
Formulation of Sudoku Puzzle Using Binary Integer
Linear Programming and Its Implementation in Julia,

Python, and Minizinc

Fahren Bukhari1, Sri Nurdiati2*, Mohamad Khoirun Najib3, Nandika Safiqri4

1,2,3,4Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, Jl.
Meranti, Kampus IPB Dramaga, Bogor 16680, Indonesia

*Corresponding author. Email: nurdiati@apps.ipb.ac.id

ABSTRACT

Sudoku is a number puzzle game popular among people with various difficulty levels (easy,
medium, hard, and extremely hard). Sudoku can be modeled as a linear programming problem
in mathematics, particularly binary integer linear programming (BILP). Completing Sudoku
using BILP is quite tricky because it requires many iterations. Therefore, this study aims to
analyze the Sudoku problem using the BILP formulation and implement the problem using
Julia, Python, and MiniZinc. Out of 15 cases for each difficulty level, Julia performs better than
Python and MiniZinc based on computation time. Moreover, Sudoku with easy difficulty levels
is solved with a longer computation time than the other three difficulty levels. The computation
time for solving BILP is getting faster as the difficulty level of the Sudoku problem increases.
This is because Sudoku problems with easy difficulty levels have more known values as clues
and generate more constraints than other difficulty levels.
Keywords:
Julia; Linear Programming; Minizinc; Python; Sudoku

How to Cite:

F. Bukhari, S. Nurdiati, M. K. Najib, and N. Safiqri, ”Formulation of Sudoku Puzzle
Using Binary Integer Linear Programming and Its Implementation in Julia, Python,
and Minizinc”, Jambura J. Math., vol. 4, No. 2, pp. 323–331, 2022, doi:
https://doi.org/10.34312/jjom.v4i2.14194

JAMBURA JOURNAL OF MATHEMATICS
Jambura J. Math. Vol. 4, No. 2, pp. 323–331, July 2022

Journal Homepage: http://ejurnal.ung.ac.id/index.php/jjom
DOI: https://doi.org/10.34312/jjom.v4i2.14194

1. Introduction

Sudoku is a logic puzzle game invented by Howard Garns in 1979 in the United States.
Sudoku was first published as Number in Place in Dell Magazines. Sudoku became
popular in Japan in the 1984 Monthly Nikolist newspaper by Maki Kaji as Suji wa
dokushin ni kagiru, which can be translated as ”digit must be single”, or digits are
limited to one occurrence [1].

Even though Sudoku is a number puzzle game, that doesn’t mean that only people with
math skills can play it. Sudoku can be played by anyone of all ages and occupations.
Curiosity about solving Sudoku problems makes many people interested in playing it.
In fact, Sudoku was once contested in an international television contest in which nine
teams represented certain geographic areas [2].

e-ISSN: 2656-1344 c© 2022 F. Bukhari, S. Nurdiati, M. K. Najib, N. Safiqri | Under the license CC BY-NC 4.0
Received: 7 May 2022 | Accepted: 9 June 2022 | Online: 25 June 2022

JJoM | Jambura J. Math. 323 Volume 4 | Issue 2 | July 2022

mailto:nurdiati@apps.ipb.ac.id
http://ejurnal.ung.ac.id/index.php/jjom
https://doi.org/10.34312/jjom.v4i2.14194

Formulation of Sudoku Puzzle Using Binary Integer Linear Programming and Its. . .

Sudoku has different difficulty levels, such as very easy, easy, moderate, hard, and
extremely hard. In general, the difficulty of these puzzles depends on the number and
location of clues [3], as shown in Table 1. The higher the Sudoku level, the more
challenging the problems to solve.

Table 1. Difficulty level of Sudoku puzzles

Difficulty level Number of clues Minimum number of clues in
each row and column

Very easy ≥ 46 5
Easy 36− 46 4
Moderate 32− 35 3
Hard 28− 31 2
Extremely hard 17− 27 0

These Sudoku puzzles can be modelled using a mathematical model as a linear
programming problem. Linear programming is a mathematical method to obtain an
optimal solution by maximizing or minimizing the objective function of the constraint
function. Linear programming with an objective function with only two possible values,
0 or 1, is called binary integer linear programming (BILP) [4].

