM; V

Aqp1

(1), HOM; FVo
Esd

(1), HOM; F

Mrps12

(3), HET; F

Ppp2r5c

(1), HOM; V

Trappc1

(3), HET; V

Atf3

(2), HOM; FVo
Exoc2

(3), HET; F

Mtg2

(4), HET; F

Ptprk

(5), HOM; F

Trim14

(3), HOM; VH

AU040320

(3), HOM; F

Ficd

(0), HOM; FVo
Myh10

(2), HET; FVH

Rex1bd

(1), HOM; F

Trim2

(2), HOM; F

Avpr1a

(4), HOM; FVH

Foxn3

(2), HET; F

Myom2

(3), HOM; F

Rnpepl1

(3), HOM; V

Trpc1

(3), HOM; FVo

BC048562

(1), HOM; FVo
Gabra2

(0), HOM; FVo
Nars

(0), HET; F

Rps20

(5), HET; F

Trpm3

(3), HOM; FVH

Bdkrb1

(8), HOM; FVo
Gapvd1

(5), HET; VH

Nav2

(2), HOM; VH

Rsad2

(2), HOM; FVo
Tspan17

(2), HOM; FVo

Bloc1s6

(4), HOM; V

Gria1

(7), HOM; FVo
Ndufa6

(1), HET; F

Scrn2

(1), HOM; F

Tspoap1

(4), HOM; FVo

C4b

(3), HOM; FVo
Grik1

(3), HOM; FVo
Nrxn2

(4), HOM; FVo
Sez6l

(1), HOM; FVo
Tubb6

(1), HOM; FVo

Cacna2d4

(0), HOM; F

Grm1

(2), HET; FVo
Nsmce2

(2), HET; F

Shank3

(3), HOM; FVo
Unc13c

(4), HOM; FVo

Cd2ap

(2), HET; F

Hmgb4

(2), HOM; F

Nt5dc2

(1), HOM; F

Shisa6

(4), HOM; VH

Utp4

(1), HET; F

Cdk2ap2

(2), HOM; F

Htr3a

(9), HOM; FV

Nup155

(4), HET; V

Slc17a8

(4), HOM; V

Ypel2

(4), HOM; VH

Cenpt

(1), HET; F

Ipo9

(2), HET; F

Ola1

(3), HET; F

Slc24a4

(1), HOM; FVo
Zfp236

(3), HET; V

Cgnl1

(5), HOM; VH

Lamb3

(0), HOM; FVo
Olfr1006

(1), HOM; V

Slc30a4

(1), HOM; VH

Zfp597

(1), HOM; F

Cnrip1

(2), HOM; VH

Lats1

(1), HOM; FVo
Otud7a

(2), HET; F

Slc7a14

(0), HOM; FVo
Zfp91

(2), HET; VH

Knockout mice for 110 genes were screened for nociception or hypersensitivity. The number of nociception or pain-related GeneWeaver associations is provided in parenthesis for each gene symbol. The zygosity of the

knockout animals screened is annotated as homozygous (HOM), heterozygous (HET), or homozygous/hemizygous (HOM/HEMI) for X-linked genes. The phenotyping assays used to screen each mutant mouse line are

summarized as formalin (F), von Frey with (V) and without (Vo) CFA administration, and Hargreaves with CFA administration (H). For example, the first gene listed, Abhd13 is annotated as “(3), HOM; VH” indicating that it has 3

pain-related GeneWeaver associations [(3),], homozygous animals were screened [HOM], and both von Frey and Hargreaves with CFA administration were assessed [VH].
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the testing arena composed of a clear acrylic animal enclosure ([L
3 W 3 H]: 220 3 216 3 127 mm; IITC Life Science, Product
number 433) containing 4 separate arenas. Three such enclo-
sures could be used simultaneously allowing 12mice to be tested
per session. The heated glass platform was set to measure 29 to
32 ˚C, and mice were acclimated to the testing arena for 30 to 60
minutes before testing. The right hind paw was tested 3 times at
each time point, with a minimum of 2 minutes between stimulus
presentations, and the average latency to respond was used for
statistical analysis. Although the standard Hargreaves procedure
was executed at each center, subtle differences in the method
are described below.

JAX used a white opaque acrylic inset to create 4 testing
arenas in the animal enclosure. The 390 Plantar Test head was
set at 2% idle intensity and 25% test intensity. Latency to respond
was measured in seconds up to a maximum exposure time of 30
seconds, at which time the heat was stopped. Baseline
measurements were collected 1 day before CFA administration,
and mice were retested at 24 and 48 hours after CFA
administration.

TCP used a white opaque acrylic inset to create 4 testing
arenas in the animal enclosure. The 390 Plantar test head was set
at 3% to 4% idle intensity and 30% test intensity. Latency to
respond was measured in seconds up to a maximum exposure
time of 20 seconds, at which time the heat was stopped. Baseline
measurements were collected 2 hours before CFA

administration, and mice were retested at 24 and 144 hours (6
days) after CFA administration.

UCD used a clear acrylic inset to create 4 testing arenas in the
animal enclosure. The 390 Plantar Test head was set at 10% idle
intensity and 100% test intensity. This is a high heat administra-
tion intensity relative to the other contributing centers which
resulted in very short (sub 3 seconds) response times even pre-
CFA administration. This is atypical for Hargreaves which is
classically configured to yield a response latency of 10 to 12
seconds in naive mice to detect hyposensitivity and hypersen-
sitivity.19 The detection of thermal stimuli depends on activation of
heat-gated ion channels with threshold temperatures ranging
from warm (TRPV3, TRPV4, TRPM4, and TRPM5) to very warm
(TRPV1) to extremely hot (TRPV2).11,12,37,57,67,68 These channels
open once their threshold is exceeded, so the rapid response
latency detected by UCD simply represents the speed with which
thermal thresholds are exceeded for multiple channel types when
using a high-intensity administration. Latency to respond was
measured in seconds up to a maximum exposure time of 30
seconds, at which time the heat was stopped. Baseline
measurements were collected 30 to 60 minutes before CFA
administration, and mice were retested at 24 and 144 hours (6
days) after CFA administration. Using this relatively high heat
intensity, significant sensitization was detected 24 hours after
CFA administration. For both sexes, sexual dimorphism was
detected because females presented with increased sensitivity,

Table 2

Nociception result summary for 13 statistically significant single-gene knockout mouse strains.

