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NSAID use and clinical outcomes 
in COVID‑19 patients: a 38‑center retrospective 
cohort study
Justin T. Reese1*, Ben Coleman2,18, Lauren Chan3, Hannah Blau2, Tiffany J. Callahan4,5, Luca Cappelletti6, 
Tommaso Fontana6, Katie R. Bradwell7, Nomi L. Harris1, Elena Casiraghi6,8, Giorgio Valentini6,8, 
Guy Karlebach2, Rachel Deer9, Julie A. McMurry5, Melissa A. Haendel5, Christopher G. Chute10, Emily Pfaff11, 
Richard Moffitt12, Heidi Spratt9, Jasvinder A. Singh13,14, Christopher J. Mungall1, Andrew E. Williams15,16,17 and 
Peter N. Robinson2,18*    

Abstract 

Background:  Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflam-
mation but have been associated with complications in community-acquired pneumonia. Observations shortly 
after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of 
adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and 
in one case showed reduced risk associated with NSAID use.

Methods:  A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity 
electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 
COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 
controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was 
COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary 
outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and 
all-cause mortality at any time following COVID-19 diagnosis.

Results:  Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 
95% CI: 0.53–0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not asso-
ciated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47–0.56), invasive ventilation (OR: 0.59 95% CI: 
0.55–0.64), AKI (OR: 0.67 95% CI: 0.63–0.72), or ECMO (OR: 0.51 95% CI: 0.36–0.7). In contrast, the odds ratios indicate 
reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these 
associations, indicating that comparatively weak or moderate confounder associations could explain away the 
observed associations.

Conclusions:  Study interpretation is limited by the observational design. Recording of NSAID use may have been 
incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause 
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Background
As of November 2021, severe acute respiratory syn-
drome associated with coronavirus-2 (SARS-CoV-2) 
has infected more than 248 million people and caused 
more than 5 million deaths worldwide [1]. SARS-
CoV-2 is the cause of the coronavirus disease of 2019 
(COVID-19), a condition characterized by pneumonia, 
hyperinflammation, hypoxemic respiratory failure, a 
prothrombotic state, cardiac dysfunction, substantial 
mortality, and persistent morbidity in some survivors 
[2, 3].

Non-steroidal anti-inflammatory drugs (NSAIDs) are 
a large and heterogeneous class of medications defined 
by their ability to inhibit cyclooxygenase (COX), an 
enzyme that catalyzes the conversion of arachidonic 
acid to prostaglandins. Due to their widespread use, 
NSAIDs are common causes of serious adverse events 
that frequently necessitate hospitalization [4].

NSAIDs have numerous potentially deleterious effects 
on immune function [5, 6] and may also mask warning 
signs of severe infection such as fever and pain during the 
course of community-acquired pneumonia [7]. NSAID 
exposure in the early stage of community-acquired pneu-
monia has been associated with a delayed diagnosis and 
more severe clinical course [8, 9], but the quality of avail-
able research has been called into doubt and recent stud-
ies have failed to reproduce the proposed association 
[10, 11]. In a mouse model of COVID-19, NSAID treat-
ment reduced both the antibody and proinflammatory 
cytokine response to SARS-CoV-2 infection. However, 
the timing of NSAID treatment may be relevant. It is 
conceivable that early NSAID treatment may negatively 
impact the initiation of antiviral immune responses while 
later NSAID treatment could be beneficial by suppressing 
immune-driven pathology such as cytokine storm [12, 
13], but evidence for this supposition is lacking.