The most common Sudoku puzzles consist of a 9 × 9 grid of matrix, with nine 3 × 3
sub-grids. In addition to Sudoku with size 9× 9, there is also Sudoku with size 4× 4. In
Sudoku, with a size of 9× 9, the game’s ultimate goal is to fill each grid with the numbers
1 to 9 so that each column, row, and sub-grid contains the numbers 1 to 9 in exactly one
value [5, 6].

The Sudoku solution using linear programming will be difficult and time-consuming
because it requires many iterations. For this reason, software assistance is needed that
can solve problems more efficiently. Therefore, this research will use several
programming languages, such as Julia, Python, and Minizinc, to solve linear
programming problems formed from Sudoku puzzles. These three programming
languages are open-source programs capable of solving linear programming problems.

This study aims to formulate a binary integer linear programming problem based on a
Sudoku puzzle. Furthermore, several Sudoku cases from easy to extremely hard levels
are solved using Julia, Python, and Minizinc; then, the computational time in these
programming languages is calculated. Julia is a new dynamic and open-source
programming language that is claimed to have high performance with ease of writing
code. Therefore, in addition to the research objectives mentioned above, this study aims
to introduce the Julia programming language to computational mathematicians in
Indonesia. The research results are expected to provide additional insight into
open-source programming languages that can be used to replace commercial linear
programming solvers, such as Lingo, which indirectly supports IGOS (Indonesia Goes
Open Source).

2. Methods

The research begins by collecting cases of Sudoku problems from easy to extremely hard
levels. The Sudoku puzzle case to be solved is a sudoku puzzle obtained from the
Sudoku-Classic Sudoku Puzzle android application version 1.23.0, downloaded from
google playstore. From the four levels, 15 puzzles are taken each.

JJoM | Jambura J. Math. 324 Volume 4 | Issue 2 | July 2022

F. Bukhari, et al.

The first step is to formulate a binary integer linear programming (BILP) problem for a
9× 9 Sudoku problem. After that, Sudoku problems from easy to extremely hard levels
are solved using Julia 1.6.3, Python 3.10, and MiniZinc 2.5.5. The implementation process
was carried out using a Lenovo IdeaPad 5 14ARE05 laptop with an AMD Ryzen 7 4800U
processor and Radeon Graphics 1.80 GHz. We compare the computational time needed
to solve Sudoku problems from easy to extremely hard levels from the results obtained.

2.1. Binary Integer Linear Programming

Integer linear programming (ILP) is a class of linear programming model optimization
problems with the variable used in the form of integers, where the objective function is
linear, and the constraint is a linear inequality [7]. If the variable must be an integer, the
problem is called pure integer linear programming. If only some variables are integers,
it is called mixed-integer linear programming (MILP). Meanwhile, ILP with a variable
that must be 0 or 1 is called 0-1 ILP, also known as binary integer linear programming
(BILP) [8]. Variables with a value of 0-1 usually represent a yes or no decision [9]. One
method that can solve ILP problems is the Branch and bound method. This method is one
of the methods to produce linear programming solutions that produce integer decision
variables [10].

2.2. Julia, Python and Minizinc

Julia is a high-level, dynamic, and high-performance programming language [11].
Although classified as a dynamic programming language, Julia performance is almost
comparable to static programming languages such as C/C++ and Fortran. Julia has a
similar syntax to Matlab, so the transition process from Matlab users to Julia can be done
easily. Julia is rapidly becoming a competitive language in data science and
computational science [12, 13]. This research’s linear programming problem will be
solved using the JuMP package. JuMP (Julia for Mathematical Programming) is an
open-source modelling language on Julia for expressing various optimization problems,
such as linear, mixed-integer, quadratic, semi-definite, and non-linear programming, in
a high-level algebraic syntax [14].

