
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2021

Provably and Practically Efficient Race Detection for Task-Parallel Provably and Practically Efficient Race Detection for Task-Parallel

Code Code

Yifan Xu

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Recommended Citation Recommended Citation
Xu, Yifan, "Provably and Practically Efficient Race Detection for Task-Parallel Code" (2021). McKelvey
School of Engineering Theses & Dissertations. 751.
https://openscholarship.wustl.edu/eng_etds/751

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/751?utm_source=openscholarship.wustl.edu%2Feng_etds%2F751&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST.LOUIS

McKelvey School of Engineering
Department of Computer Science and Engineering

Dissertation Examination Committee:
I-Ting Angelina Lee, Chair

Kunal Agrawal
Sanjoy Baruah
Jeremy Buhler

Jeremy T. Fineman (Georgetown)

Provably and Practically Efficient Race Detection for Task-Parallel Code
by

Yifan Xu

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2021
St. Louis, Missouri

c© 2021, Yifan Xu

Table of Contents

List of Tables .. v

List of Figures ... vii

List of Algorithms ... ix

Acknowledgments .. x

Abstract ... xiv

Chapter 1: Introduction .. 1

1.1 Pitfall: Determinacy Race ... 2

1.2 Limitations of the Prior Studies ... 3

1.3 Contributions ... 4

1.4 Roadmap... 6

Chapter 2: Preliminary ... 7

2.1 Task Parallelism.. 7

2.2 Modeling Parallel Computations... 8

2.3 Work-Stealing Scheduler ... 9

2.4 Determinacy Race Detection.. 10

Chapter 3: Race Detection for Pipeline Parallelism 12

3.1 2D-Order Algorithm .. 14

3.1.1 Notations and Definitions .. 14

3.1.2 Reachability in 2D-Order Algorithm .. 15

3.1.3 OM-DownFirst and OM-RightFirst Maintain Reachability Relation-
ships ... 17

3.1.4 Checking Races and Updating Access History 24

3.1.5 Performance of 2D-Order .. 26

ii

3.2 Generalizing 2D-Order ... 27

3.3 PRacer: Race Detection for Cilk-P.. 29

3.3.1 Cilk-P’s Support for Pipeline Parallelism 29

3.3.2 PRacer: Applying 2D-Order to Cilk-P ... 31

3.4 Performance Evaluation.. 35

Chapter 4: Futures and Proactive Work-Stealing 39

4.1 Future Parallelism ... 42

4.1.1 Modeling Future Parallelism .. 42

4.1.2 Types of Futures ... 44

4.2 Proactive Work-Stealing ... 44

4.2.1 Data Structures Used ... 45

4.2.2 The Algorithm .. 47

4.3 Performance Bounds for Proactive Work-Stealing..................................... 50

4.3.1 Bound on Execution Time ... 52

4.3.2 Bounds on Deviations ... 54

Chapter 5: Race Detection for General Futures ... 62

5.1 Nearly Series-Parallel Dag ... 64

5.2 Overview of F-Order .. 64

5.2.1 Access History in F-Order ... 65

5.2.2 Reachability Maintenance in F-Order... 66

5.2.3 An Illustrating Example.. 68

5.3 Details of F-Order and Its Correctness... 70

5.3.1 Construction of FOM Data Structures ... 71

5.3.2 Reachability Queries Using FOM .. 78

5.4 The Performance Bound of F-Order .. 82

5.5 Implementation and Empirical Analysis ... 85

Chapter 6: Race Detection for Structured Futures 90

6.1 Revisiting Structured Futures .. 91

6.2 SF-Order Algorithm... 94

6.2.1 Intuition Behind the Query Algorithm ... 95

iii

6.2.2 Reachability Queries in SF-Order .. 97

6.2.3 Correctness Proof of the Query Algorithm 98

6.2.4 Maintaining the Reachability Data Structures On-the-fly 105

6.2.5 The Access History Component .. 105

6.3 Performance Analysis of SF-Order .. 107

6.4 Implementation and Empirical Evaluation of SF-Order 109

Chapter 7: Optimizing Access Histories .. 115

7.1 Compile-Time and Runtime Coalescing.. 118

7.1.1 Compile-Time Coalescing .. 119

7.1.2 Runtime Coalescing.. 121

7.2 Interval-Based Access History .. 123

7.2.1 Updating the Write Tree ... 124

7.2.2 Inserting an Interval in the Read Tree .. 128

7.2.3 Queries to Check for Races .. 130

7.2.4 Performance Analysis ... 130

7.3 Empirical Evaluation ... 133

Chapter 8: Asynchronous Access History .. 140

8.1 Synchronous vs. Asynchronous Access History .. 142

8.2 The Trace Data Structure ... 144

8.3 Asynchronous Race Detection Protocol .. 146

8.4 Evaluation ... 150

Chapter 9: Related Work .. 153

Chapter 10:Conclusion .. 159

References .. 161

iv

List of Tables

Table 3.1: The execution characteristics of the benchmarks. 36

Table 3.2: The execution times for the benchmarks running on one core for all
configurations, shown in seconds. The numbers in parentheses indicate
the overhead compared to the baseline. .. 38

Table 5.1: The characteristics of the benchmarks. The sw and hw benchmarks
have two implementations: structured (sf) and general futures (gf). 86

Table 5.2: Performance of the benchmarks with F-Order and FutureRD for race
detection. Execution time on P processors, TP , is given in seconds.
Numbers in the parentheses show the overhead compared to the base-
line. Numbers in the brackets show the scalability relative to T1 of the
same configuration. Measurements of smm running with FutureRD is
not available because it segfaulted. ... 88

Table 6.1: The input size (N), basecase size (B), and execution characteristics of
the benchmarks, including the total numbers of reads, writes, reach-
ability queries performed throughout the execution, the number of
futures used, and the number of nodes in the computation dag. 111

Table 6.2: Execution times of the benchmarks shown in seconds for the baseline
executions (i.e., with no race detection, shown as base) and when run-
ning with MultiBags, F-Order, and SF-Order for race detection with
two different configurations. The first configuration shown as reach
runs each algorithm with only the reachability construction overhead.
The second configuration shown as full runs the full race detetion
algorithm. Columns with T1 show the execution times running on one
core, and columns T20 show the execution times running on 20 cores.
Numbers in the parentheses show the overhead compared to the base-
line executions. Numbers in the brackets show the scalability relative
to the T1 time of the same configuration. 112

Table 6.3: Memory usage of the benchmarks when running with F-Order and
SF-Order for reachability maintenance, shown in gigabytes. 113

v

Table 7.1: Overheads of a vanilla race detector. Time shown in seconds. The
first four columns from left to right show the benchmark name, its
running time without race detection, that with only the reachability
component, and that with the full race detection. The numbers in
parenthesis show the overhead comparing to the baseline. The last
four columns show the number of memory locations and intervals ac-
cessed, on the order of millions... 116

Table 7.2: Execution times (in seconds) and overheads of different versions of the
race detector compared to the baseline (i.e., no race detection), whose
values are shown in Table 7.1... 135

Table 7.3: Various execution statistics on memory accesses generated when run-
ning vanilla, with comiler coalescing (compiler), and with both com-
piler and runtime coalescing (both). The acc. and int. indicate the
number of accesses / intervals that eventually made into the access
history, shown in millions. The avg. shows the average size per inter-
val accessed, and the sum shows the total size (in Mbytes) accessed.
The (r) / (w) indicate read or write. ... 136

Table 7.4: The total time (in seconds) each benchmark spent updating its access
history (i.e., hashmap for comp+rts and treap for treap). 137

Table 7.5: Execution times of fft, mmul, and sort running on baseline (base,
i.e., no race detection), comp+rts, and treap on different input sizes,
with overhead compared to base shown in parenthesis. On the right
of the execution times, we also show various stats for comp+rts (using
a hashmap) and treap, where the oh indicates time spent on access
history only, the ops indicates the number of hashmap / treap oper-
ations, the # nodes shows the average number of nodes visited per
treap operation, and the # overlaps shows the average number of
overlaps encountered per treap operation. 138

Table 8.1: The total time (in seconds) each benchmark spent on performing run-
time coalescing and uptating treap, respectively. 141

Table 8.2: Execution times (in seconds) of different versions of the benchmarks.
Columns with T1 show the single-core execution times and columns
with T20 show the 20-cores execution times. Numbers in the paren-
theses show the overhead compared to the baseline. Numbers in the
brackets show the scalability compared to its respective single-core
execution (T1). ... 151

vi

List of Figures

Figure 1.1: A simple task-parallel code that contains determinacy races. 2

Figure 2.1: A simple fork-join code that computes the nth Fibonacci number...... 8

Figure 3.1: A path P divides a 2D-dag into two regions, PR (shaded with hori-
zontal lines) and PD (shaded in vertical lines). 18

Figure 3.2: Figure for Lemma 9. Assume two lcas for x and y exist, namely z and
z′, and let u be a lca of z and z′. .. 20

Figure 3.3: Figure for Lemma 10. Path P is shown in red, and path P ′ is in blue.
The shaded region is R. The node xd is x.dchild and the node xr is
x.rchild... 21

Figure 3.4: An example of the kind of 2D-dag Cilk-P can generate. A node
presents a strand, and an edge denotes dependence between two
strands. The iteration numbers are denoted above, and the numbers
in the nodes denote the stage numbers... 31

Figure 3.5: The scalability of the benchmarks. The x-axis shows the number of
cores used. The y-axis shows the scalability, computed by taking the
runtime on one core divided by the runtime on P cores under the same
configuration, where P is the number cores used. 37

Figure 5.1: An example of a NSP-dag with every node’s FOM data structure
shown. In this NSP-dag, four SP-dags exist, ID’ed as A, B, C, and
D, with A being the main SP-dag and the others being the spawned
future tasks. The non-SP edges are shown as thick dashed edges.
Each node has its own instance of FOM data structure, containing
entries of {key : value} pairs, where the key is the ID of an SP-dag
and the corresponding value is a set of non-SP ancestors from the SP-
dag. The parentheses next to each non-SP ancestor shows its furthest
descendant in the group.. 69

Figure 6.1: An example of an SF-dag. ... 93

vii

Figure 6.2: The corresponding pseudo-SP-dag for the SF-dag shown in Figure 6.1. 97

Figure 7.1: All cases illustrating InsertWriteInterval(y, x) — assumes and
maintains the no-overlap invariant. ... 125

Figure 7.2: Case C of RemoveOverlapLeft(z, x). x was inserted at an ances-
tor to the right of z. .. 127

Figure 7.3: Case D of InsertReadInterval(y, x). 128

Figure 8.1: A parallel computation that contains a determinacy race. However,
no race will be reported if we perform race detection in a certain order. 143

Figure 8.2: An invocation tree and its corresponding views of stack................... 144

viii

List of Algorithms

1 2D-Order: Reachability Maintenance . 16
2 2D-Order: Access Histories . 24
3 Variant 2D-Order . 28
4 2D-Order for Cilk-P . 32

5 ProWS: The Main Scheduling Loop . 48
6 ProWS: The Steal Protocol . 50

7 F-Order: Construction . 72
8 Helper Function: Group-Insert . 75
9 Helper Function: Group-Merge . 76
10 Group-Search in Reachability Query . 79

11 SF-Order: Reachability Query . 98

12 Base Case of matmul . 119
13 Insertion-Sort Base Case of cilksort . 121

14 Trace Construction . 146
15 Asynchronous Race Detection Protocol . 148

ix

Acknowledgments

Every story has an ending, just as I am writing these acknowledgments to conclude my PhD

life. Five years ago, I left my hometown, Shanghai, and began studying abroad for the first

time in my life. Before I came to WashU, I had negligible research experience. I did not

know if I could take care of myself without my parents’ help. I did not know how to drive.

There were a lot of things I needed to learn to survive my graduate study. Therefore, I was

imagining a difficult and painful process of pursuing my PhD that I might not be able to

stand. Every single moment from the past five years, however, had been proving that I was

wrong. I published my first paper after the first year. I attended an academic conference for

the first time and met interesting people. I have had a lot of such happy memories during

my graduate study, and none of them would have been possible without the help of many

people.

First and foremost, I would like to thank my advisor, Dr. Angelina Lee. Angelina is truly

a wonderful advisor. Her advice is always very helpful to me in finding the right problem to

work on. She has also taught me to think critically when reading papers and encouraged me

to develop my own ideas, which benefit not only my PhD study but also my future career. I

still remember that we worked together until early morning, fighting my first paper deadline.

This experience sounds painful, but to me, it is truly a wonderful memory. I am very glad

that she received tenure recently.

x

I would like to thank my reliable collaborators, especially Dr. Kunal Agrawal and my lab

mate, Kyle Singer. Kunal is a great theory person, and her insights on algorithms really make

my research process smooth. She and Angelina together have also helped me to improve my

presentation skills through the iterations of conference talk practice.

Kyle joined our group in 2017. He has brilliant abilities to build reliable and efficient

runtime systems. I cannot have most of my work done without his support.

I want to thank the other members who serve on my committee: Dr. Sanjoy Baruah, Dr.

Jeremy Buhler and Dr. Jeremy Fineman. Especially, I am very grateful to Dr. Fineman for

his attendance at my defense virtually from Sydney after midnight.

I am fortunate to have these great friends during my graduate study at WashU: Ruixuan

Dai, Shenghua He, Dingwen Li, Songshan Liu, Wei Tang, Xiaojian Xu, Hao Yan, and Huayi

Zeng. We have had a lot of fun together, including working out in the gym, hiking, going

to Karaoke, having hotpot, so on and so forth, which really makes my life here colorful. I

would also like to thank all my friends in Shanghai, especially Weiwei Cai, Fan Gu, Merry

Hou, Zhengzhen Huang, Liang Liang, Yong Sun and Yuanyuan Zhu, for often chatting with

me and sharing me interesting news from my hometown.

I would like to thank my lovely girlfriend, Tiantian Zhu, for appearing in my life. Tiantian

is the most shining girl I have ever met. Even if she is not a Computer Science person, she is

always willing to listen to my complaints about the difficulties I met during my research. I

am also thankful for her great cooking skills, which allow me to have had so much delicious

Chinese food in St. Louis where there are not many good Chinese restaurants.

I would like to end this list of acknowledgments by showing my deepest gratefulness to

my Dad and Mom, for having taught me everything that cannot be taught from schools,

especially, to be a nice and kind person.

The work described in this dissertation is supported in part by the National Science

Foundation under grant numbers CCF-1527692, CCF-1150036, CCF-1733873, CCF-1910568,

xi

CCF-1943456, CCF-1533644, CCF-1725647 and CCF-1439062; and by the United States Air

Force Research Laboratory under Cooperative Agreement Number FA8750-19-2-1000.

Yifan Xu

Washington University in St. Louis

December 2021

xii

Dedicated to my parents,

Xu Jiu and Xu Ruiping,

who have encouraged me to begin this journey.

xiii

ABSTRACT OF THE DISSERTATION

Provably and Practically Efficient Race Detection for Task-Parallel Code

by

Yifan Xu

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2021

Advisor: I-Ting Angelina Lee

Parallel systems are pervasive nowadays. Specifically, modern computers have embraced

multicore architectures due to the difficulties of exploiting higher clock speeds on single-core

CPUs. However, parallel programming is challenging. Determinacy race, in particular, is

a common pitfall when writing task-parallel code. It can easily lead to non-deterministic

behavior of the parallel program and therefore a determinacy race is often considered as a

bug. Unfortunately, such bugs are hard to debug because they do not necessarily produce

obvious failures in every single execution.

To ease the debugging process of determinacy races in task-parallel code, this dissertation

proposes several provably and practically efficient parallel race detection algorithms. Unlike

prior works mostly target fork-join parallelism, we focus on less structured but important

programming paradigms – pipeline parallelism and futures. In addition, we build an efficient

runtime system for scheduling futures, which is not only a facility to study the race detec-

tion problem for futures but also useful in practice. Finally, this dissertation investigates

mechanisms that optimize the access history of race detectors, which provides significant

additional boost to the performance.

xiv

Chapter 1

Introduction

Parallel systems are pervasive nowadays. Specifically, modern computers have embraced

multicore architectures due to the difficulties of exploiting higher clock speeds on single-core

CPUs. Unlike rising clock speeds, serial programs are not getting much performance boost

through the parallel architectures. Scalable parallel programs, in contrast, can make full use

of the powerful capabilities of multicore CPUs.

However, parallelization of applications can’t be done automatically. Programmers are

now required to write correct and scalable parallel programs explicitly despite the fact that

the serial programming abstraction was widely used before. Worse yet, parallel programming

is inherently more challenging than serial programming. For example, when programming

with low-level threading APIs, such as POSIX thread [40], programmers need to manually

manage task decomposition, scheduling and complex synchronization.

Fortunately, much effort has been made to simplify parallel programming. Task paral-

lelism, for example, provides programmers with language constructs to express logical paral-

lelism of the computation, and an underlying runtime system that performs the scheduling

1

and synchronization among parallel computations to achieve load balancing and coordina-

tion. Such high-level programming model allows programmers to focus on the decomposition

of the problem and the design of the parallel algorithm.

1.1 Pitfall: Determinacy Race

Even though task parallelism meets a wide range of parallel programming needs, parallel

programming still remains challenging for programmers. Unlike serial programs that are

naturally deterministic, meaning that the program will always produce the same output

given a particular input, parallel programs can easily become non-deterministic. Take the

simple task-parallel code in Figure 1.1 as an example. The spawn keyword in the main

function indicates that task1 can be executed concurrently with the continuation in which

task2 is invoked (lines 9–10). Then the sync keyword causes the main function to suspend

until task1 returns (line 11). A risk in this task-parallel code is that, task1 and task2

update the shared variable x with different values concurrently. Therefore the output value

of x can vary, depending on the scheduling order.

1 int x;
2 void task1() {
3 x = 1;
4 }
5 void task2() {
6 x = 2;
7 }
8 int main() {
9 spawn task1();

10 task2();
11 sync;
12 printf("x is %d\n", x);
13 return 0;
14 }

Figure 1.1: A simple task-parallel code that contains determinacy races.

2

Such risk is commonly referred to as determinacy race. A determinacy race occurs

when two or more logically parallel tasks perform memory operations on the same mem-

ory location and one of the operations is a write. 1 Determinacy races can lead to non-

deterministic behavior and therefore they are often bugs. Unfortunately, such bugs are hard

to debug because they do not necessarily produce obvious failures in every single execution.

To that end, many race detection algorithms [2, 9, 27–29, 55, 71, 72, 90, 97, 98] have been

proposed in the context of task parallelism. The algorithms usually perform race detection

on-the-fly as the program executes. For a given program and input, the race detection

algorithms report a race if and only if the program contains a determinacy race for that input,

regardless of the schedule. Moreover, the algorithms typically consist of two components: an

access history that keeps track of the readers and the writers that previously accessed a

given memory location during execution and a reachability data structure that, given a

reader and a writer that accessed the same memory location, answers the question of whether

or not they are logically in parallel.

1.2 Limitations of the Prior Studies

Each of the prior works has its own limitation. First, much of the prior work [9, 27–29, 55,

71, 72, 97] supports race detecting only fork-join parallelism (formally defined in Section 2.1).

Fork-join parallelism has nice structural properties and such properties enable efficient race

detection algorithms. A few prior works [2, 26, 90, 98] have studied the problems outside

of the realm of fork-join parallelism. Due to the lack of structural properties, however, the

algorithms execute the computation sequentially and incur a large overhead. Second, most

of the work has been done focused on optimizing the reachability while little attention has

been paid to the access history. It is often the most expensive component of race detection

in practice while in theory, the access history adds no asymptotic overhead.
1In contrast, a data race occurs when two parallel strands, holding no locks in common, access the same

memory location in a conflicting way. A determinacy race is sometimes referred to as a general race [61].

3

1.3 Contributions

This dissertation, therefore, proposes several provably and practically efficient parallel race

detection algorithms that detect determinacy races for computations that are less structured

than fork-join parallelism. In addition, we have investigated mechanisms that optimize the

access history component in race detection algorithms. The rest of this chapter briefly

summarizes the contributions of this dissertation.

Race detection for pipeline parallelism

We propose a provably correct and efficient race detection algorithm, 2D-Order , for detect-

ing races in pipeline parallelism. 2D-Order is the first known parallel race detection algorithm

that targets pipeline program and given a computation, 2D-Order executes it while also de-

tecting races with asymptotically constant overhead. We also implemented PRacer, a race

detector based on 2D-Order for Cilk-P [48, 49], which is a language for expressing pipeline

parallelism. Empirical results demonstrate that 2D-Order incurs reasonable overhead and

exhibits scalability similar to the baseline (executions without race detection) when running

on multiple cores.

Results of this study have previously appeared in the following publication:

• Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal, Efficient Parallel Determinacy Race

Detection for Two-Dimensional Dags, Proceedings of the 23rd Symposium on Principles

and Practice of Parallel Programming (PPoPP’18), 2018.

Race detection for future parallelism

A provably and practically efficient scheduler for future parallelism is needed when studying

the race detection problem in the context of futures. However, a program with futures could

incur much higher scheduling costs, when scheduling with the classic work-stealing al-

gorithm (described in Section 2.3). Therefore, we first investigate an alternative scheduling

4

approach, called proactive work-stealing , an algorithm for scheduling the future paral-

lelism with provably efficient execution time and better cache performance compared to

classic work-stealing.

We then address race detection problems for programs with different use of futures,

namely general futures and structured futures . Specifically, we present two algorithms:

F-Order and SF-Oder . F-Order is the first known parallel race detection algorithm that

detects races on programs using general futures. SF-Order, in contrast, exploits the restric-

tions imposed by structured futures, and therefore achieves better execution time compared

to the race detection algorithm designed for general futures. We implemented both algo-

rithms and empirically demonstrated their efficiency.

Results of this work have previously appeared in the following publications:

• Kyle Singer, Yifan Xu, and I-Ting Angelina Lee, Proactive Work Stealing for Futures,

Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming

(PPoPP’19), 2019.

• Yifan Xu, Kyle Singer, and I-Ting Angelina Lee, Parallel Determinacy Race Detection

for Futures, Proceedings of the 25th Symposium on Principles and Practice of Parallel

Programming (PPoPP’20), 2020.

• Yifan Xu, Kunal Agrawal, and I-Ting Angelina Lee, Efficient Parallel Determinacy Race

Detection for Structured Futures, Proceedings of the 33rd ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA’21), 2021.

Optimizing access history

We propose compiler and runtime mechanisms that perform memory access coalescing ef-

ficiently, and a treap-based access history data structure. Together these optimization are

capable of speeding up sequential race detectors for task-parallel code.

5

We then extend those optimization of access history to parallel race detectors by exploring

an asynchronous access history scheme.

Results of part of this work have previously appeared in the following publication:

• Yifan Xu, Anchengcheng Zhou, Grace Q. Yin, Kunal Agrawal, I-Ting Angelina Lee, and

Tao B. Schardl, Brief Announcement: Efficient Access History for Race Detection, Pro-

ceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’21), 2021.

1.4 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 reviews the backgrounds

and introduces the terminologies used throughout this dissertation. Chapter 3 addresses the

race detection problem for pipeline parallelism. Chapter 4 introduces future parallelism and

presents proactive work-stealing – the scheduling algorithm that serves as an essential basis

for the works in the following chapters. Chapter 5 and Chapter 6 propose race detection

algorithms for general futures and structured futures, respectively. Chapter 7 investigates

optimizations on access history to speed up sequential race detectors and Chapter 8 ex-

tends those optimizations to parallel race detectors. Chapter 9 reviews the related work.

Chapter 10 concludes this dissertation by summarizing the results presented throughout the

document.

6

Chapter 2

Preliminary

2.1 Task Parallelism

Task parallelism is a processor-oblivious programming model that provides programmers

language constructs to express logical parallelism of the computation. During the execution

of a task-parallel program, an underlying runtime scheduler automates tasks such as load

balancing and coordination among parallel tasks. Task parallelism is widely supported by

parallel programming platforms such as Intel TBB [43], Cilk dialects [24, 44, 50], Habanero

dialects [7, 16] and X10 [18].

Based on the sets of language constructs used in the task-parallel program, one can di-

vide task parallelism into categories. Take fork-join , a traditional parallelism paradigm

supported by many task-parallel platforms, for example. Fork-join parallelism can be ex-

pressed using two simple keywords: spawn and sync. When a function F spawns off

another function G by prefixing the invocation with spawn, the execution of G may operate

in parallel with the continuation of F . The invocation of a sync specifies that all previously

7

spawned functions must return before the control can pass sync.2 Figure 2.1 shows a simple

fork-join code that computes the nth Fibonacci number in a naive way.

1 int fib(int n) {
2 if (n < 2) return n;
3 int x = spawn fib(n-1);
4 int y = fib(n-2);
5 sync;
6 return x + y;
7 }

Figure 2.1: A simple fork-join code that computes the nth Fibonacci number.

2.2 Modeling Parallel Computations

One can model the execution of a parallel program as a directed acyclic graph (dag),

where a node represents a strand or a series of sequential instructions without parallel

constructs, and an edge represents a dependence between two strands. Given two nodes u

and v such that there exists a path from u to v, for example, then the strand represented

by u must be completed before executing the strand represented by v. In other words,

the incidence relations of a dag can be viewed as order relations on its nodes and edges.

Notation-wise, we write u ; v to denote the presence of a directed path from u to v. We

say u ≺ v iff u ; v; u � v iff either u ≺ v or u = v. We say u ‖ v iff there is no path from

u to v or from v to u.

Given a computation dag, one can measure its performance using two metrics: the work

metric, which is the number of nodes in the dag, and the span metric, which is the length of

the longest directed path through the dag, assuming each node takes unit time to execute.

Equivalently, the work metric measures how long it takes to run this computation on one
2Many task-parallel platforms also support parallel loops, which can be thought of as syntactic sugar that

compiles down to spawn and sync.

8

core and the span metric measures how long it takes to run this computation on an infinite

number of cores.

Series-parallel dag

The execution of a fork-join program generates a series-parallel dag (SP-dag) with well-

defined structural properties. An SP-dag is a planar dag with a unique source node with no

incoming edges and a unique sink node with no outgoing edges. Specifically, the execution

of a spawn creates a spawn node with two outgoing edges: one to the spawned function

and one to the continuation of the caller. The execution of a sync creates a sync node

that joins together all previously spawned functions — creating an edge from the end of a

spawned function to the sync node that represents continuation after the sync statement.

Without loss of generality, we shall assume that a sync node consists only only two incoming

edges — it is not difficult to convert a sync node with multiple incoming edges into a chain

of sync nodes, each with two incoming edges.

2.3 Work-Stealing Scheduler

A task-parallel computation can be scheduled efficiently using a work-stealing scheduler [4,

5, 13, 14]. A work-stealing scheduler dynamically load balances a parallel computation in

a distributed fashion, which incurs low contention compared to centralized approaches (e.g.,

work-sharing). In classic work-stealing, each worker thread keeps its own double-ended

queue (or deque for short) which holds ready nodes , that is, unexecuted nodes whose

predecessors in the dag have all been executed. Each worker operates on its own deque

locally. Specifically, when a worker executes a ready node in the dag and causes some child

nodes to be ready, the worker pushes those ready nodes onto the bottom of its deque. Then

the worker gets a new ready node by popping one off the bottom of its deque and continues

to execute it. If a worker finds that its deque is empty, then the worker becomes a thief.

9

A thief worker chooses a victim worker uniformly at random and attempts to steal the top

node of the victim’s deque.

The work-stealing algorithm has been shown to provide strong performance guarantees [4,

5, 13, 14]. Given a parallel computation with work T1 and span T∞, a work-stealing scheduler

executes it on P processors in expected execution time T1/P +O(T∞).

2.4 Determinacy Race Detection

Parallel programming introduces additional pitfalls compared to serial programming. Pro-

grammers are required to specify the execution order between certain tasks to coordinate the

parallel execution flow. Inappropriately defined orders can lead to concurrency bugs, e.g.,

races and deadlocks. This dissertation targets determinacy races. A determinacy race

occurs when two or more logically parallel instructions access the same memory location,

and at least one of them performs a write. Determinacy races may lead to non-deterministic

behavior that is generally a programming error.

On-the-fly race detector

In this work, we focus on performing race detection on-the-fly as the program executes. For

a given program and input, we want to report a race if and only if the program contains a

race for that input. As mentioned in Chapter 1, an on-the-fly race detector maintains two

key data structures. An access history that stores the readers and the writers that previously

accessed a given memory location, and a reachability data structure that determines whether

two given accesses are logically in parallel or not, or equivalently whether or not there is a

directed path between the corresponding nodes in the dag. For an on-the-fly race detector,

the reachability data structure must be updated incrementally as new nodes in the dag

are revealed during the execution. The race detector manages the data structures during

the execution of the program. Given a strand u that accesses memory location l, the race

10

detector performs a reachability query between u and each conflicting access stored in the

access history that accessed memory location l. If u is in parallel with any of the conflicting

accesses, the detector finds a race.

Race detection for fork-join programs

Recall from Section 2.2, a dag can be viewed as partial order relations on its nodes and edges.

This leads to the definition of the order-dimension — the order-dimension of a dag G is

the minimum number of total orders on G such that, given two nodes u and v in G, u ≺ v

iff u precedes v in all the total orders. SP-dags have been proved to have order-dimension

two. Consequently, Nudler and Rudolph [62] introduce English and Hebrew order, that

is, two total orders of nodes in SP-dags, to determine if two nodes are logically in parallel.

Later, Bender et al. [9] propose SP-Order , the first race detection algorithm for SP-dags

with asymptotically optimal sequential running time, using a pair of order-maintenance

(OM) data structures to perform maintenance of English and Hebrew order of all revealed

nodes. WSP-Order [97] parallelizes SP-Order by incorporating additional runtime support

and achieves the optimal parallel executing time, that is, given an SP-dag with work T1 and

span T∞, WSP-Order runs in time O(T1/P + T∞) on P cores.

11

Chapter 3

Race Detection for Pipeline Parallelism

Pipeline parallelism organizes a parallel program as a linear sequence of stages. Conceptually,

each stage processes elements of a data stream and the stream flows through the pipeline

from the first stage to the last stage. Pipeline parallelism is widely supported [3, 22, 35,

38, 52, 53, 64, 64, 68, 70, 73–76, 78, 89, 95], including Intel’s Threading Building Blocks

(TBB) [54], OpenMP [63], and Cilk-P [48, 49], an extension to Cilk designed specifically for

linear pipelines. It has been shown that a program with pipeline parallelism can be scheduled

efficiently using work-stealing [48, 49].

A pipeline program can be represented using a two-dimensional dag (2D-dag), that

is , a planar directed acyclic graph that can be embedded within a two-dimensional grid

space.3 In this chapter, we present 2D-Order , a provably correct and efficient race detec-

tion algorithm for 2D-dags, that has an asymptotically optimal parallel running time. Given

a pipeline program with work T1 and span T∞, 2D-Order can detect races while executing

the computation on P processors with expected time O(T1/P + T∞). This bound is asymp-

totically optimal, since this is the best one can do when executing the same program without
3We formally define 2D-dags that our algorithm targets in Section 3.1.

12

race detection. 2D-Order provides a strong correctness guarantee — it reports a race if and

only if the program has a race on that input.

Like prior work, 2D-Order has two main components: a reachability data structure and

an access history component. Particularly, we find that 2D-dags have order-dimension two

as SP-dags. Similar to SP-Order [9] and WSP-Order [97], as it executes the computation,

2D-Order maintains two total orders of the strands it has encountered. In Section 3.1, we

define these two specific orders, show how to maintain them on the fly, and prove that

maintaining these two orders suffices to answer the reachability query.

For parallel race detecting fork-join programs, Mellor-Crummey [55] proves that it suffices

to store two readers and a single writer per memory location in the access history. We extend

this result and show that two readers and one writer suffice for pipeline programs as well,

which directly follows from the fact that the reachability data structure can be maintained

with two orders.

The algorithm presented in Section 3.1 assumes that when a strand u is executed, we know

how many children u has. This assumption may not hold for platforms that generate the

pipeline dynamically. In Section 3.2, we present a variant of 2D-Order which only assumes

that a strand v knows its parents when it executes; this assumption is generally true since v

can only execute after all its parents have executed. This variant has the same performance

bound.

The algorithms described in Sections 3.1 and 3.2 are formulated in terms of traversing a

2D-dag as the computation unfolds. In Section 3.3, we show how one can apply 2D-Order

to the language constructs provided by Cilk-P [48, 49]. Cilk-P is an extension to the Cilk

language that supports linear pipelines with a provably efficient work-stealing scheduler.

Cilk-P is an interesting case study. Unlike most other systems, Cilk-P supports “on-the-fly”

pipeline parallelism, where the structure of the pipeline emerges as the program executes.

13

We have also implemented PRacer, a prototype implementation of 2D-Order race detec-

tion algorithm applied to Cilk-P. Section 3.4 empirically evaluates the overhead of PRacer

and shows that it incurs virtually no overhead for reachability maintenance and achieves

similar scalability compared to applications’ baseline executions without race detection.

3.1 2D-Order Algorithm

We now describe the basic 2D-Order algorithm. In this section, we make two simplifying

assumptions: (1) We assume that a node u’s children are known as soon as u finishes

executing; and (2) There are no redundant edges — and edge from (u, v) is removed if there

is already (a different) directed path from u to v. We will remove these assumptions in

the next sections. We first provide some basic definitions before describing the 2D-Order’s

algorithm for reachability maintenance and proving its correctness. Then, we describe what

information is kept in the access history and how 2D-Order checks for races. Finally, we

prove the performance bound.

3.1.1 Notations and Definitions

Definition 1. A a two-dimensional dag (2D-dag) is a planar directed acyclic graph

with the following properties:

1. It has a unique source node s with no incoming edges and a unique sink node t with no

outgoing edges.

2. Each node has at most two incoming and at most two outgoing edges. Edges are labeled

as pointing either rightwards or downwards.

This definition implies that each node can have at most two children — the down child

of a node v is denoted by v.dchild and the right child is denoted by v.rchild. Similarly, the

up parent of v is denoted by v.uparent and the left parent is denoted by v.lparent.

14

Definition 2. Given two distinct nodes x and y, a node v is their common ancestor if

v � x and v � y. A node z is their least common ancestor, denoted by lca(x, y), if for

all common ancestors v of x and y, we have v � z.

By definition of a 2D-dag, a unique least common ancestor exists for any two nodes

(proven in Lemma 9). The following lemma states that if x ‖ y, then their lca has two

children, and x follows from one while y follows from the other.

Lemma 3. For two nodes x and y, say x ‖ y and z = lca(x, y). Then we have (1) z has

two children; (2) if z.dchild � x then z.dchild ‖ y, z.rchild � y, and z.rchild ‖ x.

Proof. Suppose that, for contradiction, w � x and w � y where w is a child of z; by

Definition 2 z 6= lca(x, y).

This lemma allows us to relate any two parallel nodes.

Definition 4. Given two nodes x and y where x ‖ y. Let z = lca(x, y). Then, x is down of

(‖D) y iff z.dchild � x & z.rchild � y, and x is right of y (‖R) iff z.dchild � y & z.rchild �

x.

We now make some straightforward structural observations. (1) For distinct nodes x and

y, exactly one of the following four conditions hold: x ≺ y, y ≺ x, x ‖D y or y ‖D x. (2)

Given a node x with two children, x.dchild ‖D x.rchild.

3.1.2 Reachability in 2D-Order Algorithm

2D-Order maintains two total orders on all strands using order-maintenance data structures.

An order-maintenance (OM) data structure D maintains a total order of elements and

provides the following operations.

• OM-Precedes(D, x, y): Given pointers to x and y, return true iff x precedes y in the

total order kept by D.

15

• OM-Insert(D, x, y): Given a pointer to an existing element x, splice-in a new element y

immediately after x in the total order. Thus, x and all its predecessors of x are before y

in the total order, while all successors of x are after y.