A study published early in the course of the pandemic 
suggested that ibuprofen use was associated with more 
severe COVID-19 outcomes [8, 14]. However, several 
subsequent studies failed to demonstrate a significant 
association between NSAID use and adverse outcomes 
in COVID-19 patients [10, 15–26]. A prospective, mul-
ticenter cohort study on 78,674 hospitalized COVID-
19 patients across 255 health-care facilities in England, 
Scotland, and Wales showed that NSAID use was not 

associated with worse in-hospital mortality, critical care 
admission, requirement for invasive ventilation, require-
ment for non-invasive ventilation, requirement for oxy-
gen, or occurrence of acute kidney injury (AKI) [27]. 
Finally, a study on OpenSAFELY, an English data analyt-
ics platform, showed no evidence of a difference in the 
risk of COVID-19-related death associated with current 
use of NSAIDs among 2,463,707 individuals, 536,423 of 
whom had recorded NSAID use. The same study dem-
onstrated a lower risk of COVID-19-related death was 
associated with current use of NSAIDs in a cohort of 
1,708,781 individuals with rheumatoid arthritis/osteoar-
thritis, 175,495 of whom had recorded NSAID use [28].

Theoretical considerations suggest a potentially del-
eterious effect of NSAIDs especially early in the clinical 
course of COVID-19. The widespread use of NSAIDs 
coupled with the difficulty of performing a randomized 
clinical trial on over-the-counter medications make it 
essential to assess the safety of this class of medication in 
different settings.

Here, we leverage data from the National COVID 
Cohort Collaborative (N3C), a centralized, harmonized, 
high-granularity electronic health record (EHR) reposi-
tory to investigate potential associations of NSAID 
use in a large, multi-center database [29]. We investi-
gated twelve NSAIDs (celecoxib, diclofenac, droxicam, 
etodolac, ketorolac, ibuprofen, indomethacin, lornoxi-
cam, meloxicam, naproxen, piroxicam, tenoxicam) that 
were previously evaluated for their effect on COVID-
19 severity in a smaller cohort earlier in the COVID-
19 pandemic [27]. Our study focused on hospitalized 
patients with moderate and severe COVID-19. Our 
results showed significant associations of NSAID use 
with decreased all-cause mortality, COVID-19 severity, 
AKI, invasive ventilation, and extracorporeal membrane 
oxygenation (ECMO). Our analysis confirms and extends 
analogous findings from previous observational studies 
to a much larger cohort of patients drawn from 38 dis-
tinct centers in a nationally representative database.

Methods
Data analysis
Data analysis was performed using the N3C instance of 
Palantir Foundry (Palantir Technologies Inc., Denver, 
Colorado). The analysis was structured as a directed 

mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the 
quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the 
other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using 
a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.

Keywords:  COVID-19, NSAIDs, Cyclooxygenase inhibitors, Observational study
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acyclic graph of data transformations using the Foundry 
platform. Individual transformations were implemented 
using SQL, Python, or R code. Documentation of the 
source code is included in Additional file 1.

Design overview, settings, and participants
Patient data were accessed through the N3C (covid.cd2h.
org). N3C aggregates and harmonizes EHR data across 66 
clinical organizations in the United States, including the 
Clinical and Translational Science Awards (CTSA) Pro-
gram hubs. For this study, patient records were extracted 
from the 38 centers that provided data for all predictors 
used in the regression analysis described below. Twenty-
six centers did not provide values for Body Mass Index 
(BMI) and were not included in this study. N3C har-
monizes EHR data across four clinical data models and 
provides a unified analytical platform in which data are 
encoded using the Observational Medical Outcomes 
Partnership (OMOP) [30] version 5.3.1. N3C also pro-
vides shared phenotype definitions such as those for 
positive COVID-19 laboratory tests and COVID-19 
clinical severity categories [29, 31]. Our study analyzed 
only inpatients, as a preliminary analysis indicated that 
NSAID use among outpatients was likely to be incom-
pletely captured (Additional file 1: Table S1).

Patients with recorded use of aspirin and acetami-
nophen, which share some modes of action with NSAIDs, 
were excluded from the analysis. For each of the twelve 
NSAIDs and the excluded medications (aspirin and 
acetaminophen), we constructed a codeset containing 
concept IDs representing all formulations of the medica-
tions using ATLAS (http://​atlas-​covid​19.​ohdsi.​org/), the 
graphical user interface designed to construct cohorts 
and/or concept sets for the OMOP common data model 
[32]. Concept IDs for topical and ophthalmic NSAID 
preparations were excluded from these codesets. For 
each analyzed comorbidity, a codeset was constructed 
containing concept IDs representing the comorbidity 
in question. OMOP concept ID codes for all drugs and 
comorbidities used in this analysis are listed in Supple-
mental Tables S2 and S3.

