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ABSTRACT OF THE DISSERTATION 

Short-term Memory and Olfactory Signal Processing  

by 

Lijun Zhang 

Doctor of Philosophy in Electrical Engineering 

Washington University in St. Louis, 2022 

Professor Barani Raman, Chair 

Modern neural recording methodologies, including multi-electrode and optical recordings, 

allow us to monitor the large population of neurons with high temporal resolution. Such recordings 

provide rich datasets that are expected to understand better how information about the external 

world is internally represented and how these representations are altered over time. Achieving this 

goal requires the development of novel pattern recognition methods and/or the application of 

existing statistical methods in novel ways to gain insights into basic neural computational 

principles. In this dissertation, I will take this data-driven approach to dissect the role of short-term 

memory in olfactory signal processing in two relatively simple models of the olfactory system: 

fruit fly (Drosophila melanogaster) and locust (Schistocerca americana).  

First, I will focus on understanding how odor representations within a single stimulus 

exposure are refined across different populations of neurons (faster dynamics; on the order 

seconds) in the early olfactory circuits. Using light-sheet imaging datasets from transgenic flies 

expressing calcium indicators in select populations of neurons, I will reveal how odor 

representations are decorrelated over time in different neural populations. Further, I will examine 

how this computation is altered by short-term memory in this neural circuitry.   
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Next, I will examine how neural representations for odorants at an ensemble level are 

altered across different exposures (slower dynamics; on the order of tens of seconds to minutes). I 

will examine the role of this short-term adaptation in altering neural representations for odor 

identity and intensity. 

Lastly, I will present approaches to help achieve robustness against both extrinsic and 

intrinsic perturbations of odor-evoked neural responses. I will conclude with a Boolean neural 

network inspired by the insect olfactory system and compare its performance against other state-

of-the-art methods on standard machine learning benchmark datasets. In sum, this work will 

provide deeper insights into how short-term plasticity alters sensory neural representations and 

their computational significance.



 

1 

 

Chapter 1: Introduction 

Modern large-scale multi-neuronal recording methodologies, including multielectrode 

recordings [1] and calcium imaging [2], allow us to monitor a large population of neurons with 

finer spatial and temporal resolution. These advances in recording technologies have increased the 

number of simultaneously recorded neurons by orders of magnitude [3, 4] and enabled us to 

examine neural coding problems that cannot be answered on a single-neuron basis [5, 6].  

 The data produced by these large-scale recording techniques are intrinsically high-

dimensional. Multi-electrode arrays allow the activity of hundreds of neurons to be recorded 

simultaneously, with covariates across multiple experimental trials, various stimuli, and behavioral 

tasks conditions [7, 8].  Optical recordings, on the other hand, record brain images over time, 

generating large volumes of data with neural information embedded [9, 10]. Processing and 

understanding these large-scale neural signals with high spatiotemporal resolution poses a 

fundamental challenge and requires the use of advanced pattern recognition and machine learning 

methods [5, 6]. In this dissertation, I will focus on developing novel or adapting standard statistical 

methods for understanding how odorants are processed in relatively simpler insect olfactory 

circuits. 

1.1 Biological Olfaction 

Olfaction is a primary sensory modality for many organisms and serves a vital role in their 

survival and procreation [11]. Many organisms rely on olfaction foraging for food [12], detecting 

predators [13], and for communication through social cues [14, 15]. Odors are also critical for 

learning and memory about events and places, and constitute efficient retrieval cues for the recall 
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of episodic memories [16]. Intriguingly, the olfactory system across species and phyla appears to 

have striking similarities [17]. This suggests that a generic solution to the problem of odor 

detection and subsequent signal processing may exist and examining them using simpler olfactory 

neuronal networks, such as those used in insects, may provide us with insights necessary for 

understanding more complex vertebrate systems.  

The principles of detection and recognition in olfaction are still not fully understood. 

Unlike vision and audition, where the stimulus can be fully characterized, which molecular 

features are detected by olfactory receptors and the overall dimensionality of the chemical space 

are only poorly understood [18]. Transduction of even a single odorant molecule, such as coffee, 

will require the activations of complex combinations of receptor neurons expressing different 

olfactory receptor proteins rather than by the activity of a specific receptor [19]. Additionally, 

sensory stimuli encountered in the natural environment are often highly dynamical in temporal 

encounters, constantly varying in duration of encounters, and received in the presence of 

interference arising from other competing or distracting stimuli, and/or variations in intensity and 

changes in ambient conditions. Therefore, understanding the design and computing principles of 

olfaction and maintaining robustness that overcomes extrinsic and internal perturbation poses a 

very complex and challenging problem. In this work, I will investigate this problem using the 

relatively simple insect olfactory systems of grasshoppers and fruit flies. 

1.2 The Anatomy of Olfactory System 

In mammals, the primary olfactory pathway starts from the olfactory receptor neurons 

(ORNs) in the olfactory epithelium within the nasal cavity at the roof of the nose [20]. ORNs 

transduce chemical cues into neural signals and project their axons onto spherical structures of 
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neuropil called glomeruli in the olfactory bulb (Figure 1.1). Single olfactory neurons typically 

express a single receptor gene [21] that encodes for a specific olfactory receptor G-coupled protein 

[22]. ORNs expressing the same odorant receptors send their axons to either a single or a pair 

ofspherical structure of neuropil called glomeruli [17]. In the glomerular layer, the glutamatergic 

mitral and tufted (M/T) cells form synaptic connections with inhibitory periglomerular cells that 

release GABA [23]. In the same layer, GABAergic short axon cells, as well as juxtaglomerular 

cells, have also been identified to form inter-glomerular connections with M/T cells [24]. At the 

output of the olfactory bulb, M/T cells form dendrodendritic interactions with GABAergic granule 

cells, which are the dominant cell type of the olfactory bulb inhibiting M/T cells. Granule cells 

also receive massive feedback from piriform cortex. M/T cells in the OB send their output through 

the olfactory tract to several different cortical targets in the vertebrate brain, such as the anterior 

olfactory nucleus, piriform cortex, cortical amygdala, etc.[25]. These areas integrate olfactory 

information with other sensory modalities through reciprocal connections with different cortical 

regions[26] (Figure 1.1). 
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Figure 1.1: The anatomy of the vertebrate olfactory system. For vertebrates, glutamatergic 

ORNs expressing the same receptors (indicated by the same color) send their excitatory axons to 

their postsynaptic target in the olfactory bulb (OB), where different types of cells, including 

glutamatergic mitral and tufted (M/T) cells, GABAergic short axon cells, periglomerular cells, 

and granule cells, form synaptic interaction. M/T cells provide the output of the OB to the higher 

olfactory center. GL: glomerular layer. MCL: mitral cell layer. GRL: granule cell layer. The 

dashed line indicates the boundary of OB (reproduced from [17]). 