Algorithm 1: 2D-Order: Reachability Maintenance
1 Function Insert-Down-First(v)
2 if v.rchild exists then
3 if v.rchild.uparent not exists then
4 OM-Insert (OM-DownFirst, v, v.rchild)
5 if v.dchild exists then
6 OM-Insert (OM-DownFirst, v, v.dchild)
7 Function Insert-Right-First(v)
8 if v.dchild exists then
9 if v.dchild.lparent not exists then

10 OM-Insert (OM-RightFirst, v, v.dchild)
11 if v.rchild exists then
12 OM-Insert (OM-RightFirst, v, v.rchild)

2D-Order keeps two OM data structures — called OM-RightFirst and OM-DownFirst —

to maintain two different orders on all the nodes in the 2D-dag. The OM data structures

for both orders are initialized by inserting the source node s as the first node. Subsequently,

it executes nodes of the dag in any valid serial or parallel order — that is, a node can

be executed when it’s predecessors have finished executing. After executing each node v,

2D-Order calls the two functions shown in Algorithm 1.

Function Insert-Down-First(v) inserts v’s children into the OM-DownFirst data

structure. Immediately after this function is executed, the following will be true in the

OM-DownFirst order: (a) If v has a down child vD, then vD will be immediately after v.

(2) If v has a right child vR and vR doesn’t have an up parent, then vR will be immediately

after vD (if vD doesn’t exist, then vR will be immediately after v). The symmetric invariant

is true for the function Insert-Right-First(v).

16

In other words, for any node u, its up parent is “responsible” for inserting it into the

OM-DownFirst data structure and its left parent is “responsible” for inserting it into the

OM-RightFirst data structure. If u doesn’t have one of the parents, however, then u’s other

parent takes over the corresponding responsibility and inserts u immediately after its other

child (or after the parent itself if the other child doesn’t exist). It should be clear that each

node u is inserted into each OM data structure exactly once and these insertions happen

before u itself is executed.

To simplify notation, we say that x→D y if x occurs before y in the OM-DownFirst data

structure (that is, if OM-Precedes(OM-DownFirst, x, y) returns true). Similarly, we say

x→R y if OM-Precedes(OM-RightFirst, x, y) returns true. Note that since the algorithm

never swaps the order of the nodes once they are inserted, the answer returned will be

consistent once both x and y are inserted.

3.1.3 OM-DownFirst and OM-RightFirst Maintain Reachability

Relationships

We will now prove that these two total orders are sufficient to fully specify the partial order

of the dag. The following theorem, which we prove in the remaining subsection, shows that

given any two nodes x and y, we can determine the relationship between them just by looking

at the total orders maintained by OM-DownFirst and OM-RightFirst; if x is before y in both

orders, then x ≺ y; if y is before x in both orders, then y ≺ x; otherwise x ‖ y.

Theorem 5. Given nodes x and y in OM-DownFirst and OM-RightFirst, x ≺ y iff x→D y

and x→R y.

We first prove some structural properties of 2D-dags. Lemma 6 (stated without proof)

says that any subdag G′ of a 2D-dag G that has a single source and a single sink is also a

2D-dag. Then, we prove that any source to sink path cuts 2D-dags into disjoint graphs with

certain properties (Lemmas 7 and 8).

17

Lemma 6. Consider two nodes a and b in a 2D-dag G where a ≺ b. Construct a subdag G′

such that x ∈ G′ if a � x � b and edge (x, y) ∈ G′ if (x, y) ∈ G. Then G′ is a 2D-dag with

source a and sink b.

s

t

P

PR

PD

Figure 3.1: A path P divides a 2D-dag into two regions, PR (shaded with horizontal lines)
and PD (shaded in vertical lines).

Consider a path P from the source s of a 2D-dag to its sink t. We use this path to divide

all nodes of the dag into three subsets P , PR and PD. P contains all the nodes on the path.

Note that for all u ∈ P , at least one of u’s children (unless u = t) and one of u’s parents

(unless u = s) is also in P . Consider a node u 6∈ P — since s ∈ P , u has at least one ancestor

in P . Say q is the ancestor of u which is topologically latest in the path P . Since nodes on

P are totally ordered, there is necessarily this latest node. Then, u ∈ PD if it follows from

q’s down child — that is, if q.dchild � u. Similarly, u ∈ PR if q.rchild � u. The intuitive

meaning of PR and PD is shown in Figure 3.1 where path P cleanly divides the graph into

two “contiguous regions.” We now prove that the definition matches this intuitive meaning.

Lemma 7. For any path P , PR ∩PD = ∅ and any path from node u to node v where u ∈ PR

and v ∈ PD must include some node on P .

18

Proof. First, we prove disjointness. Consider u 6∈ P and say q is u’s ancestor which is

topologically latest in P ; since at least one of q’s children must be in P , u cannot follow from

both its children. Now, assume for contradiction that there is a path from u to v that has

no node in P . Then the latest ancestor of u and v on P must be the same node — which is

a contradiction since u ∈ PR and v ∈ PD.

Lemma 8. For any node u ∈ P ,

1. If u has two children and u.rchild ∈ P , then u.dchild ∈ PD. (Similarly, if u.dchild ∈ P ,

then u.rchild ∈ PR.)

2. If u has two parents, if u.lparent ∈ P , then u.uparent ∈ PR. (Similarly, if u.uparent ∈

P , then u.lparent ∈ PD.)

Proof Sketch. The first statement is obvious from definition, because u ∈ P and u

must be the latest ancestor of u.dchild in P . The easy way to see the second statement is

to notice that if we flip the direction of all edges and rotate the dag, then source becomes

sink, u.uparent becomes u.dchild, and u.lparent becomes u.rchild, and PR becomes PD. To

formally prove it, one can induct on the nodes on the path.

We can now use Lemma 7 to prove that any two nodes have a unique lca.

Lemma 9. Given two nodes x and y which are in parallel, lca(x, y) exists uniquely.

Proof. For the purpose of contradiction, assume two lcas exist, named z and z′. By the fact

that they are both lca(x, y), they must be in parallel with each other. Wlog, assume z′ ‖D z

and let u = lca(z′, z). Also wlog assume that x ‖D y with respect to z (i.e., x follows from

z.dchild). Construct a path P that goes from the source s to u to u.rchild to z to z.dchild

to x to the sink t; such a path exists by the property of 2D-dags and lcas. Then, as shown

in Figure 3.2, z′ ∈ PD (since it follows from u.dchild) and y ∈ PR (since it follows from

z.rchild). However, since z′ = lca(x, y), there must be a path P ′ from z′ to y, which must

19

s

1	

z'

x

t

y
z

u

Figure 3.2: Figure for Lemma 9. Assume two lcas for x and y exist, namely z and z′, and
let u be a lca of z and z′.

cross P by Lemma 7. If P ′ cross P before z, it contradicts with the fact that no path exists

between z and z′. If P ′ cross P after z, it contradicts with the fact that z = lca(x, y). Thus,

the lca(x, y) must be unique.

We now use these paths to prove a lemma about the insertion order between nodes.

Lemma 10. At any point during the execution of 2D-Order, given node x which has two

children. If x.dchild /∈ OM-DownFirst, then for any y such that x.dchild ≺ y and x.rchild ‖

y, y /∈ OM-DownFirst.

Proof. Consider the 2D-subdag G′ with source s and sink y. Let S be the set of all the nodes

on paths from s to y. Now we construct path P using nodes from set S: for any node u such

that u ∈ S and u /∈ P , we have u ∈ PD. Intuitively, P follows the “top-most right-most”

path among all paths from s to y.

First we prove x ∈ P . Suppose x /∈ P , then by the constraint of path P , we have x ∈ PD.

Since x.rchild /∈ P because x.rchild ‖ y, we also have x.rchild ∈ PD. Now construct a path

P ′ from s to x to x.dchild to y. By Lemma 8, x.rchild ∈ P ′R. Let R = P ′R
⋂
PD (the shaded

region in Figure 3.3). Now consider the whole 2D-dag G with source s and sink t, which

20

xr

xd

x

PR

P'D

t

R

P

P'

y

s

Figure 3.3: Figure for Lemma 10. Path P is shown in red, and path P ′ is in blue. The
shaded region is R. The node xd is x.dchild and the node xr is x.rchild.

includes R. Since x.rchild ∈ R (the shaded region) and t /∈ R, a path from x.rchild to t must

cross with either path P P ′. Since both P and P ′ ends at y, this means x.rchild ≺ y, which

contradicts with the original assumption that x.rchild ‖ y. Therefore, we are guaranteed

that x ∈ P .

Since P is a continuous path and x.rchild /∈ P , we must have x.dchild ∈ P . Now we

show P is actually an insertion chain, which means for any node w in P except for s, w is

inserted by its parent in P .

Let v and w be two consecutive nodes in P and v ≺ w. For the purpose of contradiction,

let’s assume that w is not inserted by v. According to the Down-First part of algorithm 1,

this can only happen when w has two parents in G and v = w.lparent. Since v ∈ P , we have

v.uparent ∈ PR by Lemma 8. However, since v.uparent ∈ S, it is guaranteed that either

v.uparent ∈ P or v.uparent ∈ PD, which leads to a contradiction. Thus, P is an insertion

chain. Since we know that x.dchild ∈ P, y ∈ P , and x.dchild ≺ y, y cannot be inserted into

OM-DownFirst before x.dchild.

21

We can now prove the two important properties of down-first order — namely that

x→D y if x ‖D y or if x ≺ y.

Lemma 11. At any point during the execution of 2D-Order, given nodes x and y in

OM-DownFirst. If x ‖D y, then x→D y.

Proof. We prove this lemma by induction. Suppose lemma is true before insertion is invoked

on a node y. Consider any x in OM-DownFirst. We will show if x ‖D y, then x→D y. Let

z = lca(x, y); we have z.dchild � x and z.rchild � y (The case where y ‖D x is similar.)

1. y has one single parent w: We first consider the case where z = w and z.rchild = y.

Since z.dchild has not been inserted in OM-DownFirst yet, and since x must follow from

z.dchild, from Lemma 10, we know x has not been inserted. So this case is trivial. Say

z.rchild 6= y; then, we have z = lca(w, x) and x ‖D w. By inductive hypothesis, we know

x→D w. Because y is inserted immediately after w, therefore it’s guaranteed that x→D y.

2. y has two parents: According to algorithm 1, y is inserted immediately after its

up parent y.uparent, say w. We now argue that x ‖D w. Let z′ = lca(w, x). We know

that z′ � z. If z′ = z, then we are done. For the rest of the proof, we assume that z ‖ w;

therefore, z′ = lca(z, w) since z′ is an ancestor of z.

Assume for contradiction that w ‖D x; therefore z′.dchild � w. Therefore, z′.rchild � z.

Consider the 2D-dag G′ with source z′ and sink t and consider a path P that goes from

z′ to z′.dchild to w to y to t. We know that z′.rchild ∈ PR (from Lemma 8); therefore,

z ∈ PR since otherwise, the path from z′ to z will cross P at some node a and this node

a = lca(z, w) instead of z′. However, we also know that y.lparent ∈ PD (from Lemma 8)

and z � y.lparent. Therefore, the path from z to y.lparent must cross P at some node b

and this would mean that z is an ancestor of w which contradicts the assumption.

Therefore x ‖D w and by IH, x →D w; therefore, when y is inserted immediately after

w, we have x→D y.

22

Lemma 12. At any point during the execution of 2D-Order, given nodes x and y in

OM-DownFirst. If x ≺ y, then x→D y.

Proof. We prove this lemma by induction. Suppose lemma is true before insertion is invoked

on a node y. Consider any node x in OM-DownFirst.

We first show if y ≺ x then y →D x. Let w be the parent that inserted y. Since y ≺ x,

w ≺ x. By IH, w →D x before the insertion, and thus w →D y →D x after the insertion.

Now we show if x ≺ y, then x→D y.

1. y has one single parent w: In this case, y is inserted by this parent w immediately

after w. Therefore, clearly, w →D y. Also, if x ≺ y, then x � w since w is y’s only parent.

If x = w, we are done. If not, according to the inductive hypothesis, we have x →D w.

Therefore, we know x→D y.

2. y has two parents: We know y is inserted immediately after y.uparent. If x �

y.uparent, we can apply the same argument as in the single parent case. Now consider the

case that x ‖ y.uparent and x � y.lparent. We will show that x ‖D y.uparent and by

Lemma 11, we then have x→D y.uparent, which leads to x→D y.

For the purpose of contradiction, let’s assume that y.uparent ‖D x and let z =

lca(x, y.uparent). Consider the subdag with source z and sink t and construct a path P from

z to z.rchild to x to y to t. Then by Lemma 8, we have y.uparent ∈ PR and z.dchild ∈ PD.

Since y.uparent ‖D x, there must be a path P ′ from z.dchild to y.uparent, which must cross

P by Lemma 7, which contradicts the assumption that z = lca(x, y.uparent). Thus we must

have x ‖D y.uparent and thus x→D y.

Symmetrically, one can prove the following lemmas:

Lemma 13. At any point during the execution of 2D-Order, given nodes x and y in

OM-RightFirst. If x ≺ y, then x→R y.

23

Lemma 14. At any point during the execution of 2D-Order, given nodes x and y in

OM-RightFirst. If x ‖R y, then x→R y.

Now we can prove the main result:

Proof of Theorem 5. From Lemma 12 and Lemma 13, it’s straightforward to see that

if x ≺ y, then x →D y and x →R y. For the other direction, suppose x ‖ y when x →D y

and x→R y. Wlog, say y ‖D x. Then we have y →D x by Lemma 11, which contradicts to

x→D y.

3.1.4 Checking Races and Updating Access History

Algorithm 2: 2D-Order: Access Histories
/* Called when a strand r read memory location l */

1 Function Read(r, l)
2 if Precedes (writer(l), r) is false then
3 ReportRace ();
4 if OM-Precedes (OM-RightFirst, dreader(l), r) then
5 dreader(l) = r;
6 if OM-Precedes (OM-DownFirst, rreader(l), r) then
7 rreader(l) = r;
/* Called when a strand w wrote to memory location l */

8 Function Write(w, l)
9 if Precedes (writer(l).w) is false

10 or Precedes (dreader(l), w) is false
11 or Precedes (rreader(l),w) is false then
12 ReportRace ();
13 writer(l) = w;

/* When called, we have either u ≺ v or u ‖ v, but never v ≺ u */
14 Function Precedes(u, v)
15 if OM-Precedes (OM-DownFirst, u, v)
16 and OM-Precedes (OM-RightFirst, u, v) then
17 return true
18 return false

We now describe how we do race detection using this algorithm — the code is shown

in Algorithm 2. For each memory location `, our algorithm stores at most one previous

writer node — called last writer writer(`) — this is simply the last node that wrote to

24

this memory location. If a set of reader nodes R` have read this memory, the algorithm

stores up to two reader nodes: (1) downmost reader dreader(`): For all r ∈ R`, either

r � dreader(`) or r ‖R dreader(`); and (2) rightmost reader rreader(`): For all r ∈ R`,

either r ≺ rreader(`) or r ‖D rreader(`).

When a node u tries to write location `, it uses the OM-DownFirst and OM-RightFirst

data structures to check whether either dreader(`) ‖ u, rreader(`) ‖ u or writer(`) ‖ u. If

so, we report a race. In either case, u is now last writer writer(`). When node u tries to read

location `, it uses the OM-DownFirst and OM-RightFirst data structures to check whether

writer(`) ‖ u. If so, we report a race. In either case, u now checks if dreader(`)→R u; if so,

u is the new downmost reader dreader(`). Similarly, if rreader(`)→D u, then u is the new

rreader(`).

Theorem 15. 2D-Order never reports false races and for racy programs, reports at least one

race.

This is the standard correctness guarantee for on-the-fly race detection algorithms. The

proof mostly follows from previous results — with the exception of one wrinkle. It is always

sufficient to store a single writer in access history; however, it is not always sufficient to store

two readers. In particular, for general dags, one has to store all parallel reads that happened

since the last write. Mellor-Crummey [55] proved that for series-parallel dags, it is sufficient

to record two readers. We will now show that for 2D-dags, it is also sufficient to store two

readers — in particular, the downmost and the rightmost readers.

First, let us notice that at any point in the execution rreader(`) (and dreader(`)) is

unique (or null if no node has read ` yet). To see this, note that from Algorithm 2, lines 6

and 7, rreader(`) is simply the last node in the order maintained by OM-DownFirst that

read `.

25

Theorem 16. At any point during the execution of a 2D-dag, let R` be the set of nodes that

have read memory location ` and w be any other node. We have r ≺ w for all r ∈ R` if and

only if dreader(`) ≺ w & rreader(`) ≺ w.

Proof. It is clear that if all r ∈ R` precede w then so do dreader(`) and rreader(`) since

they belong to the set R`.

Now say that dreader(`) ≺ w & rreader(`) ≺ w. For any r ∈ R`, we have, r →R

dreader(`) →R w (the first arrow is by definition of downmost reader and the second from

Theorem 5). Similarly, we have r →D rreader(`) →D w. Therefore r is before w in both

OM-DownFirst and OM-RightFirst orders; by Theorem 5, we know that r ≺ w.

3.1.5 Performance of 2D-Order

Theorem 17. For a 2D-dag G with work T1 and span T∞, we can run do race detection

using 2D-Order in time T1/P + T∞ time on P processors.

First, each node is inserted at most once in OM data structures and every memory access

requires a constant number queries to OM data structures. If inserts and queries to OM data

structures took O(1) time, then the work of the program augmented with 2D-Order is O(T1)

and the span is O(T∞).

Sequentially, an OM-data structure can be implemented for O(1) cost per operation

(amortized) [8, 25]. This immediately gives us an O(T1) time (optimal) sequential algorithm.

This slightly improves the best previous result [26], which has a multiplicative overhead of

the inverse Ackermann’s function (which is, admittedly, small in practice).

To get parallel performance, we need an OM implementation that supports concurrent

operations. No general O(1)-time-per-operation concurrent OM data structure is known.

Utterback et al. [97] provide an algorithm (containing modified OM data structure and

work-stealing scheduler) for programs that access OM data structures in a conflict-free

way. In particular, if a parallel program guarantees that two logically parallel strands will

26

never try to insert immediately after the same node, then they show the following result (it

is not explicitly stated, but is implied from their proofs).

Lemma 18. From [97] A parallel program with work T1 and span T∞ which accesses into

OM data structure(s) in a conflict-free way can be executed in time O(T1/P + T∞) time.

Note that 2D-Order follows the conflict-free restriction since all inserts after node v occur

when v executes. Therefore, Theorem 17 follows directly from this lemma. Note that this

performance bound only holds if we use the particular implementations of both the work-

stealing scheduler and the OM data structure described in Utterback [97]. In Section 3.4,

we briefly describe how we adapted this scheduler for Cilk-P runtime system.

3.2 Generalizing 2D-Order

In Section 3.1, we made two assumptions: (1) When we execute a node, we already know

both its children and whether these children have their other parent. In practice, we may

not have this information until we encounter the child node. (2) There are no redundant

edges.

Algorithm 3 shows a variant of 2D-Order — these functions are called immediately before

executing node v. Here, when v is executed, instead of inserting its real children, 2D-Order

creates two placeholder nodes for both of v’s children (denoted as dchildh and rchildh).

It will insert both nodes into OM-DownFirst and OM-RightFirst orders. As seen on lines

6, 7, 13, and 14 the order after all insertions is v →D v.dchildh →D v.rchildh and v →R

v.rchildh →R v.dchildh. This is consistent with Algorithm 1 except here we assume that

both children exist and always insert them regardless of the presence of the other parent.

When a node is executed, it finds its corresponding placeholder nodes by accessing its

parents. If v has only one parent, it has only one placeholder node in each data structure,

and 2D-Order simply use this placeholder node to represent v in the future. Now consider a

node v that has two parents. Both parents will insert a placeholder node to represent v in

27

OM-DownFirst and OM-RightFirst data structures, possibly at different positions. When

v is executed, 2D-Order chooses one of these dummies as the “real” one (and different ones

in OM-DownFirst and OM-RightFirst) which will be used henceforth to represent v when

accessing each order. In particular, whenever we access OM-DownFirst, the placeholder

inserted by v’s up parent will represent v.4 Correspondingly, when we access OM-RightFirst,

the placeholder inserted by v’s left parent will represent v. The access history and queries

are not affected.

Algorithm 3: Variant 2D-Order
1 Function Insert-Down-First(v)
2 if v.uparent exists then
3 dCurr = v.uparent.dchildh;
4 else
5 dCurr = v.lparent.rchildh;
6 OM-Insert (OM-DownFirst, dCurr, v.rchildh);
7 OM-Insert (OM-DownFirst, dCurr, v.dchildh);
8 Function Insert-Right-First(v)
9 if v.lparent exists then

10 rCurr = v.lparent.rchildh;
11 else
12 rCurr = v.uparent.dchildh;
13 OM-Insert (OM-RightFirst, rCurr, v.dchildh);
14 OM-Insert (OM-RightFirst, rCurr, v.rchildh);

The code for handling redundant edges is not shown, but is straightforward. When a node

x has two parents, it first checks if either of them precede the other (using OM-DownFirst

and OM-RightFirst) and if so, it ignores the redundant edge.

Lemma 19. Algorithm 3 has the same correctness and performance properties as Algo-

rithm 1.
4The placeholder inserted by the v’s left parent will never be accessed in OM-DownFirst if v also has an up

parent — this node becomes a dummy. As an optimization, we can remove this node from OM-DownFirst;
however, this has no bearing on the theoretical correctness or performance.

28

The intuition behind the omitted proof is that Algorithm 3 maintains the same order as

Algorithm 1 — node v finds its correct representatives right before it is executed. Before v

executes, the placeholder nodes for v will never be used in any queries or to insert any other

nodes. For the performance guarantee, notice that each function call does at most twice as

many inserts as Algorithm 1.

3.3 PRacer: Race Detection for Cilk-P

This section describes PRacer, the particular implementation of 2D-Order when applied

to Cilk-P [48, 49]. Race-detection for Cilk-P is an interesting case study because Cilk-P’s

language constructs allow for much more dynamism in the structure of the pipeline. Due

to the particular quirks to Cilk-P’s pipelines, PRacer incurs an additional lg k overhead on

the span term, where k is the vertical length of the 2D-dag. This section reviews Cilk-P’s

support for pipeline parallelism, presents PRacer in terms of Cilk-P’s pipeline constructs,

and explains the additional performance overhead.

3.3.1 Cilk-P’s Support for Pipeline Parallelism

From a programmer’s perspective, a linear pipeline is simply a loop over a stream of input

elements, where each loop iteration i processes the ith element of the input stream. The loop

body encodes the sequence of stages — abstract functions through which input elements

are processed. These pipelines allow for parallel execution since the execution of iterations

can overlap in time

Cilk-P extends Cilk with three keywords: pipe_while, pipe_stage, and

pipe_stage_wait. The keyword pipe_while denotes a loop that can be executed in

parallel in a pipelined fashion. The first stage of each iteration is stage 0 and pipe_while

ensures that there are sequential dependences across stage 0 of all iterations; that is, stage 0 of

iteration i does not begin until stage 0 of iteration i-1 completes. The keywords pipe_stage

29

and pipe_stage_wait are used inside the body of a pipe_while loop to denote stage

boundaries. By default, the execution of these constructs in stage s of iteration i ends

stage s and advances to stage s+1 of iteration i. Keyword pipe_stage_wait is used

to enforce dependences between adjacent iterations. Ending a stage s of iteration i with

pipe_stage_wait enforces that execution of stage s+1 of iteration i does not begin until

stage s+1 of iteration i-1 finishes. Finally, pipe_while implicitly has a cleanup stage at

the end of every iteration that occurs sequentially across iterations.

The structure of the pipeline for Cilk-P programs is determined dynamically at run-

time. The pipe_stage and pipe_stage_wait statements can be enclosed within other

control constructs, which allows programmers to dynamically vary the number of stages

and enforce dependences based on the input to the iteration. Furthermore, pipe_stage

and pipe_stage_wait optionally take a stage number , an integer argument to name

the stage that the statement is advancing to. This gives the programmer the flexibility to

dynamically determine the label of stages and skip stages.

Cilk-P constructs can generate the example dag shown in Figure 3.4. Each iteration

is a vertical line. There are sequential dependences across the first and last stages of all

iterations, as dictated by pipe_while. The stages of an iteration form a chain, and

horizontal dependences are enforced by pipe_stage_wait. By naming stages in a certain

way, the programmer can skip stages or dictate that the stages to be labeled certain way. Still,

Cilk-P’s pipeline constructs always generate a dag that satisfies Definition 1 in Section 3.1.

Cilk-P incorporates a work-stealing scheduler that can schedule the resulting compu-

tation efficiently. Given a computation with T1 work and T∞ span, Cilk-P schedules the

computation on P processors in expected time T1/P +O(T∞).5

5All bounds stated in this section are expected time bounds. Analogous high probability results can be
obtained by applying standard techniques.

30

0 0 0 0 0 0 0

1

3

2

3

4

3

5

2

3

4 4

5

66 6 6 6 6 6

5

i0 i1 i2 i3 i4 i5 i6

Figure 3.4: An example of the kind of 2D-dag Cilk-P can generate. A node presents a strand,
and an edge denotes dependence between two strands. The iteration numbers are denoted
above, and the numbers in the nodes denote the stage numbers.

3.3.2 PRacer: Applying 2D-Order to Cilk-P

Algorithm 4 shows the pseudocode for applying 2D-Order to Cilk-P’s pipeline constructs. In

Cilk-P, nodes do not know if they have a right child when they execute. Stage s of iteration i

does not know if stage s of iteration i+1 will depend on it; we only find out that this depen-

dence exists when (and if) stage s-1 of iteration i+1 calls pipe_stage_wait. Therefore,

like in Algorithm 3, we must employ placeholder nodes. The function StageFirst is called

before executing stage 0 of an iteration and is similar to Algorithm 3. The main difference

is that, since stage 0 has no uparent, it knows to use the rchildh from its lparent (stage

0 of the previous iteration) as its representative. The function StageNext is called when

pipe_stage is executed — again, a stage initiated by pipe_stage has no lparent and

knows to use the dchildh from its uparent (the previous stage in the same iteration).

31

Algorithm 4: 2D-Order for Cilk-P
1 Function StageFirst(i)
2 if i is 0 then
3 dCurr = rCurr = source;
4 else
5 dCurr = rCurr = stage[i− 1][0].rchildh;
6 InsertPlaceHolder (dCurr, rCurr, stage[i][0]);
7 Function StageNext(i, s)
8 dCurr = rCurr = stage[i][s− 1].dchildh;
9 InsertPlaceHolder (dCurr, rCurr, stage[i][s]);

10 Function StageWait(i, s)
11 dCurr = stage[i][s− 1].dchildh;
12 left = FindLeftParent (i, s);
13 if left 6= −1 then
14 rCurr = stage[i− 1][left].rchildh;
15 else
16 rCurr = stage[i][s− 1].dchildh;
17 InsertPlaceHolder (dCurr, rCurr, stage[i][s]);
18 Function InsertPlaceHolder(dCurr, rCurr, stage)
19 OM-Insert (OM-DownFirst, dCurr, stage.rchildh);
20 OM-Insert (OM-DownFirst, dCurr, stage.dchildh);
21 OM-Insert (OM-RightFirst, rCurr, stage.dchildh);
22 OM-Insert (OM-RightFirst, rCurr, stage.rchildh);

The interesting function is StageWait, which is called when pipe_stage_wait ex-

ecutes and the execution is ready to advance to the next stage (i.e., dependence from the

previous iteration has been satisfied). Since a stage initiated by pipe_stage_wait has

both uparent and lparent, the order maintained by OM-DownFirst should use the dchildh

from its uparent, and the order maintained by OM-RightFirst should use the rchildh from

its lparent. However, since Cilk-P allows the execution to skip stages, identifying a stage’s

lparent requires additional work.

Consider the example shown in Figure 3.4. Say stage 5 of iteration i5, denoted as (i5, 5),

had been created with pipe_stage_wait(5) instead of pipe_stage(5). Since itera-

tion i4 does not have a stage 5, the left parent of (i5, 5) is (i4, 3). Consider another example

case: Say stage (i4, 3) had been created with pipe_stage_wait(3). This would result a

dependence from stage (i3, 0) to stage (i4, 3); however, this dependence is already subsumed

by the dependences from (i3, 0) to (i4, 0) and from (i4, 0) to (i4, 3). In this case, (i4, 3) does

32

not have a lparent despite being created by pipe_stage_wait(3). The invariant is the

following: When a stage (i, s) is initiated by pipe_stage_wait and stage (i-1, s) does

not exist, (i, s)’s lparent is (i-1, s′) where s′ is the largest stage in iteration i-1 such that

s′ < s and (i-1, s′) is logically in parallel with the uparent, (i, s-1). Otherwise, (i, s) does

not have an lparent.

Function FindLeftParent, called in Algorithm 4, line 12, performs the additional

work needed to identify a stage’s lparent (or lack thereof). The pseudocode for this function

is not shown since it is a little complex. Briefly, for every active iteration i, we keep some

metadata for the previous iteration i-1; in particular, we keep an in-order array of the stage

numbers i-1 has executed so far. When FindLeftParent is called in for stage (i, s), we

search this array to find the correct lparent, and -1 is returned if lparent does not exist.

Execution Time. The only additional work in Algorithm 4 (compared to Algorithm 3)

is FindLeftParent — this function must be carefully implemented to minimize overhead.

Consider the obvious option. We can do a binary search on the metadata array — since

FindLeftParent could be called for every node and there can be T1 nodes, this can add

a lg k multiplicative overhead, leading to a time bound of O(lg kT1/P + lg kT∞), where k is

the maximum array size.

Observe that if FindLeftParent is called by different stages of the same iteration, the

answers returned are strictly increasing — if lparent of stage s is s′, no subsequent stage

can have an lparent smaller than s′. Thus, within FindLeftParent(i, s) we can search

the metadata array of iteration i-1 linearly starting from the smallest stage, removing all

stages smaller than s′ from the array. Each item is removed at most once and the cost of the

search is at most the number of items removed, allowing us to amortize the work of searches

against the work of the nodes removed. However, it has the disadvantage that some calls

to FindLeftParent may cost up to k. All expensive searches may happen on the span,

giving us the worst case bound of O(T1/P + kT∞).

33

FindLeftParent(i, s) implements a strategy that combine the best of both worlds.

Say the previous iteration (i-1) has k elements in its metadata array. We start from the

smallest and look at lg k elements linearly. If we find our lparent, we remove all elements

smaller than s and return. If not, we can remove all lg k elements we looked at, since they

are clearly smaller than s. Next, we do a binary search on the rest of the metadata array to

find the correct answer. Note that the cost of each search is O(lg k). In addition, if the cost

was c, we removed Ω(c) elements from the metadata array. Therefore, we can amortize the

work in the same manner and only incur a lg k overhead on the span, giving us the bound

of O(T1/P + lg k · T∞) for PRacer.

Composability with Fork-Join Parallelism. Cilk-P allows programmers to compose

fork-join and pipeline constructs. Each stage can itself be an SP-dag or a 2D-dag and the

nesting can be arbitrarily deep. Since nested 2D-dags are also 2D-dags, PRacer obviously

applies directly when pipelines are nested inside pipelines. We now describe how we can

handle nested fork-join parallelism.

2D-Order’s reachability maintenance algorithm is similar in spirit to WSP-Order [97].

Recall from Section 2.4, WSP-Order keeps track of two total orders of the executed strands:

English order and Hebrew order. The two strands are logically in parallel if and only if their

relative order in English and Hebrew differ. English order is analogous to OM-DownFirst

and Hebrew order is analogous to OM-RightFirst.

Nested fork-join parallelism is handled in a straightforward manner. When a stage is an

SP-dag, we simply insert the nodes of this dag in English order in OM-DownFirst structure

and in Hebrew order in OM-RightFirst structure. Reachability relationships are still checked

by comparing relative orders of strands in the two structures. It is also straightforward to see

why this is correct. Imagine a stage that was a single node u, represented by a single element

in the OM data structures. When this node is replaced by an SP-dag G′, this algorithm will

replace the representative element of u in OM-DownFirst by the all the nodes in G in English

34

order and in OM-RightFirst by nodes in G in Hebrew order. All nodes in G would have the

same relationship with other nodes in the pipeline as u did.

3.4 Performance Evaluation

This section summarizes the implementation of PRacer and evaluates its practical perfor-

mance on three benchmarks in terms of overhead and scalability. We first evaluate the

performance of only the reachability maintenance — that is, each node is inserted into OM

data structures as shown in Algorithm 4, but memory accesses are not instrumented. These

experiments indicate that the overhead of 2D-Order’s reachability maintenance less than 1%

in all benchmarks we examined, and it provides similar scalability as the baseline program

without reachability maintenance. We also evaluated the full race detection algorithm in-

cluding access histories. In this case, as with all race detection algorithms, the overhead is

significant, between 14.7–41.1× overhead compared to the baseline. However, we still get

scalability similar to the baseline; therefore, some of the overhead can be offset by running

race detection in parallel.

Implementation of PRacer. We implemented PRacer by extending an open-source

Cilk-P runtime system, released by Intel [45], which supports the pipeline constructs as

macro-defines and the corresponding work-stealing scheduler to schedule them. The imple-

mentation of PRacer consists of two components, the race detection tool component and the

runtime component.

The tool component ensures that functions shown in Algorithm 4 are called at the ap-

propriate time to perform insertions into the two OM data structures, queries are performed

on memory accesses, and manages metadata for FindLeftParent and access histories.

The tool component is called via instrumentation inserted into Cilk-P control constructs

(described in Section 3.3.1) and memory references. We enabled the instrumentation of

pipeline constructs by modifying the macros defining the pipeline constructs in Cilk-P. For

35

memory accesses, we piggyback on the ThreadSanitizer instrumentation [84] that came with

the LLVM/Clang compiler (version 3.4.1).

The runtime component required significant modification to the Cilk-P’s work-stealing

scheduler to allow for concurrent OM data structures based on the scheme described by

Utterback et al. [97]. At a high-level, their concurrent OM data structure does parallel

rebalances — occasionally, large portions of the data structure may be re-organized in par-

allel. The work-stealing scheduler must be designed to (1) perform appropriate concurrency

control so that inserts do not occur during a parallel rebalance; and (2) appropriately move

workers between the main program and the parallel rebalance. Utterback et al. implemented

their system in open-source Cilk Plus runtime system released by Intel [42]. For PRacer, we

re-implemented their strategy in the Cilk-P runtime system since the original runtime does

not support pipelines.

Experimental Setup. We use three benchmarks to evaluate PRacer: ferret, lz77,

and x264. Benchmark ferret performs content-based similarity search on images. Bench-

mark lz77 is a lossless, dictionary file compression algorithm. Benchmark x264 is an video

encoder. Both ferret and x264 are from PARSEC benchmark suite [10] and modified to

use Cilk-P’s pipeline constructs. They are both evaluated using the largest input data set,

native, that comes with PARSEC. We implemented lz77 from scratch and ran it with

an input text file of size 162-MBytes.

stages / iter # of iters # of reads # writes
ferret 5 3501 1.23e11 1.23e10

lz7 3 162 8.96e10 2.97e10
x264 71 36352 1.12e12 1.17e11

Table 3.1: The execution characteristics of the benchmarks.

Table 3.1 shows the characteristics of these benchmarks. Both ferret and lz77 have

relatively simple pipelines, where the structure of the pipeline is static and has a fixed

36

number of stages across iterations, five and three respectively. On the other hand, x264

utilizes the on-the-fly feature of Cilk-P’s pipeline parallelism — even though the number

of stages across iterations are the same, they can take on different stage numbers from one

iteration to another.

