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ABSTRACT OF THE DISSERTATION 

Photoacoustic imaging of colorectal cancer and ovarian cancer  

by 

Xiandong Leng 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2021 

Professor Quing Zhu, Chair 

 

Photoacoustic (PA) imaging is an emerging hybrid imaging technology that uses a short-pulsed 

laser to excite tissue. The resulting photoacoustic waves are used to image the optical absorption 

distribution of the tissue, which is directly related to micro-vessel networks and thus to tumor 

angiogenesis, a key process in tumor growth and metastasis.  In this thesis, the acoustic-

resolution photoacoustic microscopy (AR-PAM) was first investigated on its role in human 

colorectal tissue imaging, and the optical-resolution photoacoustic microscopy (OR-PAM) was 

investigated on its role in human ovarian tissue imaging. 

Colorectal cancer is the second leading cause of cancer death in the United States. Significant 

limitations in screening and surveillance modalities continue to hamper early detection of 

primary cancers or recurrences after therapy.  In the first phase of the study, benchtop co-

registered ultrasound (US) and AR-PAM systems were constructed and tested in ex vivo human 

colorectal tissue.   In the second phase of the study, a co-registered endorectal AR-PAM imaging 

system was constructed, and a pilot patient study was conducted on patients with rectal cancer 

treated with radiation and chemotherapy. To automate the data analysis, we designed and trained 

convolutional neural networks (PAM-CNN and US-CNN) using mixed ex vivo and in vivo 
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patient data. 22 patients’ ex vivo specimens and five patients’ in vivo images (a total of 2693 US 

ROIs and 2208 PA ROIs) were used for CNN training and validation. Data from five additional 

patients were used for testing. A total of 32 participants (mean age, 60 years, range, 35-89 years) 

were evaluated. Unique PAM imaging markers of complete tumor response were found, 

specifically recovery of normal submucosal vascular architecture within the treated tumor bed. 

The PAM-CNN model captured this recovery process and correctly differentiated these changes 

from a residual tumor tissue. The imaging system remained highly capable of differentiating 

tumor from normal tissue, achieving an area under receiver operating characteristic curve (AUC) 

of 0.98 from the five patients tested. By comparison, US-CNN had an AUC of 0.71. As an 

alternative to CNN, a generalized linear model (GLM) was investigated for classification and 

results showed that CNN outperformed GLM in classification of both US and PAM images. 

Ovarian cancer is the leading cause of death among gynecological cancers but is poorly 

amenable to preoperative diagnosis. In the second project of this thesis, we have investigated the 

feasibility of “optical biopsy,” using OR-PAM to quantify the microvasculature of ovarian tissue 

and fallopian tube tissue. The technique was demonstrated using excised human ovary and 

fallopian tube specimens imaged immediately after surgery.  Initially, a commercial software 

Amira was used to characterize tissue vasculature patterns, and later, an effective and easy-

access algorithm was developed to quantify the mean diameter, total length, total volume, and 

fulfillment rate of tissue vasculature. Our initial results demonstrate the potential of OR-PAM as 

an imaging tool for quick assessment of ovarian tissue and fallopian tube tissue.
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Chapter 1: Introduction 
 

Photoacoustic imaging (PAI) techniques have demonstrated a unique ability to resolve optical 

absorption contrast in biological tissues [1][2], which can be invaluable for the detection and 

diagnosis of tumor microvasculature or tumor angiogenesis [3][4]. PAI technique is based on the 

photoacoustic principle: as a pulsed laser is delivered to tissue, photon energy absorbed by 

biomolecules converts to heat and creates an initial pressure wave. This wave is detectable by an 

ultrasonic transducer. In tissue, PAI transforms hemoglobin into an endogenous contrast agent that 

can be used to determine various functional and anatomic characteristics not available with basic 

endoscopy. 

Photoacoustic microscopy (PAM) has two configurations - optical-resolution (OR) PAM and 

acoustic-resolution (AR) PAM [5]. OR-PAM uses short wavelength of light to give high resolution, 

and AR-PAM offers deeper imaging depth due to improved transduction of acoustic waves through 

tissue. In this thesis, colorectal tissue was imaged by AR-PAM and ovarian tissue was imaged by 

OR-PAM. 

Chapters 2, 3 and 4 described AR-PAM imaging of colorectal cancer from benchtop systems 

development to ex vivo specimen imaging, and finally to translated study on patients. Chapter 5 

and 6 introduced the second study of which OR-PAM was used to image and characterize ovarian 

cancer ex vivo. 

Colorectal adenocarcinoma is a common cancer with an estimated annual incidence of over 

100,000 cases in the United States [6]. Though white light endoscopy and pelvic magnetic 

resonance imaging (MRI) are the current gold standard techniques for detecting and surveilling 
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these tumors, both modalities have significant shortcomings. Endoscopy only detects 

abnormalities of the mucosal surface of the colon and provides no assessment of oncologic activity 

in deeper aspects of the bowel. Yet MRI, which provides cross-sectional imaging of the entire 

pelvis, cannot achieve a resolution less than 1.5 cm, limiting its ability to evaluate the GI tract for 

small malignancies or abnormalities. And MRI is a particularly poor technique for evaluating post-

treatment cancers due to the inability to distinguish viable tumors from residual scar and fibrous 

tissue [7]. This shortcoming, in particular, currently limits widespread utilization of a promising 

new treatment option in rectal cancer that avoids surgical intervention altogether. Therefore, there 

exists a need for new modalities that allow high resolution evaluation of the colorectum at all levels.  

In Chapter 2, we report the development and initial clinical testing of a benchtop AR-PAM system 

suitable for human colorectal cancer imaging [8]. We hypothesized that AR-PAM would provide 

new insight into both colonic and rectal morphology in the setting of both untreated and treated 

tumors. We utilized phantoms and freshly excised human colon and rectal tissue to test the 

parameters of the AR-PAM system and examine imaging patterns in human tissue. 

In Chapter 3, we report the development and initial patient study of a new imaging system 

comprising an endorectal co-registered photoacoustic and ultrasound (PAM/US) imaging probe 

paired with a deep learning neural network model (PAM-CNN) to assess rectal cancer treatment 

response [9]. The imaging system remained highly capable of accurately differentiating tumor 

from normal tissue, achieving an AUC of 0.98 (95% CI: 0.977-0.985) from six patients’ data 

unseen by the PAM-CNN. 

In Chapter 4, the performance of the CNN models is compared to generalized linear models (GLM) 

across 24 ex vivo specimens and 10 in vivo patient examinations.  First order statistical features 

were extracted from histograms of PAM and US images to train, validate and test GLM models, 
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while PAM and US images were directly used to train, validate, and test CNN models. The PAM-

CNN model performed superiorly with an AUC of 0.96 compared to the best PAM-GLM model 

using kurtosis with an AUC of 0.82. We also found that both CNN and GLMs derived from 

photoacoustic data outperformed those utilizing ultrasound alone. We conclude that deep-learning 

neural networks paired with photoacoustic images is the optimal analysis framework for 

determining the presence of residual cancer in treated human rectum. 

Chapters 5 and 6 describe the study on ovarian cancer. Chapter 5 investigated OR-PAM imaging 

on human ovarian cancer ex vivo [10]. We investigated the feasibility of potential “optical 

biopsy” utilizing an OR-PAM technique for imaging and quantification of the microvasculature 

of ovarian tissue and fallopian tube tissue. The technique is demonstrated using excised human 

ovary and fallopian tube tissue immediately after surgery. Quantitative parameters for 

characterizing microvascular components of ovarian tissue and fallopian tube are derived using 

the Amira software. The parameters include three-dimensional vascular segment count, total 

volume, and length. Quantitative analysis shows that malignant ovaries have greater tumor 

vessel volume, length, and the number of vascular segments, as compared with benign and 

normal ovaries. The vascular pattern of the fallopian tube is different than that of ovarian tissue. 

Our initial results have demonstrated the potential of OR-PAM as a laparoscopic imaging tool 

for fast assessment of ovarian tissue and fallopian tube, that could avoid unnecessary surgery if 

the risk of the examined ovary is extremely low. 

In study of Chapter 6, the database built in Chapter 5 of the ovary and fallopian tube specimens 

is enlarged to 18 normal ovaries and 19 fallopian tubes, which yields a more robust statistical 

analysis. Meanwhile, we present an easily accessible, efficient quantification algorithm that 

calculates the physical mean diameters, total length, total volume, and fulfillment rate of 



4 
 

vasculatures. A phantom study using carbon fiber simulating vasculature shows that the 

algorithm estimates these measurements in a reasonable error range from 9.8% to 16.1%. In 

normal ovary and fallopian tube specimens, quantification of all four features demonstrates 

significant p-values; normal ovaries present sparse vasculature and fallopian tubes present a 

much denser pattern. 

1.1 Colorectal cancer 

1.1.1 Overview 

Colorectal cancer refers to colon cancer and rectal cancer. The two types of cancer are often 

grouped together because of many shared features.  

The colon and rectum compose the large intestine, which is part of the gastrointestinal (GI) 

system. In general, the colon is made up of ascending colon, transverse colon, descending colon, 

and sigmoid colon which connects to the rectum. In general, total length of the colon is 1.5 m 

and that of the rectum is between 10 and 15 cm.  

Most colorectal cancers start growing from polyps which have three different types [11]. 

Adenomatous polyps (adenomas) are more likely to change to cancer. Sessile serrated polyps 

(SSP) and traditional serrated adenomas (TSA) have a higher risk of malignancy. The third type 

– hyperplastic polys and inflammatory polyps are in general not-pre-cancerous. 

As cancer grows, it can penetrate the bowel wall which represents a multi-layer structure [12]. 

The normal bowel wall consists of mucosa, submucosa, muscularis propria, and serosa. The 

staging of colorectal cancer depends on its depth (which layer), the number of lymph nodes 

contacted, and whether cancer spreads to other organs. 
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1.1.2 Statistics 

In the United States, colorectal cancer is the third most deadly cancer in both men and women. 

American Cancer Society estimates that in 2021, there will be 104,270 new cases of colon 

cancer, 45,230 new cases of rectal cancer, and an expected 52,980 deaths overall.  The lifetime 

risk of developing colorectal cancer is 4.3% for men and 4.0% for women. The death rate of 

colorectal cancer has been decreased for several decades due to early screening and removal of 

polys, as well as improved treatments. The survival rates of colon cancer are 94%, 72%, and 

14% for a localized stage, a regional stage, and distal stage, respectively; the survival rates of 

rectal cancer for the three stages are 89%, 72%, and 16%, respectively [13]. 

1.1.3 Treatment strategy 

Colorectal cancer treatment involves radiation, chemotherapy, and surgical resection. Although 

advances in the preoperative treatment of locally advanced rectal cancers (LARC) have enabled 

20-30% of patients to safely avoid surgery [14-17], this “watch and wait” approach depends on 

accurate assessments of tumor regression and high-resolution and high-sensitivity surveillance 

imaging for tumor recurrence. Standard surveillance modalities include a physical exam, 

endoscopy with biopsy, and MRI; however, each of these modalities has distinct weaknesses in 

the post-treatment setting. [18-24]. Current technology is not able to definitively identify 

pathological complete responders (pCRs) who may benefit from “watch and wait”, from those 

with residual disease who need surgical resection (non-responders). To overcome these challenges, 

AR-PAM paired with the convolutional neural network was investigated to evaluate treatment 

response ex vivo and in vivo. Detailed work will be introduced in Chapter 2, Chapter 3, and Chapter 

4. 
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1.2 Ovarian cancer 

1.2.1 Overview 

Ovarian cancer begins in the ovaries which are part of the female reproductive system. An 

individual female has two ovaries on each side of the uterus. Ovarian cancer has three different 

types developing from three kinds of cells [25]. The first type is an epithelial tumor which starts 

from cells at the ovary surface. The second type is germ cell tumors which start from cells 

producing ova. The third type is stromal tumors which start from structural tissue cells. Benign 

tumors never spread beyond the ovary, but malignant or borderline tumors spread to other 

organs.  

At an early stage, ovarian cancer rarely generates obvious symptoms which make it difficult to 

monitor, while at a late stage, ovarian cancer is hard to treat. Surgical resection and 

chemotherapy are common treatment methods. 

1.2.2 Statistics 

The American Cancer Society estimates that in the United States in 2021, about 21,410 women 

will be diagnosed with ovarian cancer and about 13,770 women will die from the cancer [26]. 

Ovarian cancer ranks fifth in cancer death among women and ranks first among all the 

gynecologic malignancies. The lifetime chance of developing ovarian cancer is about 1.28% and 

the chance of dying due to ovarian cancer is 0.93%. 

The survival rate when ovarian cancer is diagnosed in the early stage is higher than 90%. 

However, the lack of efficient monitoring tools makes early diagnosis difficult. About 80% of 
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ovarian cancer is diagnosed at stage III and stage IV where the survival rate is only 25% - 30% 

[27]. 

1.2.3 Screening tools 

The U.S. Preventive Services Task Force has recently concluded that major trials of promising 

ovarian cancer screening tools have null findings to date among healthy average-risk women, 

and there are considerable harms associated with screening, which have included major surgical 

complications in women found to have no cancer [28]. In general, prophylactic bilateral 

salpingo-oophorectomy is applied to women with a screening abnormality. However, 

prophylactic oophorectomy has notable side effects including morbidity and premature 

menopause which results in accelerated bone loss and cardiovascular death [29-30]. Screening 

tools for ovarian cancer includes serum tumor marker CA-125 and imaging assessments [28]. 

Available imaging modalities, including ultrasonography, magnetic resonance imaging (MRI), 

computed tomography (CT), and positron emission tomography (PET), may confirm the 

presence of a pelvic mass. However, these imaging methods cannot reliably determine whether 

the mass is cancer or a benign process. Ultrasonography has difficulty differentiating cyst and 

malignancy. MRI and diffusion-weighted MRI are only useful as a follow-up strategy in the 

investigation of sonographically indeterminate adnexal masses. CT is non-specific for small 

lesions. FDG-PET has limited capability of localizing lesions in the early stage of ovarian cancer 

due to difficulty in distinguishing signal of tumor from background signals of normal tissue, 

although FDG-PET can help measure residual or recurrent disease and help physicians to select 

the surgical treatment. A better and more sensitive tool is needed to effectively evaluate ovarian 

cancer. 
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1.3 Photoacoustic imaging 

The photoacoustic effect was discovered by Alexander Graham Bell in the 19th century [31]. 

The invention of laser improved photoacoustic signal and so made practical applications more 

feasible. Over the past 20 years, photoacoustic imaging (PAI) technologies have been largely and 

deeply investigated, and recently PAI has been translated from small animal studies to clinical 

research [32-34]. Different from conventional optical imaging technologies, PAI has unique 

advantages of obtaining signals from deeper tissues and providing decent optical absorption 

contrast, which improves understanding and characterization of pathologies [35]. In general, PAI 

uses a pulsed laser as the light source, and chromophores inside bio-tissue convert photon energy 

to thermal energy. The thermal energy generates local volume expansion, and the initial pressure 

propagates to the far-field in the form of ultrasound. Ultrasonic transducer acquired the acoustic 

signal, and the tomography images can be reconstructed. From the visible to near-infrared 

wavelength (NIR), hemoglobin dominates optical absorption over other components in tissue, 

and thus PAI can plot blood vessels distribution. 

