SUNY College Cortland Digital Commons @ Cortland

Transformations: Presentation Slides

Transformations

4-2022

Standing Weight Perception across Unweighted Conditions in a Lower Body Positive Pressure Treadmill

Madison Rees

Matthew Ballesteros

Danielle Toth

Erik Lind

Bryanne N. Bellovary

See next page for additional authors

Follow this and additional works at: https://digitalcommons.cortland.edu/slides

Part of the Kinesiotherapy Commons

Authors

Madison Rees, Matthew Ballesteros, Danielle Toth, Erik Lind, Bryanne N. Bellovary, and James F. Hokanson

Standing Weight Perception across Unweighted Conditions in a Lower Body Positive Pressure Treadmill

Madison Rees, Danielle Toth, Matthew Ballesteros, Erik Lind, Ph.D., Bryanne N. Bellovary, Ph.D., and James F. Hokanson, Ph.D.

Kinesiology Department

Transformations: A Student Research and Creativity Conference - April 2022

AGAP 2.0 Background

- The following series of experiments studied participants standing in a lower body positive pressure treadmill (LBPP-TM) while at rest
- Data was collected on the cardiovascular responses of heart rate (HR) and arterial blood pressure (systolic and diastolic; SBP/DBP), and body weight perception (BWP)
- This first study will examine at BWP responses of participants in the LBPP-TM across different chamber air pressures (CAP)
- Specific to perceptions, exercise studies consistently report lower effort perceptions with greater CAP, which suggest a reduced physiological and mechanical strain on the body.
- However, BWP at rest is less known

Lower Body Positive Pressure Treadmill

- The Alter-G[®] is the LBPP-TM used in the Proehl Exercise Physiology laboratory at SUNY Cortland
- LBPP-TM forces air into an inflatable chamber in which the user is secured
- The forced air produces either an increase or decrease in chamber air pressure (CAP)
- Positive pressure on the lower body translates into body weight support which allows an assistive lift

Introduction

- Because previous studies have noted that reductions of strain or stress result in lower ratings of perceived exertion or effort sense
- Perceived exertion or effort sense is how hard you feel like your body is working. It is based on the physical sensations a person experiences during physical activity
- However, body weight perception refers to the personal awareness of your own weight. Particular to this study, we assessed how aware an individual was at different (un)weighted conditions
- Participants were put into the Alter-G at four different (un)weighted conditions (100%BWset, 70%BWset &, 35%BWset, 90%BWset)

Purpose of the Study

• To examine whether changes in chamber air pressure resulted in changes in body weight perception.

- H₁: Changes to chamber air pressure will result in significant differences across chamber air pressure settings of 100%BW_{set}, 70% BW_{set}, 35% BW_{set}, and 90% BW_{set}.
- H₂: Significant changes in chamber air pressure will result in significant differences in body weight perception across chamber air pressure settings of 100%BW_{set}, 70% BW_{set}, 35% BW_{set}, and 90% BW_{set}.

Methods

- 21 apparently healthy college-aged participants were studied (**Table 1**)
- CAP was measured using Davis Vantage weather station
- Perception of body weight (BWP) was measured using a 10 cm visual analogue scale (VAS) with anchors at 0 cm (Not Aware) and 10 cm (Completely Aware)

Not Aware

Completely Aware

Protocol

- Prior to participants entering the treadmill the VAS was explained and they were informed of the protocol
- BWP was measured four times throughout the experiment
 - BWP is first measured at 100%BW_{set}
 - 4:45 of each 5 min experimental condition (i.e., 70%Bw_{set}, 35%Bw_{set}, and 90%BW_{set}

Statistical Analyses

- Descriptive statistics (mean±SD) were calculated for all variables
- A repeated-measures analysis of variance (RM-ANOVA) was calculated to determine if differences existed with CAP and BWP
- A 4 (BWP) x 2 (grouping) factorial analysis of variance was used to assesses differences in BWP between male and female participants, body weight grouping, and BMI grouping
- Significance was set at $p \le 0.05$

Table 1. Participant Descriptive Statistics

	Female (<i>n</i> = 12)	Male (<i>n</i> = 9)	Overall (N = 21)
Age (y)	20.7±1.6	21.3±0.9	20.9±1.4
Ht (cm)	164.8±7.9	182.6±5.9	171.6±11.3
Wt (kg)	62.2±8.7	79.4±8.5	68.9±12.3
BMI (kg·m²)	22.6±2.1	24.0±2.2	23.3±2.3

Transformations: A Student Research and Creativity Conference - April 2022

Results: Chamber Air Pressure

Figure 1. Differences in chamber air pressure for the Alter-G[®] treadmill. *Note*: The body is most supported by the treadmill during 35%BW_{set} and least supported during 100%BW_{set}.

* denotes all BW_{Sets} were significantly different from each other (*ps* < 0.001).

Results: Body Weight Perceptions

Figure 2. Body weight perception as measured by a 10 cm visual analog scale while air pressure changes in the treadmill. *Note*: The body is most supported by the treadmill during 35%BW_{set} and least supported during 100%BW_{set}. * denotes that 100%BW_{set} and 90%BW_{set} and 90%BW_{set} and 35%BW_{set} (*ps* < 0.026). † denotes that condition is statistically different from all three other conditions (*ps* < 0.026). 100%BW_{set} was no different from 90%BW_{set} (*p* = 1.00).

Results: BWP Comparison between Female vs. Male Participants

Figure 3. Body weight perception response across male and female participants as measured by a 10 cm visual analog scale while air pressure changes in the treadmill.

Results: BWP Comparison based on Weight

Figure 4. Body weight perception response based on weight grouping as measured by a 10 cm visual analog scale while air pressure changes in the treadmill.

Results: BWP Comparison based on BMI

Body Mass Index Cut-offs Figure 5. Body weight perception response based on body mass index grouping as measured by a 10 cm visual analog scale while air pressure changes in the treadmill.

Discussion

- CAP measures reported significant values when compared to each other, suggesting that chamber air pressures at 100%BW_{set}, 70%BW_{set}, 35%BW_{set}, and 90%BW_{set} were significantly different
- This suggests that when the condition was changed in the machine it appropriately changed the air pressure inside the machine to be different from one another
- Females were less aware of their body weight during 70%BW_{set}, 35%BW_{set}, and 90% BW_{set} than males
- Heavier participants had more awareness than lighter participants, on average, during the $\mathrm{BW}_{\mathrm{sets}}$

<u>Conclusions</u>

- This is one of the first studies to look at body weight perception during resting standing state
- Changes in chamber air pressure suggest a successful manipulation of air pressure inside the inflatable chamber
- Changes in body weight perception suggest that the greater the body weight support produced, the less aware participants are of their body weight
- Body weight perception differences were also noted between male and female participants, when grouped by body weight, and when grouped by BMI
- Future research is needed to better understand the multifactorial influence on body weight perception both at rest and during exercise
- Collectively, manipulating chamber air pressure appears to alter perception of both body weight at rest and effort sense during exercise in users of a lower body positive pressure treadmill Transformations: A Student Research and Creativity

Special thanks to my professors, Dr. Lind, Dr. Bellovary, and Dr. Hokanson

Extra thanks to my research partners Danielle Toth and Matthew Ballesteros

I could not have done this research without everyone who participated in the study, access to the exercise research lab, and support from everyone in the Kinesiology Department at SUNY Cortland.

Overview of Talk

 \bullet

Transformations: A Student Research and Creativity Conference - April 2022