 

The insect olfactory system shares several similar circuit motifs as those reported in the 

vertebrate olfactory system (Figure 1.2). Odorants are sensed by olfactory receptor neurons 

(ORNs) in the antenna. The ORN transduces chemical stimuli into electrical signals and relays the 

information downstream to the glomeruli in the antennal lobe (AL; analogous to the OB). The 
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ORN signals are processed through interactions between cholinergic projection neurons (PNs, 

excitatory; analogous to M/T cells in mammal olfactory system) and GABAergic local neurons 

(LNs, inhibitory). The PNs then relay their signals to two downstream centers, mushroom body 

and lateral horn, associated with olfactory learning [27-29] and mediate innate behaviors [30, 31], 

respectively. This generic description of the initial circuitry in the insect olfactory system is true 

for the two model organisms used in this dissertation work: locust (Schistocerca americana) and 

fruit fly (Drosophila melanogaster). Notably, the layout of the locust and fly olfactory systems 

also differ in important ways as discussed below. 

 

Figure 1.2: The anatomy of the insect olfactory system. The cholinergic olfactory receptor 

neurons (ORNs) send their axons to the downstream structure in the antennal lobe (AL). Within 

glomeruli, excitatory projection neurons (PNs) and inhibitory local neurons (LNs) form recurrent 

interactions. Only PNs send their outputs onto the higher brain centers (Reproduced from [17]). 
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1.2.1 The Locust Olfactory System 

 The locust antenna is composed of several flagellar segments called annuli. On these 

segments are hundreds of small cone-like structures called sensilla, which house the ORNs. There 

are four main types of sensilla present on locust antenna: basiconica, trichodea, coeloconica, and 

chaetica. They each have a different function, distributions, and house different numbers of 

ORNs[32]. Each odor activates a combinatorial response across the array of ORNs [33]. The 

current dogma is that every ORN selectively expresses a specific olfactory receptor (OR) gene, 

along with a broadly expressed co-receptor (Or83b) [34, 35], and can detect a variety of odorants 

[17].  

 The locust antennal lobe has a circuitry layout more similar to the mice accessory olfactory 

bulb. Here, inputs from the sensory neurons, ORNs, are integrated and processed by excitatory 

cholinergic PNs and inhibitory GABAergic LNs [36, 37]. There are 830 PNs in a locust antennal 

lobe, receiving inputs from roughly 50,000 ORNs [36, 37]. PN cell dendrites are all located on the 

surface of the antennal lobe, which is mainly made up of thousands of small bundles of neuropils 

called glomeruli [37]. Several PNs innervate a single glomerulus and each PN arborizes 10-20 

microglomeruli [36, 37]. Approximately 300 axon-less LNs are projecting broadly within the 

antennal lobe and forming inhibitory synapses with a large number of PNs and ORNs. In locusts, 

LNs do not have full-blown sodium action potentials but show small calcium spikelets [38] during 

spontaneous and stimulus presentation periods.  

 The PN outputs project onto downstream circuits in the mushroom body and lateral horns, 

the higher-order circuits that are thought to underlie associative learning and innate behaviors [39, 

40]. There are approximately 50,000 Kenyon cells (KCs) in the locust mushroom body, and each 
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KC receives input from approximately half the PNs [41, 42]. KCs respond sparsely and selectively 

to very few odorants in a specific concentration range [43]. 

 

Figure 1.3: The anatomy of the locust olfactory system. 

 

1.2.2 The Fly Olfactory System 

 In Drosophila, there are only 1200 ORNs in the Drosophila antenna, housed in three 

morphologically distinct sensillum classes: basiconic, trichoid, and coeloconic, with the basiconic 

being the primary type [44]. Like locusts, an ORN type can be defined by the unique olfactory 

receptor it expresses. The OR and a universal co-receptor Or83b (Orco) give the ORN unique 

response characteristics [45, 46]. 

Unlike locust sensory neurons, ORNs in flies project their axons bilaterally to the same 

glomerulus in both ALs. Post-synaptic to the ORNs are the 2nd order PNs of the AL. In Drosophila, 

excitatory PNs (ePNs) are uni-glomerular and multi-glomerular [47], and a glomerulus may be 

innervated by ~ two to six ePNs per glomerulus. Another lesser-known group of multi-glomerular 

inhibitory PNs (iPNs), which release GABA, and form a parallel pathway in addition to the ePNs. 
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The ePNs convey signals to MB and LH, whereas iPNs only project to the LH, bypassing MB 

[48]. Unlike locusts, in Drosophila, the local interneurons (LNs) also have two major functional 

categories, the inhibitory LNs (iLNs) and excitatory LNs (eLNs). Specifically, eLNs can both 

depolarize and hyperpolarize PNs. Meanwhile, eLNs and iLNs are interconnected via mixed 

synapses [49].  

The MB has around 2000 intrinsic KCs in each hemisphere. Each KC extends several 

‘claws’ to connect with boutons of distinct PNs, with one ‘claw’ only sampling from one PN. 

However, a PN bouton can synapse with ‘claws’ from several KCs, forming micro neuropil. 

Similar to the locust olfactory system, the representation of odor stimulus in the MB is sparse [50]. 

Relatively less is known about odor processing in the lateral horn. 

 

Figure 1.4: The anatomy of the fruit fly olfactory system. Prominent neuron types and circuits 

are identified: olfactory receptor neurons (ORNs) in the antenna, projection neurons (PNs) and 

local neurons (LNs) in the antennal lobe, Kenyon cells in the mushroom body, dopaminergic 

mushroom body output neurons (MBONs), and Lateral Horn (Reproduced from [51]). 
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1.3 Olfactory Coding: The Information Representation 

1.3.1 The ‘Spatial’ Code and ‘Temporal’ Code 

Neural coding describes the study of information representation and processing by 

individual or ensembles of neurons [52]. Starting from a sequence of action potentials (‘spikes’), 

sensory stimulus evokes spiking activities patterned over space and time. What features of a 

sensory stimulus are encoded by the active set of neurons (‘spatial code’) and what aspects are 

represented in their temporal structure (‘temporal code’) is a fundamental problem in systems 

neuroscience [53]. In the spatial dimension, the stimulus-specific information can be represented 

by spiking activities distributed across a unique combination of neurons activated[54-56]. In some 

cases, particularly for ecologically relevant cues such as pheromones, the spatial code has been 

shown to be limited to a single neuron or a small group of neurons. This strategy has been referred 

to as the ‘labelled-line’ scheme[57, 58]. 

On the other hand, temporal codes focus on the timing of spikes. First-spike latency has 

been proposed as the neural code that is important for odorant identification and initiating a 

behavior response[59]. Neurons that receive stronger input have shorter response latency, allowing 

rapid odorant identification[60, 61]. Temporal dynamics in the olfactory system are more complex 

and typically go beyond the first spike latency [56]. The coding scheme based solely on early odor-

evoked neural activity for odor identification, referred to as the primacy coding scheme has 

recently been proposed to link neural responses to behavioral outcomes in mice [62].  