PAI has three types of configurations, which are optical-resolution microscopy (OR-PAM) [36-

37], acoustic-resolution microscopy (AR-PAM) [38], and photoacoustic computed tomography 

(PACT) [39-41]. OR-PAM focuses light tightly to reach a high resolution limited by optical 

diffraction, but imaging depth is typically within 1 mm. In the AR-PAM configuration, light is 

weakly focused or not focused, while sound is tightly focused by the transducer. AR-PAM can 

achieve an imaging depth of a few millimeters to one centimeter depending on transducer 

frequency. In PACT, an ultrasonic transducer array is used to collect acoustic signals with beam 

steering and “delay  and sum”. This thesis focuses on AR-PAM and OR-PAM. 
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PAI techniques are promising new techniques for cancer detection and diagnosis because of their 

enriched optical absorption contrasts, which are directly related to tumor vasculature and tumor 

oxygen saturation [42–46]. Many research groups have explored PAM techniques in various 

clinical applications, such as the human oral cavity [47], skin [48], and breast cancer imaging 

and diagnosis [49]. 
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Chapter 2: Feasibility of co-registered 

Ultrasound and Acoustic-resolution 

photoacoustic imaging of human colorectal 

cancer 

2.1 Introduction 

Photoacoustic microscopy (PAM) is classified into optical-resolution (OR) PAM and acoustic-

resolution (AR) PAM [1]; AR-PAM can penetrate deeper than OR-PAM due to improved 

transduction of acoustic waves through tissue [2]. Previous groups have applied this technology 

to image the esophagus and gastrointestinal tract of small animals, but no prior applications in 

the human distal GI tract have been described [3][4]. Clinically, PAI has the potential to detect, 

in real-time, both anatomic and functional changes that are otherwise not captured by traditional 

radiographic techniques.  

Photoacoustic spectrum analysis (PASA) is a powerful tool to quantify and characterize tissue 

microstructural changes. Strohm et al have demonstrated distinct features of red blood cell 

(RBC) morphology and tissue architecture in the photoacoustic spectrum [5]. Xu et al have 

shown that photoacoustic spectrum parameters of spectral intercept, midband-fit and spectral 

slope can differentiate normal and fatty mouse livers [6]. Chitnis et al have systematically 

evaluated photoacoustic spectral intercept, spectral slope, and effective-absorber size in 

differentiating tissue constituents [7]. Our group has shown that photoacoustic and ultrasound 

spectral parameters can be used to characterize malignant and benign/normal ovarian tissues [8-

9].  

Colorectal adenocarcinoma is a common cancer with an estimated annual incidence of over 
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100,000 cases in the United States [10]. Though white light endoscopy and pelvic magnetic 

resonance imaging (MRI) are the current gold standard techniques for detecting and surveilling 

these tumors, both modalities have significant shortcomings. Endoscopy only detects 

abnormalities of the mucosal surface of the colon and provides no assessment of oncologic 

activity in deeper aspects of the bowel. Yet MRI, which provides cross-sectional imaging of the 

entire pelvis, cannot achieve a resolution less than 1.5cm, limiting its ability to evaluate the GI 

tract for small malignancies or abnormalities. And, MRI is a particularly poor technique for 

evaluating post-treatment cancers due to the inability to distinguish viable tumors from residual 

scar and fibrous tissue [11]. This shortcoming, in particular, currently limits widespread 

utilization of a promising new treatment option in rectal cancer that avoids surgical intervention 

altogether. Therefore, there exists an urgent need for new modalities that allow high-resolution 

evaluation of the colorectum at all levels.  

In this chapter, we report the development and initial clinical testing of an AR-PAM system 

suitable for human colorectal cancer imaging. We hypothesized that AR-PAM would provide 

new insight into both colonic and rectal morphology in the setting of both untreated and treated 

tumors. We utilized phantoms and freshly excised human colon and rectal tissue to test the 

parameters of the AR-PAM system and examine imaging patterns in human tissue. We also 

developed a novel comparative mechanism using PA and US spectral slopes to quantify 

differences between malignant and benign tissue. 
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2.2 Methods and Materials 

2.2.1  Design and construction of the AR-PAM System 

Our endoscopic AR-PAM design is shown in Figure 2.1(a)-(c). A multi-mode fiber (1.5mm 

diameter, numerical aperture of 0.39) delivers a 750nm laser pulse to the imaging head. At the 

distal end of the imaging head, a focused ring transducer (4.0mm O.D., f=12.7mm, 20MHz) is 

installed on the side; a 45° rod mirror reflects the laser beam 90° to the tissue surface through a 

center hole of the ring transducer. 10mJ laser pulse illuminated tissue area of 0.6cm2; surface 

optical influence is 16.7mJ/cm2 which is within safety standard [12]. 

 

 

Figure 2.1 (a)AR-PAM imaging head, (b) forward imaging mode, (c) side-view image mode. 

Figure 2.1(a) inset shows a photograph of the AR-PAM imaging head. Figure 2.1(b) and 2.1(c) 

show the forward view and side view modes of the AR-PAM, respectively; forward view 
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facilitates bench-top scanning while sideview mode is suitable for endoscope use. Forward view 

mode is applied in this study for both system performance testing and specimen imaging. 

 

Figure 2.2 AR-PAM system 

The complete system is shown in Figure 2.2. Light output from an Nd:YAG (Lotis TII) pumped 

Ti:Sapphire (15 Hz, 10 ns) laser tunable from 700 nm to 900 nm is focused by a convex lens (f = 

40mm) to multi-mode fiber. The distal end of the multimode fiber is fixed on the endoscopic 

AR-PAM. A pulser/receiver (Panametrics 5900PR) is used to amplify the photoacoustic signal in 

PA mode and obtain an ultrasound image in Pulse/Echo mode. Sequentially co-registered 

photoacoustic and ultrasound data are acquired by DAQ card. Motor scanning is controlled 

through an analog output card (National Instrument PCI 6251). This system takes 7 seconds to 

finish an ultrasound B-scan and 56 seconds for a photoacoustic B-scan of 20mm. Scanning speed 

is limited by the 15 Hz laser system. 
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2.2.2  Performance testing 

Initial calibration and testing of the AR-PAM system involved three steps. First, we performed a 

Fourier transformation of the ultrasound echo from a glass into water to determine ring 

transducer frequency. Second, we evaluated the lateral and axial resolution of the AR-PAM 

system by imaging a 7µm diameter carbon fiber. The ultrasonic transducer focal point is placed 

in the carbon fiber horizontal plane and cross-sectional images of the carbon fiber were obtained. 

Axial and lateral resolution were then calculated based on these tests. Finally, we tested the 

signal-to-noise ratio (SNR) at different target depths using a black cotton string in a 0.4% 

intralipid solution. Starting at the level of the transducer, the distance between the transducer lens 

and the black string was increased by increments of 0.5mm. Photoacoustic A-scan images were 

then used to calculate the SNR. 

2.2.3  Human colorectal samples 

After system testing and calibration were performed, we conducted a pilot study of ex vivo 

machine performance on human colorectal specimens to evaluate tissue characteristics under 

AR-PAM imaging. Specimens were collected from consenting patients undergoing colon or 

rectal resection of a known neoplastic lesion at Washington University School of Medicine. This 

study was approved by the Institutional Review Board (IRB) at Washington University. Each 

specimen was evaluated prior to formalin fixation to preclude tissue architectural alteration. To 

protect the specimens from excessive breakdown prior to the histologic evaluation, all the 

imaging was completed within one hour of surgery. Specimens were then fixed in formalin and 

processed under normal staining and sectioning protocols. Hematoxylin and eosin (H&E) 

staining was performed on all specimens. Additional immunohistochemistry was performed with 
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CD31 antibodies to highlight vascular structures on select specimens for correlation of vascular 

histology with photoacoustic findings.  

2.2.4  Data Analysis 

Data were analyzed both qualitatively and quantitatively. The qualitative analysis included a 

comparison of AR-PAM generated images with histology; specific attention was paid to the 

layers of the tissue as well as the vascular organization of the tissues in question. To facilitate 

quantitative analysis, we utilized a measure known as power spectral slope [8]. To calculate this 

measurement, power spectra were derived from fast Fourier transformation (FFT) on 

photoacoustic beams. Then, we performed linear fitting of the spectra in the range of transducer 

frequency responses. After the linear fitting, spectral slopes of each malignant and benign 

imaged area were then plotted on a boxplot; Student t-test was used to calculate the statistical 

significance between the malignant and normal group, as well as polyps and normal group, and 

p<0.05 was considered significant.  

2.3 Results 

2.3.1  AR-PAM Calibration and Testing 

Initial device performance testing demonstrated consistent characteristics across multiple tests 

(Figure 2.3). Lateral and axial resolution were found to be 65µm and 45µm, respectively. In 

0.4% intralipid solution (with an approximate 4cm -1 reduced scattering coefficient), the signal-

to-noise ratio (SNR) varied from 42dB at 0.5mm to 18dB at 4.5mm. 
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Figure 2.3 (a) cross-sectional image of 7µm carbon fiber, (b) lateral resolution, (c) axial 

resolution, (d) depth test in intralipid, (e) SNR versus target depth. 

2.3.2  Ex vivo sample imaging - Qualitative Analysis 

Eight specimens were imaged during this pilot study which included cancer without prior 

treatment, neoplastic polyps without malignancy, colon cancer after chemotherapy, and rectal 

cancer after radiation and chemotherapy (Table 2.1). The average imaging time of a 20mm cross-

sectional area of the bowel was 1 minute. No system malfunctions or tissue damage occurred 

throughout the pilot study.  

Table 2.1. Summary of Specimen  

Case number Surgery Pathologic result Treatment 

method 

1 Sigmoid colectomy Adenomatous polyp with focus 

of adenocarcinoma 

N/A 

2 Right hemicolectomy T2N0 moderately differentiated 
adenocarcinoma 

N/A 

3 Sigmoid colectomy T3N1 adenocarcinoma Chemotherapy 

4 Low anterior resection Complete pathologic response - 
no residual tumor 

Radiotherapy and 
chemotherapy 

5 Sigmoid colectomy T3N0 adenocarcinoma N/A 

6 Total colectomy T3N1 adenocarcinoma N/A 
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7 Right hemicolectomy Tubular adenoma N/A 

8 Right hemicolectomy Tubular adenoma N/A 

 

Colonic Polyp 

Figure 2.4 displays several representative images obtained with the AR-PAM system on a 

segment of bowel (case 1) that included a known adenomatous polyp; both the polyp and a 

grossly normal segment of bowel were imaged. Photographs of these imaged areas (Figure 2.4(a) 

and 2.4(e)) were collected at the time of ultrasound; the white arrows indicate the plane through 

which the corresponding cross-sectional imaging was collected.  

 

Figure 2.4 Photograph of (a) normal colon and (e) adenomatous colon polyp; (b) ultrasound 

image of the normal tissue; (c) co-registered ultrasound and photoacoustic image of the same 
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cross-section of (b), white arrows refer to the blood vessel in the mucosa and yellow arrows refer 

to the blood vessel in submucosa; (f) ultrasound image of polyp, tissue inside dashed line is 

polyp; (g) co-registered ultrasound and photoacoustic image of the same cross-section of (f); (d) 

and (h) are H&E images of normal tissue and polyp, yellow arrows identify blood vessels. 

On ultrasound imaging alone, the normal layered structure of the colon wall appears to be clearly 

delineated (Figure 2.4(b)). On the surface, the first two layers (L1 and L2) appear to represent 

the mucosal surface of the colon and likely include the muscularis mucosa. Under the 

muscularis, the basement membrane (L3) appears echogenic (white) and overlies a thick 

hypoechoic layer (L4) corresponding to the submucosa. Finally, the deepest layer (approximately 

1mm from the endoluminal surface) is the muscularis propria (L5) and appears as the thickest 

layer.  

Figure 2.4(c) shows the same ultrasound image now co-registered with photoacoustic signals, 

demonstrating areas of vascular signal within the segment of the bowel. Heavy concentrations of 

blood vessels are noted within the submucosa (indicated by high intensity of color); note also the 

relative paucity of signal within the underlying muscle. H&E images from the same specimen 

correlate with the co-registered ultrasound and AR-PAM images – the submucosa is rich in 

vascular structures while the underlying muscle lacks organized vessels (Figure 2.4(d)). 

Evaluation of the adenomatous polyp, however, shows two marked differences: loss of the 

organized layers seen in the normal colon and replacement with a peripherally vascularized but 

centrally quiescent, disorganized mass. In the standalone ultrasound image (Figure 2.4(f)), the 

polyp (surrounded by dashed line) appears as an oval shape of disorganized tissue without 

distinguishable layers. On co-registered imaging, the photoacoustic signal pattern demonstrates 
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loss overall of signal within the polyp (Figure 2.4(g)). Note, however, the hyperintensity within 

the submucosa of the normal bowel surrounding the polyp (outside the dashed white line).  The 

lack of organized vascularity within the polyp correlates well with histology; relatively few 

vessels are noted within the polypoid tissue itself (Figure 2.4(h)). In contrast to the normal, 

layered structure with consistent vascularity in the submucosa, the abnormal polyp appears 

disorganized and hypovascular on imaging with the AR-PAM system.  Interestingly, there is an 

increase in photoacoustic signal surrounding the polyp, suggesting a hypervascular response to 

the neoplastic tissue. 

Colon Cancer – No prior treatment 

AR-PAM found similar findings among imaged colon malignancies. Upon evaluation of a colon 

cancer confined to the superficial layers of the colonic wall, AR-PAM again demonstrated loss 

of layered structure as well as intra-lesion hypovascularity compared to normal tissue. Figure 2.5 

shows the imaging results from one representative colon cancer specimen, case 2. 
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Figure 2.5 Gross photographic, ultrasound, coregistered, and CD31-stained histologic images of 

Specimen 2. (a) Photograph of the normal tissue, (b) ultrasound image of the normal tissue, (c) 

co-registered ultrasound and photoacoustic image of (b). (e) Photograph of cancer area, (f) and 

(g) are ultrasound and co-registered images of cancer. (d) and (h) are CD31 images of normal 

and cancer tissue, respectively, blue arrows point to blood vessels. 

Figure 2.5(f) and (g) correspond to ultrasound and co-registered images of the malignant lesion 

of this specimen. As in the polyp case, images of the normal bowel show consistent layering with 

a concentration of the vascular structures in the submucosa (Figure 2.5(b)(c)). In contrast, tumor 

imaging shows loss of the normal layering as well as hypointense signaling from within the 

mass. Unlike the polyp, the tumor demonstrated markedly increased photoacoustic signal 
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peripheral to the tumor, particularly on the mucosal surface. Histologic evaluation with CD31 

targeted immunohistochemistry confirms these findings; heavy uptake of brown stain by 

endothelial lined blood vessels is noted at the mucosal surface of the tumor but remains centrally 

located in the submucosa of the normal specimen.  

Colon Cancer – prior chemotherapy with residual disease 

Case 3 included a colon cancer previously treated with six cycles of FOLFOX chemotherapy that 

concluded twenty days prior to surgical resection (Figure 2.6 a-d). Figure 2.6(a) is a photograph 

of the ulcerated tumor bed surrounded by normal-appearing mucosa. Similar to previous lesions, 

ultrasound imaging across the lesion center demonstrated a peripheral multilayer structure that 

became disorganized within the actual tumor bed (central portion of Figure 2.6(b) beneath the 

gel-filled ulcer cavity). Similarly, the co-registered photoacoustic image (Figure 2.6(c)) also 

demonstrated relatively normal findings in the periphery; however, the regular photoacoustic 

signal distribution pattern transformed into hyperintense areas of the high signal immediately 

around and below the ulceration (findings similar to non-treated cancerous tissues).    

Corresponding to the photoacoustic findings, histologic evaluation yielded a significant amount 

of residual cancer around the ulcerated cavity (Figure 2.6(d)).  In essence, the photoacoustic 

signal pattern appears to correlate with the malignant tissue found in proximity to the ulcer 

cavity.   

In essence, these images suggest that chemotherapy, in the absence of complete tumor death, 

does not reverse the alterations in the AR-PAM signal noted in malignant tissue.  Where viable 

cancer remains, a low AR-PAM signal is generated similarly to non-treated cancer tissue.   