Criteria for the current study were determined as fol-
lows. The COVID-19 positive cohort was defined as 
those patients with any encounter after January 1, 2020 
and positive SARS-CoV-2 laboratory test (polymerase 
chain reaction or antigen). For this study, data from up 
to October 5, 2021 were included. COVID-19 positive 
patients whose drug era [33] for any of the 12 NSAIDs 
began on or before the initial date of COVID-19 diagno-
sis and continued for at least one day after COVID-19 
diagnosis were included in the NSAID treated group. As 
for the 12 NSAIDs, use of aspirin and acetaminophen 
was defined as a drug era for either of these drugs that 

began on or before the day of COVID-19 diagnosis and 
continued for at least one day. All other patients from 
the COVID-19 positive cohort were used as the control 
group in propensity matching. For each patient, comor-
bidities that were diagnosed before the day of diagnosis 
of COVID-19 were also recorded.

Only patients with complete records (no missing values 
for any covariate used in propensity matching or logistic 
regression) were included for further analysis. The most 
commonly missing data was BMI. Supplemental Fig-
ures  S1-S2 show similar distributions of age and Charl-
son Comorbidity Index [34] in the presence or absence 
of BMI.

Outcomes
The primary outcome of interest was a COVID-19 clini-
cal severity of “severe” or “mortality/hospice”. Clini-
cal severity was classified into three categories using 
the Clinical Progression Scale (CPS) established by the 
World Health Organization (WHO) for COVID-19 clini-
cal research [35]: WHO severity 3); “moderate” (hospi-
talized without invasive ventilation, WHO severity 4–6); 
“severe” (hospitalized with invasive ventilation or ECMO, 
WHO severity 7–9); and “mortality/hospice” (hospital 
mortality or discharge to hospice, WHO Severity 10) 
[31]. In our study, severity grade 3 (moderate) was com-
pared against severity grades 4 and 5 (severe or mortal-
ity/hospice). For the purposes of our study, the severity 
grades of mild and mild ED (emergency department) 
were not included. In effect, this limits our inclusion cri-
teria to inpatients since Mild (WHO severity 1–3) and 
Mild ED (WHO severity 3) are limited to patients who 
were not admitted to the hospital [36]. For the logis-
tic regression analysis described below, patients were 
assigned to COVID-19 severity groups according to the 
maximum clinical severity during their index encounter 
[31], which was defined as the medical encounter during 
which a positive COVID-19 test was documented for the 
first time. Secondary outcomes were AKI, ECMO, inva-
sive ventilation, and all-cause mortality at any time fol-
lowing COVID-19 diagnosis.

Study design
Statistical analysis
We performed propensity matching using the “nearest” 
method implemented in the R MatchIt package (ver-
sion 4.1.0). Each patient from the NSAID treated group 
was matched to the patient in the untreated group with 
the closest propensity score. The propensity formula 
included age, race, ethnicity, gender, smoking status, 
Charlson Comorbidity Index, and BMI, as well as the 
presence or absence of a diagnosis of the following 
comorbidities before COVID presentation: alcoholic 

http://atlas-covid19.ohdsi.org/
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liver damage, Alzheimer’s disease, cerebral infarction, 
chronic hepatitis, chronic respiratory disease, demen-
tia associated with another disease, diabetes type 1, 
diabetes type 2, hepatic failure, hepatic fibrosis, hepatic 
steatosis, hypertension, hypertensive kidney disease, 
ischemic heart disease, lupus, malignant neoplasm 
(lymphoid hematopoietic related tissue), neoplasm, 
nicotine dependence, nonhypertensive chronic kidney 
disease, nonischemic heart disease, other liver disease, 
portal hypertension, psoriasis, rheumatoid arthritis, 
unspecified dementia, and vascular dementia.