Results of statistical comparisons for 13 genes designated as hits, with significant P values (P , 0.001) highlighted in yellow. Gray cells indicate that the assay was not performed. White cells indicate that the assay was

performed but no interaction term was observed. Note that the equivalent table for all 110 genes tested is available as a Zenodo repository (https://doi.org/10.5281/zenodo.5178015 74).
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and response was trending back to baseline levels by 6 days after
CFA administration.

2.8. Open Field testing

A separate cohort of mice for each of the 110 single-gene knockout
strains reported herein was phenotyped by the IMPC as part of the
early adult phenotyping pipeline (http://www.mousephenotype.org/
impress). This pipeline included open-field testing, performed on a
minimum of 7 male and 7 female mutant mice per strain, aged 8 to 9
weeksat testing.Procedural details are reportedon the IMPCwebsite
(available at: https://www.mousephenotype.org/impress/Procedur-
eInfo?action5list’procID5496’pipeID57). In brief, animals were
acclimated to the open-field procedural room for at least 30 minutes
before testing, and the test duration was 20 minutes. The testing
arena was illuminated between 150 and 200 lux.Within the arena the
peripheral zonewas delineated as 8 cm from the arenawalls, and the
central zone accounted for approximately 40% of the total surface
area. As of IMPC data release 15.0, open-field data were available for
103 of the 110 single-gene knockout strains reported herein. Of those
103 strains, 27were designated as behaving abnormally in open-field
testing. Our approachwas tomine theMammalian Phenotyping (MP)
ontology terms assigned to the abnormal strains by the IMPC
following standardized data analysis using OpenStats.31 A complete
list of all abnormal open-field parameters and the associated MP
terms for the 27 abnormal strains is available as a Zenodo repository
(https://doi.org/10.5281/zenodo.5178015 74). We broadly catego-
rized all the open-field abnormalities reported for the 27 strains into 2
groups: (1) abnormal locomotor activity using the MP terms
“hyperactive,” and “hypoactive” and (2) anxiety-like or abnormal
exploratory behavior using the MP terms “increased thigmotaxis,”
“decreased thigmotaxis,” “increased vertical activity,” “decreased
vertical activity,” “increased anxiety-related response,” “increased
exploration in new environment,” and the more generic “abnormal
behavior.” A chi-square test of independence was performed to
examine the relation between nocifensive phenotypes and abnor-
malities in open field, and the nature of the open-field abnormalities
was reported for genes with statistically significant abnormalities in
nocifensive behavior.

2.9. Data quality control

Each center manually examined data for errors and excluded
mice from analysis if technical or experimental errors were
indicated. Strains were included if data were complete for 1 or
both sexes with sample size of 5 or more.

2.10. Statistical Analysis

The analyseswere automated for each assay, and statistical models
were optimized using the IMPC tool PhenStat40 with the significance
level of 1023. The choice of significance level was based on the need
to balance sensitivity for hits against the probability of false positives.
This level of 1023 has previously been adopted within large screen
surveys to assess specific parameters, as for example, determining
lethality threshold20 or circadian phenotypic deviance.81 Typically,
screens of thousands of genes aim tomaintain a false discovery rate
below 5% and use a significance level of 1024. This is the strategy
adopted by the IMPC (www.mousephenotype.org). By contrast,
experiments that compare only a few strains may use 1022 or
greater as the statistical decision threshold level. This study of 110
genes falls between these extremes, and our choice of significance
level was made accordingly. To assess the risk of false positive rate

of discovery, the resultant P values of all the statistical tests were
converted to false discovery rate q values using the Benjamini–
Hochberg5 method (R software61). The chosen significance level (P
, 0.001) corresponded to less than a 2% risk of false discovery. The
results are shown in figures as hits (P , 0.001), genes of potential
interest (0.001 # P, 0.01), or not significant (P$ 0.01).

2.10.1. Formalin statistical analysis

Data were summed to produce the total number of seconds of
licking or biting behavior within the period of 10 to 60minutes after
formalin injection. PhenStat was used to optimize themixedmodel
analyses of variance by including the initial fixed effects of gene
(wild type control, mutant), sex, age, and body weight (when
available) and the random effect of batch (day of experiment). The
results of the final optimized model were retained, and effect sizes
were expressed as percentage changes based on the ratio of
genotype effect to wild type effect.39,40 If sexual dimorphism was
reported in themodel, then effect sizes were reported for each sex
separately. Three strains were analyzed as single-sex models
(knockouts for Avpr1a, Sez6l, and Trpc1).

2.10.2. von Frey and Hargreaves statistical analysis

PhenStat models were used to assess 3 dependent variables:
nocifensive behavior in the absence of CFA administration (baseline
measure) and the change in response (compared with baseline) for
the 2 subsequent test days (delta1 and delta2). The models were
optimized starting with the initial fixed effects of gene (wild type
control, mutant), sex, age, and body weight (when available) and the
random effect of batch (day of baseline measure). The results of the
final optimizedmodel were retained, and effect sizeswere expressed
as percentage change based on the ratio of genotype effect to wild
type effect. If sexual dimorphism was reported in the model, then
effect sizes were reported for each sex separately.

The von Frey PWT data (grams) were log10 transformed before
analysis as recommended by Mills et al.,47 and the variables
tested were log10_baseline, delta1 (log10_baseline 2 log10_t-
est1), and delta2 (log10_baseline2 log10_test2). The subtraction
of logarithms effectively normalizes the change to the baseline.
Four strains were analyzed as single-sex models (knockouts for
Eif2d, Olfr1006, Pdcd6ip, and Ppp2r5c).

The analyzed Hargreaves variables were baseline latency,
delta1 (baseline 2 test1), and delta2 (baseline 2 test2). The
changes from baseline were not normalized. Two strains were
analyzed as single-sex models (knockouts for Cgnl1 and
Col20a1). JAX and UCD initially tried lower stimulus intensities,
but the response variability was very high and both centers
shifted and stayed with higher intensity stimuli (25% test
intensity for JAX; 100% test intensity for UCD). The early
measures were excluded as incomplete data.