Rectal cancer – prior chemotherapy and radiation without residual disease 
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We also evaluated a rectal specimen (Case 4) with a known malignancy that had been treated 

with 2500 cGy of radiation and twelve cycles of FOLFOX chemotherapy before surgical 

resection (Figure 2.7(a-d)). The gross evaluation demonstrated a pale, firm scar but no signs of 

active cancer (Figure 2.7(a)). The radiation, administered in 5 daily fractions, concluded 243 

days prior to surgical resection and imaging. Unlike the previously described cancer specimens, 

both ultrasound and photoacoustic images yield a regularly layered structure with normal 

vascular distribution in the submucosa (Figure 2.7(b) and 2.7(c)). In fact, these images appear 

much more similar to the patterns noted in the normal tissue in Cases 1 and 2. Subsequent 

histologic evaluation of the specimen revealed no viable cancer cells; instead, the preoperative 

radiation and chemotherapy had completely destroyed the malignancy. Only fibrous scar tissue 

and mucin pools delineated the area of prior cancer (Figure 2.7(d)). Blood vessels, labeled by 

yellow arrows, were noted throughout the submucosa. 

In other words, this specimen suggests that complete tumor death after treatment results in the 

return of tissue to normal-appearing AR-PAM signal.  Ultrasound detects standard layering of 

the bowel wall, and AR-PAM detects homogenous vascular signal within the submucosa- 

mirroring the findings of normal bowel.  Significantly, scar tissue formed by the dead tumor does 

not appear to interfere with the return of normal vascular signals to these tissue areas.  This may 

be a very significant finding, as it suggests a possible method for differentiating incomplete 

versus complete tumor responses. 

2.3.3  Quantitative Analysis 

In addition to the qualitative comparisons reported above, we also used calculations of spectral 

slope to quantify differences between tissue types. Eight imaged areas – four neoplastic and four 

normal – were included in spectral slope calculations as described previously [8]. After deriving 
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the center frequency of the transducer at 20 MHz with full width at half maximum (FWHM) 

from 12.5MHz to 27.5MHz, the linear fitting of spectrum in the FWHM frequency range was 

found in each specimen. Figures 2.8(c) and 2.8(e) demonstrate the range of PA signals from 

normal and cancer areas, respectively. Likewise, Figures 2.8(d) and 2.8(f) show the power 

spectrum of signals demonstrated in 2.8(c) and 2.8(e). These power spectra were then combined 

to calculate a slope among all cancer and all the normal tissues. For tumors, the median value of 

spectral slope (absolute value) is significantly lower than that of normal tissue (0.9376 vs. 

1.2551, respectively; p<0.01 between normal and malignant group; Figure 2.8(g) and table 2.2). 

Table 2.2 displays calculated spectral slopes for each of the eight imaged areas previously 

described. Note that for boxplot Figure 2.8(g), 4 cancer cases, 4 normal cases, 2 polyp cases, 1 

treated rectal cancer case, and 1 residual of colon cancer case are included. Among them, 4 

normal cases are from specimens with cancer area; in other words, each cancer case specimen 

gave both cancer area imaging and normal area imaging. 

 

  



30 
 

 

Figure 2.6 Images obtained from select areas of Specimen 3 – a colon cancer treated with 

chemotherapy prior to resection. (a) Photograph of the post-treated colon tumor area 

demonstrating a contracted, scarred ulcer, (b) ultrasound image of the lesion (note that 

ultrasound gel fills the ulcer cavity (dashed line) but is not within the tissue) (c) co-registered 

ultrasound and photoacoustic image demonstrating increased photoacoustic signal around the 
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ulcerated area; (d) H&E image of the tumor bed showing residual islands of cancer cells (blue 

arrows within the dashed box) several millimeters beneath the surface of the specimen.  

 

Figure 2.7 Images of Specimen 4 –rectal cancer treated with chemotherapy and radiation prior to 

surgical resection; histologic evaluation revealed no viable tumor in the specimen. (a) 

Photograph of the post-treated rectum tumor area, (b) ultrasound image of the lesion area, (c) co-



32 
 

registered ultrasound and photoacoustic image; (d) H&E image, no residual tumor is found, 

blood vessels are identified by yellow arrows. 
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Figure 2.8 (a) Ultrasound echo signal from glass; (b) fast Fourier transform of (a); (c) AR-PAM 

beam of normal tissue; (d) spectrum of (c); (e) AR-PAM beam of malignant tissue; (f) spectrum 

of (e); (g) Boxplot and P-value of photoacoustic spectrum slope (absolute value), including 4 

malignant cases, 4 normal cases, 2 polyp cases, 1 treated case (rectal cancer with treatment) and 

1 residual (colon cancer with treatment) 

Table 2.2 Power spectrum slope value 

 Colon 

cancer 

Normal 

tissue 

Polyp Rectal 

lesion 

without 

residual 

disease 

Colon 

tumor 

with 

residual 

disease 

Average value per 

case 

-1.1844 -1.2975 -1.0084 -1.1962 -1.2069 

 -0.9392 -1.2518 -1.0805   

 -0.6642 -1.2174    

 -0.9628 -1.2537    

Mean value -0.9376 -1.2551 -1.0444 -1.1962 -1.2069 

Standard deviation  0.2131  0.0328  0.0510   

 

2.4 Discussion and Summary 

We report the initial design and testing of an acoustic resolution photoacoustic microscopy 

system on ex vivo human colon and rectum specimens. In addition to qualitatively describing the 

appearance of various histology when imaged with this system, we also report a method for 

quantitatively analyzing the different tissue profiles. Most importantly, these results suggest that 

AR-PAM may offer new discriminatory data to clinicians attempting to differentiate malignant 

from normal tissue in the human colon and rectum.  

System Performance 



34 
 

The AR-PAM system as described provides high-resolution cross-sectional photoacoustic and 

ultrasound imaging that also contains morphological data currently unavailable with traditional 

endoscopic or radiographic techniques. The system imaging head is designed as an endoscope 

for future human in vivo study. There are two imaging modes – side view and forward view 

imaging. For ex vivo sample evaluation, a forward view is more suitable; however, the side view 

is optimal for bowel wall evaluation with an endoscopic probe. For future in vivo study, a side 

view can scan alone the bowel wall. For both imaging modes, because ultrasound and 

photoacoustic signals are detected without mirror reflection, maximum acoustic energy can reach 

the transducer, which guarantees an optimized signal-to-noise ratio. Lateral and axial resolutions 

are on the level of tens of microns, which is detailed enough to resolve colon wall structure and 

vasculature distribution. Imaging depth is about 8mm which can penetrate through the 

submucosa to the muscle layer. Limited by Ti: Sapphire laser pulse repetition rate (PRR, which 

is 15Hz), a single 20mm B-Scan takes 1 minute. Ultrasound imaging resolution and depth are on 

the same level as photoacoustic imaging.  

Tissue Characterization and Differentiation 

AR-PAM demonstrated the potential to differentiate benign from malignant tissue types in this 

pilot study. Though the study population was limited, clear trends appear within our data. 

Qualitatively, malignancies appear associated with a disrupted layering of the bowel wall and a 

paucity of photoacoustic signals within the tumor itself.  Even polyps, a type of precancerous 

growth, also demonstrate a loss of signal within the mass.  Polyps and invasive cancers, 

however, were found to have differing concentrations of peripheral hypervascularity as detected 

by AR-PAM.  While the increased vascularity of surrounding tissue was modest in the polyp 

images, invasive tumors were found to have heavy concentrations of photoacoustic signal 
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surrounding the cancer.  This AR-PAM phenomenon correlates well to the histology of these 

specimens; both polypoid and malignant masses were relatively avascular, and the cancers were 

surrounded by increased concentrations of blood vessels.  While not directly investigated in our 

study, we suspect that these increased vascular concentrations around cancers are required to 

support their hypermetabolic growth within the colon wall.  Polyps, which are more indolent 

tissue with lower metabolic requirements, likely require less vascular support from the 

surrounding tissues and therefore demonstrate lower AR-PAM signal in the periphery compared 

to tumors.   

Quantitatively, tumors and polyps were also noted to have significantly different spectral slopes 

than normal tissue.  The invasive cancers were associated with spectral slopes less than 1, which 

even in this small sample varies significantly from normal tissue. These differences appear due 

to changes in both the architecture and vascularity of tumors which, even at early stages, appear 

detectable by AR-PAM.  Though less remarkable, the two polyps were also found to have 

significantly lower spectral slopes compared to normal tissue.   

Interestingly, the changes observed in malignant tissue organization and vascularity may return 

to normal in the setting of significant response to chemotherapy and radiation. While the rectal 

tumor bed images from this study were collected after therapy – and thus lack baseline 

measurements for comparison, our findings suggest that treated lesions may regain normal 

layering and organized submucosal vasculature. Therefore, AR-PAM may be able to detect a 

complete response to medical therapy among rectal tumors – fulfilling a clinical need that current 

endoscopic and radiographic techniques cannot accomplish.  
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Ultimately, the clinical utility of this instrument lies in its ability to identify small foci of cancer 

to facilitate early diagnosis or new malignancy, or incomplete response to chemotherapy and 

radiation. The inability to identify incomplete responders, for example, is the main inhibitor to 

widespread adoption of nonoperative management of rectal cancer, a truly breakthrough option 

that will revolutionize rectal cancer care. Based on these preliminary results, AR-PAM may be 

the solution that increases cancer detection rates while sparing patients from highly morbid 

surgery overall. 

Limitations  

This small pilot study has limitations. First, the study included a small number of specimens. 

While the patterns described above appear consistent across multiple specimens, these findings 

need to be further validated with a larger patient pool and in vivo.  

Second, our current AR-PAM system is not optimized for in vivo imaging due to the limitation 

of the 15 Hz laser. We plan to upgrade the laser system to a kHz repetition rate. With a faster 

laser, in vivo patient studies will be feasible.  

Unlike existent technologies such as MRI, endorectal ultrasound, or white light endoscopy, AR-

PAM appears to produce high-resolution morphologic imaging that may assist in the detection of 

microscopic tissue clusters in the future. Initial data from ex vivo human colorectal tissue have 

demonstrated the feasibility of identifying colorectal cancer imaging features using a co-

registered ultrasound and acoustic-resolution photoacoustic microscopy system. For malignant 

colorectal tissue, the cross-sectional structure is highly disorganized with central darkening of 

the photoacoustic signal inside the tumor. Quantitative analysis of photoacoustic spectral slope 

has demonstrated more high-frequency components in malignant tissue as compared to the 
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normal colon tissue, which may be caused by significantly increased microvessel networks. For 

treated colorectal cancers, AR-PAM may identify completely responded lesions, which would 

significantly change surgical practice for these diseases.  
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Chapter 3: Assessing rectal cancer treatment 

response using co-registered endorectal 

photoacoustic and ultrasound imaging paired 

with deep learning  

3.1 Introduction 

Rectal cancer is a prevalent disease requiring complex, coordinated care. Classic treatments 

include preoperative radiation, surgery, and postoperative chemotherapy. But groundbreaking 

clinical studies have explored a nonoperative strategy – called “watch and wait.” This strategy 

allows complete responders who achieve complete tumor destruction with radiation and 

chemotherapy to avoid surgical resection altogether with good long-term oncologic and 

functional outcomes [1-4]. But implementation remains challenging due to the limited capability 

of current imaging techniques to identify appropriate patients. Multiple modalities for evaluating 

colorectal pathology exist, but each has significant weaknesses in the post-treatment pelvis. 

Endoscopic biopsy has been associated with low negative-predictive value, and reliance on 

endoscopy is limited by persistent cancer-like abnormalities in many patients with complete 

pathological responses (pCR) [5]. MRI, the radiographic gold standard for staging newly 

diagnosed rectal cancers, performs poorly in the post-treatment rectum due to fibrosis and edema 

[6-8]. Though diffusion-weighted MRI (DWI) has been shown to partially address this issue, its 

resolution is too low for reliable clinical use [9-12]. Endoscopic ultrasound (EUS) has low 

sensitivity in estimating response post-treatment due to peri-tumoral inflammation, edema, 

necrosis, and fibrosis [13-15]. Thus, new or adjunct alternative imaging modalities are needed to 

improve pCR identification and enable widespread adoption of nonoperative management in 
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rectal cancer. Photoacoustic (PA) imaging is a hybrid imaging technology that uses a short-

pulsed laser to excite tissue [16-17]. The resulting photoacoustic waves are used to image the 

optical absorption distribution of the tissue, which is directly related to micro-vessel networks 

and thus to tumor angiogenesis, a key process in tumor growth and metastasis [18]. PA 

intravascular and endoscopic catheter prototype probes have been designed and demonstrated 

either in tissue phantoms or in small animal imaging [19-20]. Previous observation in ex vivo 

specimens has shown that tumor growth disrupts and distorts the microvascular networks within 

the human colon and rectum [21]. But the destruction of the tumor with radiation and 

chemotherapy returns the microvascular networks of the bowel wall to a normal distribution. 

Using specific PA wavelengths and resolution, the return of normal microvascular networks is 

detectable by PA imaging. To our knowledge, we report the first in vivo feasibility study of a co-

registered endorectal acoustic-resolution photoacoustic microscopy (AR-PAM) imaging system 

in patients with rectal cancer treated with radiation and chemotherapy. To quantitatively interpret 

the large volumes of data acquired by the AR-PAM system, we designed and trained 

convolutional neural networks (PAM-CNN and US-CNN) using mixed ex vivo and in vivo 

patient data. Data generated and analyzed during the study are available from the corresponding 

author by request. 

3.2 Methods and Materials 

This prospective HIPAA compliant study (clinical.trial.gov: NCT04339374) was approved by 

the institutional review board. All patients provided written informed consent. 
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3.2.1 Endorectal probe and system 

The AR-PAM/US system is composed of an imaging probe, laser system, US pulser/receiver, 

and data acquisition (DAQ) PC (Figure 3.1). A Nd: YAG laser (DPS-1064-Q, CNI Laser.com, 

P.R. China), operated at 1064 nm with a 1 kHz repetition rate and pulse energy of 9 mJ in 7 ns, is 

the light source. A 1.5 mm diameter BK-7 multimode fiber couples the laser energy through the 

Figure 3.1 AR-PAM system: (A) Photograph of the AR-PAM/US imaging probe; (B) Rotation 

components of the AR-PAM probe., (C) schematic of the AR-PAM system, (D) imaging head 

covered by a water-inflated balloon, (E) cross-section of the imaging head. The design of AR-

PAM was based on an FDA-approved conventional endorectal ultrasound probe (BK Medical 

Inc. MA). With this design, our AR-PAM/US fits perfectly into standard rigid proctoscopes and 
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is easily operated by surgeons familiar with performing standard endorectal ultrasound 

examinations. 

 imaging probe. The endorectal probe includes three parts: a handle, water channel, and imaging 

head (Figure 3.1A). A stepper motor integrated with the handle rotates the imaging head through 

a transmission shaft within the water channel (Figure 3.1B). The transmission shaft and stepper 

motor are hollow, allowing the passage of the long optical fiber and ultrasonic transducer wire 

from the back of the probe to the imaging head (Figure 3.1C). When in use, the probe head is 

covered by a latex balloon (Figure 3.1D), which can be inflated via a water channel accessed 

near the probe handle. When inflated with deionized water, the fluid enables the transmission of 

ultrasound and photoacoustic waves from the imaging head to the surrounding rectal wall. The 

imaging probe contains several critical components that allow for side-viewing image capture 

over 360 degrees (Figure 3.1E). An SF-11 prism reflects and couples the laser beam at 90° to the 

short 1.5 mm diameter multimode fiber (MMF) segment in the narrow center hole of an 

ultrasonic transducer (Capistrano Labs Inc, San Clemente, CA). The short MMF confines the 

laser beam, preventing it from hitting the rim of the light outlet. The ultrasonic transducer has an 

8 mm aperture with a 2 mm diameter hole in the center, 12.7 mm focus length, and 75% 

bandwidth at a 20 MHz center frequency. A function generator triggers a pulser/receiver to 

acquire US pulse-echo signals. Following each trigger of a US A-line, a laser trigger, 100 μs 

after the US trigger, initiates the acquisition of a PA A-line. The handheld AR-PAM/US system 

can simultaneously register US and PA data. 1000 US and PA A-scans uniformly sample each 

cross-section and form a co-registered US and PA B-scan pair. Using a 1 kHz laser pulse 

repetition rate, we achieved an imaging frame rate of one co-registered PAM/US B-scan image 

per second. The lateral resolution is approximately 65 and axial resolution μm is approximately 
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50 [21]. A 3.6 mJ laser pulse from the probe tip illuminates a tissue μm area of approximately 

0.15 cm2, resulting in a surface optical fluence of 24 mJ/cm2, which is well within the safety 

threshold (100 mJ/cm2) at 1064 nm [22]. This fluence level is further reduced by energy 

diffusion caused by the balloon. 