The odor-evoked neural responses in the AL or OB generated by an odor stimulus slowly 

evolve over time [63, 64]. Typically, the population neural responses change more dramatically 

after the odor onset and offset, which are referred to as on- and off-transient periods (Figure 1.5). 
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For a prolonged odor puff, between these two transient periods, the population neural activity 

becomes less intense and converges onto a stable spiking pattern, referred to as a steady state. This 

steady state is typically reached within 1 to 1.5 s of odor onset [65, 66]. 

 

Figure 1.5: Typical response dynamics of the olfactory systems. Mean firing rates across 

projection neurons (PNs) as a function of time are shown. The 4-s odor stimulation period is 

shown as a gray bar along the x-axis. In all three neural populations, three dynamical states can 

be clearly identified: an on-transient response after odor onset, an off-transient response after 

stimulus termination and a steady-state between the two transient activity phases (Reproduced 

from [67]). 

In addition to spiking activities, various types of neural oscillations have been proposed to 

be closely associated with neural coding functions. Oscillatory local field potential (LFP) signals 

that arise from transient synchronization of neurons in the AL and OB exhibits unique frequency 

and amplitude to represent odor’s identity and intensity[68, 69]. For example, beta oscillations 

(15-30 Hz) in the rat OB can only be evoked by some organic solvents (e.g., xylene) but not strong 

odors (like ammonia)[70]. M/T cells in the zebrafish OB can exhibit phase-locked response 

patterns to some odorants but not for others [71]. In the locust AL, the synchronization of PN 

activities results in field potential activity with power in the gamma range (~ 20 Hz)[72]. 

Additionally, the honeybees AL has been shown to produce LFP oscillations during olfactory 

learning that correlate with spiking activity[73].  
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1.3.2 The ‘Spatiotemporal’ Code 

Different coding algorithms have been implemented in various stages of insect olfactory 

systems. At the level of first-order olfactory receptor neurons, both firing rates and firing patterns 

of the odor-evoked responses were shown to be odor-specific and temporally distinct [33]. At the 

level of second-order projection neurons in the antennal lobe, a more elaborate spatiotemporally 

patterned activities, which combines both the population and temporal aspect of the ensemble 

neural responses, is utilized for encoding the information about different odorants [66, 74, 75]. 

The representations of high-dimensional neural responses were found to be organized into odor-

specific manifolds and with the intensity-specific trajectories lying within the odor-specific 

manifold, (Figure 1.6) [76]. In other words, the variability with respect to intensity changes of a 

stimulus was relatively less when compared to those observed when different odorants are 

presented.  
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Figure 1.6: Visualization of Trajectories Representing PN responses over time. 

Spatiotemporal neural responses (110 PNs) are plotted as trajectories for four concentrations of 

three odors (octanol – red, hex – green, geraniol – blue; Lighter color indicates lower intensities). 

Note that the trajectories in response to different concentrations of the same odor remain on the 

same odor-specific subspace (reproduced from [76]). 

 

While the encoding approach using spatiotemporal response patterns organized in odor-

specific manifolds presents an elegant way to decouple odor identity from intensity information, 

it also raises several interesting questions regarding robustness. Most stimuli are encountered in a 

multitude of ways in natural environments. Previous studies have shown that single neuron 

response patterns can vary when the same odorant is encountered in a temporally overlapping 

sequence with other stimuli[67, 77], or in a pulsatile fashion [78, 79]. While the activity of 

individual projection neurons varied, the spatiotemporal patterns based on the ensemble of neurons 

were found to be odor-specific and reliable [8, 80]. Whether this holds when other perturbations 

such as changes in environment conditions (humidity), and particularly internal short-term 

memory, are included remains unclear and needs further examination. 

1.4 Short-term Memory in Sensory System 

Neural systems have shown a strong capacity to represent the world using neural codes, 

such as rate codes, temporal codes, and spatiotemporal codes. However, the neural responses can 

be disturbed by various types of perturbations. Among them, the memory stands as one of the most 

challenging factors to confound the neural representations. In this dissertation, I will examine the 

stability of neural codes when perturbed by short-term memory.  

The sensory system adjusts to changes in the environment. For example, in the visual 

system, prolonged viewing of a high contrast stimulus reduces both perceptual and neural 

sensitivity to subsequent stimuli of the similar pattern [81, 82]. In the auditory system, adaptation 
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occurs as early as in the auditory nerve fibers and becomes more diverse with numerous types of 

adaptation processes along the auditory pathway [83]. In this dissertation, I will seek to understand 

how the sensory system, particularly the olfactory system, stores sensory information about 

recurring cues (typically repeated over the range of tens to hundreds of seconds). More 

importantly, how short-term memory about a recurring cue alters the neural processing of the 

familiar or novel stimuli will be examined. To illustrate this idea, let’s consider this scenario where 

a dog sitting in a garden exposed to the smell of flowers. Upon continuous exposure, the dog sense 

of smell will habituate and filter out the smell of the flowers. Any change in the environment, for 

example, a coyote appearing in the distance, would more likely be detected by the dog, despite the 

fact that the coyote’s smell represents only a small component of the raw odor cocktail entering 

the dog’s nose. Here, habituation, as a form of implicit short-term memory [84], decreases the 

responsiveness to repeated stimulus and allows sensory systems to filter out background or 

currently nonsignificant stimuli (i.e. the smell of flower) while maintaining responsiveness to 

novel stimuli (i.e. the smell of coyote). In which stage of the olfactory sensory system does the 

neural adaptation to the smell of the persisting or recurring cue start and what neurons or neuronal 

populations play crucial roles in the process of adaptation? I will examine these issues in this 

dissertation.  

1.4.1 Desensitization at The Level of Sensory Neurons 

 Desensitization to an odorant starts right from the olfactory receptor neurons. In response 

to a prolonged and steady odor stimulus, ORN responses peak rapidly, then decay[85]. A 

prolonged stimulus also reduces responses to subsequent exposures to the same stimulus with a 

recovery time over a range of 4 – 5 s [86, 87]. Prior studies [85] have suggested that the adaptation 
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in ORNs is mediated by a diffusible factor, Ca2+, that accumulates in the cell as a result of feedback 

regulation of odor transduction. In rodents, individual receptors respond to long odor pulses by 

accumulating intracellular calcium, which eventually inhibits the receptor and renders it in an 

inactive state [88, 89]. In Drosophila, mutants for either the TRP channel or the IP3 receptor have 

normal olfactory responsivity but show defective adaptation [90, 91]. Ca2+ transients in the 

olfactory cilia also play an essential role in the recovery from short-term adaptation with its 

recovery time course after stimuli presentation sufficiently close to the recovery of short-term 

adaptation [89]. The similar observation regarding desensitization at the level of peripheral sensory 

neurons has also been reported in other sensory systems such as vision [92, 93] and audition [94, 

95].  