2.11. Data availability

All mutant mice reported here are available through public mouse
repositories for further investigation. All data sets and analyses
are available as a Zenodo repository (https://doi.org/10.5281/
zenodo.5178015,74).

3. Results

3.1. Assessing nocifensive behaviors

Five contributing centers piloted nociception assays that were
available to them. From the final list of 110 genes and 3 possible
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nociception assays (formalin, von Frey, and Hargreaves), results
from 173 unique gene3assay combinations (Table 1) are
reported herein.

Wild type control data are available as a Zenodo repository
(https://doi.org/10.5281/zenodo.5178015 74) and reveal that the
testing protocols established by all 5 contributing centers permitted
detection of hypersensitive and hyposensitive genetically altered
mouse strains. Although trends in the data were concordant
between contributing centers, for example, peak thermal sensitivity
was detected 24 hours after CFA administration and began to
resolveat later timepoints, variability in absolute values (eg, latency to
withdraw) was seen across contributing centers. This is consistent

with published literature and serves to highlight the need for detailed

documentation of the experimental design and execution and the

likely genotype3environment interactions38 involved in the complex

behavioral phenotype of nociception. Recognizing that the primary

goal of this study was identification of novel nociception gene

associations delivered through large-scale screening of single-gene

knockout mouse strains, we adopted a center-specific control

strategy that ensuredwild type andmutant comparisonsweremade

only for data collected within the same contributing center. We also

focused our attention on strains presenting with large and highly

significant effects.

Figure 1. Relative effect size of mutant compared with wild type (WT) mice for chemical nociception. The subacute or late phase response to formalin was
measured using the sum of the time spent licking or biting between 10 and 60 minutes after formalin was administered. The percentage effect size of genotype
(mutant—WT control) on late phase response to formalin is plotted by gene symbol. The unadjusted P value is inserted after the gene symbol for all significant gene
effects and genes of potential interest, reporting the effect of genotype of the null model hypothesis analysis where both sexes are affected or from the sex 3
genotype interaction where sexual dimorphism is present. A positive effect represents an increase in licking or biting by mutant relative to control (hypersensitive)
and a negative effect a decrease in licking or biting (hyposensitive). Only genes with P values less than or equal to 0.1 are plotted, and all other genes with a P value
greater than 0.1 are named in the text box. A brown bar indicates that the P value was less than 0.01 but not considered significant, and a green bar indicates that
the P value for this test was considered significant with a P value below 0.001. Bars with a single symbol (black circle) represent both sexes. Where sexual
dimorphism was detected, the male value is indicated by a grey square and female by a white square.
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3.2. Gene selection

The IMPC intends to identify the function of every protein-coding
gene in the human–mouse orthologous genome using stan-
dardized knockout strain production on a fixed genetic
background and systematic high throughput sequential phe-
notyping tests. All 5 centers contributing data to the current
study are members of the IMPC. Each center selected a subset
of strains from their active IMPC mouse colonies and assessed
them for altered nociception using up to 3 nociception

phenotyping assays. Gene selection criteria varied between

centers but broadly fell into 3 categories: (1) nominations from

domain experts, (2) functional evidence highlighted on Gene-

Weaver, and (3) unbiased selection.
To reconcile the final list of 110 genes and identify the most

up-to-date functional genomics evidence of a role in nocicep-

tion, a centralized post hoc analysis was run using GeneWea-

ver.2 GeneWeaver is a curated repository of functional

genomics information compiled from a vast array of data
sources. Overlaying GeneWeaver is software tools that allow
the interrogation and integration of these data sets to identify
convergent evidence of gene function. The GeneWeaver
database was queried for nociception or pain-related gene sets
that were then manually curated for accuracy. One hundred
forty-five gene sets of varying strength were identified. Stronger,
more direct evidence included Mendelian disease associations
(Online Mendelian Inheritance in Man) and pain-related Mam-
malian Phenotype Ontology terms. Weaker evidence included
positional candidates from QTL and gene expression correla-
tions with pain phenotypes. The number of GeneWeaver
associations for the 110 genes ranged from 0 up to a maximum
of 9 pain-related gene sets (Table 1). This included 98 genes
associated with at least 1 piece of functional genomics data (eg,
cerebellum gene expression correlates for hot platemeasured in
BXD recombinant inbred strains or QTL for morphine anti-
nociception on chromosome 9), 67 genes associated with at

Figure 2. Relative effect size of mutant compared with wild type (WT) mice for mechanical nociception. (A) The percentage effect size of genotype for the baseline
von Frey measurement plotted by gene symbol. Themixedmodel analysis tested log10 baseline scores, and effect sizes are calculated on that basis. The x-axis is
reversed to indicate that a negative effect represents a measure of lower force and therefore a hypersensitive response by the mutant, and a positive change
indicates higher force (hyposensitive). Only genes with P values less than or equal to 0.1 are plotted, and all other genes with P value greater than 0.1 are named in
the text box. The unadjusted P value is inserted after the gene symbol for all significant gene effects and genes of potential interest, reporting the effect of genotype
of the null model hypothesis analysis where both sexes are affected or from the sex3genotype interaction where sexual dimorphism is present. A brown bar
indicates that the P value was less than 0.01 but not considered significant, and a green bar indicates that the P value for this test was considered significant with a
P value below 0.001. Bars with a single symbol represent both sexes. Where sexual dimorphism was detected, the male value is indicated by a gray square and
female by a white square. The colors and symbols are maintained for part B. (B) The percentage effect size of genotype for the measured peak change from
baseline in response to CFA administration of the von Frey assay is plotted by gene symbol. The mixed model analysis tested the difference of log10 scores, and
effect sizes are calculated on that basis. A positive effect indicates a greater change from baseline and represents a hypersensitive response to CFA administration
for the mutant, and a negative effect indicates a smaller response (hyposensitive). All genes are shown regardless of P value. The unadjusted P value is inserted
after the gene symbol for all significant gene effects and genes of potential interest, reporting the effect of genotype of the null model hypothesis analysis where
both sexes are affected or from the sex3genotype interaction where sexual dimorphism is present. The data above the break in the y-axis are from TCP and UCD
and use 24 hours postadministration as the comparison to baseline; data below the break are from JAX and used 48 hours postadministration as the comparison
to baseline (yellow shade). CFA, complete Freund’s adjuvant.
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least 2 pieces, 21 genes with $4 pieces, and 12 lacking any
functional genomics evidence of a role in pain (full GeneWeaver
results are available as a Zenodo repository at https://doi.org/
10.5281/zenodo.5178015 74). We conclude that our gene set is
enriched for genes that play a role in nociception.