3.2.2  Patients and Imaging 

The study described in this manuscript occurred in two phases. Initially, resected colon and rectal 

specimens were imaged ex vivo. Adult patients undergoing primary, elective resection for biopsy-

proven adenocarcinoma or adenomatous polyps of the colon or rectum were eligible for inclusion. 

Each specimen was imaged within one hour of surgical excision prior to formalin fixation and 

histologically analyzed per pathologic standards. From December 2017 to July 2019, a total of 22 

colorectal specimens from 22 patients were acquired (Table 3.1, supplement) (mean age, 62 years, 

range 35-89 years, 8 women and 14 men). This ex vivo data set was used to train and validate the 

CNN classifiers. The feasibility study from the first 8 specimens was reported previously [21]. In 

[21], an ex vivo prototype PAM/US system was used to acquire data, and image analysis did not 

involve the neural network. 

Table 3.1 CNN model training and validation set of colorectal cases (ex vivo) 

Age, Sex  Surgery Pathologic result Participant 

62, male Subtotal colectomy 

T1N0 invasive moderately 

differentiated adenocarcinoma 

1 

47, female Sigmoidectomy 

T3N0 residual moderately 

differentiated adenocarcinoma 

2 
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60, male 

Abdominoperineal 

resection 

T0N0 tubulovillous adenoma after 

treatment 

3 

59, male total colectomy 

T3N0 moderately differentiated 

adenocarcinoma 

4 

62, female Left hemicolectomy 

T3N0 moderately differentiated 

adenocarcinoma with mucinous 

features 

5 

64, female Right colectomy 

T1N0 invasive poorly differentiated 

adenocarcinoma 

6 

55, male 

Abdominoperineal 

resection 

T3N0 invasive moderately 

differentiated adenocarcinoma 

7 

89, female Subtotal colectomy 

T2N0 moderately differentiated 

colonic adenocarcinoma 

8 

78, male Right hemicolectomy 

T3N2 invasive moderately to poorly 

differentiated adenocarcinoma 

9 

68, female Right hemicolectomy 

T3N0 Invasive moderately 

differentiated adenocarcinoma 

10 

61, male Sigmoidectomy 

Tubular adenoma with a small 

invasive moderately differentiated 

adenocarcinoma 

11 

74, male Right hemicolectomy 

T2N2 moderately differentiated 

adenocarcinoma 

12 

75, male Lap right colectomy 

Moderately differentiated 

Adenocarcinoma 

13 

74, male lap Sigmoid colectomy Microscopic cancer 14 
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60, female Lap right colectomy Tubulovillous adenoma 15 

42, male lap Sigmoid colectomy 

T3N0 poorly differentiated adeno 

with signet ring features 

16 

35, female Total colectomy 

T3N1 moderately diff 

adenocarcinoma 

17 

71, male Right hemicolectomy Tubular adenoma 18 

81, female Right hemicolectomy 

T2N0 moderately differentiated 

adenocarcinoma 

19 

36, male Low anterior resection Complete pathologic response pCR 20 

62, male Low anterior resection      

 No residual carcinoma identified 

(pCR) 

21 

56, male Low anterior resection  

Metastatic mucinous adenocarcinoma 

(pT4) 

22 

 

Table 3.2 CNN model training and validation set of treated rectal cases (in vivo) 

Age, Sex Surgery Pathologic result Participant 

68, male  

Sigmoid colon, rectum, 

and anus resection  

ypT3 residual tumor  23 

67, male  

Left colon and rectum, 

low anterior resection 

pT3, 3 cm residual tumor 24 

59, male Low anterior resection      

Imaged normal rectum only due to 

stricture  

25 

55, female 

Large intestine, 

rectum resection 

Imaged normal rectum only due to 

biopsy removal of a small cancer  

26 
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42, male 

Large bowel, Sigmoid 

colon, rectum, low 

anterior resection 

Imaged normal rectum only due to 

stricture  

27 

 

patients with biopsy-proven rectal adenocarcinoma who had previously undergone preoperative 

treatment with radiation and chemotherapy were imaged in vivo at the time of resection. From 

August 2019 to September 2020, 10 patients (mean age, 58 years, range 42 – 68 years, 2 women 

and 8 men) have participated in the second-phase study. Five patient in vivo images were used 

with ex vivo data to train and validate the CNN classifiers (Table 3.2) and five unseens by CNNs 

were used for testing. Following induction of anesthesia per standard of care surgery procedures, 

the flexible endoscope was inserted into the patient’s rectum to visualize the location of the treated 

tumor. One study surgeon then inserted the AR-PAM/US probe and injected water through the 

water channel. A balloon at the distal end of the endoscope was inflated until it tightly contacted 

the bowel. The surgeon started from several centimeters above the proximal end of the tumor bed 

and slowly pulled out the endoscope while rotating the probe circumferentially to scan the rectum. 

The AR-PAM/US system captured the data. One pair of co-registered B-scan images was acquired 

within 2 mm along the longitudinal direction of the rectum. The entire procedure took a few 

minutes and occurred immediately before surgery. Because patients were in anesthesia during 

scanning, the movement of the bowel had negligible effect. For each patient, normal and residual 

tumor bed locations were assessed histologically by the pathologist, and imaging results were 

correlated with the H&Es. 
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3.2.3  CNN Design and image labeling for CNN interpretation 

To quantitatively assess the imaging outputs of the endorectal co-registered system, we 

incorporated a CNN model into the imaging system (Figure 3.2). An example of a patient used for  

Figure 3.2 Design of the CNN architecture for normal layered or layer-like colorectal tissue 

identification. Both PAM-CNN and US-CNN contain two sequential feature extraction layers 

and two fully connected layers. The second fully connected layer is the output layer, which has 

only two outputs, corresponding to either normal colorectal tissue (referred to as a layered tissue 

structure for the US and a layer-like vascular distribution for PAM) or to abnormal or malignant 

colorectal tissue. The output layer has a ‘softmax’ activation function which predicts the 

probability of an input image being in a certain class (e.g., a layered normal tissue structure for 

the US and layer-like vascular distribution for PAM). 

 

training/validation is shown in Figure 3.3. A 68-year-old man with an invasive rectal cancer treated 

with chemoradiation was imaged immediately prior to his large pelvic resection. Similar to pilot 
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ex vivo studies [21], normal tissue region of interest (ROIs) from US images showed a clear layered 

structure (Figure 3.3E) [23]. Malignant tissue ROIs did not (Figure 3.3B). Normal ROIs of PA  

Figure 3.3 An example of ROI selections for training the US-CNN and PAM-CNN models. A 

68-year-old man with a highly invasive rectal cancer treated initially with chemotherapy and 

radiation was imaged immediately prior to his large pelvic resection. (A) T2-weighted MRI and 

DWI showing residual tumor with the corresponding intermediate to low T2 signal and diffusion 

restriction from 10 o’clock to 6 o’clock, indicated by green arrows. (B) US image of the rectum, 

including the treated cancer region. Green boxes indicate ROIs selected uniformly in the tumor 

bed area. (C) co-registered PA and US image of (B). PA images in the indicated green boxes 

were selected to train/validate CNNs. (D) H&E image showing the interface of the normal and 

cancer regions with arrows pointing to blood vessels in the normal region. (E) US image, (F) co-

registered US and PA image, and (H) H&E image of the normal rectum. Blue boxes were ROIs 

uniformly selected from a normal distal region. The colormap in the PA figure is set to hot in the 

MATLAB code, ranging from black(minimum) > red > yellow > white (maximum). All figures 

show envelop data in a logarithmic scale, where the maximum pixel value (white color) refers to 
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1 volt, which corresponds to the maximum signal level. The scale for PAM images is the same 

for all figures shown in Figs 4 and 5. 

images showed abundant PA signal in the submucosa (layer-like) (Figure 3.3 F), correlating with 

the histologic preponderance of arterioles, venules, and capillaries in that layer (Figure 3.3G). 

Malignant ROIs were devoid of submucosal organized microvascular network layers (Figure 3.3C). 

PA signals were seen at the balloon-rectal surface interface along the suspected tumor. At resection, 

the mucosal tissue overlying the tumor was macerated and bleeding, likely causing the high PA 

signal at the interface of the probe and bowel wall. Surgical pathology revealed a large 5 cm 

residual cancer penetrating the rectum. The overall architecture of the CNN was specifically 

designed to distinguish normal from malignant colorectal tissue based on a previously-

demonstrated submucosal morphology (US) and vascular (PAM) patterns. Separate neural 

networks were built for ultrasound (US-CNN) and co-registered PA (PAM-CNN) image 

interpretation. Briefly, each PAM-CNN and US CNN provides two outputs, corresponding to 

either normal colorectal tissue (referred to as a layered tissue structure for US and a layer-like 

vascular distribution for PAM) or to abnormal or malignant colorectal tissue. For each input image, 

CNN outputs a probability of normal (equal to 1 minus the probability of malignancy). From each 

B-scan image, 3 to 5 ROIs were uniformly selected in the tumor bed (Figure 3.3). Depending on 

the size of the treated tumor bed, ROIs in a B-scan series of approximately 2 mm spacing in 

longitudinal direction were used to obtain an average probability of normal (Table 3.3). For ex 

vivo specimen, the tumor bed was identified with the assistant of the attending pathologist. For in 

vivo patients, the treated tumor bed was identified by the study surgeon with the assistance of 

endoscopy and confirmed by surgical pathology. ROIs of normal rectal tissue from several B-scans 

were uniformly selected from proximal/distal normal rectal tissue, which was confirmed by 
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surgical pathology. To create the training/validation sample of images, a total 2693 US ROIs (1201 

normal and 1492 malignant) and 2208 PA ROIs (1130 normal and 1078 malignant) were compiled 

from 22 patients’ ex vivo and 5 patients’ in vivo images. 

3.2.4 Neural network training 

Two PAM- and US- CNN models with the architecture shown in Figure 3.2 were trained separately 

with US and PA ROIs. Twenty cross-validations were performed (i.e., 20 models were obtained, 

each of which was trained on a different subset of the whole training data). The maximum number 

of epochs was set to 20. Validation accuracy was used as a performance metric for monitoring 

early stopping with a tolerance of 2 epochs (i.e. training was stopped if there was no increase in 

validation accuracy for two successive epochs) [24]. Stochastic gradient descent was used with a 

batch size of 20. Neural net weights were optimized by the RMSprop optimizer, which is 

essentially a gradient descent with momentum. The learning rate was set to 10-3 with a decay of 

10-5. Categorical cross-entropy was used as the loss function. A dropout layer was added after 

each pooling layer to prevent overfitting. The dropout probability was set to 0.25, which implies 

that the output of one in every four hidden neurons will be randomly set to zero. The dropped out 

neurons did not go forward to pass or back-propagate, so only robust imaging features (a layered 

structure in US and a layer-like blood vessel distribution in PA images) were learned [25]. 

3.2.5 Validation of PAM-CNN and US-CNN model 

To assess how many samples would be required to reliably train our CNN models, we varied our 

training size from 20% to 80% in 10% increments of the total training and validation datasets. The 

validation size was always chosen to be one-fifth (20%). In the validation set, we have 240 normal 

and 298 malignant ROIs for US, and 226 normal and 216 malignant ROIs for PA. Both PAM- and 
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US-CNNs produce a probability of normal for each ROI in the validation set. We set a threshold 

between 0 to 100% to determine normal (higher than the threshold) or malignant (lower than the 

threshold). This threshold is varied from 0 to 100% in steps of 1%, based on the probabilities of 

ROIs from the validation set tested by the CNN, true positive and false-positive rates were 

calculated to generate the receiver operating characteristic (ROC) curve in R package. The area 

under the ROC (AUC) was used to measure the classification performance. We performed 20 

cross-validations and computed the mean AUC for each training size. Approximately 50% data 

of the total training and validation set was sufficient and additional data produced little 

performance improvement. 

3.3 Results 

Five in vivo imaging studies used for testing were analyzed qualitatively and quantitatively with 

the US and PAM-CNNs. Qualitative evaluation of normal regions with AR-PAM/US yielded a 

uniform, layered-like structure with intense photoacoustic signal within the submucosa (Figure 

3.4).  There was little variation among the normal images captured in these five patients. 

Quantitative analysis of the normal regions with both PAM and US CNNs yielded no 
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misclassifications at a probability threshold of 50%. PAM-CNN calculated average probabilities 

of normal of 86%  

Figure 3.4. US and co-registered US and PA images of normal human rectum walls from five 

testing patients unseen by CNNs. 
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Table 3.3 Testing results of five in vivo patients unseen by CNNs 

1. Probability of normal: mean probability of normal for all ROIs, last column  

2. Expected: the expected probability that responders are classified as normal is 100%, and the 

probability that non-responders are classified as normal is 0%. 

 

(patient #1), 88% (#2), 94% (#3), 85% (#4) and 91% (#5); US-CNN yielded probabilities of 96%, 

99%, 76%, 78% and 81%, respectively (Table 3.3).  Clinical imaging of the tumor beds (malignant  

regions) in each of the five in vivo testing studies demonstrated significant heterogeneity (Figure 

3.5). Movies of each imaging study are included in the multimedia materials. The following 

summary illustrates key findings from the qualitative and quantitative analysis of the five tumors 
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with AR- PAM/US and CNN models. The first four patients had residual cancers and the fifth 

patient  

Figure 3.5 Endoscopy images, T2-weighted MRI and DWI images, US and co-registered US/PA 

images, and H&Es in the tumor beds of five human rectum walls unseen by CNNs. 

achieved a pCR. However, post-treatment T2-weighted MRI and DWI showed a complete clinical 

response in patients 2 and 3 and a residual tumor in patient 5 with misclassification of 60% (3/5). 
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A 61-year-old woman treated with chemoradiation achieved a partial response to pre-surgery 

therapy (Figure 3.5A1-A5). Endoscopy a month later revealed residual ulceration (Figure 3.5A1), 

and the patient elected to undergo resection. Representative intraoperative US images 

demonstrated distorted morphology in the tumor area (Figure 3.5A3) with a dearth of 

photoacoustic signal in the tumor bed (Figure 3.5A4). The average probability of normal in the 

tumor bed from US-CNN was 69%, but the PAM-CNN predicted a lower 28%. Histology 

demonstrated a 1.8 cm rectal tumor with scarce blood vessels (Figure 3.5A5). The second patient 

was a 64-year-old man who appeared to achieve a complete clinical response (Figure 3.5B1-B2) 

after chemoradiation. However, subsequent endoscopic evaluation of the tumor bed revealed new 

nodularity with recurrent cancer. At the time of surgery, ultrasound (Figure 3.5B3) and 

photoacoustic (Figure 3.5B4) imaging showed disruption of the normal layered structure and 

submucosal vascularity in areas of malignancy. The calculated probability of normal within the 

tumor bed from USCNN was 49%, while PAM-CNN calculated 32%. A recurrent tumor nest 

approximately 1.2cm in diameter was present within the rectal scar (Figure 3.5B5). Similarly, the 

third patient was a 58-year-old man who achieved a complete clinical response (Figure 3.5C1-C5) 

after treatment. Day-of-surgery US showed normal-appearing rectal tissue in the treated tumor bed 

(Figure 3.5C3), but PA imaging revealed a microvascular-deficient region (Figure 3.5C4). The 

calculated probability of normal in the tumor bed was 86% from US-CNN and 30% from PAM-

CNN; histology revealed multiple foci of tumor (arrows) within the known 3.5 x 2.5cm fibrotic 

scar (Figure 3.5C5). Patient 4, a 52-year-old man, achieved a complete endoscopic response 

(Figure 3.5D1). US showed normal-appearing rectal tissue in the treated tumor bed (Figure 3.5D3) 

with US-CNN output of 82%. However, PA imaging revealed paucity of blood vessels within the 

tumor bed (Figure 3.5D4) with PAM-CNN probability of normal of 25%. Cancer was found within 
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the specimen. Patient 5 was different. This 68-year-old man had T2-weighted MRI and DWI 

hyperintensity (Figure 3.5E2) suggestive of residual tumor. However, US appeared normal in the 

tumor bed region as marked (Figure 3.5E3), and PA image showed a uniform layer-like 

submucosal microvascular distribution (Figure 3.5E4) similar to normal tissue. US-CNN and 

PAM-CNN calculated high probabilities of normal tissue (87% and 74%, respectively). 