0	

5	

10	

15	

20	

2	 4	 8	 12	 16	 20	 24	 28	 32	

Sc
al
ab

ili
ty
	

Cores	used	

ferret	

0	

5	

10	

15	

20	

25	

30	

2	 4	 8	 12	 16	 20	 24	 28	 32	

Sc
al
ab

ili
ty
	

Cores	used	

lz77	

0	

5	

10	

15	

20	

2	 4	 8	 12	 16	 20	 24	 28	 32	

Sc
al
ab

ili
ty
	

Cores	used	

x264	

	

	

	

baseline

reachability

full

Figure 3.5: The scalability of the benchmarks. The x-axis shows the number of cores used.
The y-axis shows the scalability, computed by taking the runtime on one core divided by the
runtime on P cores under the same configuration, where P is the number cores used.

We ran all our experiments on an Intel Xeon E5-4620 with 32 2.20-GHz cores on four

sockets. Each core has a 32-KByte L1 data cache, 32-KByte L1 instruction cache, a 256-

KByte L2 cache. There are a total of 500 GByte of memory, and each socket share a

16-MByte L3-cache. All benchmarks are compiled with LLVM/Clang version 3.4.1 with

-O3 running on Linux kernel version 3.10. Each data point is the average of 10 runs with

standard deviation less than 5%.

Overhead of PRacer. To get a sense of PRacer’s overhead breakdown, we ran the

benchmarks with three different configurations: the baseline configuration, which is the the

original program without race detection, the reachability , which is the execution with only

the reachability component of the 2D-Order without memory instrumentation; and full ,

which is the execution with the full 2D-Order including both the reachability maintenance

and access history management.

37

baseline reachability full
ferret 191.902 191.987 (1.00×) 7984.067 (41.60×)

lz77 116.079 117.902 (1.02×) 1703.636 (14.68×)

x264 933.721 934.572 (1.00×) 15877.110 (17.00×)

Table 3.2: The execution times for the benchmarks running on one core for all configurations,
shown in seconds. The numbers in parentheses indicate the overhead compared to the
baseline.

Table 3.2 shows the sequential (T1) running time for all of the three configurations.6 The

overhead due to reachabilty maintenance is insignificant for all benchmarks. On the other

hand, adding memory instrumentation increases overheads significantly. This is explained

by the fact that each stage is inserted at most twice in each OM data structure and the

number of stages is relatively small (2.5e6 for x264). The total number of memory accesses

is many orders of magnitude larger. However, these results are consistent with the overhead

of full race detection in the literature [97].

Scalability of PRacer. Finally, we show that PRacer scales similarly compared to the

baseline. Figure 3.5 shows the scalability plot of the three benchmarks. As can be seen in

the plots, the scalability of the reachability maintenance and the full configurations track

closely to that of the baseline. This scalability is especially useful since race detection is so

expensive — serially, x264 takes 4 hours with full race detection. The parallelism of PRacer

cuts this running time to a more reasonable amount for debugging.

6The running times for x264 are much slower than what was shown in the literature, because we disabled
the vectorization code in order to perform race detection correctly.

38

Chapter 4

Futures and Proactive Work-Stealing

The use of future constructs provides a flexible way to express parallelism. Similar to fork-

join parallelism, one can spawn off a future task that executes logically in parallel with the

continuation of the spawn statement. Unlike fork-join parallelism, however, the termination

of a future task is not restricted to a lexical scope. Rather, the spawn statement returns a

future handle that can be used to retrieve the value produced by the future task. When the

handle is touched , the control is blocked until the corresponding future task terminates and

returns a value.

The additional flexibility of futures allows one to write a wider range of parallel programs

and/or provide higher level of parallelism beyond what can be specified using only fork-join

parallelism. For instance, Blelloch and Reid-Miller [11] show that, one can asymptotically

reduce the span of various tree operations using parallel futures. Since its proposal in the

late 70th [6, 33], the future constructs have been incorporated into various task parallel

languages and platforms [16–18, 32, 36, 47, 51, 88, 94], including the C++11 standard [46].

However, such flexibility comes with a cost. Even though the classic work-stealing (pre-

viously described in Section 2.3) and its execution time bound apply to programs that use

futures [4, 5], prior works [1, 37, 87] show that, when scheduled using classic work-stealing,

39

a program with futures, compared to a program that uses only fork-join parallelism, can

incur much higher number of “deviations” — a better metric for evaluating the performance

of parallel executions.

As articulated by Spoonhower et al. [87], the number of deviations provides a better

metric for evaluating performance bounds because it is highly correlated to the additional

cache misses and scheduling overheads of parallel executions. Informally, a deviation occurs

during a parallel execution when a processor executes an instruction whose ordering in the

instruction stream deviates from that of the serial execution. A deviation forces the scheduler

to perform additional bookkeeping to keep track of the events that cause the deviations.

Moreover, the number of deviations can be used to bound the extra cache misses incurred on

the private caches during parallel executions (as first shown by Acar et al. [1]) — intuitively,

the bound holds by considering each deviation to execute with an empty private cache.

Given a computation that employs only fork-join parallelism, Acar et al. [1] show that,

the expected number of deviations7 incurred by a classic work-stealing scheduler is O(PT∞).

In contrast, given a computation that employs k future operations, Spoonhower et al. [87]

show that the expected number of deviation incurred is O(PT∞ + kT∞), an additional k

multiplicative factor. More recently, Herlihy and Liu [37] show that, if futures are used in a

restricted fashion, one can bound the number of deviations to be O(PT 2
∞).

All the prior works assume a parsimonious work-stealing scheduler, in which each

worker maintains a single deque and only steals to load balance when its queue becomes

empty. Due to the parsimonious nature of work-stealing analyzed, each future touch can

lead to O(T∞) number of deviations, contributing to the O(T∞) multiplicative factors in the

deviation bound.

To minimize the deviations caused by futures, therefore, we propose an alternative

scheduling approach, called proactive work-stealing (ProWS): whenever a worker thread
7Acar et al. refer to deviations as drift nodes in work [1].

40

encounters a future touch that is not ready, it suspends the execution of its current task and

tries to find something else to do. By proactively suspending the computation instead of

expanding on what’s already on the deque, one can minimize the deviations and thus the

corresponding scheduling overhead and cache misses.

We show that ProWS can provide a comparable execution time bound to the parsimonious

variant, as well as equal or better bounds on the number of deviations for programs that use

futures. Given a computation that employs futures with T1 work and T∞ span, the proposed

algorithm executes the computation on P processors in O(T1/P + T∞ lgP) time, which is

asymptotically comparable to the parsimonious version (except for the lgP overhead on

the span term). For structured use of futures , where the future is single-touch with no

races on the future handle, the algorithm incurs O(PT 2
∞) number of deviations, the same

as the bound for the parsimonious variant. For general use of futures , where the only

restrictions are a constant number of touches per future and deadlock-freedom during one-

worker execution,8 the algorithm incurs O(mkT∞ + PT∞ lgP) deviations, where mk is the

maximum number of future touches that are logically parallel. This bound is better than the

bound for the parsimonious variant ifmk = Ω(P lgP) and is smaller than k, the total number

of touches in the entire computation; these assumptions hold true for all the benchmarks

examined. Since proactive and parsimonious work-stealing behave the same for programs

that utilize only fork-join parallelism, they have the same bounds for such programs.

We have implemented a work-stealing runtime system called Cilk-F, by extending Cilk

Plus [44], a task parallel runtime system, to incorporate support for parallel futures scheduled

using ProWS. We empirically evaluate Cilk-F and show that ProWS can be implemented

efficiently.
8Prior work by Spoonhower et al. [87] assumes single-touch per future, but constant number of touches

does not change their bound.

41

Contribution statement

The results of this chapter is from the joint work with Kyle Singer and I-Ting Angelina

Lee. Specifically, the author of this dissertation is a major contributor to the following

contributions:

• ProWS, a proactive work-stealing algorithm for scheduling computations with futures (Sec-

tion 4.2).

• Theoretical proof that ProWS provides equal or better bounds on the number of deviations

than the parsimonious variant (Section 4.3).

4.1 Future Parallelism

Like fork-join parallelism, future parallelism can also be expressed using two simple keywords:

create and get. Similar to spawn in fork-join code, create can be used to create

parallelism. A function F may spawn off a function G representing a future task by

prefixing the call to G with create, and the continuation of F may execute in parallel with

G. Unlike spawn, however, the termination of G is not confined to the enclosing lexical scope

of the call, and the execution of a sync in F has no effect on it. Rather, the create call

returns a future handle , which can be used later to ensure termination of G and retrieve

the result of its evaluation. One can invoke get on the future handle, an operation referred

to as the future touch , which causes the control to block until the corresponding future

task terminates. Implicitly, we assume that the end of a future task always executes a put,

depositing the task’s resulting value into its handle.

4.1.1 Modeling Future Parallelism

Recall how Section 2.2 described modeling fork-join parallelism. Similar to the execution of

a spawn in fork-join code, the create keyword terminates the current stand, which is a

42

create node with two outgoing edges: one to the first strand in the future task, and one to

the continuation of create. A future touch, or invocation of get, terminates the currently

executing strand and creates a join node that has two incoming edges: one from the strand

that was terminated by the invocation of get, referred to as the local parent of the join

node, and one from the last strand of the corresponding future task that executes the put,

referred to as the put node and the join node’s future parent .

For ease of description, we refer to the edge that goes from a future create node to the

first strand of the spawned future task as a create edge . We will refer to the edge that goes

from the last strand of a future task (put node) to the corresponding future join node as a

join edge .

When the program uses futures, the computation can be modeled as multiple independent

SP-dags, connected via create edges and join edges. That is, if F spawns G via spawn, then

the SP-dag of G is part of the SP-dag of G. On the other hand, if F spawns G via create,

then F and G are independent SP-dags, with the first strand of G being the source of a

separate SP-dag and the last strand of G being the sink.

As customary to prior works, we shall assume that the spawned function or future task is

always the left child of the spawn node and the continuation strand the right child. Thus, a

serial (one-worker) execution of a computation dag follows the left-to-right depth-first

traversal. This also means that we assume eager evaluation of futures, where the future task

is always evaluated before the continuation of create under serial execution.

Given a dag, the serial execution imposes a total order on the nodes. Say in this total

order, v executes immediately after u. In a parallel execution, if a worker w executes v but

not immediately after it executes u, then we say v incurs a deviation . This could happen

either because a different worker executed u or because worker w executed something else

between u and v.

43

4.1.2 Types of Futures

A structured use of futures imposes the following restrictions: 1) single touch, meaning

that only a single get is invoked on each future handle, and 2) no race on a future handle,

meaning that there is a directed path between a future create node and the local parent of

its corresponding touch. Note that this restriction is the same as prior work [37] and does

not preclude a future task to execute in parallel with the function that performs its touch

before the get keyword. It simply means that the spawning of the future (which writes to

the future handle) must be in series with the invocation of the corresponding get (which

reads the future handle). A general use of futures imposes the following restrictions: each

future is touched a constant number of times and all the join edges are forward pointing ,

namely, a create is always before its corresponding get in a serial execution, to prevent

deadlocks.

4.2 Proactive Work-Stealing

This section describes the proactive work-stealing algorithm, which we shall refer to as

ProWS in the rest of the section. We will refer to the original parsimonious algorithm

(classic work-stealing) analyzed by Arora et al. [4] as ABP.

The main distinction between ProWS and ABP is as follows. When a worker executes a

get, the associated future task may not be ready, so executing the get does not enable the

subsequent future join node. With ProWS, this simply falls under the case of enabling zero

nodes, and the worker continues execution by popping off the bottom-most node to execute

next. ProWS handles the execution of get differently. If its future task is not ready,

the worker suspends the entire deque and tries to find work elsewhere. An important

consequence of such behavior is that there can be more than P deques in the system, where

P is the number of workers.

44

In ProWS, suspended deques are still stored in a distributed fashion, thus each worker

now manages a single active deque that it actively works on and a set of stealable deques

that are not being actively worked on but contains ready nodes. When stealing, once a

victim is chosen, a thief can steal from any deque that belongs to the victim with equal

probability (including its active deque).

4.2.1 Data Structures Used

We shall first discuss the data structures used by the algorithm. Each deque supports the

following operations:

• popTop: remove and return the node from the top;

• popBottom: remove and return a node from the bottom;

• pushBottom: insert a node onto the bottom;

• pushBottomImplicit: insert a node onto the bottom of the deque and mark the node

as suspended ; and

• isEmpty: return true if there are no ready nodes in the deque (but may contain one

suspended future join node).

Just as in ABP, we assume that multiple workers can make calls to a deque concurrently;

if more than one worker tries to pop the same element off the deque, one of them succeeds

and the other one fails in a constant number of time steps.

Throughout the lifetime of a deque, it can be in one of the following four states:

• active: it is actively been worked on by a worker;

• suspended: it is suspended due to a get call; every node in the deque is ready, except

for the bottommost node, which is the corresponding suspended future join node;

45

• resumable: it contains only ready nodes, but it is not actively being worked on by a

worker; and

• muggable: similar to a resumable deque, except that the entire deque can be stolen and

resumed.

These states are exhaustive, and a deque can only transition: 1) from active to suspended

due to execution of a get call, 2) from suspended to resumable due to termination of the

future task enabling the join node at the bottom, 3) from resumable to active if the worker

who finishes the future task has an empty deque and resumes one of the now-resumable

deques suspended with the future handle; 4) from resumable to muggable after a thief steals

from it once, and 5) from muggable to active when a thief mugs it and resumes its execution.

Since a resumable deque transitions to muggable once it is stolen from, only its top item

may be stolen before transitioning. If a thief steals into a muggable deque, it takes the entire

deque and resumes its execution from the bottommost node.

The stealable deques belonging to a worker are maintained as a set. Each future handle

also maintains a deque set with references to suspended deques, allowing any deques sus-

pended with the handle to be resumed when the future task completes. A deque set supports

the following operations:

• add(deq): add deque deq into the set;

• remove(deq): remove deque deq from the set;

• removeRandom(): remove and return a deque from the set, chosen uniformly at random;

and

• pickRandom(): return a reference to a deque in the set, chosen uniformly at random

(but does not remove it).

46

We assume that one can make concurrent calls to a given set, and an operation will finish

in constant amortized time. When operating on the stealable set of a worker, the worker

is always chosen uniformly at random among the P workers. Thus, the contention can be

resolved in a constant number of time steps in expectation (e.g., see lemma 6 in [14]). In

practice, a set can be implemented as a growable array (performing array doubling when

necessary), which maintains a constant amortized insertion cost.

4.2.2 The Algorithm

Algorithm 5 shows the main scheduling loop for ProWS and its helper functions. Ignoring

the special handling of future operations in lines 30–37, ProWS behaves the same as ABP.

Each worker starts out with one active deque; it operates off the bottom of the deque (line 21

and lines 25–29) and steals when it runs out of work to do (lines 22–23). A worker, when

enabling two nodes, pushes the right node (i.e., continuation) first (line 27) and then the left

node (i.e., the spawned task) (line 29), which means that the left node gets executed next.

Future operations are handled differently. If the execution of this strand terminates with

get (lines 30–35) and the corresponding future task f has not terminated, get enabled

zero nodes. The worker then pushes the corresponding future join node j (the immediate

successor of n) onto the bottom of the deque via pushBottomImplicit (line 32) and

suspends the deque (line 33). The reference to the suspended deque is stored with the future

handle of f (line 34) and the worker’s active deque is set to null (line 35). It will be set to

something else after the steal. On the other hand, if the executed strand terminates with

put, that its corresponding future task f has terminated and all suspended deques stored

with f can now be resumed (lines 36–40). At this point, if the worker executing put has an

empty active deque, it will set its active deque to one of the suspended deques stored with

the future handle and resume its execution next (lines 38–40).

47

Algorithm 5: ProWS: The Main Scheduling Loop
/* w is the executing worker */

1 Function suspend(deq)
2 deq.status = SUSPENDED
3 if dep.IsEmpty() then
4 deq.worker = null

5 else
6 v = ChooseRandomVictim() // can include w itself
7 v.stealable.add(deq)
8 deq.worker = v

/* w is the executing worker */
9 Function setToActive(deq)

10 if deq.worker then
11 rebalanceStealables(deq.worker)
12 deq.worker.stealable.remove(deq)
13 deq.worker = null // deq is not in any stealable set
14 deq.status = ACTIVE
15 if w.active is not null then
16 freeDeque(w.active)
17 w.active = deq

/* w is the executing worker */
18 while computation is not done do
19 n = null // n points to next strand to execute

// w.active points to either null or its active deque
20 if w.active is not null then
21 n = w.active.popBottom()
22 if n is null then
23 steal() // steal returns when work is found
24 else // execute n
25 left, right = execute(n)
26 if right is not null then
27 w.active.pushBottom(right)
28 if left is not null then
29 w.active.pushBottom(left)

// special case: f is a future handle
30 if n terminated with f .get() then
31 if f is not ready then

// j is the future-join node after n
32 w.active.pushBottomImplicit(j)
33 suspend(w.active)
34 f.suspended.add(w.active)
35 w.active = null

36 else if n terminated with f .put() then
// Mark every deque in f.suspended RESUMABLE

37 markSuspendedResumable(f.suspended)
38 if w.active is empty then
39 deq = f.suspended.removeRandom()
40 setToActive(deq)

48

The implementation of suspend is shown in lines 1–8. Since ProWS may potentially

suspend many deques, it takes extra steps to ensure that the number of stealable deques

are roughly balanced among workers. Instead of suspending with the current worker w, it

chooses a target worker v uniformly at random (which can include w itself) and suspends

the deque with v. The reference to v is stored with the suspended deque so that when the

deque gets resumed it can be removed from worker v’s stealable set.

If the suspended deque contains no ready nodes (line 3) we don’t store the deque

in any worker’s stealable set, as it has nothing to be stolen from. Such a deque, once

gets resumed, is inserted into a stealable set of a worker chosen uniformly at random (by

markSuspendedResumable in line 37).

Finally, a key thing to note in setToActive is that it invokes

rebalanceStealables (line 11), which is invoked whenever w is about to remove

a deque from v’s stealable set — it randomly chooses another victim v′; if v = v′, w is done;

otherwise w moves a stealable deque from v′ to v if v′ has one. Section 4.3 explains why we

do such a rebalance.

Algorithm 6 shows the implementation of the steal protocol that a worker w invokes when

its deque becomes empty or after it loses its deque due to suspension. The steal function

performs steal attempts until w finds work successfully.

When stealing, w chooses a victim v uniformly at random (line 43, which again includes

w) and chooses a deque uniformly at random among v’s deques (line 44). If the chosen

deque is muggable, w takes the whole deque and set it to be its active deque. Otherwise,

w steals from the top (line 49). After popTop, if the deque runs out of ready nodes, it

is removed from v’s stealable set and possibly destroyed if there isn’t even a suspended

future join node at the bottom, such as in the case of resumable deque (line 51). Moreover,

rebalanceStealables is invoked again. If the deque is resumable and not empty, it is

49

Algorithm 6: ProWS: The Steal Protocol
/* w is the executing worker */

41 Function steal()
42 while true do // steal returns only when work is found.
43 v = ChooseRandomVictim() ; // can include w itself
44 deq = pickRandom(|v.active| ∪ |v.stealable|);
45 if deq is null then continue;// Nothing to steal from v
46 if deq.status is MUGGABLE then
47 setToActive(deq);
48 break;
49 n = deq.popTop() ; // deq is suspended or resumable
50 if deq.isEmpty() then
51 handleEmptyDeque();
52 rebalanceStealables(v);
53 else if deq.status is RESUMABLE then
54 deq.status = MUGGABLE
55 if n is not null then
56 if w.active is null then
57 w.active = newDeque()
58 w.active.pushBottom(n);
59 break;

marked as muggable (line 54). After a successful steal, w may need to allocate a new deque

(lines 57 and 58).

4.3 Performance Bounds for Proactive Work-Stealing

This section analyzes ProWS to show that, 1) for a computation with T1 work and T∞ span,

it executes the computation in expected time O(T1/P + T∞ lgP), and 2) the number of

deviations is bounded by O(PT 2
∞) for a program that uses structured futures and O(mkT∞+

PT∞ lgP) for a program that uses general futures.

Before we analyze the bounds, we first show that, at any point during the execution, the

set of stealable deques are roughly evenly distributed across workers, which we utilize when

we discuss the bounds. We use the following lemma on the classic balls-into-bins problem,

which is not hard to show (see e.g., [56, Chp. 5]):

50

Lemma 20. When m balls are thrown independently and uniformly at random into n bins,

the probability that the maximum load is more than m
n

+ O(lg n) is at most 1/n. Similarly,

the probability that the minimum load is less than m
n
−O(lg n) is at most 1/n.

Lemma 21. Given P workers and S number of stealable deques in the system, with proba-

bility 1− o(1) each worker has at most S/P +O(lgP) deques.

Proof Sketch. One can model the number of stealable deques per worker as the classic

balls-into-bins problem, where the workers are modeled as bins and the stealable deques are

modeled as ball tosses. Our process also includes muggings, however, which changes the size

of the stealable sets, and thus the analysis requires additional care.

We model the entire process as two separate ball-toss processes: a deque-suspension

process, where a suspended deque is modeled as a ball toss into a randomly-chosen bin

(worker to leave the deque with), and the deque-removal process, where removing a deque

is also modeled as a ball toss into a randomly-chosen bin (worker to remove the deque

from). Then the size of a given stealable set is the number of balls resulted from the deque-

suspension process minus the number of balls resulted from the deque-removal process. The

upper and lower bounds on the maximum and minimum loads in Lemma 20 thus give us the

desired bound.

It is not hard to see that the workers from the deque-suspension process is chosen uni-

formly at random. What remains to be shown is that the same holds true for the deque-

removal process. There are a couple ways a deque can disappear from a stealable set: 1) a

worker takes the whole deque to resume it (lines 40 and 47); and 2) a deque becomes empty af-

ter it is stolen from (lines 50–52). In both cases, we always invoke rebalanceStealables:

if we are removing a deque from v, we randomly choose a victim v′ to move a stealable deque

to v. If v′ has a stealable deque to move to v, it’s as if we removed the deque from v′. If v′

does not have a stealable deque, it’s as if we first moved the deque to v′ and then removed

it. Pretending to move a deque from v to v′ is ok, since v has a larger stealable set at the

51

moment, and doing so simply balances the load from a more-loaded worker to a less-loaded

one. Even though such load balancing is conditioned on v′ not having any deque, doing so

does not hurt the bound.

4.3.1 Bound on Execution Time

Our time bound analysis follows a similar structure to the analysis done in [4] and [99].

We separately bound the number of time steps devoted to various activities: work, steal

attempts, and muggings. By bounding how many time steps each activity takes, the final

bound arises by summing all the time steps divided by P , the number of workers used.

Obviously, the total work is bounded by T1 time steps.

It remains to bound the number of steal attempt and mugging operations, each taking a

constant number of time steps. In the original work-stealing analysis by Arora et al. [4, 5],

henceforth referred to as ABP, steal attempts are bounded by a potential function argument

that states the following. Assuming there are P deques in the system, after O(P) steal

attempts, the overall potential decreases by a constant fraction. This is because, the topmost

node in a deque contributes to a constant fraction of the overall potential among nodes within

the deque.

More formally, the following lemma is a straightforward generalization of lemma 7 and 8

in ABP [4] which we utilize:

Lemma 22. Let Φi denote the potential at time t and say that the probability of each deque

being a victim of a steal attempt is at least 1/X. Then after X steal attempts, the potential

is at most Φ(t)/4 with probability at least 1/4.

Effectively, this lemma says that the number of steal attempts is at most O(XT∞), since

the potential function is a function of T∞. For ABP, it is always the case that X = P ,

leading to a steal attempts bound of O(PT∞).

52

The ABP analysis cannot be applied to ProWS directly, since 1) ProWS can have more

than P deques in the system, and 2) a thief stealing into a muggable deque will resume the

bottommost node in the deque instead of the topmost one, which may not contain sufficient

amount of potential.

To resolve issue 1), we apply a similar technique to Utterback et al. [99] and divide the

computation into two types of phases: a steal-bounded phase when there are at most

2P stealable deques, and a work-bounded phase when there are more than 2P stealable

deques. During a steal-bounded phase, by Lemma 21, we know each worker has at most

O(lgP) deques, leading to a steal attempts bound of O(T∞P lgP) by Lemma 22. During a

work-bounded phase, the total number of deques in the system is more than 3P . However,

since there are many deques in the system distributed roughly equally among workers, steal

attempts are likely to succeed, each followed by a unit of work. Thus, we can bound the

steal attempts by O(T1) during a work-bounded phase. Overall, this leads to an execution

time bound of O(T1/P + T∞ lgP).

We still need to resolve issue 2) and in addition bound the time spent on muggings.

Recall that in ProWS, we enforce that every resumable deque has to be stolen from once

before it becomes muggable. This may seem counter-intuitive — why not simply resume

the deque from the bottom if it is already resumable? This steal-before-mug ensures that

for each mugging there is a corresponding successful steal on the same deque to amortize

against. Doing so prevents the worst case scenario where a deque with a high-potential node

on top repeatedly becomes resumable and mugged but never stolen from. This scenario

would prevent us from bounding steal attempts that lead to a successful mugging.

Thus, we can also bound the time steps spent on mugging against steals, resulting the

following time bound:

Theorem 23. Consider a computation with T1 work and T∞ span. The expected execution

time is O(T1/P + T∞ lgP).

53

4.3.2 Bounds on Deviations

We first define some notations. Given a computation dag G, we say that u is a predecessor

of v and v is a successor of u iff there is a directed path from u to v.

We make the following assumption. Let u be a node with two outgoing edges, meaning

that u can be a spawn node, a future spawn node, or a future put node. The only way for

a future put node to have an out-degree of two is if the corresponding future is multi-touch,

which creates a chain of put nodes, each with an out-degree of two.

Given a computation dag G, the sequential order is a total ordering of nodes in G that

arises from the sequential (one-worker) execution. A processor order of a worker w is the

sequence of nodes processed by w in a parallel execution of ProWS. We say u <1 v if u is

before v and u ≺1 v if u is immediately before v in the sequential order. Similarly, we say

u <w v if u is before v and u ≺w v if u is immediately before v in the processor order of w.

Given this notation, we now formally define deviation :

Definition 24. Let u and v be two nodes in a dag and u ≺1 v. We say that v is a deviation

in the parallel execution if for some worker w that executed v, we have u 6≺w v.

Given the definition of SP-dags (Section 2.2), it’s not hard to see that for every sync

node v in an SP-dag G, there is a corresponding spawn node u. Let u.lchild denote the left

child of u and u.rchild denote the right child of u. Similarly, let v.lparent denote the left

parent of v and v.rparent denote the right parent of v. Then, let Gleft be the SP-subdag

that consists of the set of nodes x in G such that there is a path from u.lchild to x and from

x to v.lparent. We say Gleft is the SP-dag enclosed by u.lchild and v.lparent.9 We define

Gright symmetrically. We first show properties of the sequential and parallel executions when

scheduled with ProWS.
9Recall that each future task is treated as its own SP-dag and thus if a node x in G spawns a future task

via create none of the nodes belonging to the future task is in G.

54

Lemma 25. Given an SP-dag G enclosed by a spawn node u and a sync v, let x be a node

in Gleft and let y be a node in Gright. Then, x <1 u.rchild <1 y <1 v.rparent. Moreover,

v.rparent ≺1 v.

Proof. Recall from Section 4.1 that, for a program that uses futures, the computation can

be modeled as multiple SP-dags connected via create and join edges with each future task

modeled as its own SP-dag. We can show that this lemma holds by inducting on the number

of independent SP-dags.

For the base case, where the program does not use any futures, the program itself is a

single SP-dag, and the statement is true, based on the recursive structural properties of an

SP-dag. Now assume we have two SP-dags, one for the main program F and one for a future

task G created via invoking create in F . When ProWS executes the create, it pushes

its corresponding continuation strand z onto the bottom of its deque. It then goes on to

execute the source node of the SP-dag for G. Since inductively the statement also holds true

for the execution for G, z should remain on the deque and can only be popped off to execute

after ProWS executes the future put node corresponding to the last strand of G. One can

generalize the statement to a program with multiple futures similarly.

Effectively, this lemma says that the sequential order of ProWS follows the depth-first left-

to-right traversal of the dag. Moreover, since for either structured or general use of futures

the create of a future task f must appear before the corresponding get in sequential

order, the sequential execution of ProWS can never suspend due to a get.

Now we prove lemmas about parallel executions.

Lemma 26. Let v be a sync node and u its corresponding spawn node. If v is a deviation,

then u.rchild must be stolen.

Proof. Let u.lchild and u.rchild be the left and right child of u. Similarly, let v.lparent and

v.rparent be the left and right parent of v. Following Lemma 25, we know that v.rparent ≺1

55

v. Then we must have v.lparent ≺w v for some worker w since v is a deviation. Therefore,

u.rchild must have already been executed when v.lparent enabled v because u.rchild is a

predecessor of v.

For the purpose of contradiction, suppose that u.rchild is never stolen. Consider a worker

w1 that executes u. It pushes u.rchild on the bottom of the deque and continues executing

u.lchild. Since if u.rchild is never stolen, the only way for it to execute is by popping it off

the bottom of the deque. By Lemma 25, we know that sequentially a worker will not pop

u.rchild off the deque before executing v.lparent.

In a parallel execution, by Algorithm 5, the only thing that can cause w1 to deviate from

the sequential order is if it encounters a get that causes it to suspend. In this case, w1 pushes

the join node onto the bottom of its deque and suspends the entire deque. Later, whenever

the deque becomes resumable, either u.rchild eventually gets stolen from the top, which

contradicts our assumption, or some worker w2 mugs and resumes the execution starting

from the suspended join node. However, that means, w2 will resume execution and go back

to following the sequential order starting from the join node, and thus will not pop u.rchild

off the deque before executing v.lparent.

Lemma 27. If a worker w enables no children after executing the right parent of a sync

node, then w′s deque is empty.

Proof. Let v be the sync node and u the corresponding spawn node. By 26, if v is a deviation,

u.rchild is stolen. Consider the SP-subdag G enclosed by u.rchild (G’s source node) and

v.rparent (G’s sink node). Then any node in G is executed before v.rparent in any execution.

We know w must steal u.rchild or any node in G, otherwise there is no possibility for w

to process v.rparent. Suppose the deque is not empty after executing v.rparent. Let z be

bottommost node on the deque. We must have z outside G since any node in G has been

executed. Furthermore, w′s deque is empty when w performs the steal. Then everything in

56

the deque afterwards is a descendent of u.rchild. So z can only be a node in a future dag

spawned by G.

Worker w will turn to the future subdag immediately after executing the corresponding

future spawn node. There are two ways that w can resume the execution of G: (1) the future

completes, or (2) w′s deque is empty again and it performs a steal targeting a node in G. In

both cases, z cannot be on w′s deque, which contradicts our supposition.

At a high-level, we bound the number of deviations as follows. We define the notion of

“traces” that divide the sequence of nodes executed by a worker based on the types of nodes.

We then show that only the first node in a trace can incur a deviation. Lastly, we show

that, such a node is either the direct result of a successful steal or can be amortized against

a successful steal.

Definition 28. Consider a sequence of nodes processed by w, which we then separate into a

set of traces, where each trace begins with one of the following nodes: (1) a sync node, (2) a

node that gets executed immediately after w performs a successful steal, and (3) a node that

gets executed immediately after w performs a successful mugging.

Observation 1. Given a node n in the dag, n can be one of the following:

1. n is a regular node: n has one child in the dag, and the child has only n as a parent;

2. n is a spawn node: n has two children in the dag, where each child has only one parent;

3. n is a future put node: n can have either one child (single touch future) or two

children (chain of put nodes for multi-touch futures);

4. n is a parent of a sync node: n has one child, where the child has two parents;

5. n is the local parent of a future join node: n has one child, where the child has two

parents.

57

It can be seen that these types are exhaustive by enumerating all the possible combina-

tions of the out-degree of n and in-degree of n’s children. Note that we can never have a

spawn node n leading to a child who is a sync node or join node — the act of invoking get

or sync terminates the current strand and creates a new node with an in-degree of two.

Thus, a get/ sync that immediately follows a spawn/ create will have a node inserted

between them.

Lemma 29. Consider a sequence of nodes executed by a worker w during parallel execution

scheduled using ProWS, which we separate into traces according to Definition 28. For a given

trace t = (n1, n2, . . . , nl), only n1 can be a deviation.

Proof. Let s = (n1, n̂2, . . . , n̂l) be the sequence of l nodes that starts with n1 in sequential

execution. We show that ni = n̂i for i = 2 . . . l by inducting on the length of the trace and

argue that either processor w behaves exactly as sequential execution, or the trace ends.

Inductively, assume ni = n̂i for i = 2 . . . j − 1 and w behaves exactly the same as the

sequential execution up to that point (i.e., each ni enabled exactly the same nodes as n̂i).

Now we consider nj. Based on Observation 1, nj can be one of the following. regular node:

nj must enable its only child and execute it next, just as in sequential execution.

spawn node: nj must enable both children, executing the left one and pushing the right

one onto the deque, just as in sequential execution.

future put node: if nj is a put node for a single-touch future or one at the end of a

put chain, then nj can either enable nothing or the corresponding future join. If nj enables

nothing, this is the same as sequential execution, and w either pops its bottom deque (which

leads to the same nj+1 by inductive hypothesis), or trace t ends at nj if w’s deque is empty,

since the next node has to follow from either a successful steal or mugging. If nj enables the

corresponding future join node j, that means the local parent of j executed and couldn’t

enable j and thus pushed j onto the bottom of some (now suspended) deque. Even though

58

nj enabled j, note that in ProWS, it does not push j onto w’s deque. Instead, it simply

marks the deque as resumable.

On the other hand, nj can be a put node for a multi-touch future that enables the next

put node and may or may not enable the corresponding future join node. Enabling the next

put node is exactly the same as sequential execution, and whether the corresponding future

join node is enabled or not does not matter, following similar argument as above.

parent of a sync node: If executing nj enables this sync node, then trace t ends at

nj (by the definition of the trace). If in both sequential and parallel executions, nj enables

no child, then w tries to pop a node off the bottom of its deque, which leads to the same

nj+1 by the inductive hypothesis. On the other hand, if nj enables no child but in sequential

execution, n̂j enables the sync node, then nj must be the right parent of the sync node.

Then by Lemma 27 w’s deque must be empty and thus trace t ends at nj.

local parent of a join node: In the sequential execution, since the local parent always

enables the join node, n̂j+1 will be the join node. In the parallel execution, either nj also

enables the join node, which means nj+1 = n̂j+1, or it enables no child. In the latter case, w

will push the join node onto the bottom of the deque and suspend the deque, which mean

trace t ends at nj because the next node has to follow from either a successful steal or

mugging.

Finally, a key theorem to bound the number of deviations:

Theorem 30. Given an execution of ProWS. Let n be the number of successful steals in the

execution. Then, the number of deviations is O(n).

Proof. From the definition of traces and Lemma 29, we know a deviation may only occur

at the beginning of a trace. Each trace begins with a sync node, a stolen node, or a node

processed after a successful mugging. Thus, the number of deviations is bounded by the sum

of the numbers for deviated sync nodes, successful steals, and muggings.

59

From Lemma 26, we know each deviation at a sync nodes has a unique corresponding

stolen node, thus we can bound the number of deviated sync nodes by the number of success-

ful steals. Also recall that in ProWS, a resumable deque has to be stolen from successfully

before it becomes muggable. Thus, the number of successful muggings is also bounded by

the number of successful steals. Thus, the total number of deviations is bounded by O(n),

where n is the number of successful steals.

Given Theorem 30, we can now bound the deviations by bounding the number of success-

ful steals, which is less than the number of steal attempts during the computation. Recall

Lemma 22, which effectively states that the number of steal attempts can be bounded by

O(XT∞), when a deque can be stolen into with probability at least 1/X. We provide a

bound on 1/X by bounding the the maximum number of stealable deques possible during

the execution.

Lemma 31. Given a computation that uses structured futures scheduled using ProWS, there

can be at most O(PT∞) stealable deques during execution.

Proof. In the case of the structured use of futures, the stealable deques can only include

suspended deques. Recall that a structured use of futures is restricted to single touch and no

race on the handle (i.e., the future spawn node has a directed path to the local parent of the

join node). Due to the former, there can exist only one suspended deque per future handle f .