3.3. Genes involved in nociception

A total of 110 single-gene knockout mouse strains were tested
using at least 1 and up to 3 distinct assays designed to assess
nocifensive behavior: formalin administration and Hargreaves
and von Frey with or without CFA administration. The results of
statistical comparisons for all 110 knockout strains are available
as a Zenodo repository (https://doi.org/10.5281/zenodo.
5178015 74). Thirteen from the 110 single-gene knockout
mouse strains achieved statistical significance in 1 or more
assays, defined as P , 0.001 (Table 2), with a false discovery
rate (q-value) of less than 2% (see 2.10 Statistical Analysis in the
Methods section). On inactivation, 6 genes were classified in 1
or more measures as generating hyposensitivity (Cp, Gria1,
Htr3a, Mmp16, Oxa1l, and Trim2), 3 genes were classified as
generating hypersensitivity (Cgnl1, Cnrip1, and Trim14), 1 gene
gave a mixed response depending on the assay (Tecpr2), 2
genes were classified as generating an altered recovery

response (Abhd13 and Alg6), and the remaining 1 gene was

classified as generating an altered phasing of the response

(BC048562). The breakdown of these results by assay is given

below.
Seventy-five knockout mouse strains were tested for their

subacute or late phase response to formalin (Fig. 1) measured

using the sum of the time spent licking or biting between 10 and

60 minutes after formalin was administered. Four of those 75

genes were abnormal based on the primary effect of genotype

(Table 2 and Fig. 1). Decreased licking or biting was observed for

both sexes of Trim2, Gria1, and Oxa1l knockout mice, indicative

of hyposensitivity to formalin. The fourth,Mmp16, gave a sexually

dimorphic response in which female homozygous knockout mice
were strongly hyposensitive while male homozygotes were
indistinguishable from control mice.

Baseline von Frey testing was completed on 71 knockout
mouse strains, of which 4 yielded an altered response (Table 2
and Fig. 2A). Tecpr2 presented with a reduced PWT in both
sexes, indicative of increased sensitivity to mechanical stimula-
tion. By contrast, both sexes of Gria1 and Mmp16 mutant mice
presented with increased PWT, consistent with hyposensitivity to
mechanical stimulation. The nature of the fourth hit was unusual
because of the testing protocol used in the absence of CFA.
Specifically, von Frey testing was performed on 3 consecutive

Figure 3. Relative effect size of mutant compared with wild type (WT) mice for thermal nociception. (A) The percentage effect size of genotype for the
baseline Hargreaves measurement plotted by gene symbol. The x-axis is reversed to indicate that a negative effect represents a measure of shorter
latency to withdraw and therefore a hypersensitive response by the mutant, and a positive change indicates longer latency (hyposensitive). All genes are
shown regardless of P value. The unadjusted P value is inserted after the gene symbol for all significant gene effects and genes of potential interest,
reporting the effect of genotype of the null model hypothesis analysis where both sexes are affected or from the sex3genotype interaction where sexual
dimorphism is present. A brown bar indicates that the P value was less than 0.01 but not considered significant, and a green bar indicates that the P value
for this test was considered significant with a P value below 0.001. Bars with a single symbol represent both sexes. Where sexual dimorphism was
detected, the male value is indicated by a gray square and female by a white square. The colors and symbols are maintained for part B. (B) The percentage
effect size of genotype for the peak change from baseline in response to CFA administration of the Hargreaves assay is plotted by gene symbol. A positive
effect indicates a greater change from baseline and represents a hypersensitive response to CFA administration for the mutant, and a negative effect
indicates a smaller response (hyposensitive). All genes are shown regardless of P value. The unadjusted P value is inserted after the gene symbol for all
significant gene effects and genes of potential interest, reporting the effect of genotype of the null model hypothesis analysis where both sexes are affected
or from the sex3 genotype interaction where sexual dimorphism is present. For all contributing centers, the peak change from baseline was measured 24
hours after CFA administration. CFA, complete Freund’s adjuvant.
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days, and on the third day of testing, significantly increased PWT
was observed in female BC048562 knockout mice that may
indicate a carryover effect resulting from the previous 2 days of
testing.

Neither Gria1, Mmp16, nor BC048562 mice were further
assessed with CFA; however, 43 of the 71 strains assessed for
baseline von Frey were subsequently administered CFA, and the
change from baseline was measured (Table 2 and Fig. 2B).
Intriguingly, Tecpr2 presented with a reduced sensitivity after CFA;
the strain is presented below in full. Other change from baseline hits
included 2 hypersensitive lines [Cgnl1 (both sexes) and Cnrip1

(sexually dimorphic, presenting in males only)], 2 hyposensitive lines
seen in both sexes [Cp (presented below in full) and Htr3a], and
Abhd13 which presented with a significantly different recovery
response (change between baseline and 144 hours (6 days) after
CFA administration); however, a floor effect in the data prevented
further examination.

Thermal nociceptionwas assessedusing theHargreaves assay in
27 knockoutmouse strains at baseline and after CFAadministration.
Two strains displayed altered sensitivity before CFA administration
(Table 2 and Fig. 3A). Trim14 presented as a hypersensitive strain
exhibiting reduced latency to paw withdrawal in both sexes after
exposure to the high-intensity heat stimulus administered in theUCD
protocol. Prolonged latency to respond was observed in both sexes
of Tecpr2 knockout mice indicating baseline hyposensitivity to
thermal stimulation. Two further strains responded abnormally after
CFA administration (Table 2 and Fig. 3B). Alg6 mutants gave a
strong, sexually dimorphic response to recovery from CFA
administration. Specifically, males displaying thermal hyposensitivity
144 hours (6 days) after CFA administration. By contrast, 48 hours
after CFA administration, Cp mutant mice (presented below in full)
exhibited increased latency to respond indicating that their thermal
hyperalgesia resolved more rapidly.