To investigate the association of treatment and other 
covariates with COVID-19 severity, we performed 
logistic regression using the glm function in R. The 
dependent variable, COVID-19 severity, was coded 
as 0 for patients with “moderate” COVID-19 severity 
and 1 for patients with “severe”, or “mortality/hospice” 
COVID-19 severity [31]. We assessed the relation-
ship between COVID-19 severity and NSAID use 
using logistic regression, using as additional predictors 
age, race, ethnicity, gender, smoking status, Charlson 
Comorbidity Index, and BMI, as well as the follow-
ing comorbidities: alcoholic liver damage, Alzheimer’s 
disease, cerebral infarction, chronic respiratory dis-
ease, diabetes type 1, diabetes type 2, hepatic failure, 
hepatic fibrosis, hypertensive kidney disease, ischemic 
heart disease, lupus, malignant neoplasm (lymphoid 
hematopoietic related tissue), neoplasm, nicotine 
dependence, nonhypertensive chronic kidney disease, 
nonischemic heart disease, other liver disease, portal 
hypertension, psoriasis, unspecified dementia, and vas-
cular dementia. For treatment with the medication, we 
recorded the estimate, the corresponding p-value, the 
odds ratio, and 95% confidence intervals.

We used the EValue R package (version 4.1.2) to deter-
mine the minimum strength of an unmeasured con-
founder in the logistic regression that would be required 
to change the conclusion that the treatment (NSAID use) 
was associated with the outcome in question. We treated 
the outcome of increased COVID-19 severity as a non-
rare outcome (as it occurred more frequently than 15%), 
and death, invasive ventilation, AKI, and ECMO as rare 
outcomes (since the frequency of these outcomes was 
less than 15%) [37].

Role of the funding source
The funders had no role in study design, data collec-
tion, analysis, interpretation, writing of the report, or in 
the decision to submit for publication. The correspond-
ing authors had full access to all study data and had final 
responsibility for the decision to submit for publication.

Results
We evaluated 857,061 patients with COVID-19 in 
a retrospective study and evaluated twelve NSAIDs 
that were evaluated previously on a smaller cohort 
[27]. Individuals diagnosed with COVID-19 were then 
divided into those individuals treated with the medi-
cation on the day of admission (treated) and those 
who were not (controls). To reduce the effect of con-
founding, we performed propensity matching [38] to 
match NSAID-treated and control patients according 
to age, race, ethnicity, gender, smoking status, Charl-
son Comorbidity Index, BMI, and the presence of 24 
comorbidities before COVID-19 presentation (Meth-
ods). 66,494 COVID-positive patients had complete 
data and were not taking aspirin or acetaminophen 
(excluded drugs), and were included in the analysis. 
Of these, a total of 19,746 patients were on an NSAID 
during the 24  h prior to admission and were included 
in the test cohort, and the same number of patients 
not on NSAIDs were chosen using propensity match-
ing  (Fig.  1). Table  1 shows the composition of the 
cohort with respect to these covariates before and after 
propensity matching. After propensity matching, the 
standard mean difference between NSAID-treated and 
control groups for all covariates was less than 0.1.

The primary outcome was COVID-19 severity of mod-
erate vs. severe or mortality/hospice (Table  2). No mild 
or mild ED cases were present in our treated or con-
trol groups. The incidence of moderate COVID-19 was 
higher among the NSAID cohort (91.3%) compared 
with the control cohort (86%), while the incidence of 
COVID-19 more severe than moderate (severe, or dead) 
was lower in the NSAID cohort (3.9% severe, 4.8% dead) 
compared to the control cohort (5.3% severe, 8.8% dead). 
Similarly, the incidence of invasive ventilation, AKI, and 
ECMO were all lower in the NSAID group compared to 
the control group.

We observed a significant association between NSAID 
use and lower COVID-19 severity when controlling for 
age, race, ethnicity, gender, smoking status, Charlson 
comorbidity, BMI, and 22 other comorbidities (OR 0.57, 
Table 3).