Moreover, due to the directed path, the continuation of the future spawn node that spawned

f must be stolen in order for a corresponding get on f to suspend. Thus, whenever a worker

w eventually executes the put that completes f ’s corresponding future task, w’s deque must

be empty. By Algorithm 5, w will then resume the single deque suspended with f , making

it active, and thus there cannot be resumable or muggable deques in the stealable set.

Whenever a worker has to suspend a deque due to get, the corresponding future task f

is either being actively worked on by another worker (due to eager evaluation), or f is also

60

suspended because f itself invoked a get on a different future, creating a chain of suspended

future tasks. Such a chain has length at most T∞ (as any chain in the dag). Moreover, at

least one worker is working on the future task at the beginning of the chain. Therefore, there

can be at most O(PT∞) suspended (stealable) deques.

Lemma 32. Given a computation that uses general futures scheduled using ProWS, there

can be at most mk stealable deques during execution.

Proof. By Algorithm 5 lines 30–35, a deque can only suspend when encountering a get

(future touch). When a future touch node n causes a deque to suspend, no descendant of n

can execute until the deque becomes active again. By definition, since there can be at most

mk number of future touches executing in parallel, this leads to a maximum number of mk

stealable deques at any given time. mk.

Finally, we can prove the following deviation bounds:

Theorem 33. Given a computation that uses structured futures with span T∞ and scheduled

using ProWS on P workers, the number of deviations is O(PT 2
∞) in expectation.

Proof. By Lemma 31, we know the maximum number of deques possible during execution is

O(PT∞). By Lemma 21, each worker can have up to O(T∞+ lgP) deques. Thus, a deque is

stolen into with probability of at least O(1
PT∞+P lgP

). Then by Lemma 22, the steal attempts

across the computation is at most O(PT 2
∞+PT∞ lgP), or O(PT 2

∞) assuming T∞ = Ω(lgP),

which is likely the case.

Theorem 34. Given a computation that uses general futures with span T∞ and scheduled

using ProWS on P workers, the number of deviations is O(mkT∞+PT∞ lgP) in expectation,

where mk is the maximum number of future touches that are logically parallel.

Proof. By Lemmas 32 and 21, we similarly derive the probability that a deque is stolen into

to be at least O(1
mk+P lgP

). Then by applying Lemma 22 we obtain the bound.

61

Chapter 5

Race Detection for General Futures

Futures [36] provide an elegant means to express parallelism in task parallelism. However,

only a few prior works [2, 90, 98] exist that study the problem of race detecting programs

that use futures. Unlike programs that utilize only fork-join or pipeline parallelism, the use

of futures can generate arbitrary dependences due to the fact that the joining of future tasks

can occur at arbitrary program points. Consequently, a program that uses futures no longer

has the same structural properties that enable efficient race detection algorithms. The lack

of structural properties has a few implications. First, it no longer suffices to store only

a constant number of accessors per memory location. Instead, the number of readers per

memory location can be large — all the readers must be recorded until a sequential writer

comes along. Second, the reachability can no longer be maintained and queried as efficiently

using two total orders.

In this chapter, we examine the race detection problem with general futures .10 The

execution of a parallel program using general futures can be modeled as a nearly series-

parallel dag (NSP-dag), that is a dag formed by a set of SP-dags connected by a set of
10The general use of futures was previously defined in Section 4.1.2 with two restrictions: constant number

of touches per future and forward pointing. However, the algorithm (F-Order) proposed in this chapter does
not rely upon these restrictions.

62

arbitrary additional edges, representing the arbitrary dependencies that arise from the use

of futures.

The state-of-the-art algorithm [2] that targets NSP-dags provides an execution time

bound of O(T1 + k2), where k is the number of future operations. However, this algo-

rithm must execute the program sequentially during race detection. The requirement of

sequential execution is not just an implementation artifact but fundamental to how the

algorithms maintain reachability. As the computation dag unfolds dynamically during pro-

gram execution, the reachability maintenance data structure must maintain reachability of

all accesses occurred thus far. In the state-of-the-art sequential algorithm, the reachability

data structure can only be maintained correctly assuming a particular traversal order of the

computation dag, which only the sequential execution guarantees. If the dag unfolds in any

other topological traversal order (which occurs during parallel executions), the reachability

data structure proposed by these prior algorithms no longer work correctly.

In this work, we propose F-Order, the first known parallel race detection algorithm

that race detects a program with general futures while executing the program in parallel

(Sections 5.2 and 5.3). We show that, given a computation with T1 work and T∞ span,

our race detection algorithm runs in time O((T1 lg k̂ + k2)/P + T∞(lg k + lg r lg k̂)) on P

processors, where k is the number of future operations, r is the maximum number of readers

per memory location, and k̂ is the maximum number of future operations done by a single

future task, which is usually small (Section 5.4).

To put this bound into perspective, a provably efficient parallel scheduler can execute

a baseline program (i.e., no race detection) in time O(T1/P + T∞) [5]. Our race detection

algorithm incurs additional O(k2) work, like the state-of-the-art sequential algorithm [2], but

this additional work can be parallelized. It also incurs a multiplicative overhead of lg k̂ on

the work term (which is small) and a multiplicative overhead of (lg k+ lg r lg k̂) on the span

term.

63

We have implemented and empirically evaluated a prototype system based on F-Order

(Section 5.5). The empirical results indicate the reachability component incurs little overhead

and that the race detection obtains similar scalability as the baseline. Moreover, we have

compared our parallel race detector against FutureRD, the state-of-the-art sequential race

detector for futures [96, 98]. Empirical results indicate that, even though our parallel race

detector incurs higher overhead on one-core execution, the fact that we can race detect while

executing the program in parallel quickly pays off in absolute execution times.

5.1 Nearly Series-Parallel Dag

When a program uses both fork-join and general futures, the execution generates a nearly

series-parallel dag (NSP-dag) GN = (Dsp, Enon), a dag formed by a set Dsp of SP-dags

connected by a set Enon of non-SP edges (create and get edges). Since each future task

may contain fork-join parallelism, the execution of a future task can be modeled as its own

SP-dag. If the future task executes a create, the spawned-off future task is a separate

SP-dag, connected via non-SP edges.

For ease of description, we say the following types of nodes in the dag are special: spawn,

sync, create, join, and put nodes.11 All other nodes are common nodes . Furthermore,

we say create and put nodes are non-SP nodes , which are special in that they have an

outgoing non-SP edge. If there is a path from u to v, and u is either a create or put node,

we say u is a non-SP ancestor of v.

5.2 Overview of F-Order

This section provides an overview of F-Order. As mentioned at the beginning of this chapter,

the use of futures generates non-SP edges that form arbitrary dependences and thus lack the

structural properties that fork-join parallelism enjoys, which brings challenges to the race
11These types of nodes are previously defined in Sections 2.2 and 4.1

64

detection problem for futures. We now discuss each of the challenges, the intuitions behind

F-Order, and how F-Order addresses the challenges.

5.2.1 Access History in F-Order

For fork-join (and pipeline) parallelism, due to the nice structural properties of SP-dags, it

is sufficient to store only the “left-most” (“down-most”) and “right-most” readers per memory

location during parallel execution [55]. One can prove that a reader omitted by the access

history can race with a writer if and only if the writer also races with either the left-most

(down-most) or the right-most reader. Thus, we do not miss a race by omitting such a

reader in the access history. For a program that uses futures, however, we no longer have

the same structural properties — there are no clear “left-most” and “right-most” readers that

one can store to subsume potential races with other readers. Thus we must store all readers

encountered until a sequential writer comes along.

How F-Order maintains access history follows the same strategy as the prior state-of-

the-art sequential algorithm [2]. For each memory location l, F-Order stores a last writer ,

writer(l), which is the last node that wrote to l, and a list of readers reader-list(l)

that read l since writer(l). Whenever a node r tries to read a memory location l, F-Order

performs a reachability query between r and writer(l) to see if r races with the last writer.

If so, a race is reported. If not, r is added to reader-list(l). Whenever a node w writes to

a memory location l, F-Order checks w against all the readers in reader-list(l) and the

last writer writer(l). If any of the reader-list(l) or writer(l) is logically in parallel

with w, a race is reported. Otherwise, F-Order empties the reader-list(l) and sets

writer(l) to be w. As argued by Agrawal et al. [2], we won’t miss any races by emptying

reader-list(l) because any future access that races with a node in reader-list(l)

must also race with w. The fact that the prior algorithm executes the program sequentially

65

and F-Order executes it in parallel does not change the correctness argument, so long as

F-Order synchronizes the access history data structure correctly.

Agrawal et al. [2] also show that that the total number of reachability queries per reader

is bounded by two. F-Order provides the same bound on the number of reachability queries

per reader. Since F-Order executes in parallel, however, we must also consider how the

reachability queries impact the span, which we discuss in Section 5.4.

5.2.2 Reachability Maintenance in F-Order

The Challenges. A computation that uses futures can be modeled as a NSP-dag, consisting

of a set of SP-dags connected via non-SP edges. Given two nodes, if they are connected by

only SP edges, one can perform a reachability query on them efficiently by applying the

reachability maintenance algorithm used for fork-join parallelism from prior work [9, 29, 97].

The challenge is to handle the reachability queries efficiently when the two nodes are possibly

connected in part by non-SP edges.

The state-of-the-art sequential algorithm [2] encodes the reachability that arises due to

non-SP edges explicitly using an auxiliary graph R. Unfortunately, the maintenance of R

heavily depends on traversing the computation dag in a left-to-right depth-first fashion (i.e.,

executing the dag sequentially). Thus, this prior algorithm simply cannot be parallelized,

since a parallel execution can traverse the dag in any order (as long as it is a topological sort

of the dag), which breaks the invariants required by R to keep track of reachability correctly.

Thus, the reachability maintenance in F-Order has to use an entirely different strategy.

The Intuitions. Based on how we model the computation, each future task forms its

own SP-dag, and different SP-dags can only be connected via non-SP edges. That means, if

two nodes are in series and connected by only SP edges then they must belong to the same

SP-dag, and one can utilize a prior parallel algorithm such as WSP-Order [97] to correctly

answer reachability queries between them. WSP-Order cannot encode the reachability of two

66

nodes correctly if they are connected via non-SP edges, regardless of whether they belong to

the same SP-dags or not. Thus, we need some other means to encode reachability between

two nodes if they are connected via non-SP edges.

The key observation is as follows. Given two nodes u and v connected via non-SP edges,

some node w must exist in the path between u and v, where w is a non-SP ancestor of v that

is in the same SP-dag as u. That is, the prefix of the path (from u to w) contains only SP

edges, and the suffix (from w to v) containing at least one non-SP edge (outgoing from w).

Thus, given two nodes u and v possibly connected in part by non-SP edges, we can query

their reachability efficiently if we can quickly determine if such an ancestor w exists, who

is 1) an non-SP ancestor of v in the same SP-dag as u and 2) in series with u via only SP

edges.

The FOM Data Structure. To quickly determine whether such an non-SP ances-

tor w of v exists, F-Order employs an enabling data structure called the Future Order-

Maintenance (or FOM for short) data structure per node in the NSP-dag. An FOM data

structure for v stores all v’s non-SP ancestors, organized into groups, where each group

contains non-SP ancestors from the same SP-dag.

Upon execution of a node v, its FOM data structure will be complete and its content

fixed because v’s FOM data structure contains only v’s non-SP ancestors, and these must

have already been discovered by the time v executes as the scheduler guarantees that a node

cannot execute until all its ancestors have executed. If v accesses some memory location that

some node u accessed previously, F-Order queries v’s FOM data structure to find the group

g that holds the non-SP ancestors from the same SP-dag as u. F-Order then checks with g

to determine whether some w exists that is reachable from u. If a node is in the group g, by

definition it is in the same SP-dag as u. Then, we simply need to check if w is in series with

u.

67

A naive implementation would be to check reachability against every node in g, taking

time linear in the size of g. Ideally, we would like to quickly eliminate non-viable candidates

in the group and avoid querying every single node in the group. The key insight of F-Order

involves identifying the correct auxiliary data to store with each non-SP ancestor in a group

so that the process of elimination can be done quickly.

It turns out that, to perform the process of elimination within a group, we simply need to

organize nodes in a given group as follows. First, store the nodes in the English order [62],

that corresponds to the depth-first-left-to-right traversal of nodes in the corresponding SP-

dag. The English order is well defined among nodes in the same group, because a group

contains only nodes from the same SP-dag with no non-SP edges. Second, with each node

w in the group, additionally store w’s furthest descendent that is also within the same

group; that is, some node z that is reachable from w that is also in the group such that

no other node y in the group is reachable from z (formally defined in Section 5.3). We will

elaborate on the detailed construction of FOM data structures and discuss how F-Order uses

them to perform reachability queries in Section 5.3.

5.2.3 An Illustrating Example

Figure 5.1 shows the static snapshot of an NSP-dag with all its FOM data structures shown.

Note that the parallel execution unfolds the NSP-dag dynamically, revealing each node as it

becomes ready (i.e., all its ancestors have executed). Nevertheless, as discussed earlier, the

content of an FOM data structure for node v is fixed by the time v executes, so this dynamic

unfolding of the dag does not change the content of the FOM data structures shown.

For now, we shall focus solely on the organization of an FOM data structure and how we

use it to perform reachability queries. Take node f : it contains multiple non-SP ancestors.

They are grouped into four entries in f ’s FOM data structure, as they respectively belong

to four different SP-dags. In particular, f has nodes k, l, and n as its non-SP ancestors,

68

i

a

ed

c

f

b

g

h

k

lj

m

o

p

q

r

A

B
C

D
n

node FOM

a {}

b {A: b(b)}

c {}

d {}

e {A: b(b)}, {B: k(n), l(n), n(n)}, {C: p(p)}, {D: r(r)}

f {A: b(b)}, {B: k(n), l(n), n(n)}, {C: p(p)}, {D: r(r)}

g {A: b(b)}, {B: k(n), l(n), n(n)}, {C: p(p)}, {D: r(r)}

h {A: b(b)}

i {A: b(b)}, {B: k(k)}, {C: p(p)}

j {A: b(b)}, {B: k(l), l(l)}, {C: p(p)}, {D: r(r)}

k {A: b(b)}, {B: k(k)}

l {A: b(b)}, {B: k(l), l(l)}

m {A: b(b)}, {B: k(l), l(l)}, {C: p(p)}, {D: r(r)}

n {A: b(b)}, {B: k(n), l(n), n(n)}, {C: p(p)}, {D: r(r)}

o {A: b(b)}, {B: k(k)}

p {A: b(b)}, {B: k(k)}, {C: p(p)}

q {A: b(b)}, {B: k(l), l(l)}

r {A: b(b)}, {B: k(l), l(l)}, {D: r(r)}

Figure 5.1: An example of a NSP-dag with every node’s FOM data structure shown. In
this NSP-dag, four SP-dags exist, ID’ed as A, B, C, and D, with A being the main SP-
dag and the others being the spawned future tasks. The non-SP edges are shown as thick
dashed edges. Each node has its own instance of FOM data structure, containing entries of
{key : value} pairs, where the key is the ID of an SP-dag and the corresponding value is
a set of non-SP ancestors from the SP-dag. The parentheses next to each non-SP ancestor
shows its furthest descendant in the group.

all from SP-dag B. Thus, its FOM data structure contains an entry with group keyed by

B, and the corresponding value is a list of non-SP ancestors ordered in their English order.

(Note that the nodes in a given SP-dag are labeled alphabetically according to their ordering

in the English order.)

Say f is being executed, and F-Order wants to check if f is reachable from node i. Since

i belongs to SP-dag B, F-Order checks f ’s FOM data structure for the group indexed with

B, which returns the list k, l, and n (with every node having n as its furthest descendant).

Since n is reachable from i, F-Order concludes that f is reachable from i. In this case, the

69

group for B is small, containing only three nodes. However, the size of a group can be larger,

and ideally we want F-Order to quickly home in on n and not check i against every node in

the group. This is where the English ordering and the auxiliary data of furthest descendants

become useful, which we discuss in Section 5.3.

5.3 Details of F-Order and Its Correctness

This section presents the full detail of F-Order and its correctness proof. F-Order consists of

two parts: a construction algorithm that builds and maintains the FOM data structure for

each node and a reachability-query algorithm that checks whether a given pair of nodes

are reachable from one another. We discuss each in turn. Throughout the section, we shall

refer back to Figure 5.1 as an illustrating example.

Notations. Given an NSP-dag GN = (Dsp, Enon), which consists a set of SP-dags

connected via non-SP edges, we assume each SP-dag d ∈ GN is assigned with a unique

integer identifier, denoted as SP (d). Given a node u, we overload the notation and use

SP (u) to denote the ID of the SP-dag containing u. Given two nodes u and v such that

u ; v, We use u ;sp v if the path comprises only SP edges and u ;nsp v if the path

comprises any non-SP edge. If u and v are in the same SP-dag d ∈ Dsp, we say u ≺d v iff

u ;sp v; we say u ‖dleft v iff node u is left of v in SP-dag d, where u is in the left subdag

of d and v is in the right subdag of d. Both notations ≺d and ‖dleft are only applicable to

nodes in the same SP-dag d. They specify the English order in that, if u is before v in the

order, then either u ≺d v or u ‖dleft v. For instance, in Figure 5.1, c ≺d g and b ‖dleft e. On

the other hand, h and g cannot be related using these operators.

70

5.3.1 Construction of FOM Data Structures

As the NSP-dag unfolds, nodes become ready and get executed. When a node v executes,

F-Order constructs an FOM data structure for v, denoted as v.fom, whose content is com-

plete at the beginning of v’s execution to allow for reachability queries for memory accesses

performed by v. An FOM data structure is organized as a hash table, hashing SP (d) to its

corresponding group that stores all of v’s non-SP ancestors that belong to the SP-dag d.

For a given group g, an element e in g has two fields: e.node and e.desc. Field e.node

stores the actual non-SP ancestor. Field e.desc stores the furthest descendent of e.node

in g. We say a node v is the furthest descendent of e.node in g iff (1) e.node �d v, (2) there

exists an element x in g such that x.node = v, (3) for any other element y in g, we have

v 6≺d y.node. Intuitively, the furthest descendant of e.node is another non-SP ancestor of v

stored in the same group g that is a descendant of e.node and e.node has no other descendant

in the group that is further out.

Properties of an FOM data structure. An FOM data structure maintains the

following properties.

1. For a non-SP node w such that w � v, there exists a group containing element x in v.fom

such that x.node = w.

2. Given two elements x and y in group g, x.node and y.node are in the same SP-dag d. If

x.node ≺d y.node or x.node ‖dleft y.node, then x is before y in g.

3. Given an element x in group g, its furthest descendant field is maintained properly. That

is, (1) x.node �d x.desc, (2) there exists an element y in g such that y.node = x.desc, (3)

for any other element z in g, we have x.desc 6≺d z.node.

Property 1 states that, given a node v in the NSP-dag, v.fom has all v’s non-SP ancestors.

Property 2 states that the elements in a group are stored in the English order. Since a

71

group stores only nodes from the same SP-dag, their relationships (≺d or ‖dleft) can be

maintained and queried efficiently using the prior parallel algorithmWSP-Order [97] designed

for fork-join parallelism. Property 3 states that the furthest descendents for every element

is maintained correctly.

The construction algorithm in F-Order assumes the following helper functions that op-

erate on FOM data structures.

• FOM-Insert(fom, v): Given an instance fom and a non-SP node v, FOM-Insert

returns a new instance of FOM created by copying over the content of fom and inserting

v into the appropriate group stored in fom.

• FOM-Merge(fom1, fom2): Given two instances fom1 and fom2 of FOM, FOM-Merge

returns a new instance of FOM created by merging the contents of fom1 and fom2.

Algorithm 7: F-Order: Construction
1 Function CommonOrSpawn(v)
2 v.fom = v.parent.fom
3 Function Sync(v)
4 let u be the corresponding spawn node of v
5 if u.fom 6= v.lparent.fom and u.fom 6= v.rparent.fom then
6 v = FOM-Merge(v.lparent.fom, v.rparent.fom)
7 else if u.fom 6= v.lparent.fom then
8 v.fom = v.lparent.fom
9 else

10 v.fom = v.rparent.fom

11 Function CreateOrPut(v)
12 v.fom = FOM-Insert(v.parent.fom, v)
13 Function Join(v)
14 v.fom = FOM-Merge(v.local.fom, v.future.fom)

Algorithm 7 shows the pseudocode of the construction algorithm. F-Order constructs

FOMs for all nodes by propagating the presence of non-SP nodes (i.e., create or put) to

all its descendents during parallel execution. The algorithm initializes an empty instance of

FOM for the source node of the main dag since it doesn’t have any ancestor. Subsequently, it

72

executes nodes of the dag in any valid order: a node can be executed when all it’s ancestors

have finished executing. As each node v executes, the algorithm calls different functions

based on v’s node type.

If v is a common or spawn node, v has only one parent v.parent. Any non-SP ancestor

of v.parent (possibly including v.parent itself) is also a non-SP ancestor of v. Thus, the

algorithm sets v.fom = v.parent.fom (line 2).

If v is a create or put node, besides inheriting all its parent’s non-SP ancestors, v also

needs to insert itself into its own FOM data structure. Therefore, the algorithm invokes

FOM-Insert to insert itself into v.parent.fom (line 12), which implicitly creates a new

instance of FOM that copies the content from v.parent.fom and inserts itself into the ap-

propriate group.

If v is a join node, then v has two parents: a local parent v.local and a future parent

v.future. Then the algorithm creates a new instance of FOM by merging v.local.fom and

v.future.fom (line 14).

Finally, if v is a sync node, then v has two parents: a left parent v.lparent and a

right parent v.rparent. However, it is not always necessary to merge v.lparent.fom and

v.rparent.fom. By the structural properties of an SP-dag, we know that a sync node v has

a corresponding spawn node u and two SP-subdags in between: the left subdag GL and the

right subdag GR. The source node of GL inherits u.fom, which can only change when GL

contains either a create node or a join node (i.e., with an incoming put edge). If GL does

not contain either create or join node, v.lparent.fom remains the same as u.fom. Similarly,

the same thing holds for GR and v.rparent.fom. The merge is only necessary when both

v.lparent.fom and v.lparent.fom have changed compared to u.fom. Thus, the algorithm

checks for whether both have changed, and if so calls FOM-Merge (line 6). Otherwise, if

only one changed, v.fom inherits the one that has changed (lines 8 and 10). If neither has

changed, it doesn’t matter which one v.fom inherits from. Take node f in Figure 5.1 for

73

instance: its corresponding spawn node is c and only the right subdag (i.e., e) has its FOM

data structure changed from c. Thus, f simply inherits its FOM data structure from its right

parent e. The node g, on the other hand, constructs its FOM data structure by merging the

FOM data structures from both of its parents.

For performance reasons, it is important that F-Order calls FOM-Merge only when both

subdags execute nodes that cause their respective FOM data structure to change, a fact that

we use when proving the performance bound of F-Order in Section 5.4.

Lemma 35 states that Property 1 always holds for an FOM data structure:

Lemma 35. Given a node v, F-Order constructs a FOM instance v.fom that stores all the

non-SP ancestors (i.e., future create and put nodes) of v (Property 1).

Proof Sketch. One can show this inductively by the nodes executed during paral-

lel execution: provided that the FOM instance(s) of v’s parent(s) satisfy Property 1, the

construction of v’s FOM also satisfies Property 1.

To show that the construction algorithm satisfies the Properties 2 and 3, we need to

examine the FOM-Insert and FOM-Merge in more detail. Due to space constraints, we

discuss what these functions do at a high-level and omit the full pseudocode.

Insert Operation. At FOM-Insert(fom, v), we create a new FOM fomnew by

copying the content of fom into fomnew. Then we check if fomnew contains a group g with

SP (v). If so, we call Group-Insert(g, v), which returns a new group gnew with a copy

of g’s content and v added, and we replace g with gnew in fomnew. If not, we simply create

a new empty group gnew with v added, and add gnew to fomnew.

Algorithm 8 shows the helper function Group-Insert, which uses linear search to find

the correct position of v in gnew, which keeps Property 2. Furthermore, for a node u in gnew

such that u ≺d v, v checks its furthest descendent to see if it should be replaced with v; if

so, update it in gnew (line 23). For any u′ that is positioned after v in gnew, v cannot be

74

Algorithm 8: Helper Function: Group-Insert
15 Function Group-Insert(g, v)
16 gnew = new Group() // create a new group
17 i = j = 1
18 while j ≤ g.length do
19 x = g[j++] // jth group element in g

20 if x.node ≺d v ∨ x.node ‖dleft v then
// copy constructor copying the content of x into y

21 y = new Group-Element(x)
// update furthest descendant if necessary

22 if x.desc ≺d v then
23 y.desc = v
24 gnew[i++]=y // insert group element y into gnew
25 else break // found the right position for v
26

27 gnew[i].node = gnew[i].desc = v
28 i = i+ 1

// copy the remaining elements of g into gnew
29 while j ≤ g.length do
30 gnew[i++] = new Group-Element(g[j++])
31 return gnew

u′’s furthest descendant as either v ≺d u
′ or v ‖dleft u′ and thus we simply copy over the rest

(line 30).

We can conclude the following lemma for FOM-Insert:

Lemma 36. Given a FOM fom that satisfies Properties 2 and 3, FOM-Insert(fom,v)

returns a new FOM with the content of fom and v inserted that satisfies Properties 2 and 3.

Merge Operation. FOM-Merge is used in the construction algorithm to merge two

FOM instances. At FOM-Merge(fom1, fom2), we create a new FOM fomnew. We first

iterate through groups in fom1 and insert them into fomnew. We then iterate through groups

in fom2. For each group g2 in fom2, we check if some group g1 with SP (g2) already exists

fomnew. If so, we call Group-Merge(g1, g2), which returns a new group g with merged

content, and we replace g1 with g in fomnew. If not, we simply insert g2 into fomnew.

75

Algorithm 9: Helper Function: Group-Merge
32 Function Group-Merge(g1, g2)
33 gnew = new Group() // create a new group
34 i = j = k = 1
35 while i ≤ g1.length ∧ j ≤ g2.length do
36 x = g1[i] // the ith group element in g1
37 y = g2[j] // the jth group element in g2
38 if x.node ≺d y.node ∨ x.node ‖dleft y.node then
39 z = new Group-Element(x)
40 i = i + 1

41 else if x.node = y.node then
42 z.node = x.node
43 if x.desc �d y.desc then
44 z.desc = y.desc
45 else z.desc = x.desc
46 i = i + 1; j = j + 1

47 else
48 z = new Group-Element(y)
49 j = j + 1

50 gnew[k++] = z // insert group element z into gnew
// copy the remaining elements of g1 or g2 into gnew

51 while i ≤ g1.length do
52 x = g1[i++]
53 gnew[k++] = new Group-Element(x)
54 while j ≤ g2.length do
55 y = g2[i++]
56 gnew[k++] = new Group-Element(y)
57 return gnew

76

Algorithm 9 shows Group-Merge, which merges two groups while maintaining the En-

glish order during merge, and its operation is akin to the merge step in merge sort. Using a

similar correctness proof as merge sort, we can conclude the following lemma:

Lemma 37. Given fom1 and fom2 that satisfy Property 2, FOM-Merge(fom1, fom2)

returns a new FOM instance with the merged content of fom1 and fom2 that satisfies Prop-

erty 2.

What is not obvious is that Property 3 is also maintained by Group-Merge. Consider

the process of merging two groups g1 and g2. Given an element x in g1, x.desc stores the

furthest descendent of x.node in the scope of g1. However, it is possible that there exists a

node u in g2 such that x.desc ≺d u, which means that u should become the new x.desc after

merging g1 and g2 into gnew. It may seem that Group-Merge needs to check x.desc against

every single node in g2. It turns out that it is sufficient to only check x.desc against y.desc

of an element y in g2 such that x.node = y.node, and during the merge we are guarantee to

compare x against y for x.node = y.node (lines 41–46). Lemma 38 states that doing so is

sufficient to maintain Property 3.

Lemma 38. Given two groups g1 and g2 that satisfy Property 3, Group-Merge merges the

content of g1 and g2 into gnew while maintaining Property 3 for gnew.

Proof. Given an element x in g1, say there exists a node u stored in g2 such that u is the new

furthest descendent of x.node. Then, we have x.node ≺d u. Also, suppose g2 is maintained

by v.fom. Then we have u � v since all the nodes stored in v.fom are v’s ancestors, which

leads to x.node ≺ v. By Property 1, we know v.fom stores all of v’s non-SP ancestors.

Thus, x.node must be stored in some group of v.fom. Since x.node and u are in the same

SP-dag, we are guaranteed that x.node is also in g2. Thus, there must exist an element y in

g2 such that y.node = x.node and y.desc = u. Thus, similar to the merge step in merge sort,

77

there must exist an iteration that performs the comparison between x and y. As a result, it

is sufficient to check for update for x.desc against y.desc in such an iteration.

5.3.2 Reachability Queries Using FOM

We now describe how we do the reachability query between two nodes u and v. Recall the

intuitions discussed in Section 5.2.2. The following lemma formalizes this intuition:

Lemma 39. Give two nodes u and v in GN , we have u ≺ v iff one of the following is true:

1) u ≺d v; or 2) u �d w, w ≺ v where w is a non-SP node (i.e., a create or put node).

Proof. It is clear that if u ≺d v, or u ≺d w and w ≺ v, we have u ≺ v. Now we show the

other direction also holds. If u ≺ v, there are two possibilities: 1) u ;sp v or 2) u ;nsp v.

The first case u ;sp v is easy to see that u and v must be in the same SP-dag and thus we

have u ≺d v. Let’s consider the second case u ;nsp v. Then the path must pass through

some create or put node because all outgoing non-SP edges are incident on either create or

put nodes. Now we prove that there exists a node w that u �d w. If u is a create or put

node, then w = u. If not, u must have an outgoing SP edge. Therefore, we can break the

non-SP path from u to v into an SP path and a non-SP path connected via some create or

put node w. As a result, we have u;sp w, i.e., u ≺d w.

Lemma 39 states that in an NSP-dag GN , node u has a path to v iff: (1) u and v are

in the same SP-dag d and there is an SP path between u and v in d; or (2) the path passes

through a create or put node that breaks the path into an SP path and a non-SP path.

The first case can be queried efficiently using prior work [97]. The latter case is where we

apply the FOM data structures. Specifically, when querying for reachability between u and

v, F-Order first queries if u ≺d v if they are in the same SP-dag; otherwise, F-Order searches

whether there exists a non-SP ancestor w stored with v.fom such that u �d w.

78

Algorithm 10: Group-Search in Reachability Query
58 Function Precedes(u, v)
59 if SP (u) = SP (v) ∧ u ≺d v then
60 return TRUE
61 else
62 g = v.fom.find(SP (u))
63 if g then
64 return Group-Search(u, g)
65 else return FALSE
66 Function Group-Search(u, g)
67 low = 1; high = g.length
68 while low ≤ high do
69 mid = (low + high)/2; m = g[mid]
70 if u �d m.node then
71 return TRUE
72 else if m.node ≺d u ∨ m.node ‖dleft u then
73 low = mid+ 1

74 else // must be u ‖dleft m.node
75 if u ≺d m.desc then
76 return TRUE
77 else high = mid− 1

78 return FALSE

Algorithm 10 shows the pseudocode for Precedes(u,v), which checks if SP (u) = SP (v)

and u ≺d v. If so, u ≺ v and we are done. If not, we then check if a non-SP path exists using

v’s FOM data structure v.fom. We search for a group g with SP (u) in v.fom; if found, we

invoke Group-Search(u, g) to see if a w exists such that u �d w. If one is found, then

u;nsp v; if not, we conclude that no path exists between u and v.

By Property 2, elements in a group g is stored in a total English order. Group-Search

uses this fact to apply a process of elimination akin to that in binary search. As hinted before,

the process of elimination involves some complications — upon encountering an element x,

in some cases, we must compare u against x.desc (line 75) to correctly eliminate half of the

remaining elements to check. This leverages Property 3 to guarantee correctness, which we

discuss in Lemma 40.

Lemma 40. Given a node u and a group g, the search in Group-Search(u,g) returns

true iff there exists an element x in g such that u �d x.node; it returns false otherwise.

79

Proof. First we show that if Group-Search(u,g) returns true, there exists an element x

in g such that u �d x.node. This is evident from the code: Group-Search(u,g) only

returns true when such a node is found (lines 71 and 76).

Now we show the other direction also hold: if an element x exists in g such that u �d

x.node, Group-Search(u,g) returns true. That is, if such x exists, Group-Search(u,g)

will find it by correctly eliminating half of the remaining elements that we don’t need. We

will examine this by cases on the if conditions executed in Group-Search(u,g).

By Property 2, if x.node ≺d y.node or x.node ‖dleft y.node, then x is positioned before y

in g. Let’s suppose that the element we are looking for is x and it exists. If g[mid].node ≺d u

(first part of condition in line 72), then obviously g[mid].node ≺d x.node and we need to

only search the array elements positioned after g[mid]. The code correctly performs the

elimination (line 73).

Now we show if g[mid].node ‖dleft u (second part of condition in line 72), then we have

either g[mid].node ≺d x.node or g[mid].node ‖dleft x.node. Consider the left subdag GL

containing g[mid].node and the corresponding right subdag GR containing u. Say G is the

SP-subdag consists of GR and GL. Then there are two possibilities for where x.node can

be: either x.node is in GR, then g[mid].node ‖dleft x.node, or sink(G) (the sink node of G)

�d x.node, then g[mid].node ≺d x.node. In either case, g[mid] must be positioned before x

in g, and the code correctly performs the elimination (line 73).

We now consider the case that u ‖dleft g[mid].node (line 74). Again, consider the SP-

subdag G with the left and right subdags GL and GR. Say u is in GL and g[mid].node

is in GR. Then it could be either sink(G) �d x.node or x.node ∈ GL. In the first case,

x.node is also a descendent of g[mid].node. Recall that by Property 3, g[mid].desc stores

the furthest descendent node of g[mid].node. If g[mid].node ≺d x.node, we are guaranteed

that sink(G) �d g[mid].desc. Otherwise, we have g[mid].desc ≺d sink(G) and as a result

80

g[mid].desc ≺d x.node, which contradicts that g[mid].desc is g[mid].node’s furthest descen-

dent. Thus, if sink(G) �d x.node is true, we must have sink(G) �d g[mid].desc, which leads

to u ≺d g[mid].desc (line 75). Now we consider the second case, x.node ∈ GL. In this case,

we have obviously x.node ‖dleft g[mid].node. By Property 2, we can conclude that target x

must be between positions low and mid−1, and the code correctly performs the elimination

(line 77).

The last part of the proof in Lemma 40 makes it clear why we must store the furthest

descendent with every element — even if the target node is in the part of the array that we

eliminate, we are guaranteed to find it as another element’s furthest descendent field. Take

nodes i and f in Figure 5.1 for instance. Say f executes second, and we want to check if f

is reachable from i. We find the group g with SP (i) = B and invoke Group-Search(i, g).

Even though Group-Search eliminates the second half of g, it still concludes that f is

reachable from i (i.e., returns true), as we have n stored as l.desc and i ≺d n.

By Lemmas 39 and 40 and by the operations of Precedes, we can show the following

theorem.

Lemma 41. Provided that v.fom satisfies Properties 1–3, Precedes(u,v) correctly returns

true iff u; v in GN .

Theorem 42. Given two executed nodes u and v in NSP-dag GN . F-Order correctly answers

the reachability query between u and v.

Proof. By Lemmas 35, 36, 37, and 38, one can inductively show that Properties 1–3 on any

FOM is maintained at all times. Then by Lemma 41, F-Order can answer the reachability

query correctly provided that the FOM instance of each executed node satisfies Properties 1–

3.