Abnormal locomotor or anxiety-like behavior could influence
measurement of nocifensive behavior. For example, motor
hyperactivity may skew nocifensive response towards hyper-
sensitivity. To investigate this potential confound, IMPC-
generated open-field data were interrogated for 103 of the
110 single-gene knockout mouse strains included in this study,
focusing on the IMPC-ascribed MP terms for abnormal
locomotor or anxiety-like or exploratory behavior. A x2 test of
independence was performed to examine the relation between
nocifensive phenotypes [including hits (P, 0.001) and genes of
potential interest (0.001# P, 0.01)] and abnormalities in open-
field. The relation between these variables was not significant,
X2 (1, N 5 103) 5 0.0198, P 5 0.89. To visualize patterns in
behavioral outcomes and highlight genes with open-field
abnormalities that could potentially confound the outcome of
nociception phenotyping, we grouped genes by abnormalities
in nocifensive (yellow), locomotor (green), and anxiety-like or
exploratory (pink) behavior (Fig. 4). Seventy-six from 103 genes
had no significant effect in open field, this included 9 nociception
hits and 18 genes of potential interest. The remaining 27 genes
had a significant open-field effect, of which 4 were nociception
hits and 6 were genes of potential interest. A complete list of all
abnormal open-field parameters and the associated MP terms
for the 27 abnormal strains is available as a Zenodo repository
(https://doi.org/10.5281/zenodo.5178015,74). Open-field phe-
notyping identified knockout strains for AU040320, Cacna2d4,
Emp1,Gapvd1,Gria1, Lgals4,Mdh1,Mme,Nt5dc2, Ptprk, and
Trappc1 specifically as hyperactive. Of these, Gria1 mutants
showed reduced nocifensive behaviors, and Gapvd1 (nocicep-
tion gene of potential interest) mutants trended towards
hypersensitivity. Knockout strains for Aqp1, BC048562, Lats1,
Nrxn2, Rsad2, and Stk36 were classified specifically as
hypoactive fromopen-field testing. Of these,BC048562presented

Figure 4. Single-gene knockout strains grouped by nocifensive, locomotor, and anxiety-like or exploratory behavior. One hundred ten single-gene knockout
strains were screened for nociception or hypersensitivity. A separate cohort of mice for 103 of these 110 strains was phenotyped using open field. Gene symbols
for these knockout strains are grouped by outcome of nociception testing [abnormal (yellow) or normal (blue) nocifensive behavior], the presence or absence of
open field data (open field data or no open field data), and the outcome of open field data statistical analyses where abnormalities were detected [abnormal
locomotor activity (defined using the MP terms “hyperactive,” and “hypoactive,” green) or anxiety-like or abnormal exploratory behavior (defined using the MP
terms “increased thigmotaxis,” “decreased thigmotaxis,” “increased vertical activity,” “decreased vertical activity,” “increased anxiety-related response,”
“increased exploration in new environment,” and “abnormal behavior”, pink)].
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with a putative carryover effect, and Nrxn2 (trend towards
hypersensitivity) and Rsad2 (trend towards hyposensitivity) were
both genes of potential interest. Three strains were reported solely
with abnormal anxiety-like or exploratory behavior from open-field
data as follows: decreased anxiety-like behavior wasmeasured for
Akr1b3 and Piezo2 mutant strains and increased vertical activity
was reported for Rnpepl1mutants. Of these, only Piezo2 [sexually
dimorphic trend towards hyposensitivity (female) or hypersensitivity
(male)] was reported as a nociception gene of potential interest.
Abnormalities in both locomotor and anxiety-like or exploratory
behaviors were ascribed to Foxn3, Gabra2, Maged1, Mmp16,
Sez6l, Slc30a4, and Tecpr2 knockout strains. Of these Mmp16
(predominantly hyperactive) showed reduced nocifensive behav-
iors (females only), Tecpr2 (predominantly hyperactive) gave a

mixed response depending on the nociception assay, whereas
Gabra2 (predominantly increased anxiety-like behavior) was a
nociception gene of interest due to a carryover effect andMaged1
(predominantly hypoactive) was a gene of interest that gave a
mixed response (males only) depending on the nociception assay.

These open-field data can aid interpretation of nociception
results for individual knockout strains but considered collectively
there was no prevalent pattern in open-field behavior that would
indicate a confound consistently skewing the outcome of
nociception assays.

Turning to human studies, of 800 genes featured as playing a
role in inflammatory and neuropathic pain,56 16 mouse ortho-
logues were knocked out and characterized in the current study.
Of these, 2 achieved significance at P, 0.001 [Gria1 and Htr3a]

Figure 5.Abnormalities in nocifensive behavior after Tecpr2 inactivation. (A and B) Latency towithdraw the paw from a thermal stimulus is shown (quartile boxplots
with error bars for 5%-95% percentile) in seconds for each test day in the Hargreaves assay for wild type C57BL/6NJ (WT) mice [8 and 17-18 weeks (n5 96F, n5
100M), gray] and Tecpr2 [17 weeks (n 5 12F, n 5 10M), orange] homozygous null female (A) and male (B) mice. Baseline withdrawal latency was significantly
longer for Tecpr2mutant mice (mixedmodel genotype F(1,196)515.1, P, 0.001,***) than their WT controls. (C and D) Pawwithdrawal threshold is plotted in log10
scale as quartile boxplots (with error bars for 5%-95% percentile) for each test day for wild type C57BL/6NJ (WT) [8 and 17-18 weeks (n5 119F, n5 122M), gray]
and Tecpr2 [17 weeks (n5 12F, n5 10M), orange] homozygous null females (C) andmales (D) for the von Frey assay. Baseline threshold was significantly lower for
Tecpr2mutant mice (F(1,256)5 15.2,P, 0.001, ***), and theCFA responsewas significantly smaller for Tecpr2mutantmice 48 hours postadministration (F(1,255)5
12.7, P, 0.001, ***) compared with WT controls. (E and F) The mean (with SEM) of licking or biting behavior duration summed over 10 to 60 minutes is shown for
wild type C57BL/6NJ (WT) [aged 12-21 weeks (n 5 346F, n 5 398M), gray] and Tecpr2 [16-17 weeks (n 5 12F, n 5 11M), orange] homozygous null mice for
females (E) and males (F). No statistically significant difference was detected.
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and an additional 4 (Avpr1a, Bloc1s6, Nav2, and Trmp3) fell