Python is a high-level programming language that is interpreter, interactive, and
object-oriented. Python was developed by Guido Van Rossum in 1990 in Amsterdam to
continue the ABC programming language [15]. Python programming language is easy
to learn because the syntax used is clear and easy to understand [16]. Python allows
users to write clear and logical syntax because Python has a complex structure of
functions, classes, modules, nested code blocks, and packages. This study uses the PuLP
package to solve linear programming problems. PuLP is an open-source tool for
modelling linear programming in Python. Solutions in PuLP are obtained by calling
other solvers, such as CBC and GPLK (free) or CPLEX, GUROBI, and MOSEK
(commercial).

MiniZinc is an open-source programming language designed to solve optimization
problems limited to real numbers and integers [17]. MiniZinc is a medium-level
constraint modelling language that allows users to express optimization problems easily
[18]. MiniZinc does not require third-party packages or applications to solve a given
modelling problem, unlike Julia and Python. Minizinc already has several solvers built
into it, such as Gecode, CBC, and findMUS.

JJoM | Jambura J. Math. 325 Volume 4 | Issue 2 | July 2022

Formulation of Sudoku Puzzle Using Binary Integer Linear Programming and Its. . .

3. Results and Discussion
3.1. Formulation of the Binary Integer Linear Programming (BILP) Problem

Definition 1. Sudoku is a popular number puzzle where the goal is to place the digits
1 to 9 on a 9× 9 square or grid, with some of the digits already filled in as clues. The
solution must meet the following rules:

1. Numbers 1 to 9 must appear in each 3× 3 sub-grid
2. Numbers 1 to 9 must appear in each row
3. Numbers 1 to 9 must appear in each column.

Definition 2. Mathematically, the Sudoku problem of size 9× 9 can be formulated into
binary integer linear programming, namely as follows:

1. Index and parameters
• i ∈ {1, 2, . . . , 9} indicates the row index in the Sudoku puzzle,
• j ∈ {1, 2, . . . , 9} indicates the column index in the Sudoku puzzle,
• k ∈ {1, 2, . . . , 9} indicates the grid value index in the i-th row and j-th column,
• G is a set of some decision variables whose value is already known as a clue.

2. Decision variables

xijk =

{
1, if the grid (i, j) is k
0, otherwise

. (1)

3. Objective function The objective function becomes irrelevant because each point
satisfies the constraint will represent a solution to the Sudoku puzzle problem [19].

min 0Txijk, ∀i, j, k. (2)

4. Constraints
(a) Each column contains exactly one integer number 1 to 9:

9

∑
i=1

xijk = 1, ∀j, k. (3)

(b) Each row contains exactly one integer number 1 to 9:

9

∑
j=1

xijk = 1, ∀i, k. (4)

(c) Each grid point contains exactly one integer number 1 to 9:

9

∑
k=1

xijk = 1, ∀i, j. (5)

(d) Each sub-grid contains exactly one integer number 1 to 9:

3q

∑
j=3q−2

3p

∑
i=3p−2

xijk = 1, ∀k ∀p, q ∈ {1, 2, 3}. (6)

(e) For decision variables that are already known as clues, the value of the
decision variable is set to be 1:

xijk = 1, ∀i, j, k ∈ G. (7)

JJoM | Jambura J. Math. 326 Volume 4 | Issue 2 | July 2022

F. Bukhari, et al.

(f) Non-negativity and binary:

xijk = 1 ∈ {0, 1}. (8)

Example 1. Given a Sudoku problem of size 9× 9, as shown in Figure 1.

Figure 1. An example of a 9× 9 Sudoku problem

The BILP formulation of the Sudoku problem is the same as previously described, with
details of the constraint function as follows:

Constraints (4a) and (4b) clearly say that each row and column of the Sudoku matrix is
worth 1 to 9 without any repetition. This means that in the first row, the unfilled boxes
cannot have a value of 1, 2, or 4. On the other hand, the unfilled boxes in the first column
cannot have a value of 5.

Constraint (4c) says that each matrix element contains exactly one integer number 1 to
9. This is clear because a point in the Sudoku matrix has only exactly one value, which
comes from the Sudoku meaning: ”digit must be single”.

Constraint (4d) says that each sub-grid contains exactly one integer number 1 to 9. The
Sudoku matrix has several smaller sub-grids in it. For the 9× 9 cases, there are nine sub-
grids with a size of 3× 3. In Figure 1, the sub-grid is represented by thick lines as edges.
For example, for constraint (4d), there is an unfilled box in the sub-grid at the top-right
(in blue); it cannot be 1, 4, 5, 6, or 7.