1.4.2 Neural Adaptation in Higher Order Processing Centers 

 In the second stage of processing (invertebrate antennal lobe or vertebrate olfactory bulb), 

the depression of responses to familiar stimuli is generally explained by the potentiation of 

inhibition onto active neurons. In honeybees, habituation is achieved by potentiating synaptic 

strength between local inhibitory neurons and project neurons [96]. Similar mechanisms have also 

been reported in other insects such as fruit flies[97]. In the locust’s antennal lobe, the feedback 

inhibition provided by LNs has been hypothesized to change with repeated exposures of the same 

stimulus [72, 98]. Repeated stimulus presentations have been shown to entrain local field potential 

oscillations, and the integrated power in the 20 Hz range was found to be significantly higher 

during later trials (Figure 1.7). Both the LN activity and PN spike time were found to be 

increasingly coherent with the LFP waveform during stimulus presentation. The number of PN 

spikes evoked decreased as the stimulus became more familiar. This change was found to be 
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stimulus-specific and intrinsic to the antennal lobe circuit as a form of short-term memory and 

lasted typically around 15 minutes [72]. Further, a model in which inhibitory synaptic weights 

were scaled according to the activity of postsynaptic excitatory neurons was proposed. This model, 

termed ‘negative image’ model, was also used to explain defining features of habituation as well 

as several related forms of implicit or perceptual memory [99].  

 Response in the higher-order sensory centers was also adapted to recurring olfactory cues. 

In Drosophila, inactivation of the mushroom bodies resulted in decreased olfactory habituation 

[100]. In vertebrates, although olfactory bulb mitral cells have been shown to adapt to odorant 

stimulation under certain conditions [101, 102], piriform cortical neurons adapt much more rapidly 

and strongly following either prolonged or repeated odor stimulation [102]. Cerebral blood volume 

(CMV) fMRI studies also show neural responses to repeated stimulations adapt more in higher 

olfactory regions than in OB [103]. More importantly, the interactions between multiple regions 

also play a key role in the habituation. In piriform cortex, rapid adaptation has been arguably 

associated with mGluR II/III-mediated depression of the glutamatergic mitral-pyramidal cell 

synapse [104, 105]. Similarly, in mice models, habituation has been implemented via short-term 

depression of synaptic strength between mitral cells in the OB and principal cells in the cortex 

[106] (analogous to Kenyon cells in the insect mushroom body). In Drosophila, the adaptation was 

also mediated by interactions between inhibitory PNs, excitatory PNs, and their targets in the 

lateral horn (LH). To better understand how adaptation changes across multiple regions, I will use 

the Drosophila olfactory system to thoroughly study and compare neural responses after stimulus 

repetition from peripheral sensory neurons axonal input to AL, ePNs dendrites in AL to ePNs/iPNs 

axonal output into LH/Calyx.   
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Figure 1.7: Coherence and spike time precision increase over stimulus repetition. 

(a) Comparison between the initial (trials 1-2) and later trials (trials 9-10) of the same stimulation 

is shown for local field potential (LFP), local neuron (LN), and projection neuron (PN). 

(b) LFP power spectrum increased during the first 7 or 8 trials before reaching asymptote. 

(c) Coherence between LN and LFP increased rapidly in the first two trials. 

(d) Number of odor-elicited PN spikes is plotted as a function of the trial number. 

(e) Coherence between PN spike time and LFP increased over trials (reproduced from [72]) 
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1.5 Thesis Outline 

This dissertation focuses on using state-of-the-art analytic methods to study the role of 

short-term memory in altering odor-evoked neural responses in both locust and fruit fly olfactory 

systems. The overall organization of the dissertation is as follows. All computational methods will 

be developed and described in Chapter 2, including all statistical analyses for interpreting both 

electrophysiological and imaging datasets. This includes dimensionality reduction methods, 

region-of-interests extraction methods for imaging data, and various classification methods to 

quantify the robustness of odor recognition. In Chapter 3, I will study the influence of repetitive 

stimuli on the antennal lobe neural circuit and how the spontaneous activity is altered to carry 

stimulus-specific information. The influence of short-term memory on neural responses to both 

repetitive stimuli and novel stimuli will be studied. In Chapter 4, I will focus on neural responses 

in the fruit fly olfactory systems. For this, I will analyze light-sheet calcium imaging datasets. 

Particularly, the responses across multiple trials will be studied to compare the short-term memory 

effects and identify loci for short-term memory.  Comparison within and across different flies will 

also be made to identify generic and idiosyncratic features of olfactory information organization 

and processing. Lastly, in Chapter 5, I will study whether odor identity could still be robustly 

recognized and the statistical structure of these decoding algorithms necessary to achieve this 

result. I will correlate results from decoding neural responses with behavioral recognition 

responses recorded to constrain the statistical models. Chapter 6 summarizes the contributions 

made and concludes the dissertation. Future work in the study of olfactory signal processing will 

also be proposed.  
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Chapter 2: Methods 

 In this chapter, I will introduce the analytical methods used to understand high-dimensional 

neural datasets from multielectrode recordings and light-sheet calcium imaging.  Firstly, the 

statistical analysis methods will be presented for the analysis of single and population neurons 

responses. Then I will summarize the dimensionality reduction methods to understand high-

dimensional population data with a focus on the trial-by-trial tensor decomposition method. The 

following section will introduce imaging analysis and regions of interest extraction methods for 

calcium imaging data. Lastly, the decoding methods are described, and a discrete weights network 

for classification is developed. 

2.1 Spiking data analysis 

Peri-stimulus Time Histogram (PSTH): Spike trains of each PN were separated into 50 ms time 

bins and summed. Then spike trains were averaged across trails or cells to obtain population-level 

PSTHs. 

PN response characterization: We classified projection neurons as ON-responsive if the spike 

counts in any time bin during the stimulus presentation exceeded mean + 6.5 s.d. of pre-stimulus 

activity (2 s window just before the onset of any stimulus). Similarly, a PN was regarded OFF 

responsive if it met the same criterion in a 4 s window after the termination of the stimulus (0.5 s 

to 4.5 s after stimulus termination. Note that a 500 ms window immediately after the termination 

of the odorant pulse was ignored as it confounded both ON and OFF responses. All PNs that did 

not meet either of these criteria set for ON or OFF responders were regarded as ‘non-responders'. 

PNs that met both these criteria were included in the sets of both ON and OFF responders. 
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Correlation analysis of PN response: The PN spikes were binned in 200 ms non-overlapping 

time bins, and spike counts of different PNs concatenated to obtain a population spike count vector. 

Pearson correlation coefficients between two PN ensemble spike count vectors were calculated 

using equation 1 (here 𝑥𝑖 represents population PN response vector in the ith time bin). Each pixel 

in the correlation plot (Figure 3.1c, d; ith row – jth column) indicates the correlation value between 

projection neuron spike count vectors observed in the ith and jth time bins.  