We further investigated the association of NSAID use 
with four secondary outcomes: AKI, ECMO, invasive 
ventilation, and all-cause mortality at any time following 
COVID-19 diagnosis. The characteristics of the NSAID 
treated and control cohorts with respect to outcomes are 
shown in Table 2. We analyzed the association of NSAID 
use with these four other secondary outcomes using 
logistic regression (Table 3). NSAID use was significantly 
associated with fewer incidents of death (OR 0.51), inva-
sive ventilation (OR 0.59), AKI (OR 0.67), and ECMO 
(OR 0.51).
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Quantitative bias analysis
We calculated the E-value for the observed values of 
the odds ratio to assess the sensitivity of our findings to 
uncorrected confounders [37]. To fully explain the asso-
ciation of NSAID use with decreased COVID-19 severity, 
an unmeasured confounder would need to be associated 
with both the treatment and the outcome with an odds 
ratio of at least 1.88 above and beyond the confounders 
included in the regression. Likewise, to fully explain the 
association of NSAID use with fewer adverse second-
ary outcomes, a confounder would need to be associated 
with both the treatment and the outcome with an odds 
ratio of at least 3.3 (death), 2.8 (invasive ventilation), 2.3 
(AKI), and 3.3 (ECMO).

Discussion
To our knowledge, randomized clinical trial data inves-
tigating potential beneficial or deleterious effects of 
NSAIDs on the course of COVID-19 are not available. 
Previous observational studies have failed to show an 
association of exposure to NSAIDS with risk of hospital 
admission, severe clinical course, or death in COVID-
19 patients [39]. Our study is the second-largest to be 
performed to date and the largest to be performed as a 

multi-center American study (Supplemental Table  S4). 
The largest study leveraged data in the OpenSAFELY 
platform, which includes information from primary care 
practices in England, including pseudonymised data such 
as coded diagnoses, prescribed medications, and physi-
ological parameters. Our study represents the largest 
multi-center study with data harmonized from multiple 
EHR data sources.

Our findings did not show an association in hospi-
talized COVID-19 patients between NSAID use and 
increased COVID-19 severity, or increased risk of inva-
sive ventilation, AKI, ECMO, and all-cause mortality. In 
contrast, we identified a significant association between 
NSAID use and decreased risk of these outcomes. These 
results are in accordance with those of some previous 
studies: NSAID use was reported less frequently among 
hospitalized patients than non-hospitalized patients [16]; 
a study on 1305 hospitalized COVID-19 patients showed 
that use of NSAIDs prior to hospitalization was associ-
ated with lower odds of mortality as assessed by multi-
variate regression analysis [25]; finally, the OpenSAFELY 
study demonstrated a lower risk of COVID-19-related 
death was associated with current use of NSAIDs in 
individuals with rheumatoid arthritis/osteoarthritis [28]. 
However, the E-values for the associations  identified by 

Fig. 1  Definition of NSAID cohort and matched control cohort for analysis of the association of NSAID use with COVID-19 outcome
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Table 1  Characteristics of the COVID-19 positive cohort taking NSAIDs and the control cohort, before and after propensity matching