Constraint (4e) says that for decision variables that are already known as clues, the value
of the decision variable is set to be 1. Based on Figure 1, the clue in the 1st row and 4th
column is 2, so the formulation for this clue is

x142 = 1. (9)

Thus, using the same approach, the constraints for each known value as a clue are as
follows.

JJoM | Jambura J. Math. 327 Volume 4 | Issue 2 | July 2022

Formulation of Sudoku Puzzle Using Binary Integer Linear Programming and Its. . .

x142 = x154 = x191 = x286 = x375 = x387 = x394 = 1
x433 = x458 = x471 = x515 = x534 = x598 = x647 = 1
x746 = x769 = x838 = x876 = x927 = x964 = x989 = x992 = 1

(10)

3.2. Implementation of BILP Problem using Julia, Python and Minizinc

With 15 cases each for easy, moderate, hard, and extremely hard difficulty levels, the
BILP formulation is used to solve the problem using Julia, Python, and Minizinc (see
Appendix A). The computation time of each programming language is calculated from
an average of ten repetitions. Figure 2 below is the solution to the Sudoku problem given
in Example 1.

Figure 2. Solution of the Sudoku problem in Figure 1

The case in Figure 1 is one of 15 cases at the extremely hard level because the number of
clues given is only 22 numbers. The solution of the case in Figure 1 using Julia, Python
and Minizinc is the same as Figure 2. Julia gave the fastest average time of 0.0405 seconds
out of ten repetitions, while Python and Minizinc completed it in times 0.1172 and 0.2934
seconds.

In the same way, 15 cases for 4 difficulty levels are solved using Julia, Python, and
Minizinc. Of the ten repetitions, the average computational time for each case is shown
in Figure 3. The thick line in Figure 3 shows the average of each case solved on a given
difficulty level. Meanwhile, the dashed line is the average per case of 10 repetitions.

Julia has the fastest computation time compared to the other two programming
languages, while Minizinc has the longest computation time. However, both Julia,
Python, and Minizinc were able to solve the binary integer linear programming problem
of the Sudoku puzzle in no more than 0.5 seconds per execution. Moreover, in terms of
writing syntax, Julia is simpler than Python and almost similar to Minizinc (see
Appendix A). Thus, Julia has a simple syntax writing style and is almost similar to
writing on paper but has faster performance than the other two programming
languages.

Based on the difficulty level of the Sudoku problem solved, Julia gives a fairly stable
average computation time of 0.025 seconds for all cases. However, two cases at the easy

JJoM | Jambura J. Math. 328 Volume 4 | Issue 2 | July 2022

F. Bukhari, et al.

Figure 3. Comparison of the computation time of Julia, Python, and Minizinc to
solve 14 Sudoku cases with four difficulty levels

level were completed in almost 0.1 seconds. In contrast to Julia, Python and Minizinc
programming languages have the highest average computation time in the easy case.
The computation time gets faster as the difficulty level of the Sudoku problem increases.
The Sudoku problem with easy difficulty has more values known as clues, so the
constraint function (4e) is also generated more than the other difficulty levels. The more
constraint functions that must be met will affect the computation time generated by
each programming language. Thus, the easier the Sudoku problem, the longer the
computation time of the formulated BILP problem. This is different from the manual
completion of Sudoku by humans. In the easy case, the more clues you give, the easier
the empty squares in Sudoku will be to solve.

4. Conclusion

This research formulates the Sudoku problem into a mathematical equation, namely
binary integer linear programming (BILP). Several cases are solved using this
formulation in the programming languages Julia, Python, and Minizinc. Out of 15 cases
for each difficulty level (easy, moderate, hard, and extremely hard), Julia performs better
than Python and MiniZinc based on compute time. Furthermore, on the easy level,
Sudoku is completed using BILP with longer computation time than the other three
difficulty levels that are more difficult. The computation time for solving BILP problems
is getting faster as the difficulty level of Sudoku questions increases. This is because
Sudoku problems with easy difficulty have more known values as clues, so the resulting
constraint function is also higher than other difficulty levels. This research can be
developed by applying other algorithms, especially heuristic methods such as genetic
algorithms and others, then comparing the results obtained with this research.