81

5.4 The Performance Bound of F-Order

This section proves the performance bound of F-Order. To perform a reachability query

between two nodes in the same SP-dag, we utilize the parallel algorithm WSP-Order [97],

including scheduling support for maintaining concurrent order-maintenance (OM) data struc-

tures. In our work, we augmented our scheduler similarly to provide support for such con-

current OM data structures.

To bound the overhead of WSP-Order and the use of concurrent OM data structures, we

invoke the following lemma shown by Utterback et al. [97]:

Lemma 43. Given an SP-dag with work T1 and span T∞, one can perform reachability

maintenance and queries on the SP-dag in time O(T1/P + T∞) on P processors.

To complete the time bound for F-Order, we need to account for the additional overhead

incurred by the maintenance of and queries on the FOM data structures.

Lemma 44. Given an NSP-dag with k number of future operations, the total number of

FOM-Insert invocations is at most O(k), each with O(k) work.

Proof. Each FOM data structure stores only non-SP ancestors, i.e., ancestors that are either

create or put nodes. Since there are k future operations, each FOM instance can have at most

O(k) elements. Therefore, it takes O(k) time to perform a single FOM-Insert operation

(which creates a new copy so linear work is required). Moreover, by Algorithm 7, F-Order

performs FOM-Insert only on create and put nodes, and thus FOM-Insert is invoked at

most O(k) times.

Lemma 45. Given an NSP-dag with k number of future operations, the total number of

FOM-Merge invocations is at most O(k), each with O(k) work.

Proof. FOM-Merge operates on inputs of size at most O(k), and thus each operation in-

curs at most O(k) work (like the merge operation in merge sort). By Algorithm 7, F-Order

82

performs FOM-Merge only on join and sync nodes. Since there are at most k future oper-

ations, there are at most k join nodes. What’s not as obvious is bounding the number of

FOM-Merge invocations due to sync nodes.

By Algorithm 7, F-Order performs FOM-Insert on a sync only when the FOM data

structures from both of its parents have changed from that of its corresponding spawn node.

Consider an SP-dag constructed recursively using n parallel compositions. We will call

the outer-most SP-dag a level-0 dag, or G0, and call its left and right subdags level-1 dags, G0
L

and G0
R, or simply G1. Since this dag is constructed with n parallel compositions, there are

n levels of nested SP-dags with n sync nodes, one for each level. Without loss of generality,

we will show that, by adding a new incoming or outgoing non-SP edge into this dag, the

addition incurs at most one extra FOM-Merge on the closest enclosing sync node, but not

on the other sync nodes at the outer level.

Imagine today we add an outgoing non-SP edge to the left subdag at level i, Gi
L. Consider

both the sync node s that joins together Gi
L and Gi

R and its corresponding spawn node f .

The FOM instance from s’s left parent would change. This may or may not prompt a

FOM-Merge at s.

Case 1: Let’s consider the case where it did. Then, it must be that there is also an

incoming or outgoing non-SP edge in Gi
R, causing the FOM instance from s’ right parent to

change from that of the f.fom. If so, one extra FOM-Merge would be incurred compared

to not adding that non-SP edge. From the perspective of the sync node s′ at level i − 1,

however, this change does not affect whether s′ performs a FOM-Merge or not. Without

loss of generality, say the dag consist of Gi
L and Gi

R is the left subdag at level i − 1 (i.e.,

Gi−1
L). Without adding a new non-SP edge to Gi−1

R , s′ will simply inherits the results of

FOM-Merge at s.

Case 2: Let’s consider the other case where this addition did not prompt s at level i to

perform FOM-Merge. Then, it must be that, the FOM from s’s right parent is the same as

83

f.fom, the FOM from the corresponding spawn node. Then, s would have simply inherit

the FOM from Gi
L, incurring zero additional FOM-Merge operations at level i. Now, it

may incur an extra FOM-Merge at the sync node at level j for some j < i. But the same

argument from case 1 can be applied to level j and the FOM-Merge stops at level j and not

further.

Thus, we can conclude that there are at most O(k) total FOM-Merge operations, each

with O(k) work.

Now we put the overhead due to maintaining FOM data structures together.

Lemma 46. Given an NSP-dag with work T1 and span T∞. F-Order runs in time O((T1 +

k2)/P + T∞ lg k) on P processors to construct the reachability data structure, where k is the

number of future operations.

Proof. By Lemmas 44 and 45, the construction of FOM data structures incurs at most O(k2)

work and in the worst case, O(lg k) multiplicative overhead on the span (if F-Order performs

a FOM-Merge or FOM-Insert on every single node along the span, and one can implement

FOM-Merge and FOM-Insert with additional parallelism by parallelizing merge [21] and

insertion with the span O(lg k)). Adding these overheads and applying Lemma 43, we obtain

the bound.

The bound shown in Lemma 46 accounts for only the construction overhead. To show

the full performance bound, we must also account for the query overhead.

Lemma 47. Given two nodes u and v in an NSP-dag GN , a single reachability query

Precedes(u, v) runs in time O(lg k̂), where k̂ is the number of non-SP ancestors of v

from the SP-dag containing u.

Proof. In the worst case, there is no direct SP path between u and v, and F-Order needs to

perform a search to check if v.fom stores any descendent node of u. Identifying a group g

84

with SP (u) in v.fom takes constant time; if g exists, invoking Group-Search(u, g) takes

at most O(lg k̂) time (akin to binary search).

Theorem 48. Given an NSP-dag GN with work T1 and span T∞, F-Order can race detect

GN in parallel in time O((T1 lg k̂ + k2)/P + T∞(lg k + lg r lg k̂)) on P processors, where k is

the number of future operations, r is the maximum number of readers for a single memory

location, and k̂ is the maximum number of non-SP nodes in the same SP-dag.

Proof. The total overhead incurred due to reachability queries is related to how the access

history is managed. As discussed in Section 5.2, the number of readers per memory location

at a given moment can be large. However, one can still show that, the total number of

reachability queries throughout the execution is bounded by 2× the number of reads during

execution [2]. Each query itself incurs O(lg k̂) overhead Lemma 47. Thus, given an NSP-dag

with work T1 and span T∞, the total work incurred by reachability queries using F-Order is

O(T1 lg k̂).

Now we consider how queries impact the span of race detection. Given a single node u

along the span of GN that writes to memory location l. Since F-Order needs to perform

reachability queries between u and every single reader in reader-list(l), assuming are at

most r readers in reader-list(l), the total number of queries performed when executing

u is at most r. Since all the queries can be computed independently of each other, such the

overall query overhead has a span of O(lg r lg k̂). In the worst case, every node u along the

span of GN incurs such query overhead. Then, combining Lemma 46, the bound follows.

5.5 Implementation and Empirical Analysis

This section briefly describe our prototype implementation of F-Order and empirically eval-

uates its performance. We evaluate F-Order’s performance across 6 different benchmarks

85

and compare it to FutureRD, a state-of-the-art sequential race detector for futures [98]. Fu-

tureRD provides the best sequential running time for race detecting the structured use of

futures which imposes certain programming restrictions on where the future get can occur.

For race detecting general futures, the algorithm by Utterback et al. [98] has an additional

α(m,n) overhead compared to the algorithm by Agrawal et al. [2], but the algorithm by

Agrawal et al. [2] has never been implemented.

FutureRD distinguishes between structured and general use of futures, and provides

better running time for structured use of futures. For the purpose of comparison with

FutureRD, all benchmarks are implemented with structured use of futures, and two of the

benchmarks, sw and hw, have a second implementation with general use of futures. Note

that, although F-Order targets programs with general futures, it works out-of-box for the

structured use of futures with the same performance bound since the structured use of futures

are subsumed by the general futures.

Empirical results indicate that, even though our parallel race detector incurs higher

overhead on one-core execution, the overhead is never more than 3× compared to FutureRD

(in fact much less for all benchmarks except for hw). Thus, the fact that we can race detect

while executing the program in parallel quickly pays off in absolute execution times.

bench N B reads writes futures strands avg
sw-sf 2048 64 8.59× 109 4.20× 106 1024 2054 1.0
hw-sf 10 (images) - 1.73× 1010 1.64× 108 3672 9914 14.05
sort 107 8192 2.75× 108 2.22× 108 14463 60030 2.95
mm 2048 64 1.72× 1010 1.43× 108 18724 79577 20.94
smm 2048 64 9.40× 108 2.50× 105 16387 70822 8.24
ferret simlarge - 5.40× 109 6.23× 108 256 1280 13.09
sw-gf 2048 64 8.59× 109 4.20× 106 1024 5124 1.0
hw-gf 10 (images) - 1.73× 1010 1.64× 108 4590 11750 13.1

Table 5.1: The characteristics of the benchmarks. The sw and hw benchmarks have two
implementations: structured (sf) and general futures (gf).

86

Implementation. We have implemented F-Order by extending the Cilk-F runtime

system [86], a work-stealing runtime system that supports the use of futures. In the im-

plementation of F-Order, we employed WSP-Order [97] for maintaining and querying the

reachability between two nodes that are in the same SP-dag (i.e., ≺d and ‖dleft). We im-

plemented the augmentation necessary in the Cilk-F runtime as proposed by Utterback et

al. [97]. As discussed in Section 5.4, such an augmentation is necessary in order to provide

the desired performance bound. The construction functions of the FOM are called via

instrumentation inserted into the parallel control constructs of Cilk-F. The instrumentation

on memory accesses are inserted via ThreadSanitizer [84] pass implemented in LLVM.

Benchmarks. Six benchmarks are used: matrix multiplication (mm), the Strassen matrix

multiplication algorithm (smm), parallel merge sort (sort), the Heart Wall application (hw)

from the Rodinia suite [19], Smith-Waterman for sequence alignment (sw), and a content-

based image similarity search modified from the PARSEC benchmark suite (ferret) [10].

We have implemented all the benchmarks with structured use of futures. The sw and hw

benchmarks, in addition, have a second implementation with a general use of futures that

imposes no restrictions.

The characteristics of these benchmarks are shown in Table 5.1, including the input sizes

and serial base case sizes used. We also measured the average group sizes; the measurement

indicates that average group sizes (related to k̂) are indeed small across benchmarks.

Experimental Setup. All experiments were run on a machine with two 20-core Intel

Xeon Gold 6148 processors, clocked at 2.40 GHz, with hyperthreading disabled. Each core

has separate private 32 KB L1 data and 32 KB L1 instruction caches, and a 1 MB private

L2 cache. Each socket has a 27.5 MB shared L3 cache. The machine has 768 GB of main

memory. We limit execution to the first 20 cores, located on the first socket of the machine,

in order to avoid NUMA overhead. All software is compiled with LLVM/Clang 3.4.1 with

87

-O3 optimizations running on Linux kernel version 4.15. Each data point is the average of

3 runs.

For each benchmark, we ran three different configurations: baseline , where the bench-

mark is compiled without any race detection enabled; reachability , where the benchmark is

compiled with only the reachability component but not the access history; and full , where

the benchmark is compiled with full race detection.

bench configuration T1 T20 FutureRD

sw
(structured)

baseline 21.88 2.26 [9.67×] 21.57
reachability 22.49 (1.02×) 2.29 [9.79×] 21.52 (0.99×)

full 697.06 (31.85×) 96.96 [7.18×] 562.55 (26.08×)

hw
(structured)

baseline 15.41 0.98 [15.60×] 15.5
reachability 17.95 (1.16×) 1.03 [17.32×] 15.5 (1.0×)

full 943.33 (61.18×) 72.12 [13.07×] 381.85 (24.63×)

sort
(structured)

baseline 1.33 0.07 [17.17×] 1.34
reachability 5.05 (3.77×) 0.38 [13.04×] 1.34 (1.0×)

full 30.62 (22.87×) 2.2 [13.92×] 19.48 (14.48×)

mm
(structured)

baseline 8.48 0.43 [19.30×] 8.47
reachability 12.97 (1.52×) 0.68 [19.05×] 8.47 (1.0×)

full 484.48 (57.13×) 24.44 [19.81×] 320.46 (37.86×)

smm
(structured)

baseline 2.42 0.14 [16.60×] -
reachability 2.84 (1.17×) 0.16 [17.30×] -

full 51.32 (21.14×) 2.69 [19.01×] -

ferret
(structured)

baseline 7.45 0.65 [11.41×] 7.33
reachability 7.64 (1.02×) 0.66 [11.54×] 7.28 (0.99×)

full 337.23 (45.26×) 32.76 [10.29×] 298.18 (40.68×)

sw
(general)

baseline 21.79 2.28 [9.54×] 21.64
reachability 24.93 (1.14×) 2.28 [10.91×] 21.58 (0.99×)

full 704.72 (32.32×) 100.1 [7.04×] 610.75 (28.22×)

heartwall
(general)

baseline 15.42 0.99 [15.48×] 15.5
reachability 18.56 (1.2×) 1.08 [17.09×] 15.5 (1.0×)

full 934.47 (60.6×) 68.13 [13.71×] 488.13 (31.46×)

Table 5.2: Performance of the benchmarks with F-Order and FutureRD for race detection.
Execution time on P processors, TP , is given in seconds. Numbers in the parentheses show the
overhead compared to the baseline. Numbers in the brackets show the scalability relative to
T1 of the same configuration. Measurements of smm running with FutureRD is not available
because it segfaulted.

88

Practical performance of F-Order

Table 5.2 shows our measurements for the benchmarks. With the exception of the sort

benchmark, we see that the the reachability versions of F-Order incur very little overhead

when compared to the baseline versions. The overhead is more pronounced in sort because

a majority of the futures created do little more than generate more futures,12 and even in

the serial base case the work is only θ(B lgB), where B is the problem size of the serial

base case. Moreover, we expect the reachability overhead of FutureRD is less than that of F-

Order on benchmarks using structured futures because its reachability algorithm designed for

structured futures is more efficient than its algorithm designed for general futures. F-Order,

however, cannot take advantage of the restrictions imposed by structured use of futures.

Full race detection versions incur a large increase in overhead in both F-Order and Fu-

tureRD, which comes from the combination of the memory instrumentation and the sheer

quantity of reachability queries. The additional overhead of full race detection in F-Order

compared to FutureRD is the price one pays to enable parallel race detection. In F-Order,

each query incurs O(lg k̂) instead of constant time (which is the case for FutureRD). This

overhead is the most evident in hw; this is because the structure of the parallelism and the

memory access pattern cause significantly more non-SP queries than in any of our other

benchmarks. Even in the case of the high overhead hw, however, the full race detection ver-

sion of the benchmarks maintain scalability comparable to that of the baselines. The higher

overhead of non-SP queries in F-Order can be offset by the scalability that F-Order gains. As

shown in Table 5.2, the absolute running times of F-Order on 20 cores are significantly faster

than the running time of FutureRD. In our evaluation, the running times of all benchmarks

with F-Order on 4 cores or more can beat the running time of FutureRD.

12This is also true for mm and smm; their serial base cases, however, perform much more work, θ(B3).

89

Chapter 6

Race Detection for Structured Futures

As discussed in Chapter 5, the arbitrary dependences in general futures make race detection

more expensive. Due to the lack of structural properties, the reachability component in

F-Order algorithm incurs O(k2) overhead for construction and O(lg k̂) for each query, where

k is the total number of futures used in the computation, and k̂ is the maximum number

of future operations within a single “future task”. And the access history must still store r

accessors per memory location, leading to the overall running time of O((T1 lg k̂ + k2)/P +

T∞(lg k + lg r lg k̂)) for a program with work T1 and span T∞ running on P cores.

Interestingly, the work by Utterback et al. [98] explores a sequential algorithm for race

detecting programs with structured futures , which imposes certain restrictions on how

futures can be used. Even though structured futures still allows for arbitrary dependences

among future tasks, these programs still have more structural properties compared to gen-

eral futures that allow for more efficient race detection. Utterback et al. gave a sequential

algorithm for reachability analysis with an almost constant amortized overhead giving a total

running time of approximately O(T1). However, this algorithm is inherently sequential and

heavily depends on the depth-first left-to-right execution of the program.

90

In this chapter, we propose a parallel race detection algorithm, called SF-Order , for

programs with structured futures (Section 6.2). By exploiting the restrictions imposed by

the structured use of futures, we are able to bring down the reachability query overhead to be

constant time (although the construction overhead is still O(k2)), and we are able to bound

the number of readers to keep per memory location. Specifically, one can retain the same

correctness guarantees while storing at most 2k readers per memory location. Combining

these savings in overhead, our algorithm runs in time O((T1 + k2)/P + T∞ lg k) on P cores,

where k is the total number of futures used in the computation (Section 6.3). The interesting

thing to note is that, unlike the prior results for race detecting general futures, this bound

does not depend on r, the number of readers between a pair of writes. In addition, compared

to the bound by prior work, this running time provides a saving of a lg k̂ multiplicative factor

on the work term and a lg r lg k̂ additive factor on the overhead on the span term.

We have implemented this algorithm in practice and empirically compared it against the

state-of-the-art sequential algorithm [98] and F-Order, the parallel race detection algorithm

designed for general futures (Section 6.4). Empirical results indicate that, when compared

with the sequential algorithm designed for structured futures, although our algorithm has a

slightly higher overhead, its absolute running time wins out when running on two cores or

more. When compared to F-Order, SF-Order algorithm indeed incurs lower overhead and

performs better.

6.1 Revisiting Structured Futures

As discussed in Section 4.1.2, the use of structured futures imposes the following restric-

tion: a) single-touch: get is invoked on a future handle h at most once; b) no race on

a future handle: there is a sequential dependence from the program point where a future

handle h is created (via create) to the program point where a get is invoked on h without

going through the created future task associated with h. Put it differently, given a pair of

91

create node to its corresponding get node (by invoking get on the corresponding handle),

there is a directed path from the create node to the get node where the path starts from

the continuation edge. Note that, given this restriction, it follows that a program that uti-

lizes only spawn, sync, and structured futures can execute sequentially on one core (which

follows the left-to-right depth-first traversal) without ever block on sync or get.

Beyond the race detection work by Utterback et al. [98], it has also been shown that the

structured futures allow one to achieve better bounds on cache misses [37] and scheduling

overhead [86] compared to that for general futures (also discussed in Chapter 4). Such results

are interesting because the set of programs generated by structured futures is larger than

the set generated by fork-join and pipeline parallelism and contains them both. Moreover,

the use of structured futures is not purely of academic interests but useful in practice. The

scheduling work by Singer et al. [86] show that one can implement dynamic programming

applications such as Smith-Waterman sequence alignment with lower span compared to the

implementation with only fork-join parallelism (albeit the improvement is constant and not

asymptotic) and thereby achieve better scalability in practice. Other platforms that employ

futures (e.g. [58, 85]) were also able to utilize structured futures to implement interesting

application features that traditional fork-join parallelism could not achieve.

Programs use structured futures generates a class of dags that we refer to as SF-dags .

As we will see in Section 6.2, these dags have particular structural properties that can be

exploited to perform race detection more efficiently.

Notations

An SF-dag is generated by a set of futures which can call create to create a new future and

call get on future handles in a structured manner. Each future in itself is an SP-dag. Similar

to NSP-dags, therefore, an SF-dag D can be decomposed as a set of SP-dags connected via

non-SP edges. We call each individual SP-dag F ∈ D a future dag or a future . We assume

92

that each future has a unique identifier. In addition, we say that a node u ∈ F if u is in

the SP-dag that F denotes — in this case, the instructions associated with u are part of the

execution of that future. Since each future is an SP-dag, it has a unique first node which

precedes all other nodes and a unique last node that all other nodes in the SP-dag precede.13

We say that the first node of a future F is first(F) and the last node of F is last(F).

An example SF-dag is shown in Figure 6.1.

a

b

d

e g

h

i

s

t

u

v w

x

z

y

j

l

m n

o

p

r

f

c

k

q

create

get
A

B

C

E

F

D

Figure 6.1: An example of an SF-dag.

We say that a future F is a parent for future G (denoted by F = fparent(G) if some

node u ∈ F created the future G. In our example, A is the parent of B,C and D while D
13For future tasks, we call these nodes first and last as opposed to source and sink (for ordinary SP-dags)

because a future task invoking create can have an escaping edge leaving the dag.

93

is E’s and F ’s parent. Similarly, we say F ∈ f-ancs(G) if F is either G’s parent or parent

of its parent and so on recursively, and G ∈ f-descs(F) if F ∈ f-ancs(G).

We can classify edges in three categories as we did for NSP-dags: create edges go from

the strand u ∈ fparent(G) that called g = create(G) to first(G) (all red edges in

Figure 6.1); get edges go from last(G) to the the (unique) strand that calls get(g) where

g is the future handle associated with G (all blue edges in Figure 6.1); and SP edges are all

other edges. The create and get edges are also collectively called non-SP edges. Broadly,

SP edges are edges between two nodes of the same future while non-SP edges are between

two nodes of different futures.

Given two nodes u and v, we use u→ v to denote that there is an edge from u to v and

we will sometimes use subscripts such as u→get v to denote that the corresponding edge is

a get edge, for example. We use u ; v to denote the presence of a directed path from u to

v. We use u ;sp v if at least one path from u to v contains only SP edges and u ;nsp v if

all paths from u to v contain at least one non-SP edge. Note that if there are multiple paths

from u to v and any one of them contains only SP edges, we say that u;sp v.

6.2 SF-Order Algorithm

This section presents the full detail of SF-Order and its correctness proof. Recall that a race

detector consists of two components — reachability analysis and access history. The access

history remembers the necessary previous accessors per memory location. Upon a memory

access v, the detector checks with the access history to find any conflicting previous access,

say u. Then, the detector performs reachability query to see if there is a path from node u

to v.

In this section, we will start by building some intuition about what data structures

can help us answer the reachability queries, describe the full query algorithm, prove its

correctness, and finally discuss why for race detecting structured futures, storing only 2k

94

number of previous readers per memory location in access history suffice to perform race

detection correctly, where k is the total number of futures used in the computation.

6.2.1 Intuition Behind the Query Algorithm

We will start by building some intuition on how the algorithm works. Recall that race

detection depends on a reachability query — given two nodes u and v, we want to answer

the question: is there a path from u to v. We will consider three cases:

1. If u, v ∈ F — meaning both u and v belong to the same future dag: In this case, (as

we will argue in Lemma 51) it is sufficient to check if u;sp v since u ≺ v iff u;sp v.

Note that there may also be non-SP paths between them, but at least one path will

contain only SP edges. For instance, in our example dag, even though there are non-SP

paths from e to u, there is also an SP path.

2. If u ∈ F and v ∈ G where F 6= G, but F ∈ f-ancs(G): In this case, it is sufficient

to check if there is a path from u to v that contains only create edges and SP edges.

That is, (as we will argue in Lemma 53) if there is no such path, then u 6≺ v. Again,

there may be paths from u to v that go through get edges, but at least one path will

not contain any get edges. In our example, consider nodes i and q for instance.

3. If u ∈ F and v ∈ G where F 6∈ f-ancs(G): In this case, (as we will argue

in Lemma 52) it is sufficient to check if there is a path from last(F) to v. There is a

path from last(F) to another node u iff, for all nodes u ∈ F , we have u ≺ v.

In our query algorithm, we separately consider these three cases. For Case 1, we can

rely on asymptotically optimal race detection algorithms for series-parallel dags (such as

WSP-Order [97]) since we are concerned with series-parallel dependences. For Case 3, we

will rely on the idea from F-Order (Chapter 5) algorithm that race detecting general futures.

F-Order, for every node v, maintains a hash table that contains all the nodes u such that

95

u;nsp v. However, as mentioned above, structured futures have the special property that if

u ∈ F , v ∈ G, and F 6∈ f-ancs(G), then u ;nsp v iff last(F) ; v. Therefore, unlike for

general futures, we need not keep all such nodes u which have non-SP paths to v. Instead,

for every node v, we maintain a hash table, denoted by gp(v), of future IDs for all futures F

where last(F) ;nsp v. In our example, for instance, gp(o) contains B and E.

It turns out that Case 2 is the trickiest. It only applies when F ∈ f-ancs(G). Therefore,

for all futures G, we maintain a hash table, denoted by cp(G), which contains all its ancestor

futures. When checking whether u ≺ v, we first find F and G where u ∈ F and v ∈ G. If

F 6∈ cp(G), then this case doesn’t apply. However, if F ∈ cp(G), we have a further check.

In particular, not all nodes in an ancestor future precede v — for instance, in our example,

even though A is C’s ancestor, i 6≺ f .

For this case, we will use an additional “conceptual” structure called pseudo-SP-dag .

A pseudo-SP-dag for an SF-dag D, denoted by PSP (D), is a series-parallel approximation

of D which is the dag generated if we convert all create calls with spawn calls and remove

all get calls but include an implicit sync at the end of a future task. Clearly, it is a series-

parallel dag, since the only parallel constructs are spawns and syncs. The pseudo-SP-dag

for our example is shown in Figure 6.2. We will say u� v iff there is a path from u to v in

PSP (D). Since PSP (D) is a series-parallel dag, we can check if there is a path from u to v

in parallel using WSP-Order [97].

This PSP (D) itself is not sufficient to check races. Pseudo-SP-dags are inaccurate for

detecting races in two ways. First, they miss some paths. First, it can be the case that

u ;nsp v while u 6� v; for example, even though j ≺ u in D in Figure 6.1, it is not the

case in the pseudo-SP-dag in Figure 6.2. Second, and more insidiously, PSP (D) can have

phantom paths — paths that do not exist in D. It can be the case that u� v even though

u 6; v in D. For instance, in our example, PSP (D) has a path from f to t even though

such a path does not exist in D. However, we do not use pseudo-SP-dags to check all races.

96

a

b

d

e g

h

i

s

t

u

v w

x

z

y

j

l

m n

o

p

r

f

c

k

q

fake edge PSP(A)

PSP(B)

PSP(C)

PSP(E)

PSP(F)

PSP(D)

Figure 6.2: The corresponding pseudo-SP-dag for the SF-dag shown in Figure 6.1.

Recall that we only need to use PSP (D) to check reachability from u ∈ F to v ∈ G if

F ∈ f-ancs(G). As we will argue in Lemma 57, if F ∈ f-ancs(G), then for all u ∈ F and

v ∈ G, we have u� v iff u; v.

6.2.2 Reachability Queries in SF-Order

We can now describe the complete query algorithm. As mentioned above, in order to perform

reachability queries between nodes u ∈ F and v ∈ G, SF-Order keeps three structures.

• Order-maintenance (OM) data structures for keeping track of series-parallel relations

of PSP (D) (similar to that in WSP-Order [97]). This is used when F ∈ f-ancs(G),

both when F = G (Case 1) and when F is a strict ancestor (Case 2). Intuitively,

this data structure is used to check the existence of paths that either (1) contain

97

only SP edges when F = G; or (2) contain only create edges and SP edges when

F ∈ f-ancs(G).

• For each future G, cp(G) is a hash table that contains the IDs of all future ancestors

of G to check if F ∈ f-ancs(G) so we can use PSP (D) for Case 2.

• For each node v ∈ G, gp(v) is a hash table that contains the IDs of all futures F such

that last(F) ;nsp v to answer queries for Case 3.

Using these data structures, the code for a query is shown in Algorithm 11. Line 2

indicates the complete query when u and v are in the same future dag. In Lemma 51 and

Lemma 55 we will argue that, in this case, it is sufficient to check if there is a path from u to

v in the pseudo-SP-dag. Next, Lines 4 shows the case when F ∈ f-ancs(G). In this case,

we check if u� v and return true if so, which is proven to be correct in Lemma 57. At this

point, we have already answered the query correctly if F ∈ f-ancs(G). Finally, in Lines 6,

we check if F ∈ gp(v). If so, we know that last(F) ; v, which we prove in Lemma 52.

Algorithm 11: SF-Order: Reachability Query
1 Function Precedes(u, v)
2 if u, v ∈ F AND u� v then
3 return TRUE
4 else if u ∈ F ; v ∈ G AND F ∈ cp(G) AND u� v then
5 return TRUE
6 else if u ∈ F ; v ∈ G AND F ∈ gp(v) then
7 return TRUE
8 else
9 return FALSE

6.2.3 Correctness Proof of the Query Algorithm

We will now prove the correctness of this algorithm based on the intuition described above.

First we start by some important structural properties of SF-dags.

98

Structural properties of SF-dags

We start by stating some straightforward properties of SF-dags (really for any dags with

futures) — these just say that paths from one future to another must go through create

and/or get edges and that the only incoming create edge is into first(F) and the only

outgoing get edge is from last(F).

Property 1. If u ∈ F and v ∈ G where F and G are distinct, then any path from u to v

must contain at least one non-SP edge.

Property 2. Among all the nodes in F , only first(F) has an incoming create edge (other

nodes may have outgoing create edges) and only last(F) has an outgoing get edge (other

nodes may have incoming get edges).

We now restate a couple of results shown by Utterback et al. [98]. In particular, these

structural properties (unlike the ones stated above) are not true for general futures. They

are properties that depend on the fact that SF-dags are generated by a structured use of

futures. The following lemma is implicit in Utterback et al.’s paper [98], though not stated

explicitly. In particular, in their paper, they perform race detection sequentially using a

left-to-right depth-first execution and this execution satisfies the following property. Their

algorithm and analysis crucially depends on this property of SF-dags.

Lemma 49. There is some valid execution of an SF-dag such that all future descendents of

F (that is, all G ∈ f-descs(F)) complete execution before F completes execution.

While the model and terminology in that paper is slightly different, the following result

is a straightforward restatement of Lemma 1 in Utterback et al.’s paper [98].

Lemma 50. If u ;nsp v, then there exists at least one path from u to v that contains two

sections: The first path (possibly empty) contains only get edges and SP edges and the second

99

part (possibly empty) contains only create edges and SP edges. In other words there is never

a create edge followed by a get edge on this path.

We will consider any such path from u to v to be a canonical path . In Utterback et

al. [98]’s model, there is a unique canonical path because they assume that the computation

utilizes only structured futures but no spawns and syncs. In our model, there can be many

canonical paths due to the use of spawns and syncs. For instance, in Figure 6.1, if we look

at nodes c and q, there are multiple paths. There is a non-canonical path c →get g → h →

i→create j →create k →get m→ o→ p→create q. However, we can choose not to go through

future E and get the path c→get g → h→ i→create j → l→ m→ o→ p→create q There is

also another canonical path that goes through n instead of m.14

Case 1: u, v ∈ F . We first consider the (easy) case when u, v ∈ F for some future F .

The following lemma says that it is sufficient to check for SP paths. Note that this is distinct

from general futures where u;nsp v even when u and v are in the same future.

Lemma 51. If u ≺ v where u, v ∈ F , then u;sp v.

Proof. This property is a direct consequence of Lemma 50. Consider any path from u to v.

If this path only contains SP edges, then we are done. Say this path does contain non-SP

edges. Wlog, this path π = u ;sp w ;nsp x ;sp v where the outgoing edge from w ∈ F

is the first non-SP edge on the path and the incoming edge to x ∈ F is the last non-SP

edge. Since last(F) is the last node of F to execute in any execution, w is not last(F).

Therefore, the outgoing edge from w must be a create edge, since only the last(F) has an

outgoing get edge (Property 2). Similarly, x is not first(F) — therefore, the incoming

edge to F must be a get edge. Therefore, all paths from u to v that contain non-SP edges

have a get edge after a create edge. Therefore, by the converse of Lemma 50, u;sp v.
14It turns out that the sequence of get and create edges on all canonical paths is the same. However, this

property is not crucial for our proof.

100

Case 3: u ∈ F ; v ∈ G; F 6∈ f-ancs(G). We now consider the case where F 6∈

f-ancs(G) and argue that gp(v) — the hash table that contains future F iff last(F) ≺ v

is sufficient to check reachability in this case.

Lemma 52. If u;nsp v where u ∈ F and v ∈ G and F 6∈ f-ancs(G), then last(F) ; v.

Proof. First, we argue that if F 6∈ f-ancs(G), then all paths from u to v contain at least

one get edge. This is easy to see from the structure of SF-dags. SP edges only connect

nodes within the same future and create edges only connect futures to descendent futures.

Therefore, any path from u to v where v is not in a descendent of the future containing u

must go through at least one get edge.

Now consider any canonical path p from u to v — it must contain at least one get edge.

We decompose p into u ;sp w →nsp x ; v where the edge from w to x is the first non-SP

edge on this path. By Lemma 50, this first non-SP edge must be a get edge. From Property 1,

we know that w ∈ F since the path from u to w only contains SP edges. Therefore, due to

Property 2, w = last(F), since last(F) is the only node in F with an outgoing get edge.

Therefore, last(F) ; v.

Therefore, when checking reachability from u ∈ F to v ∈ G when F 6∈ f-ancs(G), it

is sufficient to check if last(F) has a path to v, which is exactly the information stored in

gp(v).

Case 2: u ∈ F ; v ∈ G; F ∈ f-ancs(G). We now consider two nodes u ∈ F, v ∈ G and

argue the assertion stated in Case 2 — namely, if u ; v and F ∈ f-ancs(G), there is a

path from u to v which contains only create and SP edges.

Lemma 53. If u ;nsp v where u ∈ F and v ∈ G and F ∈ f-ancs(G), then there is at

least one path from u to v containing only create and SP edges.

Proof. Assume, for contradiction, that when F ∈ G, there is no path from u to v con-

taining only create and SP edges — that is, there is at least one get edge on every path.

101

By Lemma 50, there must be at least one path p that has all the get edges before all the

create edges; and in particular, the first non-SP edge on this path must be get edge. De-

compose this path into u ;sp w →get x ; v. From Property 1, x is the first node on this

path that is not in F and from Property 2, w = last(F) since that is the only node in F

that has an outgoing get edge.

From Lemma 49, there is some execution S where G finishes executing before F finishes

execution. Therefore, there cannot be a path from w = last(F) to v ∈ G. Hence a

contradiction.

Therefore, when F ∈ f-ancs(G), we must somehow check for the existence of a path

that contains only create and SP edges. This is where the pseudo-SP-dag PSP (D) comes

in. Recall that we simply convert all creates into spawns, remove all get statements,

and include implicit syncs to generate PSP (D). We say u � v if there is a path from u

to v in the pseudo-SP-dag. We now argue that PSP (D) precisely answers queries between

u ∈ F and v ∈ G if F ∈ f-ancs(G).

For convenience, we will define PSP (F) for all futures F in a similar manner — the

entire SP-subdag generated by F which has first(F) as the first node and last(F) as

the last node is called PSP (F). The following lemma is true due to the construction since

all create edges are converted to spawn edges.

Lemma 54. For any node v ∈ G, v ∈ PSP (F) iff G ∈ f-descs(F) (including F)

In our example, all nodes are part of PSP (A) while nodes from E and F are part of

PSP (D) since they are both D’s descendents.

Let us consider some relationships between paths in SF-dags and the corresponding

pseudo-SP-dags. The following lemma considers u, v ∈ F and says that PSP (F) precisely

denotes the relationship between such nodes. This justifies our decision in Line 2 to simply

check the pseudo-SP-dag when checking if u ≺ v when u and v are in the same future F .

102

Lemma 55. If u, v ∈ F , then u� v iff u ≺ v

Proof. From Lemma 51, we know that if u ≺ v then there is an SP path between u and

v. We do not remove any SP paths in the pseudo-SP-dags. Therefore, this path cannot be

removed. Conversely, if there is no path between u and v, then they are in two separate SP-

subdags of F . More precisely, there is node s such that u is in the left subdag of s and v is in

the right subdag (or vice-versa). Therefore, in the pseudo-SP-dag, this relationship between

u and v will still hold. Since pseudo-SP-dag is an SP-dag, there can be no paths between

a node in the left subdag and a node in the right subdag of s just due to the properties of

SP-dags.

The next lemma states that pseudo-SP-dags are also good at finding paths that contain

only create and SP edges, since the only edges removed are get edges.

Lemma 56. If u ∈ F , v ∈ G where F ∈ f-ancs(G) and u ≺ v, then u� v.

Proof. From Lemma 53, at least one path from u to v has no get edges and consists of only

SP edges and create edges. Since the pseudo-SP-dag construction does not remove any SP

or create edges, this path would still exist in PSP (D).