Pathological evaluation of the specimen revealed a pCR. In summary, the PAM-CNN model 

correctly predicted the oncologic status of all five tumor beds, while US-CNN misclassified three 

non-responders as cancer-free. Both models correctly identified the complete responder who had 

no residual cancer in his operative specimen. From 156 ROIs obtained from tumor beds of these 

five testing patients, we computed AUCs of 0.98 (95% CI: 0.98-0.99) and 0.71 (95% CI: 0.70-

0.73) for PAM-CNN and US-CNN, respectively (Figure 3.6). 

Figure 3.6 ROCs of five testing patients with data unseen by the CNNs. (A) PAM-CNN testing 

results with AUC = 0.98, and (B) US-CNN testing results with AUC = 0.71. 

3.4 Discussion and Summary 

A total of 2693 US ROIs and 2208 PA ROIs were compiled from 22 patients’ ex vivo and 5 patients’ 

in vivo images to train/validate CNN models for automated data processing and cancer diagnosis. 
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These CNN models were then tested in a cohort of an additional five in vivo patients unseen by 

CNNs Paired with the CNN model, the AR-PAM/US system was able to differentiate residual 

tumor from normal tissue in vivo with a PAM-CNN achieving AUC of 0.98 compared with 0.71 

for the US-CNN model. CNN models reliant only on ultrasound imaging misclassified 3 out of 4 

residual tumors. Qualitatively, US and PA images of normal colorectal tissue demonstrated a 

layered rectal wall structure and even distribution of submucosal vasculature. Malignant tissue 

showed distortion of this orderly, layered pattern and obliteration of submucosal vasculature within 

lesions. After treatment that induced a complete response, we observed the return of vascular 

structure to the submucosal layer. Histologic evaluation of the specimens confirmed these findings. 

The PAM-CNN model captures this unique vasculature signature for automated data processing 

from a large volume PAM/US data and differentiation of residual tumor from normal rectum and 

treatment responders. Our study has limitations. First, our data to train and validate the CNN 

models are limited, we quantitatively assessed that 40-50% of the training and validation ROIs are 

sufficient. However, more data would improve model robustness by allowing the use of high-

resolution images for training purposes. Second, due to the limited sample size in this pilot study, 

we used hybrid ex vivo and in vivo images to train the CNNs that were then used to quantify images 

collected in vivo from five patients unseen by the CNNs. Additionally, we evaluated CNN models 

trained with only ex vivo data, testing of the same five in vivo patients achieved similar AUC values: 

AUC=0.93 for PAM-CNN and AUC=0.72 for US-CNN (Supplementary). Differences in tissue 

perfusion exist between ex vivo and in vivo states. But photoacoustic technique involves imaging 

optical absorption from blood vessels and not flow. Thus, the PA imaging of colorectal tissue 

vasculature patterns ex vivo should closely resemble in vivo findings within the short one-hour 

window. Advanced US technologies include Doppler US, contrast-enhanced US, and US 
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elastography have been evaluated for rectal cancer imaging. However, to our knowledge, there are 

no data available on using any of these technologies to evaluate rectal cancer treatment response 

[26]. In summary, we developed an acoustic-resolution photoacoustic endorectal probe co-

registered with US for identifying residual disease following treatment for locally advanced rectal 

cancers. Our pilot study demonstrated superior performance by PAM-CNN in identifying normal-

rectal tissue and responders vs. non-responders, with an AUC of 0.98 from patients unseen by the 

PAM-CNN. By comparison, US-CNN had an AUC of 0.71. Our PAM/US system paired with the 

deep-learning PAM-CNN has great potential to better identify patients suitable for nonoperative 

management and improve patient quality of life. Future work will focus on confirming these initial 

results in a large group of rectal cancer patients who have completed chemoradiation and will 

undergo surgery or in post-treatment surveillance. 
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Chapter 4: Rectal cancer treatment 

management: deep-learning neural network 

based on photoacoustic microscopy image 

outperforms histogram-feature-based 

classification 
 

4.1 Introduction 

Colorectal cancer is the third most common cancer diagnosed in both men and women in the 

United States [1]. While treatment often involves radiation, chemotherapy, and surgical resection, 

recent advances in the neoadjuvant (preoperative) treatment of locally advanced rectal cancers 

(LARC) have enabled 20-30% of patients to safely avoid surgery altogether [2-5]. However, this 

“watch and wait” approach depends on accurate assessments of tumor regression and high-

resolution and high-sensitivity surveillance imaging for tumor recurrence.  

Standard surveillance modalities include a physical exam, endoscopy with biopsy, and MRI; 

however, each of these modalities has distinct weaknesses in the post-treatment setting. [6-12]. 

Current technology is not able to definitively identify pathological complete responders (pCRs), 

who may benefit from “watch and wait”, from those with residual disease, who need surgical 

resection (non-responders).  

To overcome these challenges, we developed a co-registered endorectal photoacoustic microscopy 

and ultrasound (PAM/US) system to assess rectal cancer treatment response [13-14]. 

Photoacoustic imaging (PAI) is a hybrid imaging technology that uses short laser pulses to excite 

hemoglobin molecules endogenous to the human body. The resulting acoustic waves are then 
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acquired by US transducers and analyzed for vascular bed quantification. This process has been 

utilized in many different areas such as breast cancer [17-18], lung cancer [19-20], ovarian cancer 

[21], skin cancer [22], and colorectal cancer [13-14].  

A convolutional neural network (CNN) is an artificial intelligence algorithm with remarkable 

capabilities for automated image analysis [23]. To quantitatively interpret the large volumes of 

data acquired by the PAM/US system, we designed and incorporated deep-learning CNN models 

in the PAM system (PAM-CNN) [14]. While our deep-learning PAM-CNN model can accurately 

assess rectal cancer treatment response, it requires a large training and validation data set.  The 

key question remains if the PAM-CNN outperforms traditional histogram-feature-based models. 

In this study, using 24 ex vivo and 10 in vivo data sets, we compare the performances of the PAM-

CNN and the traditional histogram-parameter-based classifiers in rectal cancer treatment 

evaluation. Unlike CNN models, a generalized logistic regression (GLM) classifier does not 

require a large dataset for training and validation, however, imaging features must be extracted 

and evaluated on their diagnostic accuracy. We have computed five PAM image histogram 

features and used them to train, validate and test GLM classifiers. The performance of deep 

learning-based CNN models is compared with GLM classifiers.  To the best of our knowledge, 

this study is the first to establish the role of deep-learning PAM-CNN in rectal cancer evaluation.  

4.2 Materials and methods 

4.2.1  Patients, specimens, and PAM imaging 

Briefly, 10 participants (mean age, 58 years; range 42 – 68 years; 2 women and 8 men) completed 

radiation and chemotherapy from September 2019 to September 2020 and were imaged with the 
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PAM/US system prior to surgery. In the in vivo study, patients who had previously undergone 

preoperative treatment with radiation and chemotherapy were imaged in vivo before resection. 

Colorectal specimens from another group of 24 patients who had undergone surgery were studied ex 

vivo (Table 1). All studies were approved by the institutional review board of the Washington 

University School of Medicine, and all patients provided written informed consent. In the ex vivo 

study, each specimen was evaluated within one hour of surgical resection and prior to formalin 

fixation.  

Table 4.1 Lesion characteristics (24 ex vivo colorectal specimens and 10 patients) 

Lesion characteristics 

Ex vivo colorectal cancer (63)* Adenocarcinoma,T1-T3, n=15 

Ex vivo treated rectal cancer (63) Residual adenocarcinoma, n=3 

Ex vivo treated rectal cancer (52) pCR, n=3 

Ex vivo normal colorectal tissue  

18 normal areas from cancer patients and 

five patients with only normal colorectal 

tissue available   

In vivo treated rectal cancer (61) Recurrence tumor, residual tumor, n=6 

In vivo treated rectal cancer (53) pCR, n=1 

In vivo normal colorectal tissue 

10 normal areas from 7 cancer patients 

and three patients with only normal 

rectal tissue available  

*Number in brackets is the average age of the group  

4.2.2  PAM/US endoscope 

The PAM endoscope consists of three parts: a handle, a water channel (the main body), and an 

imaging head, as shown in Figure 1A [14]. Briefly, the water inlet which allows water injected 

from a syringe to inflate a water balloon covering the image head for ultrasound coupling. A 
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stepper motor in the handle turns a hollow shaft in the water channel to rotate the image head 360° 

for full circle imaging. An optical fiber inside the hollow shaft delivers laser pulses to the imaging 

head. An ultrasonic transducer (20 MHz, 75% bandwidth) fixed on the imaging head both 

transmits and receives ultrasound signals and also receives PA signals. An Nd: YAG laser working 

at 1064 nm with a 1000 Hz pulse repetition rate is the light source. A 0.15 cm2 tissue area is 

illuminated by 3.6 mJ laser pulses from the probe tip, resulting in a surface optical fluence of 24 

mJ/cm2, which is well within the ANSI safety threshold (100 mJ/cm2) at 1064 nm [24]. This 

fluence is further reduced by energy diffusion caused by the balloon. 

During imaging, the PAM endoscope is inserted transanally through a proctoscope, (Figure 4.1C). 

Ruled scales on the water channel (Figure 4.1B) show how deeply the endoscope is inserted into 

the rectum where the images are obtained. 

 

Figure 4.1 PAM endoscope (A), scales on water channel (B) and endoscope in a proctoscope, 

with a balloon on the tip (C). 

4.2.3  PAM and US data selection for training/validation and testing of models 

For training and validation, three to five regions of interest (ROIs) were selected at uniformly 

spaced locations on each PAM or US B-scan image acquired from normal regions or a tumor bed 
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(Figure 4.2). For example, the red ring in Figure 4.2 represents mucosa vasculature, which is 

continuous in the normal image of Figure2 B. The blue rectangles indicating ROIs are uniformly 

spaced along the perimeter of the image. In the cancer image, the dark zones and discontinuities 

in the red ring from approximately 9:00 to 1:00 o’clock indicate a tumor, so the ROIs are uniformly 

spaced in that segment. A total of 2600 US ROIs (1262 normal and 1496 cancerous) and 2004 PA 

ROIs (1207 normal and 797 cancerous) were compiled from 24 patients’ ex vivo images and 10 

patients’ in vivo images (Table 1). Two ex vivo samples showed a low signal-to-noise ratio (SNR) 

on PAM images due to a laser energy problem. We excluded those two samples in training PAM-

CNN and PAM-GLM models. For the US-CNN and US-GLM models, we used all 24 ex vivo and 

all 10 in vivo patient data. 

 

Figure 4.2 Example co-registered PAM and US images showing ROIs of (A) residual cancer 

tissue, area in green dashed line boxes and (B) normal tissue, area in blue boxes. PAM ROIs are 

cropped from PAM images, and US ROIs are cropped from US images. 

We divided the total of 2004 PA ROIs and a total of 2600 US ROIs into two discrete data sets – 

one for model training and validation and another for testing, respectively. The training set 

included all ex vivo cases (see Table 4.1) and half of the in vivo patient data. Of the training set 



67 
 

ROIs, 80% were used for training with the remainder for internal validation. The testing set 

contained the other half of the in vivo patient data. 

4.2.4  GLM models 

We used selected image features of ROIs to develop PAM-GLM and US-GLM models.  To 

calculate the histogram of each ROI, we divided the ROI into 32 bins. The bar height of each bin 

was then computed by dividing the number of pixels with a given value in an associated range by 

the size of the image. From the histogram of each ROI, we then extracted five features: mean, 

standard deviation, skewness, kurtosis, and energy. 

All the PAM and US features showed significant differences between malignant and normal 

colorectal tissues (p<0.05) (Figure 4.3 and Figure 4.4). Therefore, all these features were 

considered as potential candidates when building PAM-GLM and US-GLM models. To prevent 

model overfitting, Spearman’s correlation coefficient between each of the histogram features was 

calculated. We developed PAM-GLM classifiers using each histogram feature separately, as well 

as using combinations of features with low correlation values. The mean AUCs of the 

training/validation and testing data sets as well as their 95% confidence of interval were computed 

for each classifier. The same process was followed to construct US-GLM classifiers.  

To remove bias in selecting in vivo data for training and validation, we trained the classifiers 10 

times. The training/validation and testing data sets are the same as those used for CNN models 

described in the next section. 
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Figure 4.3 Boxplots of histogram features (Y axes) of PAM images. Each plotted point 

represents the histogram feature in one ROI. The p-value for each feature is shown on the plot. 
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Figure 4.4 Boxplots of histogram features (Y axes) of US images. Each plotted point represents 

the histogram feature in one ROI. The p-value for each feature is shown on the plot. 
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Figure 4.5 (PAM-GLM) and Figure 4.6 (US-GLM) show examples of the first-order statistical 

features calculated from malignant rectal tissue ROIs (shown in Figure 4.2A) and normal rectal 

tissue ROIs (shown in Figure 4.2B). As shown in Figure 3, in PAM ROIs, the malignant tissue has 

a lower mean and standard deviation, while the other three features are higher. In Figure 4.6, 

malignant US ROIs show a lower mean and standard deviation than that of the normal US ROIs.  

 

Figure 4.5 First-order statistical features calculated from malignant rectal tissue PAM 

ROIs (A) and normal rectal tissue PAM ROIs (B) 

 

Figure 4.6 First-order statistical features calculated from malignant rectal tissue US ROIs (A) 

and normal rectal tissue US ROIS. 

Figures 4.3 show the boxplots of the histogram features of the PAM ROIs. The p-value for each 

feature, calculated from a two-sided statistical t-test, is indicated on each plot. All features are 
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statistically significant (p<0.05), however, they are not equally important. To assess the 

importance of each feature, we first fit a regression model to each feature separately, using all the 

available data (ex vivo and in vivo patients), and then we found the AUC of the fitted model. As 

shown in Table 4.2, Std, Mean, and Kurtosis respectively provide the highest AUC values among 

all the features of PAM images. While Std and Mean are highly correlated, the correlation value 

between Mean and Kurtosis is less than 0.5 (Table 4.3). Therefore, these two features are used 

together to develop PAM-GLM classifiers.  

Similarly, boxplots of the five features from US ROIs are given in Figure 4.4, and the AUC feature 

values of the fitted model are shown in Table 4.2. Based on this table, Std, Energy, and Mean are 

respectively the most important features of the US images. However, they all are highly correlated 

with each other (Table 4.4).  

Table 4.2 AUCs of the fitted regression model developed using features of PAM and US images. 