To compute correlation values across trials (as shown in Figure 3.1e, f), we used mean PN 

spike counts in different periods of a single trial: during 15 s pre-stimulus period, during 4 s 

stimulus presentation window (stimulus-evoked response vector), 4 s window after stimulus 

termination (Off response vector), and over a 16s period after Off response period (starts 4 s after 

stimulus termination; post-Off response vector). 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ (𝑥𝑖

𝑘−𝑥𝑖̅)(𝑥𝑎𝑣𝑔
𝑘 −𝑥𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅)𝑘

𝜎𝑖𝜎𝑎𝑣𝑔
                                           (1) 

Prediction analysis and confusion matrix: We considered ensemble projection neuron spike 

counts in a non-overlapping time bin as a high-dimensional response vector for this analysis. To 

estimate prediction probabilities, we followed the leave-one-trial-out validation approach. 

Twenty-four trials were regarded as training trials, and the remaining one trial was left out as the 

test trial. This was repeated 25 times so that all trials were made a test trial once. Five trial-averaged 

reference templates were generated for each odorant at each dilution level. These reference 

templates represented the mean responses during the following five temporal windows: -15 to -12 

s, -12 to -9 s, -9 to -6 s, -6 to -3 s, and -3 to 0 s (all before the stimulus was delivered).  

An angular distance metric was used to find the nearest reference template: 



 

20 

 

Angular distance = cos-1(
𝑉𝑡∙𝑉𝑟

|𝑉𝑡|∙|𝑉𝑟|
)          (2) 

Then test vector in each time-bin was assigned to the same odor category as its best matching 

reference template. Those vectors that are not within a certain angular distance of any reference 

templates were categorized as unclassifiable responses (a 60 degrees angular distance threshold 

was used for all classification analyses). The classification analysis was repeated using four 

different time bin sizes to calculate PN spike counts: 100 ms, 250 ms, 500 ms, 1 s (Figure 3.3d). 

Vector analysis: For this analysis, we averaged the 15 s pre-stimulus spiking activities and 4 s 

odor-evoked spiking activities separately for each projection neuron in a given trial. This resulted 

in an n-dimensional pre-stimulus activity vector and an n-dimensional response vector for each 

trial (n = number of projection neurons recorded). To compare baseline and odor-evoked 

projection neuron activities during different trials, we concatenated projection neuron firing count 

vectors during both these epochs and performed a linear principal component analysis. The high-

dimensional PN activity vectors in each trial were projected along the leading three eigenvectors 

of the data covariance matrix to obtain the low-dimensional vector shown in Figure 3.11. All 

dashed vectors were obtained by applying vector addition of baseline activity vector and odor-

evoked response vector. 

2.2 Dimensionality Reduction Methods 

Principal component analysis: We used linear principal component analysis (PCA) as a basic 

method to visualize high-dimensional PN spike counts. The spike counts observed for each PN in 

50 ms non-overlapping time bins were binned to generate an n-dimensional vector of neural 

activity for each time bin (n = 89 PNs). The high-dimensional PN spike count vector was projected 

onto the top three eigenvectors of the data covariance matrix for visualization purposes. These 
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low-dimensional representations of PN activity were color-coded depending on whether the target 

odorant was presented during that time bin. Linear PCA has been used in various places in this 

dissertation.  

Dimensionality reduction analysis for baseline activities: We averaged the spike counts 

observed for each PN during the 15 s pre-stimulus window and concatenated spike counts across 

PNs to generate an n-dimensional vector for each trial (n = number of projection neurons). The 

high-dimensional PN spike count vector for each trial was projected onto the top three eigenvectors 

of the data covariance matrix (Figure. 3.2b).  

Tensor-based data decomposition: We first organized neural response data as a three-way array 

(Neuron × Time × Trials; the stimulus information was also blended into trial dimension), then 

employed a direct 3-way tensor decomposition approach [107]. Here, the 3-d data cube was 

approximated using three loading matrices, A, B, and C with elements 𝑎𝑖𝑓(neuron dimension), 𝑏𝑗𝑓 

(time dimension), and 𝑐𝑘𝑓 (trial dimension). 𝑒𝑖𝑗𝑘 was the residual element (see the equation 2). The 

tri-linear model was found using alternating least squares. 

𝑥𝑖𝑗𝑘 = ∑ 𝑎𝑖𝑓𝑏𝑗𝑓𝑐𝑘𝑓
𝐹
𝑓=1 + 𝑒𝑖𝑗𝑘            (3) 

where 𝑖, 𝑗, 𝑘 denotes the three different dimensions, and 𝐹 indicates the total number of factors used 

for the analysis that was determined by the core consistency diagnostics[108]. In our case, when 

𝐹 = 3 , the core consistency was above 50 %, while it dropped to below 40% when 𝐹 = 4 . 

Therefore, we used three factors for our data decomposition. The basis vectors 𝑐𝑘 across trials in 

the trial dimension are shown in trial mode plots (Figure 3.5e, f).  

Trial-to-trial odor trajectory: For this analysis, we first reconstructed the dataset by computing 

the outer product of the loading matrices obtained by the tensor decomposition. The reconstructed 
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3-d tensor was then unfolded into a concatenated matrix (i.e., along the trial dimension). After 

unfolding, the ensemble projection neuron responses were arranged as time series data of n 

dimensions (where n is the number of neurons) and m steps (the number of 50 ms time bins × the 

number of trials). Note that only the projection neuron activities during the four-second stimulus 

presentation window in each trial were used for this analysis. The ensemble projection neuron 

response vectors (in a given 50 ms time bin) were projected onto the three eigenvectors of the 

response covariance matrix that accounted for the most variance in the dataset, using principal 

component analysis. Finally, the low-dimensional points were connected in a temporal order to 

visualize neural response trajectories to different stimuli on a trial-to-trial basis. All trajectory plots 

shown in Figure 3.5a-d were generated after smoothing with a 3-point running average low-pass 

filter. 

2.3 Calcium Imaging Analyses 

Motion correction using histogram matching: Extracting functional information from a series 

of images requires that the location of a given voxel within the brain does not change over time. 

However, there is usually some degree of subject motion within the scanner. Therefore, to render 

the data fit for statistical analysis, this motion must be preprocessed and corrected. We will 

normalize the statistics of images within the series accounting for flashing activities of neural 

response by histogram matching. Then we will select the time frame with minimum standard 

deviation as the template and use a rigid-body transformation to align all frames to the template 

frame.  
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Constrained Nonnegative Matrix Factorization for image segmentation: We will identify the 

region of interest by applying constraint nonnegative matrix factorization. The spatiotemporal 

calcium activity can be expressed as a product of a spatial basis matrix A and a temporal matrix C.  

      𝑌 = 𝐴𝐶 + 𝐸            (4) 

Y represents spatiotemporal calcium response, where each column represents a vectorized calcium 

image in a time frame. Each row represents a pixel value across time frames, and E indicates the 

observation noise. The factorization procedure is similar to regular nonnegative matrix 

factorization, requiring spatial matrix A and temporal matrix C being nonnegative. Moreover, the 

spatial component matrix is endowed with additional sparsity constraints to promote more compact 

and regularized spatial response regions identified. The problem can be summarized as following 

optimization problem: 

                                                                  min 
𝐴,𝐶

‖𝑌 − 𝐴𝐶‖                                                             (5)         

            s. t.     A, C  ≥ 0 

         ‖𝐴‖1 ≤ 𝜖 

We will optimize the spatial component and temporal component in an alternative way 

such that a new estimate of A is obtained by use of the last estimate of C and vice versa. And 

similar to [109], at the end of each iteration, we will merge overlapping components with high 

temporal correlation and remove components with a low signal-to-noise ratio. I will introduce the 

spatial subproblem and temporal subproblem separately in the following part. 