However, this in itself is not sufficient to precisely detect races since it is not obviously

an if and only if statement. In particular, we might worry that u � v even if u 6; v. For

instance, in our example, PSP (D) has a path from f to t even though such a path does

not exist in the original dag D. These phantom paths are due to fake edges , denoted by

→fake. In particular, pseudo-SP-dags have additional sync edges that are not in the original

SP-dag — these are the get edges from the last node of a child future G to a sync node in

the parent future F . In our example, the offending fake edge is from f to h. We will say a

path from u to v is fake (denoted by u �fake v) if u � v, but u 6; v. Clearly, a fake path

must have one or more fake edges.

103

The following lemma says that, even though there can be fake paths in pseudo-SP-dags,

they do not occur between u ∈ F , v ∈ G if F ∈ f-ancs(G).

Lemma 57. If u ∈ F ; v ∈ G such that F ∈ f-ancs(G), then u� v implies u; v.

Proof. Assume for contradiction that u �fake v — that is, all paths from u to v contain at

least one fake edge. Consider the path p with the smallest number of these fake edges.

Due to the way the pseudo-SP-dag is constructed, a fake edge always goes from last(H)

for some future H to some sync node in fparent(H).

Say X = {F1 = F, F2, F3, ..., Fk = G} be the set of all the futures which are ancestors

of G but not ancestors of F in order of depth in the create-tree. That is, if we look at the

create-tree, these are the futures on the path from F to G.

Case 1: Some fake edge on p goes from last(H) to some node y ∈ fparent(H)

where H 6∈ X. In this case, the path p can be decomposed to u � x →create

first(H) � last(H) →fake y � v where x, y ∈ fparent(H) since both PSP (H)

and PSP (fparent(H) are series-parallel dags. In particular, all paths to last(H) must

go through first(H) (unless they originate in this subdag). In addition, there must be

a path directly from x to y that uses only edges within fparent(H) since there is always

a path from the create (spawn) node to the corresponding sync node. Therefore, we can

replace the subpath with fake edge with a subpath without fake edge, contradicting the

minimality assumption.

Case 2: All fake edges on the path p go from last(Fi+1) to y ∈ Fi. Therefore, there

is a path u � last(Fi+1) →fake y � v. However, by Lemma 54, G ∈ PSP (Fi+1).

Therefore, there is a path from v to last(Fi+1) since all nodes within a series-parallel

(sub)dag have a path to the last of that series-parallel (sub)dag. However, we cannot have

last(Fi+1) � v � last(Fi+1) since PSP (Fi+1) is a dag.

104

6.2.4 Maintaining the Reachability Data Structures On-the-fly

As mentioned in Section 6.2.2, SF-Order maintains three separate data structures: (1) A

reachability data structure for the pseudo-SP-dag. (2) The gp(v) hash table — for every

node v, this table has the IDs off all futures F such that last(F) ≺ v. (3) The cp(G) hash

table — for every future G, it stores the IDs of all future ancestors of G.

We now briefly explain how these data structures are maintained during a parallel ex-

ecution. To check reachability within the pseudo-SP-dag, we use WSP-Order described by

Utterback et al. [97]. The cp(G) data structures is also easy to maintain. When a future G

is created by future H, it simply copies over its parent’s hash table (cp(H)) and adds its own

ID to it. Maintaining gp(v) is slightly more complicated, but not by much — the argument

is identical to the one given in Section 5.3. Conceptually, a node simply gets the union of its

parent’s tables — gp(v) = ∪u→vgp(u). Since we cannot afford to copy hash tables at every

new node — we use pointers most of the time. If a node has a single parent, it need simply

keep a pointer to its parents hash table and refer to it directly. We need only create new

hash tables when a node has multiple parents and their tables must be merged — that is, at

sync nodes and at get nodes. Naively merging at every sync and get is also too expensive

— while there are only k get nodes in the computation (one for each future), there could

be many more sync nodes. We can be cleverer about the implementation however, and only

perform a merge if among the hash tables associated with the two parents of a node, each

contain some item that the other does not contain. In Section 5.4, we argued that this can

occur at most k times during the computation and that argument holds here as well.

6.2.5 The Access History Component

In a race detection algorithm, the access history stores the readers and writers that previously

accessed a given memory location. For programs with only fork-join parallelism (i.e., SP-

dags), given a memory location l, Mellor-Crummey [55] has shown that it suffices to store

105

one previous writer — called last writer , that is simply the last writer that wrote to l, and

two readers — the rightmost reader rreader(l) and the leftmost reader lreader(l).

For programs with general futures, however, the race detector must store an arbitrarily large

number of previous readers for each memory location [2].

By exploiting the restrictions imposed by structured futures, we show that one can store

only 2k readers per memory location, where k is the total number of futures used in the

computation, without breaking the correctness guarantees. In particular, given a memory

location l and a future dag F in an SF-dag D, SF-Order stores only the rightmost reader

rreader(l, F) and leftmost reader lreader(l, F) of l with respect to F (that is, the left-

most and rightmost readers of l in F compared to all other readers of l in F). Recall

from Lemma 51, if two nodes u and v are in the same future dag and u ≺ v, then there must

exist an SP path between them. Thus the following lemma straightforwardly follows from

prior work by Mellor-Crummey [55].

Lemma 58. At any point during the execution of an SF-dag, let R(l,F) be the set of nodes

in future dag F that have read memory location l and w be any other node in F . We have

r ≺ w for all r ∈ R(l,F) iff rreader(l, F) ≺ w and lreader(l, F) ≺ w.

Lemma 58 says that given a memory location l and a future F , storing its rightmost and

leftmost readers suffice to detect intra-future races. Now we prove these readers also suffice

to detect inter-future races.

Lemma 59. At any point during the execution of an SF-dag, let R(l,F) be the set of nodes

in a future dag F that have read memory location l and w be any other node in some

future G distinct from F . We have r ≺ w for all r ∈ R(l,F) iff rreader(l, F) ≺ w and

lreader(l, F) ≺ w.

Proof. If all r ∈ R(l,F) precede w then rreader(l, F) and lreader(l, F) must also precede

w since they are in the set R(l,F).

106

Now we show the other direction — assuming that rreader(l, F) ≺ w and

lreader(l, F) ≺ w, we need to show that all r ∈ R(l,F) precede w. Since w 6∈ F , we

have rreader(l, F) ;nsp w and lreader(l, F) ;nsp w (Property 1). Let’s first consider the

case where F 6∈ f-ancs(G). Then by Lemma 52, last(F) ; w, and thus all nodes in F

precede w.

Next we consider the case that F ∈ f-ancs(G). Since both rreader(l, F) and

lreader(l, F) are in F , w ∈ G, and F ∈ f-ancs(G), by Lemma 53, there is at least

one path from rreader(l, F) to w containing only create and SP edges. We can decompose

this path into rreader(l, F) ;sp x →create y ; z →create first(G) ;sp w (where y ; z

can be empty if F is the immediate future parent of G). Similarly with the same argument

we can decompose the path from lreader(l, F) to w into lreader(l, F) ;sp x
′ →create

y′ ; z′ →create first(G) ;sp w (where y′ ; z′ can be empty if F is the immediate

future parent of G). Since each future has exactly one parent, we have z = z′ and x = x′

inductively. Therefore, we have rreader(l, F) ;sp x and lreader(l, F) ;sp x. Then based

on Lemma 58, we know for any other reader r in R(l,F), r must precede x as well, which

leads to r ≺ w.

6.3 Performance Analysis of SF-Order

Now we can analyze the performance bound for SF-Order. First, we can state the following

bound for the reachability component based on the construction discussed in Section 6.2.4:

Lemma 60. Given a computation with work T1, span T∞, and k futures, constructing

the reachability data structure has total work of O(T1 + k2) and total span of O(T∞ +

min{T∞, k} lg k). Therefore, the running time on P processors is ((T1 + k2)/P + T∞ +

min{T∞, k} lg k).

107

Proof. Maintaining WSP-Order to answer reachability queries between PSP (D) has no

asymptotic overhead [97]. cp(G) for each future is constructed when the future is created

and takes at most k extra work, for a total of k2 overhead for k futures. As for gp(v), we

argued that new hash tables are created at most O(k) times — once for each of the k get

node and at k sync nodes at the most. Each of these merges takes O(k) time since no hash

table can be larger than k. Therefore, the total work is O(T1 + k2).

Every copy and merge can be done in parallel for the span of O(lg k). Since there are at

most k such merges, this overhead on the span can not be larger than O(k lg k). In addition,

at most T∞ of these merges fall along the critical path — hence the result.

We can also show easily that queries are cheap. Utterback et al. [97] show that WSP-

Order answers queries in O(1) time amortized. In addition to that, we only check gp(v) and

cp(G) once for each query, which each take O(1) time in expectation.

Lemma 61. Checking if u ≺ v using the query algorithm takes O(1) time amortized and in

expectation.

Now we can state the final performance bound for SF-Order:

Theorem 62. Given a computation with work T1 and span T∞, SF-Order executes in time

O((T1 + k2)/P + T∞ lg k) on P processing cores, where k is the total number of futures used

in the computation.

Proof. On a read, the the race detector has to check races against at most one previous

writer and each query takes O(1) time. On a write, the race detector may check races

against at most 2k previous readers. Therefore, each write may cause up to O(k) work and

O(lg k) span (since all these checks can be done in parallel). However, these reads can then be

removed from the access history; therefore, this O(k) work can be amortized against the cost

of performing them in the first place. By Lemma 60, the reachability structure construction

108

costs O(k2) asymptotic overhead giving us the work term. For the span, the O(lg k) overhead

is multiplicative on the span; therefore, the additive overhead of construction is absorbed

by it, leaving us with the total span of O(T∞ lg k). The P processor bound follows from

standard scheduling theorems.

6.4 Implementation and Empirical Evaluation of SF-

Order

We have implemented SF-Order and empirically evaluated it by comparing it against Multi-

Bags [98], the state-of-the-art sequential race detector designed for structured futures, and

F-Order (Chapter 5), the state-of-the-art parallel race detector designed for general futures.

Experimental evaluation indicates that, although our algorithm incurs a higher overhead

for one-core executions compared to MultiBags, its absolute running time wins out when

running on two cores or more as MultiBags can only run the program sequentially. On the

other hand, when compared F-Order, our algorithm incurs lower overheads in general, due

to the lower reachability construction and query overheads.

Implementation overview

Here we briefly describe the implementation of SF-Order. As discussed in Section 6.2, the

reachability component of SF-Order requires three different types of data structured. The

first one is the SP-Order data structure from the WSP-Order algorithm [97] to maintain the

reachability of pseudo-SP-dags. The WSP-Order algorithm requires a specialized runtime

system support in order to obtain the amortized constant time query overhead on SP-Order.

Such runtime system support is similarly required by F-Order, that is, an extended Cilk-F

runtime system [86] that supports the use of futures and the specialized runtime system

support for WSP-Order. We have taken this extended Cilk-F runtime and incorporated into

our software that implements SF-Order.

109

For gp, recall that it is simply a hash table per node v in the SF-dag that keeps track

of the IDs of all futures F such that the last node of F is an ancestor of v. One bit suffices

to store such information per unique future in the execution. Thus, instead of utilizing an

actual hash table hashing the unique IDs of such futures F , we utilized an array of 64-bit

integers to indicate membership of gp(v) — a bit in position i indicates whether the last

node of a future F with ID i is an ancestor of v.

Similarly for cp, it is again a hash table containing the IDs of all future ancestors F of a

given future G. Again, one bit suffices to store such information per unique future F . Thus,

we similarly utilized an array of 64-bit integers to indicate membership of cp(G) instead of

an actual hash table.

Finally, for the access history component, we utilized the same access history construction

as in F-Order — a two-level hash table that acts like a direct-mapped cache, hashing the

address of a memory location to its metadata. Even though SF-Order can bound the number

of readers per memory location in the access history, doing so required that we utilize yet

another hash table in the metadata for a given memory location, which hashes from a future

ID to its leftmost and rightmost reader. Since the overall space, hashing, and additional

query overhead (to check if some reader is the leftmost or right most compared to existing

readers) likely outweigh the saving in the number of readers we can omit, we simply store

all the readers in the hash table between writes like what was done in F-Order.

Experimental setup

All experiments were conducted on a machine with two 20-core Intel Xeon Gold 6148 cores,

clocked at 2.40 GHz. Hyperthreading and dynamic frequency scaling are disabled. Each core

has a separate private L1 data cache and L1 instruction cache, with 32KB capacity each.

Each core also has a 1MB private L2 cache. Each socket has a 27.5 MB L3 cache shared

among 20 cores. The machine has 768 GB of main memory. We have used only one socket

110

for the experiments to avoid variance due to NUMA effect. All software is compiled with

LLVM/Clang 3.4.1 with -O3 optimization level, running on Linux kernel version 4.15. Each

data point is the average of five runs with standard deviation less than 5.5%.

We have used five benchmarks to evaluate performance, including divide-and-conquer

matrix multiplication (mm), parallel mergesort (sort), Smith-Waterman sequence alignment

(sw), the Heart Wall application (hw) from the Rodinia benchmark suite [19] that tracks the

movement of a mouse heart over a sequence of ultrasound images, and the Ferret application

(ferret) adapted from the PARSEC benchmark suite [10] that implements a content-based

similarity search on images. The inputs and execution characteristics of the benchmarks are

shown in Table 3.1.

bench N B # reads # writes # queries # futures # nodes
mm 2048 64 1.72× 1010 1.43× 108 1.32× 108 18724 79577
sort 107 8192 2.75× 108 2.22× 108 1.21× 107 14463 60030
sw 2048 64 8.59× 109 4.20× 106 8.58× 109 1024 2054
hw 10 (images) - 1.73× 1010 1.64× 108 1.75× 1010 3672 9914

ferret simlarge - 5.40× 109 6.23× 108 7.40× 109 256 1280

Table 6.1: The input size (N), basecase size (B), and execution characteristics of the bench-
marks, including the total numbers of reads, writes, reachability queries performed through-
out the execution, the number of futures used, and the number of nodes in the computation
dag.

Empirical evaluation of SF-Order

We have compared the performance of SF-Order against MultiBags and F-Order using five

benchmarks described above, with the results shown in Table 6.2. Specifically, we evaluated

each algorithm with two different configurations — the reach configuration runs the appli-

cations with only the reachability maintenance without actually performing race detections

on memory accesses, and the full configuration that runs the full race detection. The

111

bench base (T1) base (T20) config MultiBags (T1) F-Order (T1) SF-Order (T1) F-Order (T20) SF-Order (T20)

mm 8.02 0.42 [19.10×]
reach 8.14 (1.01×) 11.36 (1.42×) 8.38 (1.04×) 0.64 [17.75×] 0.43 [19.49×]

full 305.73 (37.84×) 468.59 (58.43×) 447.28 (55.77×) 23.62 [19.84×] 22.51 [19.87×]

sort 1.30 0.07 [18.57×]
reach 1.27 (0.99×) 3.90 (3.00×) 1.35 (1.04×) 0.33 [11.82×] 0.07 [19.29×]

full 17.56 (13.72×) 28.44 (21.88×) 26.20 (20.15×) 2.10 [13.54×] 1.86 [14.09×]

sw 20.92 2.14 [9.78×]
reach 20.90 (1.00×) 24.94 (1.19×) 24.25 (1.16×) 2.15 [11.60×] 2.14 [11.33×]

full 583.78 (27.85×) 676.39 (32.33×) 555.39 (26.55×) 73.87 [9.16×] 64.75 [8.58×]

hw 14.87 0.95 [15.65×]
reach 14.77 (1.00×) 15.90 (1.06×) 15.22 (1.02×) 0.99 [15.91×] 0.95 [16.02×]

full 333.35 (22.62×) 887.59 (59.69×) 676.25 (45.58×) 62.78 [14.14×] 51.77 [13.05×]

ferret 6.84 0.73 [9.73×]
reach 6.70 (1.01×) 7.10 (1.04×) 6.95 (1.02×) 0.75 [9.47×] 0.71 [9.79×]

full 278.5 (42.07×) 308.14 (45.05×) 270.70 (39.58×) 29.88 [10.31×] 25.52 [10.61×]

Table 6.2: Execution times of the benchmarks shown in seconds for the baseline executions
(i.e., with no race detection, shown as base) and when running with MultiBags, F-Order,
and SF-Order for race detection with two different configurations. The first configuration
shown as reach runs each algorithm with only the reachability construction overhead. The
second configuration shown as full runs the full race detetion algorithm. Columns with T1
show the execution times running on one core, and columns T20 show the execution times
running on 20 cores. Numbers in the parentheses show the overhead compared to the baseline
executions. Numbers in the brackets show the scalability relative to the T1 time of the same
configuration.

reach configuration incurs overhead only upon the execution of a parallel construct, and

thus shows only the construction overhead for the reachability component. The full con-

figuration incurs the full overhead, including the constructing the reachability, updating the

access history, and performing the necessary queries into both the reachability and access

history upon a memory access.

In theory , MultiBags incurs the least amount of overhead asymptotically (a multiplicative

overhead in the inverse Ackermann’s function, which is upper bounded by 4 for all practical

purposes [23]), whereas for F-Order and SF-Order, there is an additional O(k2) overhead

for the reachability construction. In practice, the reachability construction incurs rather

negligible overhead for both MultiBags and SF-Order, whereas the overhead for F-Order is

higher.

The reason behind SF-Order’s lower overhead than F-Order in practice (despite having

the same asymptotic overhead) is as follows. Like SF-Order, F-Order needs to maintain some

type of hash table per node during execution (which is akin to the gp and cp data structures

112

needed by SF-Order). However, due to the properties of SF-dags, it suffices for SF-Order

to maintain a gp (or a cp) as an array of bitmaps as opposed to using an actual hash table,

whereas F-Order needs to employ a full-fledged hash table per node, which incurs higher

space and time overheads. We additionally measured and compared the space overhead

between F-Order and SF-Order. As shown in Table 6.3, SF-Order incurs significantly less

space overhead, only 1.29% of the memory usage of F-Order on average, for five benchmarks.

bench F-Order SF-Order
mm 9.1 0.07
sort 7.64 0.05
sw 0.14 2× 10−4

hw 1.7 6× 10−3

ferret 6× 10−3 6.50× 10−5

Table 6.3: Memory usage of the benchmarks when running with F-Order and SF-Order for
reachability maintenance, shown in gigabytes.

The full race detection is expensive across all algorithms. This is especially evident

in the T1 running times with the full configuration. Both parallel algorithms F-Order

and SF-Order incur higher overheads than MultiBags, with SF-Order incurs less overhead

than F-Order. This is actually in large part due to the fact that, queries into the access

history needs to be synchronized with locks in the parallel algorithms. Since MultiBags

executes sequentially, it does not incur such an overhead. In particular, for both F-Order

and SF-Order, every time a read or a write occurs, one must acquire lock on the access

history. The access history does utilize fine-grained locking (each lock represents a subset

of the access history containing 16-byte memory locations), so contention is not really the

issue. Rather, the high overhead stem from the sheer volume of locking operations necessary

(which tracks the number of reads and writes shown in Table 6.1). Compared to F-Order,

SF-Order incurs lower overhead in the full configuration due to its lower reachability query

113

overhead. In particular, SF-Order tends to have higher savings in overhead compared to F-

Order on applications with large number of queries (e.g., sw and hw). However, the savings

are dwarfed by the locking overhead. We have separately measured T1 for F-Order and

SF-Order without using locks in access history and confirmed that the locking overhead is

indeed significant and dominates the additional overheads seem in full.

Even though F-Order and SF-Order incur higher overhead than MultiBags, they both

exhibit scalability that closely tracks that of the baseline executions. As documented in

Section 5.5 that when compared with MultiBags, F-Order wins out in absolute running

times as long as four or more cores are used. Since SF-Order incurs lower overheads, when

compared to MultiBags, SF-Order’s absolute running time wins out when two or more cores

are used.

114

Chapter 7

Optimizing Access Histories

The prior work on race detection has primarily focused on designing data structures and/or

runtime mechanisms for maintaining the reachability component in a provably and practically

efficient manner. In contrast, the access history has received little attention. Most prior race

detectors maintain access history by using an optimized hashmap to maintain the mapping

from each memory address to previous accesses, which allows for (amortized) constant time

insertions and queries from the access history. In practice, however, the management of

access history often incurs much higher overhead than the reachability component does.

To illustrate this fact, Table 7.1 shows the overhead of each component of a vanilla

sequential race detector for Cilk [12, 41], a C/C++-based task parallel platform. This

race detector implements SP-Order [9], a state-of-the-art algorithm which incurs constant

overhead for managing reachability for fork-join parallel computations. SP-Order executes

the computation sequentially; based on the parallel constructs observed during execution,

it maintains a reachability data structure that can answer the queries about whether two

strands are logically in parallel. The vanilla race detector uses an optimized two-level page-

table-like hashmap to manage access history. In Table 7.1, the baseline column is the running

time of the program without race detection. The reachability column shows the execution

115

vanilla vanilla # accesses ×106 # intervals ×106

base reach. full detection read write read write
chol 0.61 0.61 (1.00×) 84.66 (139.78×) 1466.0 671.2 2.1 0.7
fft 13.55 13.59 (1.00×) 488.19 (36.03×) 2013.9 1400.9 325.4 16.3
heat 4.36 4.34 (1.00×) 367.24 (84.23×) 5274.3 1053.8 2.2 1.0
mmul 8.07 8.12 (1.00×) 355.66 (44.07×) 17712.5 536.9 33.6 8.4
sort 3.39 3.41 (1.00×) 72.27 (21.32×) 693.7 535.1 1.3 0.2
stra 1.49 1.50 (1.00×) 423.43 (284.18×) 3173.5 342.0 2.1 0.8
straz 1.54 1.54 (1.00×) 244.54 (158.79×) 3814.0 216.4 4.5 1.7

Table 7.1: Overheads of a vanilla race detector. Time shown in seconds. The first four
columns from left to right show the benchmark name, its running time without race detection,
that with only the reachability component, and that with the full race detection. The
numbers in parenthesis show the overhead comparing to the baseline. The last four columns
show the number of memory locations and intervals accessed, on the order of millions.

times that account for the compiler instrumentation and data structure updates to maintain

the reachability data structure. The full column shows the execution times with both reach-

ability and access history components and indicates access history is the most expensive

component of race detection.

In this chapter, we propose mechanisms to speed up sequential race detectors for task-

parallel code, focusing on optimizing the access history component. The key observation

is as follows: For many task-parallel programs, a single strand typically performs many

accesses to contiguous memory locations. We shall refer to a range of contiguous memory

accessed by the same strand as an interval . Table 7.1 shows the number of distinct (four-

byte) memory words read/written and the number of intervals read/written for the tested

benchmarks indicating that the number of intervals can be several magnitudes smaller than

the number of memory words. If we manage access history at the granularity of intervals

instead of memory words, we can reduce both the time overhead and memory footprint of

the access history.

Given this observation, we propose two advances to optimize the access history. First,

instead of checking races at every memory access, we wait until end of a strand and check

116

for races on all accesses performed by the strand at this point. This allows us to perform

temporal and spatial coalescing. In temporal coalescing, we remove duplicate accesses —

if the strand accesses the same memory location again and again, we only check for races

and record this access once at the end of the strand, thereby reducing the number of queries

to the access history and reachability data structures. In spatial coalescing, we coalesce

contiguous memory accesses within a strand into intervals and invoke the access history and

reachability data structures at the interval granularity.

Our race detector performs coalescing at both compile-time and runtime (Section 7.1).

Some spatial coalescing occurs at compile-time when the compiler can statically detect that

the memory accesses within a strand are contiguous. Doing so allows the race detector to

lower the instrumentation overhead, since instrumentation (i.e., invocations to the race de-

tector) occurs at the granularity of intervals as opposed to at every memory access. The

compile-time coalescing is necessarily conservative, however, and may miss coalescing oppor-

tunities. Our detector at runtime checks for additional opportunities for coalescing. Collec-

tively, compile-time and runtime coalescing allows us to exploit spatial and temporal locality

that exist in the code to reduce both instrumentation overhead and calls to reachability and

access history data structures.

The second advance is in access history data structure. Instead of storing accesses at

word granularity, we store them as intervals, i.e., the start address l (inclusive) and the end

address (exclusive). Doing so allows the access history to be represented in a more compact

fashion, but we need a data structure that allows for efficient updates and queries of intervals.

Specifically, given an interval to insert (or query), the we must find all overlapping intervals

already in the data structure efficiently.

We use a balanced binary search tree data structure to maintain the access history (Sec-

tion 7.2). 15 Our construction differs from normal interval trees since it enforces that no two
15Our implementation uses treaps [82, 92], but any balanced binary search tree would work.

117

intervals within the tree overlap and allows one to quickly identify all overlapping intervals.

In particular, the cost of inserting and querying in our data structure for an interval x is

O(h+ k) where h is the height of the tree and k is the number of intervals that overlap with

x. By maintaining a balanced binary search tree such as a treap, our insert and query cost

is bounded by O(lg n+ k) (with high probability), where n is the number of intervals in the

treap when x is inserted. This leads us to the overall computation time as follows: Given a

computation with T1 work — the time it takes to execute the computation on one processor

— our race detector runs in O(T1+n lg n) time, where n is the number of intervals generated

by the program. If n is small compared to T1, which is typically the case, our race detector

can race detect the computation in O(T1) time, incurring amortized constant overhead.

We have developed a race detector for task-parallel code based on this design (Sec-

tion 7.3). Experiments suggest that our optimizations are beneficial. Compared to the

vanilla system, which has an average overhead (geometric means) of 78.13×, our race detec-

tor incurs an average overhead (geometric means) of 18.61×, which is a 4× improvement.

We also analyzed the treap operation overhead in detail, and found that a treap operation

overhead tends to be dominated by the tree height as the number of overlap intervals tends

to be really small. Moreover, since the treap overhead is small compared to other operations

performed by the race detector, the race detector overhead remains stable as the number of

intervals increases.

7.1 Compile-Time and Runtime Coalescing

This section discusses the compile-time coalescing, which can decrease instrumentation over-

head, and runtime coalescing, which reduces the number of intervals and provides the addi-

tional benefit of deduplication.

118

7.1.1 Compile-Time Coalescing

To perform compile-time coalescing, the race detector uses the Tapir compiler [81] and

leverages its representation of task parallelism. Although the details of how the compiler

performs coalescing are beyond the scope of this dissertation, we examine at a high level what

coalescing the compiler can and cannot do, using examples drawn from the benchmarks.

Algorithm 12: Base Case of matmul
Data: Submatrices A, B, and C, of size m× n, n× p, and m× p respectively, where each submatrix

lies inside a larger N ×N matrix that is stored in row-major order.
Result: C ← C +A ·B

1 for i← 0 to m do
2 __coalesced_load_hook(C[i ·N], p)
3 __coalesced_store_hook(C[i ·N], p)
4 for j ← 0 to p do
5 t← load(C[i ·N + j])
6 __coalesced_load_hook(A[i ·N], n)
7 for k ← 0 to n do
8 a← load(A[i ·N + k])
9 __load_hook(B[k ·N + j])

10 b← load(B[k ·N + j])
11 t← t+ a ∗ b
12 store(C[i ·N + j], t)

Algorithm 12 presents a pseudocode example of compile-time coalescing for the base

case of the matrix-multiplication code (mmul) from the Cilk-5 distribution [34]. The mmul

benchmark performs dense matrix-matrix multiplication on matrices stored in row-major

order using a parallel recursive divide-and-conquer algorithm. This algorithm divides the

input matrices along the longest dimension and recursively multiplies the resulting rectan-

gular submatrices. The base case of this recursion multiplies small rectangular submatrices

serially, using the pseudocode in Algorithm 12. In this pseudocode, the load and store

functions denote hardware operations to load and store memory, respectively.

To instrument this code for race detection, the compiler inserts calls to the

__load_hook, __coalesced_load_hook, and __coalesced_store_hook hook

119

functions to identify memory read / written. In the __coalesced_load_hook and

__coalesced_store_hook functions, the first argument identifies the starting memory

address loaded or stored, and the second argument specifies the amount of memory accessed.

The __coalesced_load_hook and __coalesced_store_hook functions in particu-

lar identify coalesced instrumentation that the compiler inserted. For didactic simplicity,

this pseudocode assumes that a single element of the matrix has size one.

As Algorithm 12 shows, the compiler is able to insert coalesced instrumentation for the

loads and stores to the C and A submatrices. For the C submatrix, the compiler justifies

representing accesses to C using coalesced loads and stores on lines 2 and 3 as follows. Each

iteration of the j loop (lines 4–12) loads and stores memory location C[i ·N + j]. Hence, one

invocation of the j loop loads and stores all of memory from C[i ·N] up to, but not including,

C[i ·N + p]. In addition, because this base case is serial, these loads and stores cannot race

with any loads or stores within the same invocation of the base case. Hence, it is equivalent

to represent accesses in the j loop to individual elements of C as coalesced accesses before

the j loop to the memory from C[i ·N] to C[i ·N+p]. In other words, a determinacy race will

exist with a coalesced access to this range of memory addresses if and only if a determinacy

race exists with a load or store to an individual element of C in the j loop. A similar analysis

allows the compiler to represent the accesses to A with a coalesced-load on line 6.

Algorithm 12 also shows an existing limitation of the compiler’s ability to coalesce instru-

mentation. In particular, line 9 shows that the compiler does not coalesce instrumentation

for loads from the B matrix (line 10). In this code, the k loop (lines 7–11) reads the B

submatrix in column-major order. But because the B matrix is stored in row-major order,

the reads from B in the k loop do not cover contiguous memory locations. Hence, the com-

piler’s analysis of the load operation on line 10 in the context of the k loop does not allow

it to generate coalesced instrumentation for these loads. As a result, the compiler simply

instruments the load on line 10 directly, using a call to __load_hook on line 9.

120

7.1.2 Runtime Coalescing

While more sophisticated compiler analysis can reveal additional opportunities to coalesce

instrumentation, the inherent limitations of compile-time coalescing motivate runtime coa-

lescing. Not only can the runtime can coalesce accesses to matrix B shown in Algorithm 12

but it can also coalesce intervals that depend on the input. For example, Algorithm 13

presents pseudocode with input-dependent memory-access patterns that are difficult to iden-

tify at compile-time. This pseudocode implements an insertion sort for the base case of the

cilksort benchmark. In this base case, multiple executions of the inner loop (lines 4–8)

may repeatedly store to the same range of memory locations between the pointers l and h.

But because the store on line 6 is predicated on the comparison of input values on line 6, the

compiler cannot statically determine the range of memory locations that this base case will

store to. In contrast, runtime coalescing can identify these overlapping ranges and coalesce

them.

Algorithm 13: Insertion-Sort Base Case of cilksort
Data: Pointers l and h into an array A of n integers
Result: Integers between l and h are sorted

1 q ← l + 1
2 while q ≤ h do
3 a← load(q); p← q − 1
4 while p ≥ l do
5 b← load(p)
6 if b > a then store(p+ 1, b)
7 else break
8 p← p− 1

9 store(p+ 1, a)

To perform runtime coalescing, we use a bit-hashmap to keep track of which memory

locations are accessed during a strand’s execution. The bit hashmap is a compact version of

the access history hashmap used by vanilla race detector. Specifically, we use two separate

121

two-level page-table like hashmaps to perform runtime coalescing: one for read accesses and

one for write accesses. When an access is made, the prefix and suffix of its address are

used to index into the first-level and second-level tables, respectively. Tables at the second

level are initialized lazily on first access. Each second-level table contains an array of 64-bit

integers, where each bit represents a four-byte range. A bit is set if the corresponding word

is accessed within the currently-executing strand and unset otherwise.

Runtime coalescing exploits the fact that the compiler performs some coalescing. When

a coalesced load or store hook executes, the setting of the corresponding bits are done using

bit tricks that employ bit-level parallelism. As the hashmap tends to be sparsely populated,

vectors are used to remember indices corresponding to the first and second-level table entries

set within the strand. After the strand finishes, we iterate through the stored indices to

compute the intervals accessed and clear out the table entries in order to reuse the table for

the next strand.

Runtime coalescing provides multiple benefits. First, as previously mentioned, runtime

coalescing directly observes the program execution and can discover opportunities due to

input-dependent or pointer-based operations that the compiler struggles to analyze. Second,

overlapping intervals generated at two different points in the same strand are merged into

a single interval. Finally, runtime coalescing provides deduplication : multiple accesses to

the same memory location (within a strand) are coalesced into one interval that is checked

for races and inserted once into the access history. In contrast, the vanilla race detector

checks for races at each access. Even though the repeated memory accesses will generate

repeated updates to the runtime coalescing bit hashmaps, updates on the bit-hashmaps are

significantly cheaper than those on the hashmap access history used in vanilla, because the

hashmap access history keeps track of much more data in order to perform race detection.

As we shall see in Section 7.3, both compile-time and runtime coalescing provide benefit,

but the runtime coalescing provides greater benefit due to these reasons.

122

7.2 Interval-Based Access History

We now describe the access history data structure that efficiently supports (1) query to

find all intervals that potentially conflict with a given interval; and (2) update to the data

structure to insert the new interval. We also analyze the theoretical performance of this data

structure.

Recall that in a sequential race detector for fork-join parallelism, it suffices for each

memory location to store its last writer and left-most reader [27]. In a traditional access

history data structure, when a strand s writes to this memory location `, we check if s is in

parallel with the left-most reader of ` or with the last writer and declare a race if so. The

strand s is now stored as the last writer of this location. Similarly, if s reads this memory

location, we check if s is in parallel with the last writer and declare a race if so. We then

check if s is left-of the existing left-most reader and store s as the left-most reader if so.

We want to store intervals instead of individual memory locations in the access history.

We keep separate data structures for read intervals and write intervals. Each of these will

store interval objects, say x with three fields: x.start and x.end denote the beginning (inclu-

sive) and end (exclusive) of the interval and x.accessor stores the strand we want to store —

the last writer for the write data structure and the left-most reader for the read data struc-

ture. When convenient, we denote an interval as three-tuple: [start,end,accessor].

The intervals stored within each data structure must be disjoint from each other since each

memory location can have at most one last writer and one left-most reader.

When a new strand s generates a read or a write interval, it is also represented as

an interval object o with the appropriate start and end values and accessor s. We must

check if any access within o races with any pre-existing access within the access his-

tory and if so, report a race and then update the access history. However, this is not

123

straightforward. Consider the following example. Say we had the following read inter-

vals: [8, 16, a], [24, 32, b], [40, 52, c], [52, 60, d]. We get a new read interval [12, 56, e]. The

tree after the update depends on the relationship of e with all other intervals. Say e

is left of a and c, but not b and d. After the update, the data structure must store

[8, 12, a], [12, 24, e], [24, 32, b], [32, 52, e], [52, 60, d]. Therefore, a new interval may overlap with

many previous intervals and some previous overlapping intervals may remain entirely, and

some may be removed or trimmed.

Intervals are stored in two binary search trees (one each for read and write intervals) keyed

by the start field of the interval. The data structure is similar to interval trees [23][Chp.14.3];

however, we enforce the additional non-overlapping property that all intervals in the tree

must be disjoint. The two trees behave a little differently since the accessor for each interval

must be the last writer in the write tree and the left-most reader in the read tree.

Say we are processing strand x with accessor s. Since the strands are processed by the

race detector in sequential order, all previous intervals already in the tree are “before” s in

sequential order. Therefore, if x overlaps any pre-existing interval in the write tree, then x

is kept since s is always the last writer and the old interval is trimmed or removed. As we

saw in the example above, this is not true in the read tree since s may not be the left-most

reader for all memory locations in x. Therefore, when we see an overlap, we must check

whether the old reader or the new reader is the left-most reader. We will first describe how

we insert an interval in the write tree and then the read tree. We then describe how we do

queries.