References
[1] D. B. Mishra, R. Mishra, K. N. Das, and A. A. Acharya, “Solving Sudoku Puzzles

Using Evolutionary Techniques—A Systematic Survey,” in Advances in Intelligent Systems
and Computing, 2018, pp. 791–802, doi: http://dx.doi.org/10.1007/978-981-10-5687-1 71.

[2] I. Lynce and J. Ouaknine, “Sudoku as a SAT Problem,” in AI&M, 2006.
[3] H. Chel, D. Mylavarapu, and D. Sharma, “A novel multistage genetic algorithm approach

for solving Sudoku puzzle,” in 2016 International Conference on Electrical, Electronics, and

JJoM | Jambura J. Math. 329 Volume 4 | Issue 2 | July 2022

http://dx.doi.org/10.1007/978-981-10-5687-1_71

Formulation of Sudoku Puzzle Using Binary Integer Linear Programming and Its. . .

Optimization Techniques (ICEEOT). IEEE, mar 2016, pp. 808–813, doi: http://dx.doi.org/10.
1109/ICEEOT.2016.7754798.

[4] A. C. BartlettTimothy, P. Chartier, A. N. Langville, and T. D. Rankin, “An Integer
Programming Model for the Sudoku Problem,” in J. Online Math. its Appl., vol. 8, no. 1,
2007.

[5] N. Kitsuwan, P. Pavarangkoon, H. M. Widiyanto, and E. Oki, “Dynamic load balancing with
learning model for Sudoku solving system,” Digital Communications and Networks, vol. 6,
no. 1, pp. 108–114, feb 2020, doi: http://dx.doi.org/10.1016/j.dcan.2019.03.002.

[6] A. Zulaihah and A. Mardati, “Penggunaan Permainan Throwing Sudoku untuk Pengenalan
Konsep Bilangan,” in Optimalisasi Peran Pendidikan dalam Membangun Karakter Anak untuk
Menyongsong Generasi Emas Indonesia, 2016, pp. 190–194.

[7] K. Genova and V. Guliashki, “Linear integer programming methods and approaches - A
survey,” in Cybern. Inf. Technol., vol. 11, no. 1, 2011, pp. 13–25.

[8] M. F. Wardhana, Penyelesaiaan Puzzle Sudoku Menggunakan Pemrograman Linear Integer.
Undergraduate Thesis: IPB University, 2014.

[9] H. P. Williams, “Logic and Integer Programming,” in International Series in Operations
Research & Management Science. London: Springer, 2009.

[10] S. D. Purba and F. Ahyaningsih, “Integer Programming Dengan Metode Branch and Bound
Dalam Optimasi Jumlah Produksi Setiap Jenis Roti Pada Pt. Arma Anugerah Abadi,”
Karismatika, vol. 6, no. 3, pp. 20–29, 2020, doi: https://doi.org/10.24114/jmk.v6i3.22208.

[11] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach
to Numerical Computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, jan 2017, doi:
http://dx.doi.org/10.1137/141000671.

[12] N. K. K. Ardhana, S. Nurdiati, M. K. Najib, and S. A. Mukrim, “Akurasi dan
Efisiensi Solusi Persamaan Diferensial Biasa Dengan Masalah Nilai Batas Pada Julia
dan Octave,” Jurnal Matematika UNAND, vol. 11, no. 1, pp. 32–46, apr 2022, doi:
http://dx.doi.org/10.25077/jmu.11.1.32-46.2022.

[13] K. Gao, G. Mei, F. Piccialli, S. Cuomo, J. Tu, and Z. Huo, “Julia language in machine
learning: Algorithms, applications, and open issues,” Computer Science Review, vol. 37, p.
100254, aug 2020, doi: http://dx.doi.org/10.1016/j.cosrev.2020.100254.

[14] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for Mathematical
Optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, jan 2017, doi: http:
//dx.doi.org/10.1137/15M1020575.