Feature AUC (PAM) AUC (US) 

Mean 0.76 0.81 

Std 0.79 0.86 

Skewness 0.71 0.57 

Kurtosis 0.73 0.62 

Energy 0.70 0.85 
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Table 4.3 Spearman’s correlation between histogram features of the PAM images 

 Mean Std Skewness Kurtosis Energy 

Mean 1 0.79 0.72 0.42 0.79 

Std - 1 0.75 0.57 0.52 

Skewness - - 1 0.9 0.77 

Kurtosis - - - 1 0.5 

Energy - - - - 1 

 

Table 4.4 Spearman’s correlation between histogram features of the US images 

 Mean Std Skewness Kurtosis Energy 

Mean 1 0.7 0.63 0.38 0.78 

Std - 1 0.15 0.35 0.9 

Skewness - - 1 0.69 0.41 

Kurtosis - - - 1 0.52 

Energy - - - - 1 

 

4.2.5  CNN Models 

The PAM-CNN (or US-CNN) architecture contained two sequential feature extraction layers and 

two fully connected layers [14]. Briefly, each extraction layer had a convolutional layer followed 

by a pooling layer. To optimize the validation results, the convolution kernel and max-pooling 

kernel sizes were set to 3 × 3 and 4 × 4, respectively. The first fully connected layer was a 512-

node hidden layer, and the second fully connected layer (output layer) generated two output 

classifications – normal or cancerous. “Normal” described a layer-like vascular distribution in a 

PAM image or a layer structure in a US image, and “cancerous” described an absence of the normal 
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vasculature pattern in PAM images or an absence of the layer structure in US images. A softmax 

activation function in the output layer generated the probabilities of each of the two possible 

classifications (cancer or normal) for an input image; for each input ROI of a PAM or US image, 

the CNN model outputted the probability of a normal classification compared to the threshold 

(e.g. >50% is normal). In all the other layers, a “ReLU” activation function immediately set all 

negative values to 0 and left positive values unchanged, avoiding exploding or vanishing gradient 

problems. 

To avoid biased selection, we trained and validated 10 PAM-CNN and US-CNN models each 

using all the ex vivo data and a randomly selected half of the in vivo patient data, while reserving 

the other half for testing. The maximum number of epochs was 20, with early stopping (a tolerance 

of 2 epochs) monitored by validation accuracy. If there was no increase in validation for two 

successive epochs, training was stopped. Stochastic gradient descent was used with a batch size of 

20, and the RMSprop optimizer function was used to optimize the neural net weights. The learning 

rate was set to 10-3 with a decay of 10-5. In each model, 80% of the ROIs from the training & 

validation set were used to train the model, the remaining 20% were used for validation, and 20× 

cross-validation was performed.  

The ROIs of each in vivo normal or tumor bed patient images were either all used in training or all 

used in testing. Each of the 10 CNN models was tested on a randomly selected half of the in vivo 

data and generated a ROC. The overall performance of the classifier was measured by the mean 

AUC of the 10 models. 

The method calculating PAM-CNN’s AUC is different from that of our previous report [14], which 

leads to a slightly different AUC value. In previous work, the training and validation data set was 
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fixed, which was consisted of 22 ex vivo and five in vivo data set. The PAM-CNN’s AUC obtained 

from another five in vivo data set unseen by PAM-CNN for testing is 0.98. In this study, we have 

done a more thorough investigation. The ex vivo data set is still fixed for training and validation, 

but the five in vivo data set for training and validation and the five in vivo data set for testing were 

interchanged randomly 10 times, and the 10 AUC was used to generate the mean value of AUC. 

4.3 Results 

4.3.1 GML models 

Table 4.5 shows the mean AUCs and 95% confidence interval for PAM-GLM classifiers 

developed using single features, as well as feature pairs that are weakly correlated (based on Table 

S1). As can be seen, the "Mean-Kurtosis" combination results in a better testing performance than 

"Mean" alone, and a better training performance than "Kurtosis" alone. In the case of US-GLM 

(Table 4.6), the classifier which is built using “Std” alone performs best on both training and testing 

data sets (mean AUCs of 0.86 and 0.66 for training and testing data sets, respectively).  

Table 4.5 Training and testing mean AUC values for PAM-GLM classifiers developed using 

different combinations of weakly correlated features. The 95% confidence of interval values are 

also shown in front of each mean AUC value. 

Feature 

combinations 

Training AUC  

(95% CI) 

Testing AUC 

 (95% CI) 

Mean 0.77 (0.767-0.777)  0.80 (0.793-0.807) 

Std 0.79 (0.788-0.793) 0.76 (0.746-0.770) 

Skewness 0.71 (0.708-0.719) 0.82 (0.815-0.825) 

Kurtosis 0.73 (0.724-0.734) 0.82 (0.817-0.827) 
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Energy 0.72 (0.712-0.727) 0.74 (0.724-0.758) 

Mean, Kurtosis 0.74 (0.732-0.743) 0.82 (0.808-0.820) 

Std, Energy 0.80 (0.799-0.807) 0.76 (0.750-0.773) 

Kurtosis, Energy 0.75 (0.744-0.750) 0.81 (0.805-0.817) 

 

Table 4.6 Training and testing AUC values for US-GLM classifiers developed using different 

combinations of weakly correlated features. The 95% confidence interval values are also shown 

in front of each mean AUC value. 

Feature combinations Training AUC  

(95% CI) 

Testing AUC 

 (95% CI) 

Mean  0.82 (0.818-0.820)  0.64 (0.629-0.657) 

std 0.86 (0.860-0.862) 0.66 (0.650-0.674) 

skewness 0.59 (0.587-0.591) 0.42 (0.405-0.443) 

Kurtosis 0.64 (0.635-0.639) 0.34 (0.326-0.344) 

energy 0.85 (0.851-0.854) 0.61 (0.600-0.621) 

Mean, kurtosis 0.82 (0.819-0.822) 0.60 (0.581-0.618) 

Std, skew 0.86 (0.860-0.862) 0.65 (0.643-0.664) 

Std, kurtosis 0.86 (0.858-0.860) 0.65 (0.642-0.666) 

Kurtosis, energy 0.86 (0.856-0.858) 0.63 (0.617-0.638) 

 

Figure 4.7 (A) and (B) respectively show the mean training and testing ROCs of three of the best 

performing (based on both training and testing AUCs) classifiers developed using PAM histogram 

features. As shown in these plots, “Kurtosis” alone results in a slightly better performance on the 

testing data set than the other feature combinations (see the 95% CI values in the table). It is worth 
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noting that although adding “Mean” to the features set negligibly lowers the AUC of the testing 

data set, it increases the AUC of the training data set by 0.01. Finally, the reason for the slightly 

poor training performance than testing for different combinations of features is that the training 

data set includes both in vivo and ex vivo ROIs while the testing data set contains only in vivo ROIs. 

Overall, our in vivo data have demonstrated slightly better classification between malignant and 

normal colorectal tissue than the ex vivo data.  

 

Figure 4.7 The average ROC of the training (A) and testing (B) data sets for different 

combinations of features set. The features were extracted from PAM images. The 95% CIs are 

indicated in parentheses.  

 

In the case of US-GLM, using the “Std” histogram feature demonstrates the best prediction AUC 

of 0.68, as seen in Figure 4.8 (B). Adding any other uncorrelated features does not improve the 

AUCs of the training or testing data sets as shown in Figure 4.8 (A) and (B). 
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Figure 4.8 The average ROC of the training (A) and testing (B) data sets for different 

combinations of features set. The features were extracted from US images. The 95% CIs are 

indicated in parentheses. 

4.3.2 CNN models 

The mean ROC and AUC of the CNN models were computed from 10 CNN models, using the 

same shuffle method as in GLM. PAM-CNN demonstrated high performance in training and 

testing, with a 0.96 AUC for both (Figure 4.9). For US-CNN (Figure 4.10), the average AUC was 

0.71 in testing. 
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Figure 4.9 Average ROCs of PAM-CNN model. (A) training and validation results, (B) testing 

results. The 95% CIs are indicated in parentheses. 

 

Figure 4.10 Average ROCs of US-CNN model. (A) training and validation, (B) testing results. 

The 95% CIs are indicated in parentheses.  

4.4 Discussion and Summary 

The general architecture of the normal colon and rectal tissue consists of the mucosa (a thin layer 

of epithelial cells, a layer of connective tissue, a thin layer of muscle), submucosa (mucous glands, 

blood vessels, lymph vessels), muscularis propria (a thick layer of muscle), and serosa (an outer 

layer of the colon). In malignancy, the individual cell types are similar, but the architecture is 

distorted because cancerous cells of mucosal origin penetrate the deeper layers of the organ.  As 

these cells invade, the organized structure and vascular network are lost.  We have observed 

uniform, layer-like vasculature with intense photoacoustic signals within normal rectal submucosa 

and in the tumor beds where complete tumor destruction has occurred. In contrast, heterogeneous 

and often microvascular-deficient regions have been found consistently in tumor beds with 

residual cancer at treatment completion [13-14]. The return of a “normal” vascular pattern to the 

tumor bed appears to signal complete tumor destruction, though this mechanism is not well-
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understood. As demonstrated, PAM-CNN captures this unique pattern and predicts pCR with high 

diagnostic accuracy. PAM-GLM uses first-order statistical features extracted from PAM 

histograms and these features do not contain spatial micro-features that can be learned by deep-

learning neural networks.  Thus, the performance of PAM-GLM is significantly poorer than PAM-

CNNs.  

In summary, we have shown that the performance of deep-learning-based PAM-CNN models was 

significantly better than that of the PAM-GLM classifier with an AUC of 0.96 (95% CI: 0.95 - 

0.98) vs. 0.82 (95% CI: 0.81-0.83) using PAM Kurtosis. Both ultrasound-derived models (US-

CNN and US-GLM) performed poorly with AUCs of 0.71 (95% CI: 0.63 – 0.78) and 0.66 (95% 

CI: 0.65 – 0.67), respectively. While easier to train and validate and requiring smaller data sets, 

GLM diagnostic performance is inferior to CNN models.  

Our study has a significant impact on rectal cancer treatment management.  The PAM/US 

endoscopy paired with CNNs has a great potential to improve current standard of care imaging in 

accurately predicting complete pathological response (pCR) of rectal cancer post-treatment.   For 

those who have achieved a pCR, unnecessary surgery can be avoided without compromising 

cancer-related outcomes and thereby lowering morbidity and health care cost.   

Our study has limitations. First, the patient data is limited.  With more patient data available, the 

diagnostic performance of PAM-CNN models can be further improved.  For example, in our 

current study, 1-D ROIs from PAM and US B-scans were used as input images to CNNs. 

Misclassifications can occur in ROIs’ when SNRs are low. 2-D ROIs from a small number of 

sequential B-scans can be trained together to reduce the dependence of CNNs on the SNR of 

individual 1-D ROIs and further improve the performance of CNNs. Second, the quality of ex vivo 
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data was not as good as in vivo data which can be seen from slightly lower training/validation 

PAM-GLM data compared with testing results of PAM-GLM. 
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Chapter 5: Optical Resolution Photoacoustic 

Microscopy of Ovary and Fallopian Tube 

5.1 Introduction 

Ovarian cancer is the leading cause of death among gynecological cancers [1]. According to the 

American Cancer Society, about 22,530 patients will be diagnosed in 2019 [2], and 13,980 will 

die from ovarian cancer. Ovarian cancer is rarely diagnosed at an early stage because of its low 

prevalence in the general population and the lack of effective screening techniques [3]. Strategies 

for ovarian cancer diagnosis include serum tumor marker CA-125 and imaging assessments [4-5]. 

Available imaging modalities, including ultrasonography, computed tomography, magnetic 

resonance imaging (MRI), and positron emission tomography, may confirm the presence of a 

pelvic mass. However, these imaging methods cannot reliably determine whether the mass is 

cancer or a benign process. Under the current clinical practice, women with a pelvic mass generally 

undergo salpingo-oophorectomy (SO) [6,7]. However, SO may result in morbidity and mortality, 

potentially including loss of fertility, premature menopause, accelerated bone loss, and 

cardiovascular death [8]. Laparoscopic, in vivo “optical biopsy” methods could potentially provide 

diagnostic results similar to conventional biopsy in real-time and avoid unnecessary operations. 

Such optical biopsy methods include optical coherence tomography, which can capture changes in 

ovarian tissue light scattering due to collagen fiber erosion by cancer cells [9–11]; second-

harmonic-generation microscopy, which can quantify the alteration of extracellular collagen 

matrix in malignant ovarian tissue [12]; and intraoperative fluorescence imaging [13]. 

Photoacoustic tomography and microscopy are promising new techniques for cancer detection and 

diagnosis because of their enriched optical absorption contrasts, which are directly related to tumor 
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vasculature and tumor oxygen saturation [14–18]. Transvaginal photoacoustic tomography 

provides data at conventional US resolution [17], while high-resolution photoacoustic microscopy 

allows smaller features including microvascular morphology to be imaged [18]. Photoacoustic 

microscopy (PAM) can be divided into optical-resolution (OR) PAM and acoustic-resolution (AR) 

PAM. OR-PAM scans the focused light beam across the tissue surface and provides 3-D high-

optical-resolution images revealing surface vasculature distribution, while AR-PAM scans the 

tissue with a focused high-frequency ultrasound transducer and provides acoustic-resolution 

images. AR-PAM can image more deeply than OR-PAM due to the use of acoustic focusing but 

at the expense of resolution. Many research groups have explored OR-PAM in various clinical 

applications, such as human oral cavity [19], skin [20], and breast cancer [21] imaging and 

diagnosis. This manuscript reports the first study of OR-PAM for imaging and quantification of 

microvascular components of the human ovary and fallopian tube, which is suspected as the origin 

of high-grade serous carcinoma. 

5.2 Methods and Materials 

5.2.1 Photoacoustic imaging system and probe 

A miniature photoacoustic imaging probe was constructed to integrate both laser beam delivering 

optics and a high-frequency ring transducer into a light assembly of fewer than 25 grams. It 

allows fast three-dimensional mechanical scanning with a first fast-x-scanning voice-coil stage 

and a second slow-y-scanning stage. 532 nm Nd: YAG laser with a pulse repetition rate of 50 
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kHz was used in the study. A National Instrument analog output card was used to trigger the 

laser to  

Figure 5.1 (a) Schematic of the photoacoustic imaging system and (b) its imaging head  

obtain each A-scan line and each B-scan consisted of 1024 A-scans. Figure 5.1(a) illustrates the 

schematic of its optical layout where the pulsed 532 nm laser beam is delivered to the imaging 

probe via a photonics crystal fiber, collimated by an achromatic lens, and focused by a water-

immersed achromatic objective lens into tissue. As shown in Figure 5.1(b), the imaging-probe 

assembly consists of 1/2-inch diameter, a clear quadrant mirror mount (U50-A), a fiber and lens 

mounting tube, a ring transducer mounting tube, a photonics crystal fiber patch cord, and a 

customized. high-frequency (10–75 MHz) piezoelectric transducer with a center frequency of 40 

MH, 6 dB bandwidth of 75%, and focal depth of 6.35 mm. The fiber and lens mounting tube and 

the ring transducer mounting tube are secured to the mirror mount U50-A with a screw and 

epoxy separately. The confocal alignment of the laser beam focus and the ring transducer 

acoustic focus is achieved by adjusting the three hex-key actuators of U50-A. The achromatic 



87 
 

objective lens is sealed at the end of the fiber and lens mounting tube. The entire imaging head is 

shown in Figure 5.1(b) is scanned together by a 2-axis motorized stage. During scanning, the 

relative position of the transducer and optical component in the imaging head is fixed. Water 

immersion of the back side of the achromatic objective lens is achieved by immerging the 

imaging probe in a water tank which is not shown in Figure 5.1(b). The laser beam focus 

diameter was measured to be 6 µm by a CMOS camera-based beam profile device. The lateral 

resolution of the imaging probe was determined to be 3 µm. The signal-to-noise ratio of the 

imaging probe was quantified by imaging a graphite sample with a laser pulse energy of 5 nJ. 