7.2.1 Updating the Write Tree

Given a tree T (as a pointer to the root) and a write interval x, we will use a recursive

procedure to update the tree to reflect the accesses represented by interval x. We will

124

A. No Overlap x

y

15 35

10 13 10 13

Recurse on right child
INSERTWRITEINTERVAL(y.right, x)

15 35
x

y

B. Partial Overlap x

y
Cut y to remove overlap

y.end=x.start

15 35

10 20 10 15

Recurse on right child
INSERTWRITEINTERVAL(y.right, x)

x
15 35

15 35
x

yy10 20

C. x inside y x

y

15 35

10 40
y

10

10 15

Recurse on both sides
INSERTWRITEINTERVAL(y.left, y1)

INSERTWRITEINTERVAL(y.right, y2)

x
15 35 15 35

x

y1

40

Cut y to remove overlap

Replace y with x

35 40y2

x

y

15 35

20 30

Remove Overlaps on both subtrees
REMOVEOVERLAPLEFT(y.left, x)

REMOVEOVERLAPRIGHT(y.right, x)

15 35
x

Replace y with x
15 35

x
15 35

x

D. y inside x

Figure 7.1: All cases illustrating InsertWriteInterval(y, x) — assumes and maintains
the no-overlap invariant.

remove/trim all intervals that overlap with x to maintain the invariant that no intervals

overlap with each other in the tree.

The procedure is illustrated in Figure 7.1. There are two main procedures, Inser-

tWriteInterval and RemoveOverlap. The InsertWriteInterval is the main pro-

cedure that is called at the root of the tree. The procedure is called recursively as we walk

down the tree. When we are at a particular tree node, say y in the tree and trying to insert

node x, we can be in the following 4 cases.

A. No overlap: As shown in Figure 7.1(A), when y and x don’t overlap, we simply recurse

down to one of its children. In particular, if x is completely to the right of y (y.end ≤

x.start), no intervals in y’s left subtree can overlap with x since they all end before

y.start. However, some intervals in y’s right subtree that overlap with x, so we recurse

by calling InsertWriteInterval(y.right, x). If y.right is empty, then we simply insert

this interval at this leaf.

B. Partial overlap: Figure 7.1(B) illustrates the operations when x partially overlaps with y

and is to the right of y (y.start < x.start, x.start < y.end < x.end). In this case, y.accessor

is the last writer for part of the old interval (from y.start to x.start), but x.accessor is the

last writer for memory locations after it. Therefore, we set y.end = x.start. Again, no

intervals in the left subtree of y can intersect with x, and we recurse on the right subtree

125

of y by calling InsertWriteInterval(x, y.left). A symmetric procedure is used when

x is to the left of y for both this case and the previous case.

C. Full overlap; old interval y bigger: Figure 7.1(B) illustrates the operation when y

fully encompasses x (y.start ≤ x.start and y.end ≥ x.end). We have up to three in-

tervals [y.start, x.start, y.accessor], [x.start, x.end, x.accessor], [x.end, y.end, y.accessor].16

We keep any one of these intervals at this location in the tree (replacing the old y) and

recurse down the tree to insert the other two intervals. In Figure 7.1 we keep the middle

interval and insert the left and right intervals. Note that none of these intervals overlap

with any other interval in the tree since they collectively made up y which was already in

the tree before and didn’t overlap with anything. Therefore, we will fall into case A from

now on out — we just walk down the tree and insert in the appropriate leaf.

D. Full overlap; new interval x bigger: Figure 7.1(B) illustrates case where x fully en-

compasses y. Now y can be removed from the tree entirely and replaced with x. However,

there may be more intervals in both the left and right subtrees of y which also overlap with

x. Therefore, we use a function called RemoveOverlap to find and remove/trim these

intervals. There are two versions of this function: RemoveOverlapLeft(y, x) which is

called on the left subtree and RemoveOverlapRight(y, x) which is called on the right

subtree. This function is illustrated separately in Figure 7.2 and explained below.17

We now describe RemoveOverlapLeft(T, x). (RemoveOverlapRight(T, x) is

symmetric.) Recall that RemoveOverlapLeft(z, x) is first called when a newly inserted

interval x replaced an interval y which was fully within x and z was the left child of y. The

general invariant is that RemoveOverlapLeft(z, x) is called on a node z when x has

been inserted into some ancestor of z to z’s right (therefore, x.end ≥ z.end) and the purpose
16There may be fewer than 3 intervals if one or both end points are equal for x and y; this is easily handled

as a special case.
17We can (optionally) trim x so that it ends at y.start when calling RemoveOverlap. The explanation

is easier without, however.

126

x

z

15 35

20 30

All nodes in
right subtree overlap x.

Remove it entirely.

x
15 35

Recurse on left subtree
REMOVEOVERLAPLEFT(z.left, x)

parent(z) parent(z)

C. z inside x

z overlaps with x;
splice it out.

Figure 7.2: Case C of RemoveOverlapLeft(z, x). x was inserted at an ancestor to the
right of z.

is to find and remove/trim intervals that overlap with x. This is also a recursive function

and a subset of its cases are illustrated in Figure 7.2. Note that there are fewer cases since

z cannot fully encompass x due to the invariant of this function. We also show parent(z)

(the old y in the example used in InsertWriteInterval) in these figures for two reasons.

First, as we will see soon, we need it for one of the cases. More importantly, we wanted to

point out that even though RemoveOverlapLeft is initially called on the left child, as

we make recursive calls, it can be eventually called on a right child — the function remains

unchanged regardless.

A. No overlap: If x and z don’t overlap with x to the right of z (z.end < x.start; x can not

be to the left of z for RemoveOverlapLeft due to the invariant stated above), there

can be no overlap in the left subtree of z. Therefore, we recurse on the right subtree by

calling RemoveOverlapLeft(z.right, x).

B. Partial overlap: If x and z partially overlap (z.start < x.start < z.end), we trim the

interval z by setting z.end = x.start. Again, the left subtree of z cannot overlap with x.

Since x is some ancestor of z to the right, the entire right subtree of z must now overlap

with x and can be removed, thereby terminating the recursion.

127

C. Full overlap Figure 7.2(C) illustrates the case where x fully encompasses z. Again, the

entire right subtree of z must overlap with x and is removed. In addition z itself is spliced

out and replaced with its left subtree by changing the child pointer for parent(z) and

the parent pointer of z.left. In addition, we recurse on the left subtree of z by calling

RemoveOverlapLeft(z.left, x) to find any additional intervals that may intersect with

x.

Cut x to remove overlap

x

y

15 35

20 30

15 20

Recurse on both sides
INSERTREADINTERVAL(x.left, x1)
INSERTREADINTERVAL(x.left, x2)

20 30
x

x1

Replace y with x
(change accessor to x.accessor)

30 35
x2

15 20

Recurse on both sides
INSERTREADINTERVAL(y.left, x1)
INSERTREADINTERVAL(y.left, x2)

20 30
y

x1

leave y

30 35
x2

Case 2: y.accessor is left-of x.accessor

Case 1: x.accessor is left-of y.accessorD. y inside x

Figure 7.3: Case D of InsertReadInterval(y, x).

7.2.2 Inserting an Interval in the Read Tree

Maintaining the read tree is more complicated. In a read tree, when the new interval x

overlaps with some old interval y, we may keep the y if it is left-of x. As seen in the example

at the beginning of the section, this can lead to some intervals being removed and trimmed

while the new interval may also be trimmed in many pieces. We have similar cases as the

128

write tree, but the cases are handled differently. As with the write tree, we only show one

direction — where x is to the right of y — the other case is symmetric.

A. No overlap: This case is identical to the write tree — we simply recurse to the appro-

priate subtree.

B. Partial overlap: The case of partial overlap is slightly more complicated. We have

two cases. If the new accessor x.accessor is left-of the old accessor y.accessor, then the

accessor for [y.start, x.start] is old y.accessor but the accessor for x.start onwards is the

new x.accessor. Therefore, this case is handled like the write tree — we cut the old

interval y down by setting y.end = x.start and recurse to the right subtree by call-

ing InsertReadInterval(y.right, x). If, on the other hand, the old interval’s accessor

y.accessor is left-of x.accessor, then we must keep the entire interval y intact. In this

case, we trim x by setting x.start = y.end and use this modified interval x to recurse to

the right subtree.

C. Full overlap; old interval y bigger: This is the easiest case. If the new interval is left

of the old interval, then the read tree behaves like the write tree — the old interval is

cut into three portions, one of the portions is kept at this location, and the other two are

inserted with guaranteed no further overlap. If the old interval is left of the new interval,

we just keep the old interval; nothing changes and we are done.

D. Full overlap; new interval x bigger: As illustrated in Figure 7.3(D), the case where

x fully encompasses y is the most different from the write tree since we cannot simply

remove y. First, y might be left of x and therefore must be kept. Even more importantly,

there may be other intervals within y’s subtrees that overlap with x and have accessors

left of x. Therefore, we cut x into three pieces. The middle portion stays here and is

labeled with x.accessor, if x.accessor is left-of y.accessor, or y.accessor otherwise. The

other two portions are inserted into the left and right subtrees by recursing.

129

7.2.3 Queries to Check for Races

In order to check for races with interval x, we must find intervals that overlap with x.

Note that the procedure InsertWriteIntervals already finds all overlapping intervals

as it walks down the tree. 18 The main wrinkle is that when we are in case B or C of

RemoveOverlap and remove entire subtrees, we must walk through those subtrees to check

for races with all intervals in that subtree. In summary, the race detection procedure works

as follows. For a write interval x, first check for races in the read tree by using a procedure

similar to InsertWriteInterval, but making no modifications to the tree itself. Then

insert into the write tree while checking for races as we go. For a read interval x, first check for

races in the write tree by using a procedure similar to InsertWriteInterval, but making

no modifications to the tree. Then insert into the read tree by using InsertReadInterval.

7.2.4 Performance Analysis

We have described the algorithm with a generic binary search tree. In order to keep the

height low, we use a balanced binary search tree such as a treap which has height O(lgm)

with high probability if there are m nodes in the treap.

We first bound the number of intervals that can be in the data structure at any given

time.

Lemma 63. When InsertWriteInterval (resp. InsertReadInterval) has been called

on the root of the write tree (resp. read tree) m times, then the total number of intervals in

the respective tree is O(m).

Proof. We first look at the easier case of the write tree. First, note that RemoveOverlap

doesn’t add any new intervals, only removes or trims existing ones and neither does case A

for InsertWriteInterval. Cases B and D also just trim intervals, but do not add new
18In fact, InsertWriteInterval also finds all overlaps — InsertWriteInterval is more efficient,

however.

130

ones. The only way a new interval is added is (a) x reaches a leaf node in case A and gets

added (adding only one interval); or (b) in case C, we split an existing interval y and insert

y1 and y2. In this case y1 and y2 are guaranteed to have no overlaps and get added at the

leaves, causing an additional two intervals. Therefore, every time we insert a new interval,

we add at most two additional intervals to the tree.

Now consider the more complicated case of the read tree. Again, just like the write tree,

cases A–C do not add intervals to the tree. However, case D is interesting, because we call

InsertReadInterval on both subtrees. There is no guarantee that these new x1 and x2

won’t also overlap with additional intervals further down the tree and subdivide further. In

the worst case, if we had i intervals before a particular interval was added, we can have 2i+1

intervals after it was added. Consider the following example: say we had [1, 2, a], [3, 4, b],

and [5, 6, c] in the tree. If we read an interval [0, 7, d] where a, b, c are all left-of d, our tree

will contain [0, 1, d], [1, 2, a], [2.3.d], [3, 4, b], [4, 5, d], [5, 6, c], and [6, 7, d].

However, it turns out that the total number of intervals cannot double with every in-

sertion. We will see this by counting not just intervals, but also gaps . Gaps are memory

ranges between consecutive intervals — in our example before d is inserted, [0, 1], [2, 3], [4, 5],

[5,−] are gaps. When we insert an interval that doesn’t overlap with any existing interval,

we increase the number of intervals by exactly one and we increase the number of gaps by

at most one, for a collective increase of at most 2 (we may not increase the number of gaps

if the new interval is right next to another or decrease the number of gaps by one if we fill

in the gap between two intervals). When we insert an interval that overlaps other intervals,

we may increase the number of intervals by a lot, but only by filling in gaps. Therefore, the

collective increase in the number of gaps and intervals is at most two in all cases. An empty

tree has one gap. Since each insert increases the number of gaps and intervals (collectively)

by at most 2, the total number of intervals is at most 2m+ 1.

131

Lemma 64. Inserting an interval and querying into the access history takes O(h+ k) time

where h is the height of the larger tree (read or write) and k is the number of intervals that

overlap with x across both trees.

Proof. Let us first consider the InsertWriteInterval(T, x). At every node, this recursive

procedure is called on at most one child. In addition, only case A can be called multiple

times; cases B–D occur at most once for every insertion. This is particularly important for

case D since it calls RemoveOverlap on both children, but since this can happen at most

once, the total number of recursive calls remains O(h). In addition RemoveOverlap is

also called on at most one child at every level. Therefore, the total running time of this

procedure is O(h).

We might be tempted to say that queries also take O(h) since we use a similar procedure

as InsertWriteInterval. However, this would be impossible — if k intervals overlap

with x, then we can not possibly check for races in time less than O(k). However, recall that

during RemoveOverlap case B and C, when we remove entire subtrees, during queries,

we must check all the nodes in these subtrees for races. Since we check precisely the set of

intervals that overlap with x, the running time is O(h+ k).

Now, let us consider the more complicated case of InsertReadInterval. In particular,

note case D; here, we call the function recursively on both children. In addition, this can

happen many times (every time x overlaps fully with y — at most k times). Therefore,

naively, we might conclude that the running time is O(kh).

However, we can do a more careful analysis. Consider that case D happened when

inserting node x on some node y and then again at some descendent node z where z is to

the left of y. In this case, the right subtree of z must entirely overlap with x and we can

charge the recursion on this right subtree of z to k. Therefore, apart from the first time in

the tree when we fall into case D, every other time we fall into this case, we can charge one

of the two recursive calls to k. Pictorially, when we insert x into the read tree, we walk at

132

most two root to leaf path in addition to walking to all the intervals that overlap with x for

a total running time of O(h+ k).

Theorem 65. Across the entire computation, the total cost of checking for races is O(n lg n+

T1) where n is the total number of intervals generated by the program and T1 is the work.

Proof. The total number of intervals in either tree never exceeds O(n) from Lemma 63.

Therefore, from Lemma 64, the cost of each individual interval is O(lg n + k) if we use a

balanced tree. If an interval overlaps k other intervals, then it must have size at least k and

therefore, the program must do k work to generate this interval. Therefore, over all intervals,

the total cost of race detection is O(n lg n + T1) where n lg n term comes from adding the

lg n cost over n intervals and T1 comes from adding k over all intervals.

7.3 Empirical Evaluation

In this section, we empirically evaluate our detector and the impact of the optimizations

described in Sections 7.1 and 7.2. Experiments suggest that our optimizations are beneficial.

Compared to the vanilla system, which has an average overhead (geometric means) of 78.13×,

our race detector incurs an average overhead (geometric mean) of 18.61×. Detailed analysis

indicates that the overhead of a single treap operation is dominated by the tree traversal as

the number of overlapping intervals tend to be small. Moreover, since the treap overhead

is small compared to other operations performed by the race detector, the race detector

overhead stays constant as the number of intervals increases.

Experimental setup

We used seven standard task-parallel benchmarks (where b indicates base-case size and

other parameters describe the input size): Cholesky decomposition (chol, n = 2000, z =

20000, b = 16); parallel mergesort (sort, n = 2.5e7, b = 2048); fast-Fourier transform (fft,

n = 226, b = 128); heat diffusion simulation on a 2D grid (heat, nx = 2048, ny = 2048, b =

133

10); matrix multiplication (mmul, n = 2048, b = 64), and two versions of Strassen’s algo-

rithm for matrix multiplication, stra and straz, which use row-major order layout and

Morton Z layout, respectively (n = 2048, b = 64).

All experiments were run on a machine with two 20-core Intel Xeon Gold 6148 processors,

clocked at 2.40 GHz, with hyperthreading disabled. Each core has separate private 32 KB L1

data and 32 KB L1 instruction caches, and a 1 MB private L2 cache. Each socket has a 27.5

MB shared L3 cache. The machine has 768 GB of main memory. All software is compiled

with the Open Cilk [80] compiler originally based on Tapir [81] with -O3 optimizations

running on Linux kernel version 4.15. We have modified the compiler to perform compile-

time coalescing as discussed in Section 7.1. Each data point is the average of 5 runs with

standard deviation < 4%.

Overview of results

We ran the benchmarks with four versions of the race detector to tease out the impact of

each optimization:

• vanilla that employs an optimized two-level page-table like hashmap to manage access

history and uses a compiler that generates instrumentation for each memory access;

• compiler that introduces the compile-time coalescing discussed in Section 7.1.1, with the

same hashmap to manage access history as in vanilla;

• comp+rts that includes both compile-time and runtime coalescing discussed in Section 7.1

but still uses the same hashmap to manage access history; and

• treap that includes both coalescing and uses the treap construction in Section 7.2 to

manage access history.

All versions utilize the same implementation based on the SP-Order algorithm [9] to maintain

reachability.

134

These different versions allow as to gauge the impact of each optimization. By comparing

vanilla and compiler, we can gauge how much instrumentation overhead is reduced. By

comparing compiler and comp+rts, we can gauge how much overhead the full coalescing

(i.e., coalesce as much as possible) reduces. By comparing comp+rts and treap, we measure

the impact of using a treap instead of a hashmap, which incurs higher overhead per operation

but reaps the full benefit of coalescing.

vanilla compiler comp+rts treap
chol 84.66 (138.79×) 82.87 (135.85×) 26.73 (43.82×) 19.22 (31.73×)

fft 488.19 (36.03×) 368.76 (27.21×) 304.92 (22.50×) 489.71 (36.14×)

heat 367.24 (84.23×) 326.03 (74.78×) 144.43 (33.13×) 23.24 (5.32×)

mmul 355.66 (44.07×) 345.08 (42.76×) 219.25 (27.16×) 220.82 (27.36×)

sort 72.27 (21.32×) 69.39 (20.47×) 40.63 (11.98×) 15.81 (4.66×)

stra 423.43 (284.18×) 414.52 (278.20×) 96.30 (64.63×) 38.33 (25.74×)

straz 244.54 (158.79×) 244.36 (158.68×) 100.15 (65.03×) 51.66 (33.62×)

Table 7.2: Execution times (in seconds) and overheads of different versions of the race detec-
tor compared to the baseline (i.e., no race detection), whose values are shown in Table 7.1.

Table 7.2 shows the race detection overhead compared to the baseline execution time,

i.e., no race detection, running each version of the detector. For most benchmarks, each

additional optimization brings some benefit to the overhead reduction, leading to the final

result, where treap incurs on average (geometric mean) of 18.61× overhead, much less than

that of vanilla, 78.13×. The only exception is fft, whose overhead increases from comp+rts

to treap; we explain the reason for this overhead increase as we analyze more empirical data

later in the section.

Compile-time vs. runtime coalescing

Now we analyze in more detail the benefit of compile-time versus runtime coalescing. The

overhead decreased between vanilla and compiler but not as substantially as between vanilla

and comp+rts for the following reasons. First, comp+rts is able to coalesce more. Although

135

vanilla compiler both compiler both compiler both
acc. (r) acc. (w) int. (r) int. (w) int. (r) int. (w) avg. (r) avg. (w) avg. (r) avg. (w) sum (r) sum (w) sum (r) sum (w)

chol 1466.0 671.2 1430.3 100.6 2.1 0.7 8.44 105.3 977.2 873.6 11510.2 10103.6 1914.5 641.9
fft 2013.9 1400.9 2013.8 1007.6 325.4 16.3 4.9 7.5 29.28 462.45 9474.3 7168.0 9084.6 7168.0
heat 5274.3 1053.8 43.2 1053.8 2.2 1.0 1946.4 15.95 9635.3 16375.9 80137.7 16032.0 20004.9 16032.0
mmul 17712.5 536.9 17196.5 16.8 33.6 8.4 4.1 128.0 128.0 128.0 67568.0 2048.0 4096.0 1024.0
sort 692.7 535.1 297.8 535.1 1.3 0.2 18.6 8.0 2256.7 13042.0 5286.1 4083.4 2870.4 2861.0
stra 3173.5 342.0 2665.7 342.0 2.1 0.8 16.7 12.2 1886.8 2926.6 43244.5 3967.1 3824.4 2312.7
straz 3814.0 216.4 3814.0 216.4 4.5 1.7 14.5 16.0 2048.0 2048.0 52708.5 3302.0 8804.5 3302.0

Table 7.3: Various execution statistics on memory accesses generated when running vanilla,
with comiler coalescing (compiler), and with both compiler and runtime coalescing (both).
The acc. and int. indicate the number of accesses / intervals that eventually made into the
access history, shown in millions. The avg. shows the average size per interval accessed, and
the sum shows the total size (in Mbytes) accessed. The (r) / (w) indicate read or write.

the access history in both comp+rts and compiler handles a given interval at four-byte

granularity, the number of intervals generated is correlated with the number of top-level

calls into the access history. Thus, comp+rts incurs less function-call overhead to query and

update the access history. Second, comp+rts takes advantage of the runtime deduplication,

which results in fewer updates to the hashmap.

To get a better sense of how much the compile-time versus runtime coalescing can do,

we separately collected various memory access pattern generated by running vanilla, com-

piler (compile-time coalescing) and by comp+rts (both compile-time and runtime), shown

in Table 7.3. First, we shall examine the numbers shown on the left side of the table: the

numbers of accesses / intervals generated by all three version. In some benchmarks, such

as mmul and heat, the compiler was able to coalesce in a non-negligible way, but in most

benchmarks, the compiler cannot coalesce as much. The runtime coalescing on the other

hand, seems much more effective in coalescing and deduplicating, leading to two or three

order of magnitude of decrease in the number of intervals. Moreover, the average sizes of

intervals (avg.) tend to be a lot larger with runtime coalescing.

Another question is, how much role does the runtime deduplication (removing duplicate

accesses) take in reducing the overhead. We can gauge the answer to this question by looking

at the total bytes that made into the access history (sum), also shown in the table. If the

136

runtime performs coalescing only but not deduplication, the total bytes accessed should not

change from compiler to comp+rts. Thus, by comparing the total bytes accessed generated

by compiler versus comp+rts, we can tell that most benchmarks benefit from deduplication.

This data, combining with the data in Table 7.2, indicate that while both compile-time

and runtime coalescing can be beneficial, the benefit from runtime is more significant.

Hashmap vs. treap

comp+rts treap
chol 8.93 1.41
fft 207.72 392.50
heat 123.63 2.43
mmul 15.94 17.51
sort 26.36 1.54
stra 59.60 1.62
straz 52.00 3.50

Table 7.4: The total time (in seconds) each benchmark spent updating its access history
(i.e., hashmap for comp+rts and treap for treap).

Now we analyze the overhead of the treap construction in more detail and also explain

why fft sees an overhead increase from comp+rts to treap. We measured the time that

comp+rts and treap spent updating their respective access histories. Indeed, the treap

overhead is much larger than that of the hashmap in fft. Table 7.4 shows the results.

There are multiple factors at play here. Given an interval of size x, the hashmap needs

to perform 2x operations (insert and query). On the other hand, while the treap can reap

the benefit of coalescing fully, an update to the treap incurs O(h + k) time, where h is the

height of the treap and k is the number of overlaps.

It turns out that while coalescing reduces the number of intervals, the reduction for fft,

compared to other benchmarks, is less significant, and the resulting interval size is smaller

as well Thus, the trade-offs made by using a treap do not work well for benchmarks with

137

characteristics like fft (i.e., less reduction in the number of intervals and smaller interval

size).

Analysis of treap overhead

input base comp+rts treap hash oh treap oh hash ops treap ops # nodes # overlaps
fft 224 2.33 58.65 (25.17×) 80.21 (34.42×) 41.45 63.01 2.60e8 1.42e8 29.29 0.97

225 5.36 125.66 (23.44×) 180.03 (33.59×) 88.44 142.81 5.21e8 2.85e8 28.54 0.97
226 13.55 304.92 (22.50×) 489.71 (36.14×) 207.72 392.50 1.22e9 6.83e8 29.56 0.98

mmul 1024 1.01 27.20 (26.93×) 27.03 (26.76×) 1.82 1.65 4.19e7 1.05e7 16.50 0.69
2048 8.07 219.25 (27.16×) 220.82 (27.36×) 15.94 17.51 3.36e8 8.39e7 19.31 0.69
4096 65.98 1763.03 (26.72×) 1793.49 (27.18×) 122.05 152.51 2.68e9 6.71e8 21.54 0.70

sort 5.0e7 7.17 88.68 (12.37×) 34.32 (4.79×) 57.99 3.63 8.53e8 7.02e6 36.53 1.88
1.0e8 14.99 179.12 (11.95×) 70.80 (4.72×) 115.72 7.40 1.71e9 1.45e7 38.67 1.90
2.0e8 31.57 389.38 (12.33×) 152.76 (4.84×) 254.27 17.65 3.81e9 3.21e7 40.42 1.90

Table 7.5: Execution times of fft, mmul, and sort running on baseline (base, i.e., no race
detection), comp+rts, and treap on different input sizes, with overhead compared to base
shown in parenthesis. On the right of the execution times, we also show various stats for
comp+rts (using a hashmap) and treap, where the oh indicates time spent on access history
only, the ops indicates the number of hashmap / treap operations, the # nodes shows the
average number of nodes visited per treap operation, and the # overlaps shows the average
number of overlaps encountered per treap operation.

To better understand the treap operation overhead, we collected more data using three

representative benchmarks, fft, mmul, and sort, where the treap version performs worse,

comparable, and better than the comp+rts version (that utilizes a hashmap), respectively.

Table 7.5 shows the execution times and other stats of these benchmarks running baseline

(no race detection), comp+rts, and treap on different input sizes. The execution times shown

here are the average of three runs.

As the input size increases, the number of intervals n should increase as well, and we

would like to understand how the overhead in treap may grow. Given a treap operation, its

overhead is O(h+ k) where h is the height and k is the number of overlapping intervals. In

the worst case, k can be large. The data in the two right-most columns, however, shows that

138

k is typically small, and the overhead per treap operation is dominated by the nodes visited

(bounded by O(h)).

Given that the treap operation is dominated by the tree height, one would expect the op-

eration overhead grows with O(lgm) with high probability, where m is the number of nodes

in the tree. As such, in the worst case, the execution time of a benchmark can increase

and grow with O(n lg n), where n is the number of intervals generated during execution.

Fortunately, as the numbers on the left indicate, the race-detector overhead compared to

the baseline (base) remains fairly stable across different input sizes. This may seem coun-

terintuitive, but the numbers shown in treap oh offer a clue: the overhead incurred by the

treap data structures is relatively small compared to the rest of the race-detector overhead

such that even if the treap overhead grows, the race-detector overhead is still dominated by

other operations. Consequently, the treap overhead is too small to have much impact on the

final execution time. The only exception to this is fft, which does not work well with using

treap as its access history due its execution characteristics as explained earlier.

139

Chapter 8

Asynchronous Access History

The optimizations that targets access history presented in Chapter 7 performs well on most of

the benchmarks we examined. However, the race detector that employs those optimizations

has to execute a computation serially. Consequently, an interesting direction of subsequent

work is how to extend these optimizations to parallel race detectors. Recall that the opti-

mized access history consists of memory accesses coalescing mechanisms and a treap data

structure that allows for checking races among and updating access history at the gran-

ularity of intervals. The main problem with parallelizing the optimized access history is

to handle concurrent accesses to the treap data structure while still maintaining efficiency.

Most concurrent search tree provide correctness guarantees such as linearizability, but do not

provide performance guarantee on each operation. In the worst case, the latency of treap

operations is linear in the number of workers used in the parallel execution, which can lead

to poor overall speedup. Fortunately, the overhead of managing treap-based access history

is relatively small in practice, compared to the overhead incurred by coalescing contiguous

memory accesses. To illustrate this fact, we measured the overhead that incurred by runtime

coalescing19 and treap management separately. In Table 8.1, the coalescing column is the
19The compile-time coalescing incurs no overhead in terms of the running time of programs.

140

execution time spent on performing runtime coalescing.The treap column shows the running

times account for treap management, including race detection. By comparing these two

types of overhead, we can show that runtime coalescing incurs much higher overhead than

treap management does, except for fft due to the large number of intervals it has.

coalescing treap
chol 17.19 1.63
fft 83.65 442.21
heat 16.44 2.62
mmul 194.93 20.61
sort 10.90 1.61
stra 35.21 1.87
straz 46.62 4.00

Table 8.1: The total time (in seconds) each benchmark spent on performing runtime coa-
lescing and uptating treap, respectively.

Unlike the treap data structure which is difficult to parallelize, the runtime coalescing

mechanism applies directly to parallel race detector since the runtime coalescing is performed

during a strand’s execution separately by the executing worker. Given this observation, we

propose an asynchronous access history scheme, to extend our optimizations of access

history to parallel race detectors. We separate the workers into core workers and treap

workers . The core workers execute the computation and perform runtime coalescing of

executed strands in parallel, while the treap workers collect the coalesced intervals and

perform race detection with treaps in series. Consequently, this asynchronous access history

requires no parallelization of the treap data structure. This chapter describes the challenge

of designing such a scheme, the required additional data structure, and the race detection

protocol that checks for race asynchronously (Sections 8.1 through 8.3).

We have implemented a parallel race detector for fork-join programs based on this asyn-

chronous access history and empirically evaluated it against the state-of-the-art parallel race

141

detector that targets fork-join parallelism [97] (Section 8.4). The empirical results indicate

that the asynchronous access history based race detector incurs lower overhead and performs

better.

8.1 Synchronous vs. Asynchronous Access History

The race detection algorithms discussed in this dissertation so far uses a synchronous access

history, which performs race detection and access history management upon each memory

access, or at the end of each executed strand for our optimized access history described

earlier. In this section, we explores another approach, namely asynchronous access history,

in which a set of core workers perform the core computation and runtime coalescing. The

race detection and treap management, however, are deferred until an assigned treap worker

collect the generated intervals asynchronously.

Recall that to perform runtime coalescing, our optimized access history uses a single bit-

hashmap (described in Section 7.1.2) to keep track of which memory locations are accessed

during a strand’s execution. We still rely on this idea to perform runtime coalescing in

asynchronous access history, with the difference that each core worker now maintains a

thread-local bit-hashmap respectively, instead of a global one. By doing this, we can easily

avoid the conflicts between any concurrent bit-hashmap operations and apply the runtime

coalescing to parallel race detector.

With the asynchronous access history, however, new challenges arise. Consider Figure 8.1

as an example. In this figure, strand b and c cause a read-write race. With synchronous

access history, the race detector always race checks strand b and c before continuing executing

strand d. In asynchronous access history, however, the core workers do not perform race

detection while executing the core computation. If the asynchronous access history is simply

implemented such that the treap workers collect available intervals of executed strands in

an arbitrary order, the race detector no longer ensures the correctness. For example, the

142

c

a

write l

write l

read l

d

b

Figure 8.1: A parallel computation that contains a determinacy race. However, no race will
be reported if we perform race detection in a certain order.

treap workers could collect executed strands and perform race detection asynchronously in

the following order: a → c → d → b. Recall that when race detecting parallel programs,

only the last node that wrote to a given memory location (i.e., the last writer) is stored in

the access history. In this sequence, d becomes the last writer of l upon collecting b and

therefore no race is reported since b ≺ d. In order to avoid such an issue, the treap workers

must process intervals in a way that respects the dependences between strands.

The other challenge of the asynchronous scheme is clearing the memory accesses off the

access history. Figure 8.2 shows an invocation tree of a task-parallel code and its corre-

sponding stack shift when returning from spawned function B and calling E. As we call

see, the stack frames of B and E may overlap in the stack of the executing worker and

consequently, two logically distinct local variables x and y could potentially have the same

memory address and thus cause a false positive. In synchronous access history, the race

detector clears the corresponding stack accesses off the access history when exiting a stack

frame to avoid reporting false races. However, we cannot simply follow the same approach in

the asynchronous access history. When exiting the stack frame of function B, for example,

there is no guarantee that the child strands of B (i.e. C and D) have been race checked by

the treap workers. Consider the following situation. Say C and D have a conflicting memory

143

access on the variable allocated in B’s stack frame. When exiting B’s stack frame, the treap

workers only race checked and updated C’s accesses into the access history and not yet race

checked D’s accesses. If the tool clears the access history now, it will erase C’s accesses to

all the variable allocated in B’s stack frame and therefore the tool will not catch a race when

race checking on D.

A A

B

A

Espawn B call E
x y

spawn C call D

Figure 8.2: An invocation tree and its corresponding views of stack.

8.2 The Trace Data Structure

To address these challenges, we use an additional data structure called the trace , to force

dependences between strands to be respected when treap workers collect and race check the

corresponding intervals. A trace stores a sequence of strands that executed by a core worker

and it is ended under two situations:

1. The core worker hits a sync and the continuation strand of the corresponding spawn is

stolen.

2. The core worker returns from a spawned task and realizes the continuation strand is

stolen.

144

Within a trace, a core worker executes the strands sequentially as the serial execution,

which follows left-to-right depth-first traversal order of the computation dag. Naturally, a

trace has the following property: given two strands u and v in the same trace. If u ≺ v, then

u is before v in the trace.

Furthermore, each strand in the trace maintains additional bookkeeping data. For a given

trace t, a strand s in t has three fields: s.intvl, s.child and s.nop. Field s.intvl points the set

of intervals generated within s. Field s.child points to the child strand of s. In the case that

s has two child strands (i.e., s is a spawn node), s.child always points to the continuation

strand of s. Finally, field s.nop indicates the number of parent (nop) strands that have not

been race checked. The child and nop fields are crucial to ensure the correctness of the

race detector that uses asynchronous access history, as we will discuss later in Section 8.3.

Specifically, we say a trace t is ready if and only if the first strand of t has a nop field equals

zero.

In the asynchronous race detector, each core worker maintains a current trace and a

trace pool, that is a set of ended trace created by the core worker. Now we describe, rel-

atively briefly, how to construct the trace data structure on-the-fly. Algorithm 14 shows

the construction code. Upon executing a strand u, the construction algorithm always lets

u.child point to the child strand of u (omitted in the pseudocode). In particular, if u is a

spawn node, the algorithm points u.child to the continuation strand, set the nop field of the

continuation strand and the corresponding sync strand to one and two, respectively (lines 3–

5). If u is a sync node, the algorithm will decide whether to end the current trace or not,

based on if the continuation strand of the corresponding spawn node is stolen (lines 8–10).

Finally, when a core worker exits a spawned task, it checks if the continuation strand gets

stolen. If so, the core worker ends the current trace and begins a new trace (lines 13–15).

145

After executing a strand, the algorithm will set the intvl fields to the set of intervals

computed during the strand, put the executed strand at the end of the current trace of the

executing worker.

Algorithm 14: Trace Construction
1 Function Spawn(u)
2 let s be the corresponding sync strand and c be the continuation strand, respectively
3 u.child = c
4 c.nop = 1
5 s.nop = 2

/* w is the executing worker */
6 Function Sync(u)
7 let v be the corresponding spawn node of u
8 if the continuation strand of v is stolen then
9 w.tracepool.put(w.current)

10 w.current = new Trace()
/* w is the executing worker */

11 Function TaskExit()
12 let c be the continuation strand
13 if c is stolen then
14 w.tracepool.put(w.current)
15 w.current = new Trace()

8.3 Asynchronous Race Detection Protocol

As mentioned previously, the asynchronous access history scheme separates the workers into

core workers and treap workers . In particular, a core worker performs the following

activities:

• Executes the core computation.

• Maintains a bit-hashmap to keep track of the accessed memory locations within a strand

and compute the intervals accessed after the strand finishes (described in Section 7.1.2).

• Maintains a trace data structure to track dependences between strands to ensure the

correctness of race detection with asynchronous access history (described in Section 8.2).