Estimating spatial components: The spatial problem can be described as equation: 
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           min 
𝐴

‖𝑌 − 𝐴𝐶𝑘−1‖                                                       (6) 

           s. t.     A ≥ 0, ‖𝐴‖1 ≤ 𝜖 

Each column of spatial matrix A expresses the location and shape of a neuron. The number of 

columns is the number of spatial regions to be identified. Again, we want A to be sparse to promote 

the localized spatial regions. It is done by imposing a sparsity constraint on l1 norm of spatial 

components A. To speed up the optimization process further, we restricted the candidate spatial 

support of regions j at iteration k to a dilated version of the support of region j at iteration k-1. 

When estimating the i-th row of Ak, we can restrict our search to the regions whose spatial support 

includes pixel i. As this subproblem is convex, there exists a variety of methods to solve it. I will 

solve this optimization problem by a nonnegative least-angle regression (LARS) algorithm row-

wisely.  

Estimating temporal components: After each iteration of updating spatial components, the 

optimization of temporal components can be described as: 

      min
C

 ‖𝑌 − 𝐴𝑘−1𝐶‖                                                            (7) 

       𝑠. 𝑡.      𝐶 ≥ 0 

As we don’t want to impose any additional structure into temporal traces, we won’t explicitly 

model temporal calcium dynamics. Such a problem can be simply solved by a nonnegative least-

squares procedure. 

Flexible Initialization using Local Correlation Map: Due to the non-convexity of optimization 

problem, the quality of the solution is highly sensitive to the initialization. Many initialization 

methods need to pre-run a matrix factorization. But such method is time-consuming and requires 
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presetting a specific number of spatial components identified. In this study, I will use a local 

correlation map to initialize the response regions. The correlation value in each pixel is obtained 

by computing correlation coefficients between the temporal trace of that pixel and the mean 

temporal trace of surrounding pixels. After obtaining the local correlation map, we apply the 

median filter and morphological closing to obtain the initial response regions. Compared to 

initialization using factorization, it is computationally more efficient and does not require 

predetermining the number of spatial components. 

With the initialization using local correlation map and constraint nonnegative matrix 

factorization, we were able to identify spatial response regions accurately and efficiently. The 

response regions of the antennal lobe are shown in Figure 2.1 (top two rows). Also, the response 

regions obtained from the lateral horn and mushroom body are shown in Figure 2.1 (bottom three 

tows). Although the shape and size are different across different layers, the pipeline developed can 

still accurately detect the regions of interest.  
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Figure 2.1 ROI masks extracted for each plane and each region are shown. In each row, the 

left-most panel shows ROI masks in the dorsal areas, and the rightmost panel shows ROIs in more 

ventral regions. In each plane, different ROIs are labeled using different colors. Each row shows 

ROIs across different regions and neuronal subtypes (from top to bottom: AL, Orco; AL, GH146; 

Calyx, GH146; LH, GH146; LH, Mz699). 

2.4 Decoding methods 

Linear SVM Decoder: The support vector machine classifier was used to classifier PN responses 

under different encounters of target stimulus. In the SVM classifier, the separating hyperplane was 

found to maximize the perpendicular distance between the hyperplane and the closest of the data 

points (support vector): 𝛾 = 𝑦(𝑣 𝑠𝑣𝑚
𝑇 𝑥 + 𝑏), where 𝛾 is the distance between the hyperplane and 

the data point x (89-dimensional PN responses vector). The algorithm was implemented using 

fitcsvm function in the MATLAB toolbox. During the training phase, only the neural responses to 

the solitary presentation of hex (or iaa) were used to determine the optimal SVM weight vector. 

For the hex-SVM classifier, neural responses during hex exposures were used as the positive class, 
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whereas baseline activities and neural responses to iaa were used as the negative class. The iaa-

SVM classifier was trained similarly. After the SVM classifier was fit, it was used to classify trials 

when the trained or an untrained target stimulus was presented with variations in pulse dynamics, 

stimulus history, and background, as shown in Figures 5.6 and 5.7.  

 The discretization of the linear SVM classifier is done by comparing the linear weights 

learned with two different thresholds. If the weight is larger than the positive threshold, the 

corresponding weight is set to 1. If the weight is less than the negative threshold, the corresponding 

weight is set to -1. If the weight falls between two thresholds, the weight is set to 0. After 

discretization, the classifier was used to test the neural responses again. A statistical method to 

train the discrete weights is provided in the next section. 

A Bayesian approach to train the binary weights neural network: A neural network is 

constructed with a collection of connected units or nodes called artificial neurons. A signal gets 

transferred from one unit to the other depending on the weight of the connection between the two 

units. This weight is similar to the synaptic strength between two neurons. As shown in Figure 

2.2a, most artificial neural networks use real-valued weights for the connection between different 

neurons, and the output of each artificial neuron is computed by a non-linear transformation (g(.)) 

of the weighted sum of its inputs. Similarly, the Binary weights neural network uses only two 

values for weights in the computation and, therefore, simplifies regular neural networks (Figure 

2.2b). As such, BNN implementation permits us a much simpler computation using hardware. In 

addition, this implementation also allows us to understand if there are two types of competing 

features (with two opposing weights) that we need to understand from the data.  

A well-studied training method of a neural network involves performing a backpropagation 

step, which is based on gradient descent. To obtain the gradient information, firstly, the output of 
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the previous layer (or the network's input) will forward propagate through the network (Figure 

2.2c) to find the activations of all the hidden and output units. Next, the gradient information can 

be efficiently sent backward (Figure 2.2d) to each node layer by layer. While training the BNNs, 

however, the backpropagation step with regular gradient descent step encounters a non-

differentiable term as the weights are constrained to be binary. Here, we will focus on binary 

weights neural network (BNN) and seek to find an efficient way to obtain the weights. We 

proposed to relax the binary weights and learn them in a Bayesian framework.  

 

Figure 2.2 Discrete weights neural network. 
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(a) Diagram of a regular feed-forward network model. Here shows one layer of network 

computation. Network input or output from the previous layer is weighted by real-valued weights, 

and then the sum is sent to a non-linear activation function to downstream nodes. (b) Diagram of 

a binary weights network model. The network structure is the same as before, but all the weights 

are constrained to 1 or -1. (c) The forward pass of neural network. All inputs traverse through all 

neurons layer-by-layer to the neural network’s output. (d) After the output and loss function is 

calculated. The gradient information is sent backward layer-by-layer to the first layer of the neural 

network. Note that if one node is discrete, e.g., discrete weights, the gradient cannot be used to 

update the weights. (e) Relax and reparameterize the discrete weights using fixed random variables 

and a parameterized function. The gradient information can now be used to update the parameters. 