After linearly scaling the laser pulse energy to 40 nJ without considering the non-linear effect, an 

averaged signal-to-noise ratio of 100 dB was estimated. Other integrated systems for performing 

OR-PAM have been reported [22,23]. A sinusoidal fast-scan waveform generated by a 12-bit 

analog output card with 2048 digital points and a 20 kHz output-clock rate is applied to a voice 

coil stage driver for each 3-mm-long B-scan image acquisition. A 2.5 µm separation between 

two neighbor B-scan images is controlled by the movement of a slow-axis step motor. 256 

sampling points are acquired by an A/D card with a 180 MHz sampling clock for each A-line 

image excited by each laser pulse. A customized multithread C++ program simultaneously 

performs the data acquisition, real-time front-end imaging display, real-time data streaming into 

computer memory by a background thread, and post-processing raw data into a stack of B-scan 

images. In small 3D imaging mode, a 3 mm (fast x) by 1.5 mm (slow y) by 2.19 mm (depth) 

tissue volume is acquired with a total of 600 B-scan images within 1 minute and a binary raw 

data set of the 600 B-scan images is saved to a solid-state drive. In large 3D imaging mode, a 3 

mm (fast x) by 6 mm (slow y) by 2.19 mm (depth) tissue volume is acquired with a total of 2400 

B-scan images within 4 minutes and four binary raw data sets containing 2400 B-scan images are 
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saved to the solid-state drive. Finally, a maximum-amplitude-projection image (MAP) is formed 

from all B-scan images after loading the data to Amira software (see Figure 5.2). During imaging 

acquisition, the tissue surface laser intensity is maintained below the ANSI laser safety standard. 

5.2.2 Quantitative features extraction with Amira software 

In post-processing mode, saved binary raw data are converted to B-scan images and analyzed 

quantitatively using a commercial 3D rendering and quantification software (Amira 6.0.1) [24]. 

The post-processing flowchart is shown in Figure 5.2. First, all OR-PAM B-Scan images 

generated from raw data acquired from the customized C++ program are loaded into Amira and 

the voxel setting in Amira is specified as 2.93 µm (x) by 8.56 µm (z) by 2.5 µm (y) volume. Ten, 

a median  

Figure 5.2 The post-processing flowchart using Amira 

filter with a window of 6 voxels is applied to enhance boundary definition and reduce 

background noise. Another non-local average filter is used to further reduce speckle noise.  An 

auto-skeleton module is subsequently applied to divide the entire micro vessel network in the 
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image into many segments and find the centerlines of blood vessels. the module extracts the 

center line of filamentous structures from image data, which is segmented instantly with a user-

defined threshold value. Specifically, it first calculates a distance map of the segmented image 

(Distance Map for Skeleton) based on the connectivity of signal intensity and then performs a 

thinning of the label image using the Tinning module so that a final string of connected voxels 

remains (thinned), representing the centerline of the segment. The result is a 3-D graph view of a 

skeletonized object that can be visualized in the 3D viewer. Finally, a spatial graph statistics 

module is applied to extract quantitative features including a number of segments, total volume, 

and the total length from the 3-D data. The number of segments suggests how many branches 

exist within all blood vessels. The total volume and the total length reflect the size of the blood 

vessel networks. A projection image is generated from the 3-D graph view for visualization of 

the blood vessel network only and named as a spatial graph view. Note that all three features are 

normalized to the number of B-scans in each selected imaging area or volume. The student’s t-

test is applied to these features to determine the statistical significance. 

5.2.3 Ovary sample preparation 

This study was approved by the Institutional Review Board of Washington University School of 

Medicine, and informed consent was obtained from all patients. Due to the nature of the study, 

no patient was under 18 years old. Pathologists in the frozen section lab guided the researchers as 

to the sample orientation and location of the tumor, which was in any event not subtle. 

Therefore, we were certain that we correctly identified malignant and benign/normal areas for 

imaging. Specimens were imaged immediately after surgical resection and returned to the 

Pathology Department within an hour for routine processing. The image duration was around 

five minutes for each specimen. Each sample was imaged from one to three areas depending on 
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the specimen size. Each imaged area is far enough from the others to maintain independence. 

Before each imaging study, the imaging probe was immersed in a water tank with a disposable 

thin plastic membrane bottom. Transparent ultrasound gel or water was applied between the 

tissue surface and the plastic membrane bottom for good acoustic contact. The plastic membrane 

was replaced, and the imaging probe was disinfected after each imaging study session to avoid 

cross-contamination between samples. All methods were performed in accordance with the 

relevant guidelines and regulations. 

Table 5.1 Specimen characteristics (9 patients of 10 ovaries and 3 fallopian tubes, average age 54 

years; range 42–64) 

 

.5.3 Results 

Eight benign ovaries, two malignant ovaries, and three benign fallopian tubes were included in 

the study (Table 5.1). We hypothesized that photoacoustic imaging properties of ovarian cancer 

would differ from those of benign ovaries. Figure 5.3 shows an example of a normal ovary from 
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a 59-year-old post-menopausal woman. the OR-PAM imaging area of 3 mm by 6 mm is marked 

by the white box on the photograph (a). The corresponding H&E slide, the OR-PAM maximum  

Figure 5.3 (a) photograph of a normal ovary from a 59-year-old post-menopausal woman. The 

white box marks the photoacoustic imaging area, (b) corresponding H&E image with blue 

arrows pointing to small blood vessels, (c) high-resolution OR-PAM MAP image of blood 

vessels, (d) spatial graph view of skeletonized vasculature with 2.35 normalized segments, 42.28 

mm3 normalized total volume, and 34.16 mm normalized total length 
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amplitude projection (MAP) image, and the Amira skeletonized spatial graph view (see 

Methods) are given in (b)-(d), respectively. The MAP reveals many small blood vessels of a 

similar size and the Amira skeletonized map shows a more discretized vascular pattern. the H&E   

Figure 5.4 (a) photograph of an excised benign serous cystadenoma from an 87-year-old 

postmenopausal woman, white box identifying the imaging area, (b) corresponding H&E image 

with blue arrows highlighting blood vessels, (c) high-resolution OR-PAM MAP image of blood 

vessels, (d) spatial graph view of skeletonized vasculature with 2.92 normalized segments, 93.56 

mm3 normalized total volume, and 55.11 mm normalized total length.  

slide shows many smaller vessels on the surface. The three quantitative parameters from Amira 

are normalized segments 2.35, normalized total volume 42.28 mm3, and normalized total length 

34.16 mm. Normalization allows comparisons between different imaging areas. Figure 5.4 shows 

a second example of a benign ovary with serous cystadenoma from an 87-year-old 

postmenopausal woman. The OR-PAM imaging area of 3 mm by 1.5 mm is marked by the white 

box on photograph (a). the MAP (c) again reveals many smaller blood vessels of uniform size 
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which can be seen well from the Amira skeletonized spatial graph view (d). the quantitative 

parameters are normalized segments 2.92, normalized total volume 93.56 mm3, and normalized 

total length  

Figure 5.5 (a) photograph of an excised high-grade carcinoma (mixed clear cell and 

endometrioid types) from a 61-year-old post-menopausal woman, white box identifying the 

imaging area, (b) corresponding H&E image with blue arrows highlighting larger blood vessels, 

(c) high-resolution OR-PAM MAP image of blood vessels, (d) spatial graph view of skeletonized 

vasculature with 4.78 normalized segments, 185.42 mm3 normalized total volume, and 82.61 mm 

normalized total length 

 

55.11 mm. the vascular maps of malignant ovaries are dramatically different. Figure 5.5 shows 

an example of a high-grade carcinoma with mixed clear cell and endometrioid from a 61-year-

old post-menopausal woman. the OR-PAM image area of 3 mm by 6 mm is marked on the 

photograph (a). the OR-PAM MAP image reveals many thick larger vessels (right part of the 

image) as well as many smaller vessels of different sizes (c). the Amira skeletonized vasculature 
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map helps visualize the different sizes of vessels, and the quantitative parameters show a 

significant increase in the number of segments (4.78), the total volume (185.42 mm3), and the  

Figure 5.6 (a) photograph of an excised high-grade serous carcinoma from a 55-year-old 

premenopausal woman, white box identifying the imaging area, (b) corresponding H&E image 

with blue arrows highlighting larger blood vessels, (c) high-resolution OR-PAM MAP image of 

blood vessels, (d) spatial graph view of skeletonized vasculature with 5.95 normalized segments, 

104.32 mm3 normalized total volume, and 43.83 mm normalized total length. 

total length (82.61 mm) as compared with the normal and benign examples. Figure 5.6 shows a 

second example of a high-grade serous carcinoma from a 55-year-old premenopausal woman. 

the OR-PAM imaging area is 3 mm by 1.5 mm as marked by the white box on the photograph. 

Large and tortuous vessels can be seen from the OR-PAM MAP image and the quantitative 

parameters are normalized segments 5.95, normalized total volume 104.32 mm3, and normalized 

total length 43.83 mm. the segments and volume are about 2 times higher than that of the normal 

ovary. Since high-grade serous ovarian cancer (the most common type of ovarian cancer) is 

believed to originate from the fallopian tube epithelium, we anticipated that discriminating 



95 
 

benign from malignant findings at the fimbriated end of the tube might become a clinically 

relevant task. To understand whether OR-PAM can be used for this task, we studied the 

properties of benign fallopian tubes attached to excised ovaries. An example of a normal 

fallopian tube from a 57-year-old postmenopausal woman is shown in Figure 5.7 the OR-PAM 

image area is 3 mm by 6 mm.  

Figure 5.7 (a) photograph of a fallopian tube attached to an excised benign ovary, white box 

showing the imaging area, (b) H&E image of the fallopian tube with blue arrows pointing to 

small vessels, (c) high-resolution OR-PAM MAP image of fallopian tube, (d) spatial graph view 

of skeletonized vasculature with 2.64 normalized segments, 61.66 mm3 normalized total volume, 

and 52.39 mm normalized total length. 

As seen from the OR-PAM MAP, a highly tortuous micro-vessel network with numerous 

branching small vessels is observed as shown in (c) and (d). Figure 5.8 shows the statistics of 

three quantitative parameters of normalized segment count, volume, and length obtained from 

three groups of malignant, normal/benign ovaries, and normal/benign fallopian tubes. All three 

parameters show statistically significant differences between malignant and normal/benign 
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ovarian tissues. However, the range of the three parameters for the normal/benign fallopian tube 

group is much larger as compared with the malignant and normal/benign ovarian tissue groups. 

There is no statistical difference between the malignant ovaries and normal/benign fallopian 

tubes based on these vascular parameters, but the normal/benign ovarian tissue vascular 

parameters are statistically different than the normal/benign fallopian tubes. 
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Figure 5.8 (a) Segment count, (b) total blood vessel volume in mm3, and (c) total blood vessel 

length in mm extracted from photoacoustic images of the malignant ovary, benign ovary, and 

benign fallopian tube. n corresponds to the total number of imaged areas in each category 

5.4 Discussion and Summary 

In this study, we report the first qualitative and quantitative OR-PAM results of ovarian tissue and 

fallopian tube. Qualitatively, OR-PAM images were acquired by either a small or a large 3D 

scanning mode and then visualized by Amira. An auto-skeleton module was applied to all 3D scans 

and a spatial graph statistics module was used to extract quantitative features including a number 

of segments, total volume, and total length. All these features are directly related to the level of 

tissue vasculature. Our OR-PAM results agree with the in vivo transvaginal photoacoustic imaging 

findings that invasive epithelial ovarian cancers showed more extensive tumor vascularity than 

benign and normal ovaries [17].  

Visually, there are differences in the microvascular networks of benign ovaries, malignant ovaries, 

and benign fallopian tubes. In the benign ovarian tissue, the microvasculature consists of small 

vessels of uniform size. Notably, the malignant ovary’s blood vessels show larger, twisted vessels 

and more branches as well as smaller vessels of different sizes. This is assumed to be the result of 

extensive tumor angiogenesis associated with malignancy. Since the auto-skeleton module in 

Amira not only counts the number of vessels, but also the thickness and the degree of distortion of 

vessels, the malignant ovarian tissue microvascular network shows more normalized segments, 

normalized total volume, and normalized total length as compared to the well-organized and more 

uniform micro-vessel network of benign and normal ovarian tissue. Unlike the benign ovaries, a 

highly tortuous micro-vessel network with numerous branching small vessels is observed in 
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fallopian tubes. The fallopian tube is the origin of high-grade serous carcinoma, which is the most 

common and most lethal subtype of ovarian cancer [25–27]. Due to the lack of malignant fallopian 

tubes in this study, we cannot determine if there are differences between malignant and benign 

tubes. This is an interesting and important subject for future study. Specifically, a larger dataset is 

planned in the future to include more ovarian tissues representing different diagnoses, so that an 

accurate classification model can be developed based on ovarian tumor microvessel network 

segments, total volume, and total length for identifying malignant ovarian lesions. The ovarian 

tissue H&Es are in a plane perpendicular to the ovarian surface, while the OR-PAM MAP images 

are 2-D projection images. While the H&Es are taken from regions that correspond to the area 

imaged by OR-PAM, these are not meant to be isomorphic to one another. The qualitative 

comparison of H&Es and MAPs demonstrates that there are larger and more tortuous blood vessels 

in the malignant ovarian tissue (hence crossing the plane of the section more often) and smaller 

and more uniform blood vessels in the normal and benign ovarian tissue. 

We report the development and application of a novel high optical-resolution photoacoustic 

microscopy (OR-PAM) system for imaging microvascular components of ovarian tissue and 

fallopian tube. For the first time, quantitative parameters for characterizing microvascular 

components of ovarian tissue and fallopian tube are derived using the Amira software. the 

parameters include three-dimensional vascular segment count, total volume, and length, which are 

associated with tumor angiogenesis. Qualitative results of OR-PAM demonstrate that malignant 

ovarian tissue has larger and tortuous blood vessels as well as smaller vessels of different sizes, 

while benign and normal ovarian tissue has smaller vessels of uniform size. Quantitative analysis 

shows that malignant ovaries have greater tumor vessel volume, length, and a number of segments, 

as compared with benign and normal ovaries. Our pilot study suggests that OR-PAM may provide 
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a valuable tool to assist surgeons for near real-time diagnosis. The tool is amenable to 

implementation as a tool for minimally invasive (laparoscopic) surgery. A modification of the 

current photoacoustic imaging system to include oxygen saturation mapping capability would 

provide yet more functional parameters, to facilitate intraoperative decision-making and reduce 

unnecessary surgical excisions when the risk of cancer in the examined ovary is extremely low. 
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Chapter 6: Blood vessels quantification of 

ovary and fallopian tube specimens imaged 

by optical resolution photoacoustic 

microscopy 

6.1 Introduction 

Ovarian cancer ranks first in cancer death of the gynecologic cancers and ranks fifth in cancer 

death of all malignancy categories among women [1]. American Cancer Society estimates that in 

the United States for 2021, there will be 21,410 women receiving a new diagnosis of ovarian 

cancer and about 13,770 women deaths [2]. Few ovarian cancers are diagnosed at stages I and II, 

and most are diagnosed at stages III and IV with a survival rate of 25% - 30% [3]. The high 

death rate which has been falling very slowly during the past 20 years is majorly due to a lack of 

effective monitoring techniques at an early stage [4]. Matured clinical imaging modalities 

including ultrasonography, CT, MRI, and PET can reveal the existence of pelvic mass in the 

body but fails to classify it as cancer or benign with a reliable sensitivity, and the combination of 

CA-125 serum screening, the transvaginal US, and pelvic examination generates high false 

negative values. Surgical resection is common practice to prevent potential risk among a certain 

group of women [5-6]. Developing new diagnosis imaging tools could improve the assessment of 

ovarian cancer at an early stage and eventually drop the overall death rate. 

As angiogenesis is an important hallmark of cancer, the difference in blood vessels distribution 

in cancerous and benign tissue can be the key to improve ovarian cancer diagnosis [7]. 

Photoacoustic imaging can clearly reveal blood vessels in bio-tissue [8-11]. OR-PAM integrated 

into a laparoscope can be a strong candidate for solving the challenge with minimum invasion. 
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The term “ovarian cancer” is often referred to as cancers that begin in the cells in the ovary, 

fallopian tube, or peritoneum. These cancers are closely related and are generally treated the 

same way. Due to the rarity of peritoneal cancer, this study focuses on ex vivo OR-PAM imaging 

of benign/cancerous ovaries and fallopian tubes. In our previous study, we introduced a new OR-

PAM system and demonstrated its imaging capability with a limited size of ovary and fallopian 

tube specimens, and introduced a quantification method with commercial software – Amira [12]. 