Treated Before propensity matching After propensity matching

Control SMD Control SMD

Age (years) 47.4 53.7 − 0.33 47.1 0.01

Race

 Asian 3.1% 3.7% − 0.03 3.1% 0.00

 Black or African American 21.6% 20.9% 0.02 22.3% − 0.02

 Missing/unknown 25.1% 23.3% 0.04 24.8% 0.01

 Native Hawaiian or Other Pacific Islander 0.2% 0.3% − 0.01 0.2% 0.00

 Other 0.9% 0.9% − 0.01 0.8% 0.01

 White 49.1% 50.9% − 0.04 48.9% 0.00

Ethnicity

 Hispanic or Latino 24.8% 22.0% 0.06 23.8% 0.02

 Missing/unknown 5.4% 8.4% − 0.13 5.4% 0.00

 Not Hispanic or Latino 69.8% 69.6% 0.00 70.8% − 0.02

Gender

 Female 59.7% 50.1% 0.20 59.1% 0.01

 Male 40.3% 49.8% − 0.20 40.9% − 0.01

 Other 0.0% 0.0% 0.01 0.0% 0.00

Smoking status

 Current or former 39.8% 29.9% 0.20 36.7% 0.06

 Non smoker 60.2% 70.1% − 0.20 63.3% − 0.06

BMI (kg/m2) 31.3 29.7 0.18 31.0 0.03

Charlson Comorbidity Index (mean score) 0.98 1.43 − 0.23 0.96 0.01

Alcoholic liver damage 0.6% 1.0% − 0.05 0.6% 0.00

Chronic hepatitis 1.0% 1.1% − 0.01 0.9% 0.01

Diabetes type 2 16.7% 18.0% − 0.03 16.1% 0.02

Hepatic failure 0.5% 1.2% − 0.11 0.5% 0.00

Hypertension 30.8% 31.3% − 0.01 29.9% 0.02

Ischemic heart disease 4.9% 7.0% − 0.10 4.9% 0.00

Lupus 0.7% 0.6% 0.02 0.7% 0.00

Malignant neoplasm (lymphoid hematopoietic related 
tissue)

2.0% 2.0% 0.00 2.0% 0.00

Neoplasm 19.4% 17.2% 0.06 19.2% 0.00

Nonischemic heart disease 20.5% 24.4% − 0.10 20.4% 0.00

Vascular dementia 0.4% 0.8% − 0.07 0.3% 0.00

Alzheimer’s disease 0.4% 1.0% − 0.09 0.4% 0.01

Cerebral infarction 1.7% 2.9% − 0.10 1.6% 0.01

Chronic respiratory disease 13.1% 13.2% 0.00 12.8% 0.01

Dementia associated with another disease 1.0% 1.5% − 0.05 0.9% 0.01

Diabetes type 1 1.4% 1.5% − 0.01 1.4% 0.00

Hepatic fibrosis 1.2% 2.2% − 0.09 1.2% 0.00

Hepatic steatosis 4.3% 3.2% 0.06 4.0% 0.02

Hypertensive kidney disease 3.1% 6.3% − 0.19 3.1% 0.00

Nicotine dependence 9.8% 8.9% 0.03 9.6% 0.01

Nonhypertensive chronic kidney disease 5.5% 11.2% − 0.25 5.4% 0.00

Other liver disease 5.2% 5.4% − 0.01 4.8% 0.02

Portal hypertension 0.5% 1.2% − 0.10 0.5% 0.00

Rheumatoid arthritis 1.9% 1.3% 0.04 1.8% 0.01

Unspecified dementia 1.2% 2.7% − 0.14 1.1% 0.01

Psoriasis 1.0% 0.8% 0.01 0.9% 0.00
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our study were in the range of 1.9–3.3, indicating that 
comparatively weak or moderate confounder associa-
tions could explain away the observed associations. We 
interpret the results of our study as providing additional 
evidence for the lack of a detrimental effect of NSAID 
use prior to hospital admission on the severity and other 
deleterious outcomes of COVID-19. Future work will be 
required to investigate a potential beneficial effect.

Strengths and limitations of this study
Our dataset is derived from over 38 institutions across 
the country with 857,061 cases of COVID-19, and thus 
is a representative sample of the COVID-19 positive 
population in the United States. Observational studies 
such as retrospective EHR cohort analyses are subject 
to confounding. In the case of our study, the decision of 
whether to treat a patient with an NSAID could in prin-
ciple be correlated with the outcome of interest (COVID-
19 severity). We applied propensity matching to mitigate 
confounding, and used E-values to measure the strength 
of a confounder that would be required to change the 
conclusion of our analysis. However, in observational 
studies a risk of residual confounding persists because 
the efficacy of propensity matching is limited to known 
and measured factors. Exposure to the drugs of interest, 
most of which are available without a prescription, was 

likely to be captured incompletely in the EHR data used 
in the analysis. Thus, it is possible that there was unre-
corded use of NSAIDs in the untreated group. Our study 
analyzed only inpatients, whose NSAID use is likely more 
to be completely captured by EHR data.

Conclusions
The results of our observational study failed to dem-
onstrate a significant association of the use of twelve 
NSAIDs with increased clinical severity, invasive ventila-
tion, and AKI. Our study provides additional support to 
the notion that NSAIDs are safe for use in patients with 
COVID-19.
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