(f) The learning curve of the training algorithm. The testing error converged after around 2000 

iterations to 2.68%±0.07%. 

Let us consider a classification problem with the samples {𝒙𝑛, 𝑦𝑛}, where 𝒙𝑛 denote input 

patterns in 𝑅𝑛, and 𝑦𝑛 represents class labels. Our formulation of Binary neural network will build 

on a Bayesian treatment of the neural network. The joint distribution of the model is: 

𝑝(𝒙𝑛, 𝑦𝑛, 𝜃) = 𝑝𝑜(𝜃 ∏ 𝑝(𝑦𝑛|𝑓(𝒙𝑛), 𝜃)𝑁
𝑛=1 )          (6)  

𝜃  represents the weights, 𝑝𝑜(𝜃) is the prior distribution of the weights, 𝑓( 𝒙𝑛)
 
represents the 

computation of neural network. We constrained the weights (equivalent to connections in a neural 

network) to be binary (or discrete), 𝜃 ∈ {−1,1}. Readout function 𝑝(∙) is either softmax function 

for multiple-classes problem or sigmoid function for two class problem. After framing the network 

as a probabilistic model, we can now find the posterior distribution of the network weights  

𝑝(𝜃|𝒙𝑛, 𝑦𝑛) and use the uncertainty information encoded in it for future predictions. The direct 

inference of weights from this posterior distribution is intractable. We approximated the intractable 

posterior distribution with a tractable distribution 𝑞𝜙(𝜃)  parameterized by the variational 

parameters 𝜙 and train the variational parameters by maximizing the evidence lower bound 𝐿(𝑞). 

To obtain an unbiased Monte Carlo gradient estimator of lower bound with respect to variational 
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parameters, we sought to relax and reparameterize the weights 𝜃  using the Gumbel-Softmax 

variable[110, 111]: 

   𝜃𝑘 =
exp (log 𝛼𝑘−log (− log 𝑈𝑘)/𝜆)

∑ exp (log 𝛼𝑖−log (− log 𝑈𝑖)/𝜆)𝑛
𝑖=1

,       𝑈𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)                     (7) 

Then the gradient can be approximated unbiasedly by: 

∇𝐸𝑞𝜙(𝜃) [log
𝑝(𝑦,𝜃)

𝑞𝜙(𝜃)
] ≈ ∇ϕ

1

𝐾
∑ log

𝑝(𝑦,𝑔𝜙(𝜖𝑘))

𝑞(𝑔𝜙(𝜖𝑘))

𝐾
𝑘=1 ,         𝜖~𝑝(𝜖)                (8) 

During the training phase, we can utilize the gradient information obtained by regular 

backpropagation to update the binary weights (Figure 2.2e). We also follow standard stochastic 

gradient descent to update the parameters of approximation distribution and adaptively choose the 

step size using ADAM[112]. As the size of mini-batch for stochastic gradient descent was large 

enough, the sample drawn per point can be set to 1, which makes the computation complexity of 

proposed method to be almost identical to training a regular neural network with gradient back-

propagation. We verified our technique using the MNIST dataset and achieved a testing error rate 

of 0.0268 (Figure 2.2f), close to the benchmark result of 0.018 (standard neural network with same 

network structure). 
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Chapter 3: Sensory Memory for Repetition 

Suppression and Novelty Enhancement in an 

Olfactory Circuit  
3.1 Introduction 

The ability to adapt is key to the survival of many living organisms [99]. While this 

computational task appears relatively straightforward, any solution should satisfy at least a few 

important constraints or requirements. First, attenuation of stimulus-evoked responses upon 

recurrence should not corrode information regarding its identity. Second, behavioral preferences 

for many stimuli may vary with intensity [113-115]. Therefore, at least in such cases where 

behavior diverges with stimulus intensity, the information about the intensity of the recurring 

stimulus should be encoded in an adaptation invariant manner. Finally, only the response evoked 

by the familiar stimulus should be selectively impeded, and sensitivity to novel or unexpected cues 

should be ideally retained. In this study, we explored whether and how the locust olfactory system 

deals with these challenges. 

 In the olfactory system, adaptation to a persisting cue begins right at the level of olfactory 

receptor neurons. Usually, sensory neuron responses to prolonged chemical exposures reduce 

throughout that exposure [87, 116-119]. However, a lengthy time-window of non-exposure to the 

stimulus, typically on the order of tens of seconds, can allow full recovery of the sensory neuron 

response strength [89, 114, 118, 120]. Interestingly, such temporal discontinuity in stimulus 

encounters does not prevent the stimulus-evoked responses in downstream centers from 

diminishing upon subsequent encounters of the familiar stimulus [76, 121-123]. This suggests that 
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information about the temporally discontinuous but repetitive stimuli continues to persist even in 

the absence of olfactory sensory neuron input.  

If sensory memory persists in the early olfactory circuits, how does it interfere with subsequent 

responses evoked by the familiar cue that caused this short-term memory? Stimulus-specific 

sensory adaptation can be achieved relatively easily in sensory systems with labeled-line coding 

schemes. However, it becomes particularly challenging in a modality such as olfaction, where most 

chemosensory cues are encoded by spatiotemporal patterns of neural activities distributed across 

an ensemble of overlapping sets of neurons [56, 124-127]. In the vertebrate and the invertebrate 

olfactory systems, each olfactory receptor neuron and their downstream targets (projection neurons 

in the invertebrate antennal lobe or mitral/tufted cells in the vertebrate olfactory bulb) respond to 

multiple stimuli [76, 127-131]. Conversely, most odors activate an overlapping set of neurons in 

these early processing stages. To add further complexity, the set of neurons activated is not static 

but has been shown to evolve over time [132]. How are neural responses to a repetitive olfactory 

stimulus altered in this dynamic and combinatorial nature of odor-evoked neural representations? 

Do alterations in neural response strength upon repetition confound information regarding stimulus 

intensity? More importantly, how does adaptation to a stimulus alter the processing of other cues? 

We explored these issues in this study using a model of the invertebrate olfactory system.  

3.2 Results 

3.2.1 Spontaneous activity is negatively correlated with stimulus-evoked 

responses of a recurring stimulus 

We sought to understand how projection neuron (PN) activities change after the very first 

stimulus exposure. The first set of experiments included multiple blocks, with twenty-five trials 
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each, when one odorant at one intensity was repeatedly presented (Figure 3.1a). Each trial in the 

block included a four-second stimulus presentation window. The inter-stimulus interval was sixty 

seconds. The inter-trial interval was twenty seconds. Different odorants at different intensities 

were repeatedly presented in different blocks. A 15-minute window, when no stimulus was 

presented, separated two consecutive blocks of trials. This window was included to reset any short-

term memory that may have formed due to repeated presentation of the same stimulus[72]. Figure 

3.1b shows the spike counts as a function of time (in 50 ms time bins) in all 81 neurons recorded 

as a heat map (dark colors indicate higher firing rates). Note that the responses were sorted based 

on the overall change in the spontaneous activity (i.e., mean pre-stimulus – mean post-stimulus). 