However, the quantities obtained by the software do not have a clear physical meaning. In this 

study, firstly we enlarged the database, and secondly, developed a new algorithm to analyze 

physical quantities including mean diameter, total length, volume, and fulfillment rate of blood 

vessels. The quantification method has the advantage of high accessibility and a reasonable error 

range.  

6.2 Methods 

6.2.1  Optical resolution photoacoustic microscope 

An OR-PAM was used to resolve blood vessels in ovarian and fallopian tube specimens. A 50 

KHz Nd: YAG pulsed laser working at 532 nm is used as a light source. The OR-PAM has a 

miniaturized imaging head integrating laser beam delivering components and a high frequency 

focused ring transducer. A single-mode photonic crystal fiber delivers the laser beam to the 

imaging head. The laser beam is collimated by a collimating lens and is focused by an objective. 

The focused beam passing through a clear aperture of the ring transducer is illuminated on 

specimens. The optical components are mounted on the stationary part of a kinematic mount and 

the transducer is fixed to the adjustable plate of the mount. Carefully adjusting the orientation and 

position of the transducer by three positioning screws on the kinematic mount can put optical focus 
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in the acoustic focus. Such a confocal configuration significantly improves the signal to noise ratio 

and detecting sensitivity. The OR-PAM achieves a lateral resolution of 3μmand an imaging depth 

of 500μm . The imaging head is scanned by a voice coil stage (fast axis) and a stepper motor stage 

(slow axis). It takes 5 min to scan an area of 3 mm by 6 mm with 1 mm DAQ depth. 

6.2.2  Ovarian and fallopian tube specimens 

This study was approved by the Institutional Review Board of Washington University School of 

Medicine, and formal consent was obtained from all patients. Pathologists in the frozen section 

lab guided the orientation and location of the ovary, fallopian tube, and tumors. Specimens were 

imaged immediately after surgical resection and returned to the Pathology Department within 

one hour for routine processing. Each patient may contribute one of or both left and right ovaries 

and fallopian tubes. Depending on the size of specimens, one to three images were obtained from 

the region of interest. Ultrasound gel was applied to the imaging area for signal coupling. All 

methods were performed properly according to the relevant guidelines and regulations. In total, 

18 normal/benign fallopian tubes, and 19 normal/benign ovaries specimens were imaged from 23 

patients. 

6.2.3 Photoacoustic images preparation 

The volumetric raw data was acquired by OR-PAM and stored in a bin file. Reconstruction of 

images was performed with MATLAB 2019R. Firstly, raw data is stored in a 3-D matrix. Each 

column represents an A-scan data. A small size median filter was used to reduce noise and the 

Hilbert transform was used to detect the envelope. 35 dB dynamic range cut off remained noise 

no envelope data. 1000 A-scans of envelope constituted a B-Scan (cross-sectional image) and 

2000 B-Scan constituted a C-Scan (3-D volumetric image) with the size of 6 mm (length)3 mm 

(width)0.986 mm (depth). To obtain a 2-D blood vessels map, maximum intensity projection 
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was applied to the C-Scan image. All quantification analysis was implemented on the projection 

image.   

6.2.4  Blood vessels quantification 

We have developed an algorithm to calculate the physical quantities (mean diameter, total 

length, total volume, and fulfillment rate) of the blood vessels. Firstly, a binary image is obtained 

by applying a fixed threshold to the projection image. All pixel values higher than the threshold 

were set to 1 and that lower than the threshold was set to 0. Secondly, a bwmorph function with 

“bridge” parameter changed isolated 0 value pixels to 1 (i.e., flood fill the signal region). 

Thirdly, the bwmorph function with “remove” removed interior pixels to leave an outline of the 

blood vessels. Fourthly, the bwmorph function with “clean” parameter changed isolated 1 value 

pixels to 0 (i.e., remove distinct highlight points that were not part of blood vessels outlines). To 

this point, a clean vessel outline image was generated. the outline image is the start point to 

calculate the mean diameter, total length, and total volume. 
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Figure 6.1 OR-PAM images processing for quantification. (A) Original OR-PAM maximum 

intensity projection image, (B) binary image of (A), (C) thinned image which only remains edge 

of blood vessels. 
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Figure 6.2 Pixel length estimation. Blood vessel segment in the binary image with diagonal 

orientation (A) and vertical orientation (B). (C) and (D) is the thinned image of (A) and (B) 

respectively. The actual blood vessel length of a pixel is 1.414d in (C) and d  in (D), in which d  

is the side length of a pixel. 

We had already known the total number of pixels in the outline image (#pixels is 2 n ). Since 

one blood vessel has two edges, n  was used to calculate the total length. To calculate this 

quantity, it seems that we need to know the true length represented by each pixel out of m total 

pixels. However, a simple method was used here to estimate the true length. An individual pixel 

can represent a maximum length of 2d (d is the true side length of a square pixel) in which the 

blood vessel go alone diagonal of the pixel and can represent a minimum length of d  in which 

the blood vessel is horizontal or vertical (i.e. orientation of blood vessels is parallel to the side of 
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the square pixel). Because blood vessels orientation is highly random, it is reasonable to use the 

mean value which is  2 1 / 2d  to represents every pixel instead of known each pixel’s true 

length. The total length is  2 1 / 2d n  . The mean diameter was calculated by dividing the 

total area (m, number of pixels with value 1 in the binary image   area of each pixel) by the total 

length. To calculate the total volume, we assumed that blood vessels are cylinders. the total 

volume equals  
2

mean diameter / 2 total length  . The fourth quantity - fulfillment rate was 

obtained by m  over the total pixel number of the binary image. 

An OR-PAM image of carbon fiber with a true diameter of 7μm is used to estimate the error of 

our quantification algorithm. 

P-values were calculated by Wilcoxon rank-sum test to reveal significances of the four quantities 

in normal ovary vs. a normal fallopian tube, normal ovary vs. cancerous ovary, and normal tube 

vs. cancerous tube.  

6.3 Results 

6.3.1  Qualitative Analysis: Baseline Characteristics of US and PAT Images 

Carbon fiber was imaged for testing the quantification algorithm. Figure 6.3 A is the 1.8 mm by 

6 mm original images. Four regions of interest were selected for testing. It demonstrated that 

errors of total length range from 9.8% to 16.1%. In Figure 6.3 B, the true total length of five 

segments is 2.604 mm measured by a scale, and the calculated length is 2.938 mm, which 

generates an error of 12.8%. True total lengths of fiber segments in Figure 6.3 (C-E) are 1.116 

mm, 3.407 mm, 6.691 mm, respectively, with a calculated total length of 1.225 mm, 2.860 mm, 
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5.936 mm, respectively. The mean diameters of the four regions are 14.1, 17.7, 13.8, 18.4μm , 

respectively, which are greater than the true diameter of 7μm .   

 

Figure 6.3 OR-PAM image of carbon fiber phantom. (A) The original OR-PAM image with a 

size of 1.8 mm by 6 mm, and (B-E) regions selected for testing 

For specimen images, OR-PAM images of normal ovaries demonstrate a distinct difference from 

images of normal fallopian tubes. Normal ovaries (Figure 6.4 A-E) show sparse blood vessels 

but fallopian tubes reveal much denser vessel patterns (Figure 6.4 F-J). Hence the total length, 

total volume, and fulfillment rate of ovaries are smaller than that of fallopian tubes.  

In quantification result, total length, total volume, and fulfillment rate are significantly different 

with p-values much smaller than 0.01 and mean diameters of normal ovary and normal tube 

show a P-value of 0.037. Normal fallopian tubes have mean diameters of blood vessels ranging 

from 10 to 19μmexcluding a few outliers. By contrast, that of ovaries is ranging in a broader 
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range from 4 to 33μm  (Figure 6.5A). The blood vessels’ total length of the two types of tissue is 

significantly different (Figure 6.5B). Fallopian tubes range from 130 to 440 mm with the median 

at 290 mm. Ovaries show a much smaller value of 20 to 210 mm with the median at 130 mm. 

Total blood vessel volumes (Figure 6.5C) of fallopian tubes distribute in a broader range with 

greater values (0.02 to 0.16 3mm ) than that of ovaries (0.005 to 0.06 3mm ). For fulfillment rate 

(Figure 6.5D), fallopian tubes have higher values (10% to 50%) than ovaries (0.4% to 27%).  
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Figure 6.4. OR-PAM image examples of normal ovary (A-E) and normal fallopian tube (F-J) 

specimens 

 

Figure 6.5. Boxplots of quantifications in the normal fallopian tube and normal ovary group.  

6.4 Discussion and Summary 

In our previous study, we imaged eight normal/benign, two malignant ovaries, and three 

normal/benign fallopian tubes to demonstrate OR-PAM’s capability of resolving blood vessels. 

In this study, we increased the data set to 18 normal/benign fallopian tubes and 19 normal/benign 
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ovaries, which reveals the interesting scientific finding of vasculature distribution in this type of 

specimen and leads to a more robust statistic. 

The new quantification algorithm introduced in this study is efficient to evaluate meaningful 

physical quantities in a reasonable error range. The calculated total length of carbon fiber 

phantom shows errors ranging from 9.8% to 16.1%. The calculated mean diameter is greater than 

the true diameter, which may be due to the median filter applied on the raw data to reduce noise. 

The new algorithm is easier to access because only MATLAB and Image Processing Toolbox are 

required, while in previous work, the expensive software Amira was used. 

In addition to the normal/benign specimens, we also imaged a few cancerous ovaries and fallopian 

tubes. However, the dataset is still too small to conclude a convincible statistical result. So we 

decide to keep accumulating this new type of data and report later. At this point, from the data we 

have, we observed a significant blood vessels pattern difference between normal/benign and 

cancerous ovary, as well as normal/benign and cancerous fallopian tubes.  
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Chapter 7: Summary and Future Work 

7.1 Summary 

In the first study of this dissertation, AR-PAM has been investigated on colorectal cancer 

imaging. In the first phase of the study, we developed a benchtop co-registered ultrasound and 

AR-PAM system imaging resected colorectal specimens ex vivo.  The initial data suggested that 

ultrasound images clearly reveal the structure of the bowel wall and AR-PAM images can map 

out blood vessels distribution. Normal tissue presents an organized multilayer structure and 

submucosa is rich in blood vessels, but malignant tissue shows a highly disorganized cross-

sectional structure with central darkening of the photoacoustic signal inside the tumor. 

Quantitative analysis of photoacoustic spectral slope has demonstrated more high-frequency 

components in malignant tissue as compared to the normal colon tissue, which may be caused by 

significantly increased microvessel networks. For treated colorectal cancers, AR-PAM may 

identify completely responded lesions, which would significantly change surgical practice for 

these diseases. In the second phase of the study, we have invented an US/AR-PAM endoscope 

for patient imaging. The endoscope is the first AR-PAM scope that has been successfully used 

on a human patient. The endorectal US/AR-PAM data is the first dataset of this type that has 

been presented ever. The PAM-CNN and US-CNN models were trained and validated to 

distinguish normal from malignant colorectal tissue using ex vivo and in vivo patient data. The 

PAM-CNN and US-CNN were then tested using additional in vivo patient data unseen by CNNs. 

Unique PAM imaging markers of complete tumor response were found– specifically, recovery of 

normal submucosal vascular architecture within the treated tumor-bed. The PAM-CNN model 

captured this recovery process and correctly differentiated these changes from a residual tumor. 
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The imaging system remained highly capable of differentiating tumor from normal tissue, 

achieving an AUC of 0.98 (95% CI: 0.98-0.99) from five testing patients. By comparison, US-

CNN had an AUC of 0.71 (95% CI: 0.70-0.73). From the patient study, we conclude that an 

endorectal co-registered PAM/US system paired with a CNN model showed high diagnostic 

performance in assessing rectal cancer treatment response and the potential of optimizing post-

treatment management. A generalized linear model (GLM) has been studied to classify 

colorectal images in addition to CNN, and CNN models outperform GLM models for both 

ultrasound and AR-PAM imaging classification. 

In the second study of this thesis, an OR-PAM system is developed for imaging ovary and 

fallopian tube specimens. For the first time, quantitative parameters for characterizing 

microvascular components of ovarian tissue and fallopian tube are derived using the Amira 

software. The parameters include three-dimensional vascular segment count, total volume, and 

length, which are associated with tumor angiogenesis. Quantitative analysis shows that 

malignant ovaries have greater tumor vessel volume, length, and a number of segments, as 

compared with benign and normal ovaries. Later, an easy access algorithm is introduced to 

quantify physical mean diameter, total length, total volume, and fulfillment rate. Phantom testing 

shows that the algorithm can effectively calculate the four quantities in a reasonable error range. 

A larger dataset reveals that normal ovaries and normal fallopian tubes present distinct 

vasculature patterns. The normal ovary shows sparse vessels but the normal tube shows much 

denser vasculature. Our pilot study suggests that OR-PAM may provide a valuable tool to assist 

surgeons for near real-time diagnosis. 
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7.2 Future Work 

7.2.1 AR-PAM assisted diagnosis in real-time   

Paired with the Convolutional Neuron Network, the endoscopic photoacoustic imaging technique 

has demonstrated the promising capability of evaluating treatment response for human rectal 

cancer. For the next study, we have developed a prototyping diagnosis software integrated with a 

pre-trained CNN model for inspecting treatment response. The software allows physicians to go 

through a sequence of cross-sectional photoacoustic/ultrasound (PA/US) images covering lesion 

areas and obtain a probability of normal from regions of interest (ROI). With the assistant of the 

software, we have reviewed several patient cases in detail and compared each case to the 

pathological reports. This work demonstrated a potentially feasible protocol for rectal cancer 

treatment evaluation in the future. 

 

Figure 7.1 User Interface of the PAM-CNN diagnosis software 

The raw data of voltage acquired by AR-PAM endoscope was applied with medium filter and 

FIR filter to decrease noise and DC components. After applying an absolute value of Hilbert 

transform of the voltage data, envelope data can be shown in logarithmic scale as images. It is 
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quite common that during imaging, the probe head was not located in the center of the rectal 

wall. In post-processing, the rectal surface is aligned in a perfect circle to simplify the testing 

procedure. Well-aligned images are to be loaded into the PAM-CNN diagnosis software. 

During the endoscopic examination, a sequence of B-scans covering the lesion area were 

acquired. The sequence is loaded into the software for a thorough diagnosis. On the user 

interface, ultrasound and the co-registered PA images are displayed in a row. The slider in the 

middle allows the user to jump to the cross-sections of interests. Figure 8.1 shows the cross-

section with a tumor in 5 o’clock. 8 fan areas in the figure lined out 8 ROIs to be tested. Sliding 

the horizontal bar on top of images, fan areas can be rotated to a proper location, in where one or 

more fans cover the lesion area. Fan sizes are adjustable to fit the lesion size; a number of fans 

can be set to 4, 8, 12, and 16. Once the size and orientation of fan-shape quadrants are set 

properly, the images are ready to be tested. Clicking the Test button on the interface panel, ROIs 

corresponding to each fan quadrant are cropped from the B-scan image of the planar view. All 

ROIs are taken in by the pre-build CNN models, which generate a probability for each ROI. The 

probability indicates the probability of normal with a threshold of 50%. (e.g. 70% means normal, 

while 20% means cancer). The percentage is displayed aside from each fan-shaped quadrant. In 

such a way, Physicians can go through the sequence covering both normal and lesion area, and 

get probabilities of normal for any section. Together with architecture revealed by ultrasound 

images, CNN testing results can assist physicians to make a final diagnosis. 

7.2.2 OR-PAM for malignant ovary and fallopian tube imaging 

We are recruiting more patients to build a larger database including malignant ovaries and 

fallopian tubes. From our existed data, the blood vessels present distinct patterns among normal 

ovaries and malignant ovaries, as well as normal fallopian tubes and malignant tubes. Both 
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malignant ovaries and fallopian tubes demonstrate chaotic photoacoustic signals instead of a 

clear vasculature network. However, the current dataset includes a very limited number of 

malignancies. A more robust statistical analysis can be achieved later with more patients. 

 

Figure 7.2 OR-PAM image of malignant ovary (A) and malignant fallopian tube (B) 
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