below the stringent significance threshold used herein but still

achieved P , 0.008.
Gria1 and Htr3a knockout strains both displayed reduced

hyperalgesia (Table 2 and Figs. 1, 2A, and 2B). Avpr1a
trended towards baseline thermal hyperalgesia in males only (sex
3 genotype P 5 0.0028), Bloc1s6 trended towards delayed or
diminished recovery after mechanical sensitization to CFA (P 5
0.003), Nav2 males trended towards reduced thermal hypersen-
sitivity 24 hours after CFA administration (sex 3 genotype P 5
0.0055), and Trpm3 trended towards baseline mechanical
hyposensitivity in females (sex 3 genotype P 5 0.0073). Taken
together these associations validate the current study and support
the candidacy of the novel pain genes identified herein. The lack of

response in the 10 other genes identified in the study by Parisien

et al. could be due to the following: incomplete knockdown of

target gene expression in the targetedmutation (tm1b and tm2b)27

and endonuclease-mediated (em1 and em2) alleles used in the

current study; the zygosity of the mice that were screened

(heterozygotes were screened for one of the 10 strains because

of reduced homozygote viability or availability; across the full gene

set, 34 of the 110 strains studiedwere screened as heterozygotes);

the genetic background may have influenced phenotypic expres-

sion; the nociception screening performed herein was not all

encompassing, as for example, it did not include an assay to

interrogate neuropathic pain; or the phenotype leading to the

association in humansmay have resulted froma change other than

the loss-of-function mutations characterized herein.
All mutant mouse strains reported here are available from

public mouse repositories for further investigation. All data sets,
scripts, and output are available as a Zenodo repository (https://
doi.org/10.5281/zenodo.5178015 74).

3.4. Abnormalities in nociception after Tecpr2 inactivation

Tecpr2 encodes tectonin beta-propeller repeat-containing 2, a
cytoplasmic protein broadly expressed in adult mice (Gene
Expression Database, queried March 11, 2021) and predicted
to play a role in protein exit from the endoplasmic reticulum.
Disease-associated loss-of-function mutations of human
TECPR2 have been reported.32,55,59 The clinical features of this
rare peripheral neuropathy include decreased pain and tem-
perature sensitivity, intellectual disability, facial dysmorphia,
spastic paraparesis, areflexia, autonomic neuropathy, gastro-
esophageal reflux disease, and respiratory dysregulation.

Thermal baseline sensitivity of Tecpr2 mutants was altered
comparedwith that of their age and sexmatchedwild type controls
(Table 2 andFigs. 3A, 5A, and5B). Specifically, the latency to paw
withdrawal from the thermal stimuluswas longer inTecpr2mutants
in both sexes (F(1,196) 5 15.1, P , 0.001; effect size 227%
genotype difference), indicative of reduced thermal hyperalgesia.
No significant difference in change from baseline response was
detected at 24 or 48 hours after CFA administration.

Mechanical baseline sensitivity and CFA-induced hypersensi-
tivity of Tecpr2 mutants were both significantly different com-
pared with that of their age-matched and sex-matched wild type
controls (Table 2 and Figs. 2A and 2B). Baseline sensitivity was
significantly increased (F(1,256) 5 15.2, P , 0.001) as reflected in
the lower paw withdrawal threshold with a large effect size (192%
logarithm based) corresponding to a substantial difference in
grams of force applied (WTmean 5 1.23 g, SD 5 0.52;
Tecpr2mean 5 0.94 g, SD 5 0.23) (Table 2 and Figs. 5C and
5D). There was no significant difference in response to CFA
administration at 24 hours, but at 48 hours, both Tecpr2 sexes
showed significantly diminished response (F(1,255) 5 12.7, P ,
0.001, effect size relative to baseline of 224%), indicative of
reduced mechanical hyperalgesia after CFA-induced inflamma-
tion (Table 2 and Figs. 5C and 5D).

No difference was detected in the sum of the time spent licking
or biting between 10 and 60minutes after formalin injection (Figs.
1, 5E, and 5F). An independent cohort of Tecpr2 mutant mice
was tested by JAX through the IMPC phenotyping pipeline. The
results from open-field testing were indicative of a strong,
hyperactive phenotype including increased whole arena average
speed, increased total distance travelled, and decreased whole
arena resting time (https://www.mousephenotype.org/data/
genes/MGI:2144865#phenotypesTab). A similar trend towards

Table 3

SFARI identified genes ranked by P value.

The P values for all 412 statistical tests performed in the current analyses were ranked from smallest to

largest, and percentile scores were calculated for each value. The full table of results for all 110 genes tested

is available as a Zenodo repository (https://doi.org/10.5281/zenodo.5178015 74). The smallest P value was

selected for each gene and used to rank each of the 110 genes. The 17 SFARI genes overlapping with the

110 genes in the current study are shown along with the corresponding P value, rank position, and percentile.
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increased activity was detected in the light–dark transition assay
conducted as part of the IMPC pipeline.

3.5. Pain as a comorbidity

The leading role of pain in global morbidity70 led us to consider
the results of our study in the context of pain as a common
comorbidity. For example, complex and contradicting litera-
ture exists in the field of objective and subjective pain
sensitivity in patients with autism spectrum disorders
(ASD).71,75 Cross referencing the list of 110 genes reported
in the current study with the Simons Foundation Autism
Research Initiative’s (SFARI Database, queried March 3,
2021; https://www.sfari.org/) list of 1003 genes associated
with ASD identified 17 overlapping genes (Table 3), 4 of which
were highlighted in the current study as playing a role in pain

sensitivity. Although the remaining 13 overlapping genes did
not meet the stringent significance threshold used herein,
their distribution across the whole 110 genes is noteworthy.
That distribution was estimated by ranking the 412 P values
that resulted from statistical analyses of the current nocicep-
tion phenotyping data set and selecting the smallest P value
reported for each gene, irrespective of the biological
parameter it represented. When converted into a percentile
presentation (Table 3), the 4 hits ranked within the top 5% of
all tests, 2 additional genes were represented in the top 10
percentile, and a total of 12 from 17 overlapping genes were
represented in the top quartile of all tests. Although we did not
call these overlapping genes hits in the current study, the
nonrandom distribution across the genes list is of interest and
indicates that more subtle effects may exist and could
potentially be detected with larger group sizes.