[15] J. Enterprise, Otodidak Pemrograman Python. Jakarta: PT Elex Media Komputindo, 2017.
[16] T. C. A.-S. Zulkhaidi, E. Maria, and Y. Yulianto, “Pengenalan Pola Bentuk Wajah dengan

OpenCV,” Jurnal Rekayasa Teknologi Informasi (JURTI), vol. 3, no. 2, p. 181, jun 2020, doi:
http://dx.doi.org/10.30872/jurti.v3i2.4033.

[17] K. Marriott, P. J. Stuckey, L. D. Koninck, and H. Samulowitz, A MiniZinc Tutorial, 2014.
[18] R. Caballero, P. J. Stuckey, and A. Tenorio-Fornés, “Two type extensions for the constraint

modeling language MiniZinc,” Science of Computer Programming, vol. 111, pp. 156–189, nov
2015, doi: http://dx.doi.org/10.1016/j.scico.2015.04.007.

[19] D. Assencio, “Solving Sudoku Puzzle with Linear Programming,” 2017, url: https://diego.
assencio.com/?index=25ea1e49ca59de51b4ef6885dcc3ee3b.

JJoM | Jambura J. Math. 330 Volume 4 | Issue 2 | July 2022

http://dx.doi.org/10.1109/ICEEOT.2016.7754798
http://dx.doi.org/10.1109/ICEEOT.2016.7754798
http://dx.doi.org/10.1016/j.dcan.2019.03.002
https://doi.org/10.24114/jmk.v6i3.22208
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.25077/jmu.11.1.32-46.2022
http://dx.doi.org/10.1016/j.cosrev.2020.100254
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.30872/jurti.v3i2.4033
http://dx.doi.org/10.1016/j.scico.2015.04.007
https://diego.assencio.com/?index=25ea1e49ca59de51b4ef6885dcc3ee3b
https://diego.assencio.com/?index=25ea1e49ca59de51b4ef6885dcc3ee3b

F. Bukhari, et al.

Appendix A
Program A1. Julia syntax to solve Sudoku problems
using JuMP
using GLPK
function solve sudoku(puzzle)

sudoku = Model(GLPK.Optimizer)
variable(sudoku, x[i=1:9, j=1:9, k=1:9], Bin); # decision variable
for i = 1:9, j = 1:9

@constraint(sudoku, sum(x[i,j,k] for k in 1:9) == 1) # constraint (4c)
end
for ind = 1:9

for k = 1:9
@constraint(sudoku, sum(x[ind,j,k] for j in 1:9) == 1) # constraint (4b)
@constraint(sudoku, sum(x[i,ind,k] for i in 1:9) == 1) # constraint (4a)

end
end
for i = 1:3:7, j = 1:3:7, k = 1:9 # constraint (4d)

@constraint(sudoku, sum(x[r,c,k] for r in i:i+2, c in j:j+2) == 1)
end
init sol = puzzle
for i = 1:9, j = 1:9

if init sol[i,j] != 0 # constraint (4e)
@constraint(sudoku, x[i,j,init sol[i,j]] == 1)

end
end
optimize!(sudoku)
x val = value.(x)
sol = zeros(Int,9,9)
for i in 1:9, j in 1:9, k in 1:9

if round(Int,x val[i,j,k]) == 1
sol[i,j] = k

end
end
return sol

end

Program A2. Python syntax to solve Sudoku problems
https://github.com/Lakshmi-1212/Sudoku Solver LP/blob/main/Solver LP.ipynb

Program A3. Minizinc syntax to solve Sudoku problems
https://github.com/buzzdecafe/minizinc/blob/master/sudoku.mzn

This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution-NonCommercial 4.0 International License. Editorial of JJoM: Department of
Mathematics, Universitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B.J. Habibie, Moutong, Tilongkabila,
Kabupaten Bone Bolango, Provinsi Gorontalo 96119, Indonesia.

JJoM | Jambura J. Math. 331 Volume 4 | Issue 2 | July 2022

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Methods
	Binary Integer Linear Programming
	Julia, Python and Minizinc

	Results and Discussion
	Formulation of the Binary Integer Linear Programming (BILP) Problem
	Implementation of BILP Problem using Julia, Python and Minizinc

	Conclusion