146

In this section, we describe how the treap workers collect the intervals computed by

the core workers and performs race detection. When race detecting a fork-join program in

parallel and given a memory location, it suffices to store two readers, that is the left-most

reader and the right-most reader ,and the latest writer for the correctness [55]. Similar to the

interval-based access history described in Section 7.2, we use separate treaps to keep track

of those readers and writer given an interval. We bring additional parallelism by assigning

each treap to a single treap worker.

In order to guarantee the correctness of race detection, we force treap workers to only

collect strands from a ready trace. In particular, each treap worker iterates through the

traces maintained by the core workers, finds a ready trace, and collects strands one after

another from the ready trace. The following lemma says that, by doing this, the dependences

between strands are respected by the treap workers when collecting corresponding intervals.

Lemma 66. Given two strands u and v. If u ≺ v, then u must be collected before v by the

treap workers.

Proof. If u and v are in the same trace, then by the property of trace data structure, u is

stored before v in the trace. Therefore u must be collected before v.

If u and v are in different traces, then there are two cases. The first case is that v is the

first strand of its trace. Since a trace can only be collected when it’s ready (i.e., v.nop = 0),

u must be collected already.

The second case is that v is not the first strand of its trace. If v is neither a sync node

nor a continuation node of a spawn node, then v must be executed by the same worker that

executed its parent within the same trace. If v is either a sync node or a continuation node,

then v must be in the trace that its parent resides as well. Otherwise v is the first strand

of its trace due to stealing, which contradicts the assumption that v is not the first strand.

Given these claims, one can apply induction to show that u and v must be in the same trace,

which leads to a contradiction against the original assumption.

147

Now take the write treap worker (shown in Algorithm 15), as an example. Once a ready

trace is found, the write treap worker collects all the strands on that trace in sequence. For

each strand, the write treap worker first checks write-write race against the write treap while

updating the write treap (line 3). The write treap worker then checks read-write race for all

the read intervals computed during that strand (line 4). Furthermore, after race checking a

strand s, the treap workers decrement the nop field of s.child if s and s.child are in different

traces (lines 5–6). To accommodate the concurrency that multiple treap workers collect

strand simultaneously, extra copies of nop fields of a strand are required. For example, when

the write treap worker collect a strand s, it decrements the nop_w fields of s.child. From

the perspective of the writer treap worker, a trace is ready when f.nop_w = 0, say f is the

first strand of the trace.

Algorithm 15: Asynchronous Race Detection Protocol
/* t is a ready trace */

1 Function WriteTreapWorker(t)
2 foreach strand s ∈ t do
3 CheckAndUpdateWriteTreap(s.intvl.write)
4 CheckWriteTreap(s.intvl.read)
5 if s.child 6∈ t then
6 s.child.nop_w = s.child.nop_w − 1

/* t is a ready trace */
7 Function RightMostTreapWorker(t)
8 foreach strand s ∈ t do
9 CheckAndUpdateRightMostTreap(s.intvl.read)

10 CheckRightMostTreap(s.intvl.write)
11 if s.child 6∈ t then
12 s.child.nop_rr = s.child.nop_rr − 1

/* t is a ready trace */
13 Function LeftMostTreapWorker(t)
14 foreach strand s ∈ t do
15 CheckAndUpdateLeftMostTreap(s.intvl.read)
16 CheckLeftMostTreap(s.intvl.write)
17 if s.child 6∈ t then
18 s.child.nop_lr = s.child.nop_lr − 1

148

Now we look at how the trace data structure helps to address the second challenge of the

asynchronous race detector, that is, how to clear the access history correctly. When exiting

a stack frame f , the race detector simply put a special clear stack strand of this particular

stack frame in the trace immediately after its current strand, without actually clearing the

access history. Then after collecting this strand, the treap workers will clear all the accesses

of stack f off the access history. Due to Lemma 66, we are guaranteed that all the child

strands that may have accessed f are collected and race checked and there is no race missed.

Also, since a trace serializes all strands executed by a single worker, the treap workers will

collect a strand only after the accesses of the potential overlapped stack frame have been

cleared and therefore no false positive will be reported by the tool.

The following theorem says that the asynchronous access history still guarantee the stan-

dard correctness of race detection algorithms.

Theorem 67. Given a fork-join program, the race detector with asynchronous access history

reports a race if and only if the program has a race.

Proof. It is clear that the race detector reports a race only when finding overlapping intervals

that have parallel accessors and one of the interval is a write, no matter what types of access

history it uses. Also, the trace data structure guarantees that the access history is cleared

correctly when needed. Therefore, the race detector reports no false races.

Now assuming the program has a pair of conflicting memory accesses on interval l –

writer u and reader v. Say u is collected before v. When the write treap worker performs

CheckWriteTreap on v, we must have v ‖ writer(l) otherwise we have u ≺ v which

contradicts u ‖ v. Therefore, a race will be reported. Note that Lemma 66 eliminates the

situation that v ≺ writer(l).

If v is collected before u, then by applying the same argument in [55], we are guaranteed

to have either v ‖ lreader(l) or v ‖ rreader(l). Thus, a race will be reported when the

race detector performs either CheckRightMostTreap or CheckLeftMostTreap.

149

8.4 Evaluation

To evaluate the efficiency of the asynchronous access history, we implement a prototype

parallel race detector (referred to as ASYNC for short), that race detecting fork-join pro-

grams, using the WSP-Order algorithm [97] to maintain reachability, the compile-time and

runtime coalescing scheme to compute intervals, and the asynchronous treap-based access

history to perform race detection. We tested our race detector on six task-parallel bench-

marks: Cholesky decomposition (chol, n = 2000, z = 20000, b = 16), parallel merge-

sort (sort, n = 2.5 × 107, b = 2048), heat diffusion simulation on a 2D grid (heat,

nx = 2048, ny = 2048, b = 10), matrix multiplication (mmul, n = 2048, b = 64), Strassen’s

algorithm for matrix multiplication (two versions: stra and straz that uses Morton Z-

layout, n = 2048, b = 64).20

We compare it to CRACER [97], the state-of-the-art parallel race detector for fork-join

parallelism. CRACER uses an optimized hashmap to manage access history in synchronous

fashion. To evaluate the impact of memory access coalescing and treap-based access history

on the performance of a parallel race detector, we augmented CRACER with the compile-

time and runtime coalescing mechanisms, but with the same hashmap to manage access

history (referred to as CRACER+).

To make a detailed comparison, we compiled and tested four versions of the benchmarks:

• baseline: the original program without race detection;

• CRACER: the full race detection performed by CRACER;

• CRACER+: the full race detection performed by CRACER+; and

• ASYNC: the full race detection performed by ASYNC.
20We exclude fast-fourier transform (fft) benchmark in our evaluation because fft incurs significant

overhead on managing treap-based access history, as shown in Section 7.3.

150

Practical performance of asynchronous access history

baseline CRACER CRACER+ ASYNC
T1 T20 T1 T20 T1 T20 T1 T20

chol 0.61 0.04 [15.25×] 134.85 (221.06×) 7.47 [18.05×] 35.33 (57.91×) 2.94 [12.01×] 23.32 (38.22×) 2.48 [9.40×]

heat 4.37 0.40 [10.92×] 515.02 (117.85×) 29.88 [17.23×] 265.26 (60.70×) 17.64 [15.03×] 25.52 (5.83×) 2.16 [11.81×]

mmul 8.11 0.41 [19.78×] 414.10 (51.06×) 20.88 [19.83×] 242.54 (29.90×) 12.30 [19.71×] 245.77 (30.30×) 14.37 [17.10×]

sort 3.38 0.17 [19.88×] 99.94 (29.56×) 12.38 [8.07×] 74.75 (22.11×) 4.97 [15.04×] 23.34 (6.90×) 1.82 [12.82×]

stra 1.48 0.18 [8.22×] 583.57 (394.30×) 57.62 [10.12×] 137.33 (92.79×) 14.10 [9.73×] 41.38 (27.95×) 3.07 [13.47×]

straz 1.53 0.11 [13.90×] 323.78 (211.62×) 27.25 [11.88×] 155.63 (101.71×) 9.86 [15.78×] 74.35 (48.59×) 6.02 [12.35×]

Table 8.2: Execution times (in seconds) of different versions of the benchmarks. Columns
with T1 show the single-core execution times and columns with T20 show the 20-cores ex-
ecution times. Numbers in the parentheses show the overhead compared to the baseline.
Numbers in the brackets show the scalability compared to its respective single-core execu-
tion (T1).

Overhead of ASYNC. The T1 column in Table 8.2 shows the sequential running time

for all versions of tested benchmarks. This comparison is somewhat similar to what we have

done for the sequential treap-based access history in Section 7.3. The difference is that both

CRACER and CRACER+ additionally use fine-grained locks to synchronize the query and

update into the hashmap-based access history, which incurs additional overhead compared

to the vanilla and comp+rts versions evaluated in Section 7.3. Also, during a sequential

execution, ASYNC first performs the core computation as well as memory access coalescing,

and then performs race detection and updates the treap one after the other. As shown in

Table 8.2, ASYNC incurs higher overhead compared to the race detector augmented with

memory access coalescing and treap that evaluated in Section 7.3. This is because ASYNC

maintains additional trace data structure and employs extra reader treap in access history.

By comparing CRACER and baseline, we can see the race detection and access history

management incurs significant overhead. Due to the memory access coalescing mechanisms,

151

CRACER+ incurs much less overhead and the additional optimization enabled by the treap

in ASYNC brings additional benefit.21.

Scalability of ASYNC.We have also evaluated the performance of each race detector in

parallel with 20 processor cores. When running on 20 cores, ASYNC employs 17 core workers

to perform core computation and runtime coalescing, and 3 treap workers to manage the

write treap and the reader treaps, respectively. The T20 column in Table 8.2 shows the

parallel running time on 20 cores, and the number in the parentheses shows the scalability

each version of benchmark achieves during parallel execution. For most benchmarks, the

overhead reduction of the treap-based access history compared to hashmap retains in the

parallel execution. In addition, both CRACER+ and ASYNC scales similarly to the baseline

in general, as the number of processor cores increases, which provides a significant boost to

the performance of race detection compared to CRACER.

21The only exception is mmul, which is explained in Section 7.3

152

Chapter 9

Related Work

In this chapter, we briefly review the related work on the studies presented in this disserta-

tion.

Race detection for two-dimensional dags

Dimitrov et al. [26] provide the known algorithm for on-the-fly race detection for 2D-dags.

This algorithm must execute the program sequentially and it has never been implemented

and evaluated in practice. Their algorithm uses Tarjan’s nearly linear-time least-common-

ancestor (lca) algorithm [93] to identify the lowest-common-descendent of a pair of nodes in

order to deduce whether they are in parallel. The use of Tarjan’s lca algorithm leads to a

small overhead in running time (functional inverse of Ackermann’s function, which is small

in practice — bounded above by 4).

Work-stealing runtime for synchronization primitives

Futures have been incorporated into many parallel platforms (e.g., [16–18, 32, 36, 47, 51, 88,

94]). Many use parsimonious work-stealing [17, 32, 36, 47, 88].

Other variants of work-stealing have also been implemented to support synchronization

primitives that can cause suspension, but none of them provide provably efficient scheduling

153

bounds. In variants of X10 [18, 91] and Habanero dialects [16, 39], various synchronization

primitives other than futures are provided that can cause the execution to block while the

executing worker’s deque is not empty. In the initial release of X10 [18], little support was

provided — a blocking synchronization primitive blocks the executing worker, and to com-

pensate, the runtime spawns a new worker thread to replace the blocked worker, effectively

suspending the deque. Over time, the system could be oversubscribed. Tardieu et al. [91]

subsequently developed a version of X10 with better support for suspension. In their system,

if a worker is blocked the worker suspends the blocked task, but uses a centralized queue to

allow resumptions of suspended tasks. A similar approach is taken by the initial release of

Habanero Java [16]. In a later version, Imam and Sarkar [39] describe support for suspension

in Habanero Java. In their system, suspended tasks are stored with the blocking synchro-

nization primitives (similar to how we handle futures), but once the tasks get resumed, they

all get pushed onto the ready deque of the worker who unblocks them.

Work-stealing analysis with multiple deques

Researchers have proposed provably efficient work-stealing schedulers where the execution

allows for suspensions [57, 99]. Muller and Acar [57] studies a work-stealing scheduler that

hides latency of I/O operations. When a worker encounters I/O, it may suspend the currently

executing task. Their scheduler is parsimonious, but due to the possibility of suspension,

there can be more than P number of deques in the system. Their scheduler provides a

bound of O(T1/P + T∞U(1 + lgU)), where U is the maximum number of parallel I/O

operations. Utterback et al. propose [99] a processor-oblivious record-replayer for fork-join

parallel computations that utilize locks. During replay, if a lock-acquire is not “ready” to

be replayed, the executing worker suspends its current deque and steals. Our performance

bound analysis takes inspiration from theirs, but we need to additionally handle muggable

deques. In their system, the number of suspended deques can be unbounded, and the

154

scheduler provides the time bound of O(T1/P + T∞ lg lgP). Instead of randomly choose a

victim to deposit the suspended deques, they utilize the power-of-two choices, choosing two

victims and deposit it with the one with the lighter load, thereby obtaining a slightly better

bound (lg lgP in front of the T∞ term instead of lgP). We cannot apply the same strategy,

since the power-of-two choices does not seem to help with bounding the minimum load [101].

Race detection for futures

A few algorithms [2, 90, 98] have been proposed to race detect programs that use futures.

Surendran and Sarkar [90] proposed the first algorithm to race detect a program that uses

futures, but their algorithm runs sequentially and can incur large overhead, O(T1(f + 1)(k+

1)α(m,n)), where f is the number of future tasks, k is the number of future operations, m

is the number of memory accesses, n is the number of parallel control constructs executed,

and α is the functional inverse of Ackermann’s function. Later, Agrawal et al. [2] improved

the bound to O(T1 + k2), although the work is theoretical and no implementation of the

algorithm exists. Finally, Utterback et al. [98] separated the use of futures into two classes

— structured use of futures and general use of futures. By distinguishing the two, Utterback

et al. [98] observed that programs that use structured futures can be race detected much more

efficiently, in time O(T1α(m,n)). For general use of futures, Utterback et al. [98] proposed an

algorithm (and its corresponding implementation) that executes in time O((T1+k2)α(m,n)).

Optimizing access histories of race detectors

Many tools employ some kind of shadow memory to store shadow values with different

memory locations in the program-under-test. Memory checkers, such as Valgrind [60], Dr.

Memory [15], and AddressSanitizer [83] store metadata that shadows each byte of memory in

the program-under-test to track which memory locations are safe or unsafe to access. Race

detectors for pthreaded code such as Eraser [79] and ThreadSanitizer [84] store locksets and

happens-before information as shadow values for locations in shared memory. The FastTrack

155

race detector [30] stores vector clocks and thread IDs as shadow values with each memory

location.

Researchers have acknowledged the importance of efficient shadow-memory data struc-

tures for such tools [59] and have explored ways to optimize shadow memory data structures.

One strategy is to employ different schemes to encode the shadow values in order to min-

imize the amount of data stored for each memory location [20, 59, 69, 79, 83, 84]. Such

optimizations are tool specific and, in some cases, can affect the precision of the tool’s anal-

ysis. Researchers have also explored different table structures for implementing the shadow

memory. In the direct-addressing schemes [20, 66, 69, 83], the shadow memory is imple-

mented simply as an array in memory, and each memory location in the program is mapped

to a location in this array during a simple scale-and-offset computation. Such a scheme can

be efficient, but the program must part with a fraction of virtual memory to utilize the tool.

Another scheme is the multilevel translation schemes [59, 102], which provide flexibility in

the allocation of the shadow memory but incur a higher cost to map memory locations to

their shadow values. Researchers have also explored optimizations, such as vectorization, for

accessing and updating the ranges of entries in the shadow memory table [59]. Our work

employs coalescing and a tree data structure to store shadow values at the interval granular-

ity. Even though the tree-based structure has worse theoretical performance than the table

structures typically used, surprisingly, by exploiting coalescing, we show that the tree-based

shadow memory can outperform the table-based one on many task-parallel code due to their

data-access patterns.

Coalescing has been explored as an optimization in the context of data race detectors for

pthreaded code. RedCard [31] and SlimFast [67] employ compile-time coalescing. Since these

detectors still utilize a hashtable for shadow memory, however, they can coalesce together a

set of variables only when the compiler can statically prove that they are accessed together in

all synchronization-free regions (SFRs) so that a single key can be used to represent the set in

156

the hashtable. In contrast, our work finds memory locations to coalesce together dynamically

at runtime. These locations can change throughout execution. Hence, we cannot use just

one key to represent them in a hashtable, which would necessitate multiple queries per set.

SlimState [100] and BigFoot [77] employ dynamic coalescing for (only) arrays. These

works convert an array into an object with multiple partitions, where each partition repre-

sents either a block of contiguous memory accessed in the array or a particular strided access

pattern for part of the array. Access patterns outside of these predefined categories cause

the implementation to revert back to fine-grained access tracking. Moreover, when a new

SFR commits its accesses, if these accesses span multiple existing partitions in the shadow

memory, one must perform checks against each of such overlapping partitions and refine the

existing partitions to incorporate the new accesses. These papers do not detail what data

structures are used to store such partitions and how much overhead such an operation incurs,

as execution time bound is not their primary focus. Our work focuses on coalescing memory

accesses that span contiguous memory locations (i.e., intervals); it is not limited to arrays

with particular access patterns. Moreover, we show that our treap construction allows for

provably efficient insertion or updating of a new interval.

Work by Park et al. [65] is perhaps the most closely related to our work. Their data-race

detector employs a skiplist to manage shadow memory. However, a key difference is that their

detector does not remove redundant intervals. If a new interval x overlaps existing intervals

y and z, after insertion of x, all three intervals co-exist in the skiplist. Our work replaces the

existing intervals upon insertion of x (though x is checked against y and z). Doing so allows

the insertion, update, or query of a given interval to be done in time O(lg n+ k), where k is

the number of overlapping intervals in the data structure when the new interval is inserted.

This efficiency is necessary for the final execution-time bound. Their bound for insertion,

update, and query is O(lg2 n+ k) time, where k, the number of overlapping intervals, might

157

be much larger because such overlapping intervals may increase over time due to duplicate

intervals.

158

Chapter 10

Conclusion

This dissertation has explored race detection problems outside of the realm of fork-join

parallelism that has been extensively studied by the prior work [9, 27–29, 55, 71, 72, 97].

Specifically, this dissertation has presented the following race detection algorithms:

1. 2D-Order that race detects programs use pipeline parallelism with asymptotically op-

timal running time (Chapter 3). 2D-Order exploits the order-dimension two property

of 2D-dags that generated by the executions of pipeline programs and achieves efficient

reachability algorithm.

2. F-Order that targets a more general class of parallel computation: futures (Chapter 5).

It is the first known parallel race detection for general futures with provable performance

guarantee. F-Order employs a novel data structure that answers reachability query effi-

ciently, despite the lack of structural properties of NSP-dags that generated by executing

task-parallel programs using futures.

3. SF-Order that performs race detection on programs with the structured use of futures

(Chapter 6). By exploiting the restrictions imposed by structured futures, SF-Order

159

achieves asymptotically more efficient time bound compared to F-Order, and incurs lower

overhead in practice.

All the race detection algorithms discussed above primarily focus on designing efficient

reachability data structure and use an optimized two-level page-table-like hashmap to man-

age access history. Such access history incurs constant overhead per query and update in

theory but significant overhead in practice. Take the empirical results from the experimen-

tal evaluation of SF-Order algorithm, as an example (Section 6.4). The performance gain

of SF-Order against F-order is not significant even though SF-Order is asymptotically more

efficient because the overhead of race detection is dominated by the access history manage-

ment. Therefore, this dissertation has also investigated different approach of redesigning the

access history. Specifically, this dissertation has presented the following optimizations on

access history to offer additional boost to the overall performance of race detectors:

1. compile-time and runtime memory access coalescing mechanisms and a treap-based access

history data structure that speed up sequential race detectors for fork-join code (Chap-

ter 7).

2. an asynchronous access history scheme that extends those optimizations to parallel race

detectors (Chapter 8).

Finally, during the research of race detection problem for futures, we found the programs

with futures could incur much higher scheduling costs when scheduling with the classic work-

stealing algorithm. To build provably and practically efficient runtime system for futures,

we propose an alternative scheduling approach – proactive work-stealing (Chapter 4).

ProWS provides equal or better bounds on the number of deviations compared to the classic

work-stealing algorithm.

160

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work
stealing. In Proceedings of the 12th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1–12, 2000.

[2] Kunal Agrawal, Joseph Devietti, Jeremy T. Fineman, I-Ting Angelina Lee, Robert Ut-
terback, and Changming Xu. Race detection and reachability in nearly series-parallel
dags. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), January 2018.

[3] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Executing task graphs using
work-stealing. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1–12, 2010.

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In 10th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 119–129, 1998.

[5] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. Theory of Computing Systems, pages 115–144, 2001.

[6] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection of processes.
ACM SIGPLAN Notices, 12(8):55–59, 1977.

[7] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay Chatterjee, Yi Guo, David
Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşırlar, Yonghong Yan, Yisheng
Zhao, and Vivek Sarkar. The Habanero multicore software research project. In Pro-
ceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA), pages 735–736, 2009.

[8] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack
Zito. Two simplified algorithms for maintaining order in a list. In Proceedings of the
10th Annual European Symposium on Algorithms (ESA), pages 152–164, 2002.

[9] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-
the-fly maintenance of series-parallel relationships in fork-join multithreaded programs.
In 16th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 133–144, 2004.

161

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In Parallel Archi-
tectures and Compilation Techniques (PACT), pages 72–81, 2008.

[11] Guy E. Blelloch and Margaret Reid-Miller. Pipelining with futures. In ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pages 249–259, 1997.

[12] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 207–216, July 1995.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. In Proceedings of the IEEE Symposium on Foundations of Computer
Science, pages 356–368, November 1994.

[14] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. JACM, 46(5):720–748, 1999.

[15] Derek Bruening and Qin Zhao. Practical memory checking with dr. memory. In
Proceedings of the IEEE/ACM International Symposium on Code Generation and Op-
timization, pages 213–223, 2011.

[16] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-Java: the new
adventures of old X10. In Proceedings of the 9th International Conference on Principles
and Practice of Programming in Java (PPPJ), pages 51–61, 2011.

[17] Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL: An object-based lan-
guage for parallel programming. IEEE Computer, 27(8):13–26, August 1994.

[18] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 519–538, 2005.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In 2009 IEEE International Symposium on Workload Characterization (IISWC), pages
44–54, Oct 2009.

[20] W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige. TaintTrace: Efficient flow tracing with
dynamic binary rewriting. In 11th IEEE Symposium on Computers and Communica-
tions (ISCC), pages 749–754, 2006.

[21] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, Au-
gust 1988.

162

[22] Charles Consel, Hedi Hamdi, Laurent Réveillère, Lenin Singaravelu, Haiyan Yu, and
Calton Pu. Spidle: a DSL approach to specifying streaming applications. In Generative
Programming and Component Engineering (GPCE), pages 1–17, 2003.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, third edition, 2009.

[24] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. Programming with
exceptions in JCilk. Science of Computer Programming, 63(2):147–171, December
2008.

[25] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pages 365–372, May
1987.

[26] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. Race detection in two dimen-
sions. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 101–110, 2015.

[27] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in
Cilk programs. In Proceedings of the 9th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1–11, June 1997.

[28] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in
Cilk programs. Theory of Computing Systems, 32(3):301–326, 1999.

[29] Jeremy T. Fineman. Provably good race detection that runs in parallel. Master’s
thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, Cambridge, MA, August 2005.

[30] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic
race detection. ACM SIGPLAN Notices, 44(6):121–133, June 2009.

[31] Cormac Flanagan and Stephen N. Freund. RedCard: Redundant check elimination for
dynamic race detectors. In Proceedings of the 27th European Conference on Object-
Oriented Programming, pages 255–280, July 2013.

[32] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded par-
allelism in manticore. Journal of Functional Programming, 20(5-6):537–576, November
2010.

[33] D.P. Friedman and D.S. Wise. Aspects of applicative programming for parallel pro-
cessing. IEEE Transactions on Computers, C-27(4):289–296, 1978.

[34] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 212–223, 1998.

163

[35] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 151–162, 2006.

[36] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, October
1985.

[37] Maurice Herlihy and Zhiyu Liu. Well-structured futures and cache locality. In Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 155–166, 2014.

[38] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and David I.
August. Decoupled software pipelining creates parallelization opportunities. In Pro-
ceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pages 121–130, 2010.

[39] Shams Imam and Vivek Sarkar. Cooperative scheduling of parallel tasks with general
synchronization patterns. In Proceedings of the 28th European Conference on Object-
Oriented Programming (ECOOP), pages 618–643, 2014.

[40] Institute of Electrical and Electronic Engineers. Information technology — Portable
Operating System Interface (POSIX) — Part 1: System application program interface
(API) [C language]. IEEE Standard 1003.1, 1996 Edition.

[41] Intel R© CilkTM Plus. https://www.cilkplus.org, 2013.

[42] Intel Corporation. Intel R© CilkTMPlus. Available from https://www.cilkplus.
org/, 2011. Accessed: August 2017.

[43] Intel Corporation. Intel(R) Threading Building Blocks, 2012. Available from
http://software.intel.com/sites/products/documentation/
doclib/tbb_sa/help/index.htm.

[44] Intel Corporation. Intel R© CilkTM Plus Language Extension Specifica-
tion, Version 1.1, 2013. Document 324396-002US. Available from http:
//cilkplus.org/sites/default/files/open_specifications/Intel_
Cilk_plus_lang_spec_2.htm.

[45] Intel Corporation. Piper: Experimental language support for pipeline parallelism
in Intel R© CilkTMPlus. Available from https://www.cilkplus.org/piper-
experimental-language-support-pipeline-parallelism-intel-
cilk-plus, 2013. Accessed: August 2017.

[46] ISO/IEC 14882:2011(e) information technology — programming languages — c++,
2012. Third Edition, 2012-02-14.

164

https://www.cilkplus.org
https://www.cilkplus.org/
https://www.cilkplus.org/
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus
https://www.cilkplus.org/piper-experimental-language-support-pipeline-parallelism-intel-cilk-plus

[47] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In The ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 81–90, 1989.

[48] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping
Zhang. On-the-fly pipeline parallelism. In Proceedings of the 25th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pages 140–151, July
2013.

[49] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping
Zhang. On-the-fly pipeline parallelism. ACM Transactions on Parallel Computing,
2(3):17:1–17:42, September 2015.

[50] Charles E. Leiserson. The Cilk++ concurrency platform. J. Supercomputing,
51(3):244–257, 2010.

[51] Li Lu, Weixing Ji, and Michael L. Scott. Dynamic enforcement of determinism in a
parallel scripting language. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 519–529, 2014.

[52] S. MacDonald, D. Szafron, and J. Schaeffer. Rethinking the pipeline as object-oriented
states with transformations. In Ninth International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS), pages 12–21, 2004.

[53] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: a system
for programming graphics hardware in a C-like language. In ACM SIGGRAPH, pages
896–907, 2003.

[54] Michael McCool, Arch D. Robison, and James Reinders. Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier, 2012.

[55] John Mellor-Crummey. On-the-fly detection of data races for programs with nested
fork-join parallelism. In Proceedings of Supercomputing, pages 24–33, 1991.

[56] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press,
2nd edition, 2017.

[57] Stefan K. Muller and Umut A. Acar. Latency-hiding work stealing: Scheduling in-
teracting parallel computations with work stealing. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 71–82, 2016.

[58] Stefan K. Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and
I-Ting Angelina Lee. Responsive parallelism with futures and state. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 577–591, June 2020.

165

[59] Nicholas Nethercote and Julian Seward. How to shadow every byte of memory used by
a program. In Proceedings of the 3rd International Conference on Virtual Execution
Environments (VEE), pages 65–74, 2007.

[60] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 89–100, 2007.

[61] Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM Letters
on Programming Languages and Systems, 1(1):74–88, March 1992.

[62] Itzhak Nudler and Larry Rudolph. Tools for the efficient development of efficient
parallel programs. In Proceedings of the First Israeli Conference on Computer Systems
Engineering, May 1986.

[63] OpenMP Application Program Interface, Version 4.0, July 2013.

[64] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic thread
extraction with decoupled software pipelining. In The IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 105–118, 2005.

[65] Chang-Seo Park, Koushik Sen, Paul Hargrove, and Costin Iancu. Efficient data race de-
tection for distributed memory parallel programs. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, 2011.

[66] Mathias Payer, Enrico Kravina, and Thomas R. Gross. Lightweight memory tracing.
In 2013 USENIX Annual Technical Conference (USENIX ATC), pages 115–126, June
2013.

[67] Yuanfeng Peng, Christian DeLozier, Ariel Eizenberg, William Mansky, and Joseph
Devietti. SLIMFAST: Reducing metadata redundancy in sound and complete dynamic
data race detection. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 835–844, 2018.

[68] Antoniu Pop and Albert Cohen. A stream-computing extension to OpenMP. In High-
Performance and Embedded Architectures and Compilers (HiPEAC), pages 5–14, 2011.

[69] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A low-overhead practical
information flow tracking system for detecting security attacks. In 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 135–148,
2006.

[70] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.
August. Parallel-stage decoupled software pipelining. In Proceedings of the 6th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, pages
114–123, 2008.

166

[71] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Effi-
cient data race detection for async-finish parallelism. In International Conference on
Runtime Verification, pages 368–383. 2010.

[72] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scal-
able and precise dynamic datarace detection for structured parallelism. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 531–542, 2012.

[73] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. Decou-
pled software pipelining with the synchronization array. In International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 177–188, 2004.

[74] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. Run-time methods for
parallelizing partially parallel loops. In Proceedings of the 9th International Conference
on Supercomputing (ICS), pages 137–146, 1995.

[75] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A scalable method
for run-time loop parallelization. International Journal of Parallel Programming,
23(6):537–576, December 1995.

[76] Lawrence Rauchwerger and David A. Padua. The LRPD test: speculative run-time
parallelization of loops with privatization and reduction parallelization. IEEE Trans-
actions on Parallel and Distributed Systems, 10(2):160–180, February 1999.

[77] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. Bigfoot: Static check
placement for dynamic race detection. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 141–
156, 2017.

[78] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 22–32, 2011.

[79] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A dynamic race detector for multi-threaded programs. In Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles (SOSP), October
1997.

[80] Tao B. Schardl, I-Ting Angelina Lee, and Charles E. Leiserson. Brief announcement:
Open Cilk. In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 351–353, 2018.

[81] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding recur-
sive fork-join parallelism into llvm’s intermediate representation. ACM Transactions
on Parallel Computing (TOPC), 6(4), December 2019.

167

[82] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. In ALGORITH-
MICA, pages 540–545, 1996.

[83] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
AddressSanitizer: A fast address sanity checker. In USENIX Annual Technical Con-
ference (USENIX ATC), 2012.

[84] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation and Applica-
tions (WBIA), pages 62–71, 2009.

[85] Kyle Singer, Noah Goldstein, Stefan K. Muller, Kunal Agrawal, I-Ting Angelina Lee,
and Umut A. Acar. Priority scheduling for interactive applications. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 465–477, July 2020.

[86] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for futures. In
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 257–271, 2019.

[87] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel futures. In
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 91–100, 2009.

[88] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space
profiling for parallel functional programs. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 253–264, 2008.

[89] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. Feedback-
directed pipeline parallelism. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 147–156, 2010.

[90] Rishi Surendran and Vivek Sarkar. Dynamic Determinacy Race Detection for Task
Parallelism with Futures, pages 368–385. 2016.

[91] Olivier Tardieu, Haichuan Wang, and Haibo Lin. A work-stealing scheduler for x10’s
task parallelism with suspension. In Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP), pages 267–276,
2012.

[92] Robert E. Tarjan, Caleb C. Levy, and Stephen Timmel. Zip trees, 2018.

[93] Robert Endre Tarjan. Applications of path compression on balanced trees. Journal of
the Association for Computing Machinery, 26(4):690–715, October 1979.

168

[94] Sağnak Taşırlar and Vivek Sarkar. Data-driven tasks and their implementation. In
Proceedings of the 2011 International Conference on Parallel Processing (ICPP), pages
652–661, 2011.

[95] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical approach
to exploiting coarse-grained pipeline parallelism in C programs. In The IEEE/ACM
International Symposium on Microarchitecture, pages 356–369, 2007.

[96] Robert Utterback. https://github.com/wustl-pctg/futurerd, 2019. Ac-
cessed in August 2019.

[97] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting Angelina Lee. Prov-
ably good and practically efficient parallel race detection for fork-join programs. In
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 83–94, 2016.

[98] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting Angelina Lee. Efficient
race detection with futures. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 340–354, 2019.

[99] Robert Utterback, Kunal Agrawal, I-Ting Angelina Lee, and Milind Kulkarni.
Processor-oblivious record and replay. In Proceedings of the 22Nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 145–
161, 2017.

[100] James R. Wilcox, Parker Finch, Cormac Flanagan, and Stephen N. Freund. Array
shadow state compression for precise dynamic race detection. In Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering, pages
155–165, 2015.

[101] Weiyu Xu and A. Kevin Tang. A generalized coupon collector problem. Journal of
Applied Probability, 48(4):1081–1094, 2011.

[102] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: Efficient and scalable
memory shadowing. In Proceedings of the 8th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 22–31, 2010.

169

https://github.com/wustl-pctg/futurerd

	Provably and Practically Efficient Race Detection for Task-Parallel Code
	Recommended Citation

	List of Tables
	List of Figures
	List of Algorithms
	Acknowledgments
	Abstract
	Chapter Introduction
	Pitfall: Determinacy Race
	Limitations of the Prior Studies
	Contributions
	Roadmap

	Chapter Preliminary
	Task Parallelism
	Modeling Parallel Computations
	Work-Stealing Scheduler
	Determinacy Race Detection

	Chapter Race Detection for Pipeline Parallelism
	2D-Order Algorithm
	Notations and Definitions
	Reachability in 2D-Order Algorithm
	OM-DownFirst and OM-RightFirst Maintain Reachability Relationships
	Checking Races and Updating Access History
	Performance of 2D-Order

	Generalizing 2D-Order
	PRacer: Race Detection for Cilk-P
	Cilk-P's Support for Pipeline Parallelism
	PRacer: Applying 2D-Order to Cilk-P

	Performance Evaluation

	Chapter Futures and Proactive Work-Stealing
	Future Parallelism
	Modeling Future Parallelism
	Types of Futures

	Proactive Work-Stealing
	Data Structures Used
	The Algorithm

	Performance Bounds for Proactive Work-Stealing
	Bound on Execution Time
	Bounds on Deviations

	Chapter Race Detection for General Futures
	Nearly Series-Parallel Dag
	Overview of F-Order
	Access History in F-Order
	Reachability Maintenance in F-Order
	An Illustrating Example

	Details of F-Order and Its Correctness
	Construction of FOM Data Structures
	Reachability Queries Using FOM

	The Performance Bound of F-Order
	Implementation and Empirical Analysis

	Chapter Race Detection for Structured Futures
	Revisiting Structured Futures
	SF-Order Algorithm
	Intuition Behind the Query Algorithm
	Reachability Queries in SF-Order
	Correctness Proof of the Query Algorithm
	Maintaining the Reachability Data Structures On-the-fly
	The Access History Component

	Performance Analysis of SF-Order
	Implementation and Empirical Evaluation of SF-Order

	Chapter Optimizing Access Histories
	Compile-Time and Runtime Coalescing
	Compile-Time Coalescing
	Runtime Coalescing

	Interval-Based Access History
	Updating the Write Tree
	Inserting an Interval in the Read Tree
	Queries to Check for Races
	Performance Analysis

	Empirical Evaluation

	Chapter Asynchronous Access History
	Synchronous vs. Asynchronous Access History
	The Trace Data Structure
	Asynchronous Race Detection Protocol
	Evaluation

	Chapter Related Work
	Chapter Conclusion
	References