Figure 6. Abnormalities in nocifensive behavior after Cp inactivation. (A and B) Latency to withdraw the paw from a thermal stimulus is shown (quartile boxplots
with error bars for 5%-95% percentile) in seconds for each test day in the Hargreaves assay for wild type C57BL/6NJ (WT) mice [8 and 17-18 weeks (n5 96F, n5
100M), gray] andCp [16-17 weeks (n5 12F, n5 12M), orange] homozygous null female (A) and male (B) mice. Thermal hyperalgesia resolved more rapidly in Cp
mutantmice (null genotypeP, 0.001; sex3 genotype F(2,216)5 7.41,P, 0.001,***) than theirWT controls. (C and D) Pawwithdrawal threshold is plotted in log10
scale as quartile boxplots (with error bars for 5%-95% percentile) for each test day for wild type C57BL/6NJ (WT) [8 and 17-18 weeks (n5 119F, n5 122M), gray]
andCp [16-17weeks (n5 12F, n5 12M), orange] homozygous null females (C) andmales (D) for the von Frey assay. Peakmechanical hyperalgesia 48 hours after
CFA administration was significantly reduced for Cpmutant mice (F(1,257) 5 16.3, P, 0.001, ***) compared with WT controls. (E and F) The mean (with SEM) of
licking or biting behavior duration summed over 10 to 60 minutes is shown for wild type C57BL/6NJ (WT) [aged 12-21 weeks (n5 346F, n5 398M), gray] andCp
[16-17 weeks (n 5 6F, n 5 9M), orange] homozygous null mice for females (E) and males (F). No statistically significant difference was detected.
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Cp was not included in the 1003 genes reported on the SFARI
database; however, significant literature supports a role for Cp in
ASD.15,22,23,77 Cp encodes ceruloplasmin, a neuroprotective
antioxidant protein involved in iron homeostasis. The change from
baseline thermal sensitivity after CFA administration was altered
in Cpmutants compared with that of their age-matched and sex-
matched wild type controls (Table 2, Figs. 6A and 6B).
Specifically, 48 hours after CFA administration when strains
typically have partially resolved sensitivity to CFA, the response of
Cpmutant mice, particularly males, closely resembled that of the
baseline response (sex 3 genotype F(2,216) 5 7.41, P , 0.001;
male genotype effect size 2123% and female genotype effect
size 25%), indicating that their thermal hyperalgesia resolved
more rapidly. Furthermore, peak change from baseline mechan-
ical nociception of Cp mutants, measured at 48 hours after CFA
administration, was reduced compared with that of their age-
matched and sex-matched wild type controls (Table 2 and Figs.
2B, 6C, and 6D), indicating reduced mechanical hyperalgesia
(F(1,257) 5 16.3, P , 0.001, percent effect size 226% genotype
difference). There was no significant difference in formalin
response for this mutant strain (Figs. 6E and 6F), and no open-
field abnormalities were reported by the IMPC for an independent
cohort of Cp knockout mice.

4. Discussion

Our study aimed to identify novel genetic determinants of
nociception. Our approach was to use the mouse as a genetic
model from which we could glean insights into human pain.

Although the direction of response for each assay-center
combination was as expected, absolute values varied between
centers, even when the same C57BL/6N substrain was used.
Such cross-center differences were observed for other pheno-
typic domains the IMPC investigated66 and indicate that strain3
center interactions influenced the outcome. Genotype 3
environment interactions are well documented38 and in response
we implemented a local control strategy whereby mutant–wild
type comparisons were performed only on data generated within
the same center.

One hundred ten single-gene knockout mouse strains were
tested using up to 3 nociception assays. A stringent statistical
thresholdwas implemented intentionally to reduce the risk of false
discovery to below 2%. Thirteen strains achieved statistical
significance in 1 or more assays. Measures of locomotor activity
and anxiety-like behavior were available from the IMPC for 103 of
the lines reported herein, and a review of these data indicated
there were no prevalent confounds skewing the outcome of the
nociception assays. Our review of published phenotypes
reported in the Mouse Genome Informatics database9 (queried
March 11, 2021) revealed that 7 of the 13 genes (Abhd13, Alg6,
BC048562,Cgnl1,Cnrip1,Oxa1l, and Tecpr2) had no non-IMPC
mouse alleles registered; therefore, these IMPC alleles represent
novel strains. Of interest is Cnrip1, which encodes cannabinoid
receptor-interacting protein 1. In humans, CNRIP1 has been
shown to interact with cannabinoid receptor 1 (CB1) to suppress
CB1-mediated tonic inhibition of voltage-gated calcium chan-
nels54 that are highly expressed on peripheral afferent nerve fibers
and play a key role in pain modulation. Previous mouse strains
exist for the remaining 6 genes, including 2 (Gria1 and Htr3a) with
a reported role in nociception, 3 (Cp, Mmp16, and Trim2) with a
role in neurobehavior but not reported specifically in nociception,
and 1 (Trim14) with no reported phenotypes related to
nociception or neurobehavior. The 2 genes with previously
reported nociception phenotyping were used for benchmarking.

Consistent with our findings, bothGria129 andHtr3a80 knockouts
were reported to display reduced pain sensitivity.

The genetic dissociability of nociception and hypersensitiv-
ity42,49,51 was referenced to select phenotyping assays
belonging to distinct genetic categories. Two of the 13 strains
achieving statistical significance were tested with only 1
nociception assay, whereas the remaining 11 strains were
tested with multiple assays. Interestingly, 7 of those 11 strains
achieved statistical significance in only 1 assay, variously
affecting baseline sensitivity, response after inflammation or
recovery. The remaining 4 strains achieved significance across
2 assays [Cp-/-, hyposensitive in both von Frey and Hargreaves
at 48 hrs after CFA administration (Fig. 6); Gria12/2 and
Mmp162/2, both hyposensitive in formalin and baseline von
Frey (response to CFA was not assessed); and Tecpr22/2,
baseline thermal hyposensitivity, baseline mechanical hyper-
sensitivity but reduced mechanical hypersensitivity after CFA
administration (Fig. 5)], indicating a more general or central-
ized role in nociception for these genes.

In humans, multiple cases of TECPR2 mutation have been
reported59 as causing a multisystem disorder classified within a
broader group of neurodegenerative diseases called hereditary
spastic paraparesis.55 Hereditary spastic paraparesis is character-
ized by axonal degeneration in the corticospinal tract which controls
limb motor function. The age of clinical presentation ranges from
early infancy to age 70 years,55 although reported mutations
affecting TECPR2 present in early infancy.59 TECPR2 is a positive
regulator of autophagosome accumulation.4 Autophagosomes
sequester bulky cellular constituents such as protein aggregates
and organelles and deliver them into the lysosomal degradation
pathway. This process is a key cellularmechanism for the turnover of
proteins, the disruption of which is linked to neurodegenerative and
neuromuscular disorders, such as amyotrophic lateral sclerosis,
Huntington disease, and lysosomal storage disorders.43 TECPR2
inactivation will result in defective autophagy leading to neuronal
dysfunction53,72 that would explain the Tecpr22/2 hyposensitive
phenotypes reported herein. Note that Tecpr22/2 mice were
hyperactive when tested by the IMPC in open field and light–dark
transition at age 8-9 weeks. Nociception testing was performed at
age 17weeks and although outside the scope of this study, it would
be valuable to conduct a longitudinal study of locomotor activity and
nocifensive behavior to determine changes in response with time.

Of the 13 genes with statistically significant pain phenotypes,
human orthologues for 5 have been linked to ASD. Referencing
the SFARI database, 1 gene (ALG6) is classified as syndromic
based on the strength of evidence to support a role in ASD, 2
genes (CGNL1 and GRIA1) are considered strong candidates
(SFARI confidence score 5 2) and 1 gene (HTR3A) has
suggestive evidence (SFARI confidence score 5 3). Indepen-
dently of SFARI, CP has been linked to ASD in children15,23,77

and is featured herein.CP encodes ceruloplasmin, a ferroxidase
involved in iron homeostasis. Ceruloplasmin deficiency in
humans results in aceruloplasminemia, a rare neurodegenera-
tive disorder with brain iron accumulation.79 Neurological
symptoms are detected in the third to seventh decade of life
and include movement disorders, ataxia, dysarthria, and pro-
gressive dementia.79 Reduced CP levels have also been
associated with ASD through biochemical measurement of
circulating ceruloplasmin15,23,77 and integrated transcriptomic
analyses.22 The reduction or absence of ceruloplasmin activity
results in cell death through at least 2 mechanisms.16,36

Ceruloplasmin deficiency in cerebellar astrocytes results in an
intracellular build-up of ferrous (Fe21) iron that is believed to
cause cell death through the generation of toxic reactive oxygen
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intermediates. By contrast, Purkinje neurons are believed to be
lost in patients with aceruloplasminemia because of iron
deficiency.16,36 Multiple Cp loss-of-function mutations have
been reported to phenocopy aspects of human aceruloplasmi-
nemia,79 including motor coordination deficits observed at age
16 months.58 However, to the best of our knowledge, altered
nocifensive behaviors have not been reported. We detected
altered nociception in 17-week-old mice, which is significantly
earlier than previously reported abnormal phenotypes. A similar
pattern of response that included normal formalin-induced
nocifensive behavior, attenuated thermal allodynia and me-
chanical hyperalgesia, and also coincided with reduced
astrocyte function was reported previously in hemokinin-1
knockout mice34 and may merit deeper investigation.

Pain has been implicated as a comorbidity in several
neuropsychiatric conditions including ASD.8 An estimated
90% of individuals with ASD experience sensory perception

abnormalities in every sensory modality. These abnormalities

contribute to ASD core symptoms such as social and

communication deficits and are considered primary character-

istics of ASD neurobiology.64 Abnormalities in processing tactile

and pain sensitivity, ranging from exaggerated response to

touch, stimuli hyposensitivity, and self-harming, have been

reported in individuals with ASD 10,17,44,46,52,62,63,69 and in

rodent models65 and are consistent with data reported herein.

For example, Htr3a knockout mice were reported previously to

display impaired pain response to formalin,80 but no other

behavioral data related to ASD-like phenotypes were reported.

Interestingly, the remaining 4 of the top 5 ASD-related hits

(Cgnl1,Gria1, Alg6, andCp) are not on the SFARI list of 209 ASD

genes with mouse models although genetically altered models

of Gria129,78 and Cp58,79 have been reported. In fact, of the 17

genes which overlap between the 110 genes in the current

study and the 1003 ASD-associated gene set listed on SFARI,

only 7 are reported in the SFARI list of relevant mouse models,

resulting in 10 novel strains available through the IMPC to the

scientific community.
One hundred ten single-gene knockout mouse strains were

assessed for their role in nociception and hypersensitivity using
up to 3 commonly used phenotyping assays. Five independent
mouse phenotyping facilities spanning 2 continents contributed
data. Owing to local restrictions pertaining to capacity and ethical
approval, not every strain was tested for every assay. However,
we present herein 173 unique gene3assay combinations which
represents a significant contribution to the pain field. Unsurpris-
ingly for a complex behavioral phenotype, genotype 3 environ-
ment interactions38 were found to influence nociception
screening results. In response, a local control strategy was
implemented whereby mutant–wild type comparisons were
performed only on data generated within the same phenotyping
facility. This is an established control strategy used for all IMPC
phenotyping data. We also implemented a stringent significance
threshold, thereby highlighting only strains presenting with large
and highly significant effects. The results expand our un-
derstanding of the genetic mechanisms of inflammatory pain
and provide new and freely available mouse models to pursue
further studies to better understand pain sensitivity and its
interactions with potential ASD-related phenotypes.
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