Interestingly, PNs that responded during odor presentation (ON response) had the most reduction 

in their post-stimulus spiking activity and therefore appeared at the top of the heat map. On the 

other hand, PNs that were inhibited during odor presentation but were released from this inhibition 

after the stimulus termination had elevated and sustained spiking activities in the post-stimulus 

period. Therefore, these neurons appear at the bottom of the heat map. Note that the changes in 

spiking responses immediately following the termination of the stimulus persisted for tens of 

seconds after its termination.  

How do these observed changes in spontaneous activities relate to the stimulus-evoked 

responses? To understand this, we computed correlations between the ensemble neural activities 

in different time bins recorded during a single trial (pre-, during- and post-stimulus windows 

included Figure 3.1c-e). As expected, we found that the ensemble responses during the odor 

presentation window were highly correlated only amongst themselves. We observed no noticeable 

correlation between the pre-stimulus activities and the odor-evoked responses in the first trial. 

Because the ON and OFF responses involved nearly non-overlapping sets of PNs, there was a 
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negative correlation between observed neural activities during these epochs. Interestingly, these 

negative correlations persisted well after the termination of the odor pulse (15 s post-stimulus 

shown in the plot; indicated using white arrows). As a result, the ensemble activities in the pre-

stimulus time window gained a negative correlation during later trials of the same odorant (the 

prominent blue ‘†’ pattern observable in the later trials and not in the first trial; indicated using 

white arrows; as the pre-stimulus activities in the later trials are merely a continuation of post-

stimulus activity from the previous trial).  

This systematic reduction in correlation between the pre-stimulus and stimulus-evoked 

ensemble responses was observed for all four odorants used in this study (Figure 3.1f; left-most 

panels). The effect was stronger at higher concentrations and became weaker when we lowered 

the odorant concentrations (Figure 3.1g; left-most panels). Also, note that the PN responses 

immediately after the termination of the stimulus were the least correlated with the odor-evoked 

neural activities (Figure 3.1f, g; middle panels), whereas the PN spiking responses during OFF 

response period and post-OFF epochs in every trial remained highly correlated with one another 

across trials (Figure 3.1f, g; rightmost panels). In sum, our results reveal that sensory memory 

about a repetitively encountered stimulus persists in the antennal lobe and generates a persistent 

negatively correlated spontaneous response. Further, the duration of persistence of this sensory 

memory increased with the intensity of the odorant.   
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Figure 3.1: Repetitively encountered stimulus generates persistent sensory memory.  

(a) A schematic of the odor stimulation protocol used. Each block included twenty-five trials. A 

4-second odor puff was presented in each of the trials. The inter-stimulus interval was set to a 

minute. Within a single block of trials, the same stimulus was repeatedly presented. Two blocks 

of trials were separated by a 15-minute no-odor window to reset any adaptation/memory induced 

by the previous odorant.     

(b) Firing rates of 81 projection neurons (in 50 ms time bins; 81 rows) are shown as a function of 

time (columns; 40 s in total). The odor-evoked responses during the very first exposure to isoamyl 

acetate (iaa) are identified using color bars (red – 4 s odor ON and blue – 4s after odor OFF) at the 

top of the plot. Spiking activities across PNs during a 15 s pre-stimulus stimulus window and a 17 

s post-Off response period are also included in the plot. Note that the PNs were sorted based on 

the difference between mean firing rates of the pre-stimulus period and post-stimulus period 

(includes both off and post-off epochs). Below the image plot, the mean firing rate across 

projection neurons (PNs) is shown as a function of time. The 4-s odor stimulation period is 

shown as a gray bar along the x axis. We define the period before odor stimulus as the pre-

stimulus period, the odor-stimulus period as the ON period, and 4 s after odor termination when 

the PSTH is still above the baseline levels as the OFF period. Finally, the period after the OFF 

period was defined as the post-OFF period. 

(c) A schematic overview of the correlation analysis is shown in panels (d) and (e).  Regions in 

the correlation heat maps comparing ensemble neural responses observed during stimulus 

presentation with pre- and post-stimulus are identified. 

(d) Correlation maps for different trials are shown. The 4 s stimulus presentation period is 

identified using a red bar. Note that each non-diagonal pixel represents the similarity between 

ensemble PN spike counts in one time bin and those in another. Cooler colors indicate lower 

correlation, and hotter colors indicate higher similarity/correlations. Four representative trials are 

shown. Note that the correlation values between pre-stimulus PN spiking activities and odor-

evoked spiking responses decrease across trials. 

(e) Similar plots as (d) but for a different odorant.  

(f) Left, correlations between mean pre-stimulus ensemble PN responses and stimulus-evoked 

population PN responses are shown when the same stimulus is repeated 25 times with a 60 s inter-

stimulus interval. Different colors are used to show results for different odors and concentrations. 

Middle, similar correlation plots but now showing the comparison between stimulus-evoked 

responses and off responses. Right, similar plots showing correlation changes over trials between 

off and post-off neural responses. 

(g) Similar plots as in (f) for a lower intensity of the same four odorants. 

 

 

 



 

37 

 

3.2.2 Spontaneous activity carries information about stimulus identity and 

intensity 

Are these changes in the PN spontaneous activity odor-specific? We found that at the 

individual PN level, the pre-stimulus spiking activities tended to vary in an odor-specific manner 

(Figure 3.2a). To understand how odor-specific changes were in the ensemble firing rates in the 

pre-stimulus window, we calculated the mean spontaneous firing rate across PNs in a given trial 

(one ~80-dimensional vector per trial). The mean, pre-stimulus ensemble firing across PNs in each 

trial was visualized using principal component analysis. We found that each odorant at a given 

intensity formed a distinct cluster of baseline activities (Figure 3.2b). Also, while the ensemble-

level spontaneous activity during the first trial was random (origin of the arrows shown in the plot), 

the pre-stimulus activity in subsequent trials evolved consistently and formed a tighter cluster. 

Furthermore, when the same stimulus was repeated after a reset period, the directions in which the 

pre-stimulus activity changed (direction of the arrows shown in the plot) were aligned (Figure 

3.2c), resulting in them both acquiring a net negative correlation with the response evoked by the 

same stimulus. This result suggests the hypothesis that, during the later trials, it would be possible 

to predict the identity of the repeatedly occurring stimulus given the spontaneous activity in the 

antennal lobe network.  

 To test this hypothesis, we performed a classification analysis. Consistent with the PCA 

results, we found that the identity and intensity of a stimulus can be reliably predicted, well above 

chance level, on most trials. The prediction performance was greater when a larger time window 

was used for determining the PN spike counts during the pre-stimulus window (Figure 3.3a, b; 

see Methods for additional information). 
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Taken together, these results indicate non-random, odor-specific changes in spontaneous 

PN activities occur when an odorant is repeatedly encountered.  
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Figure 3.2: Spontaneous activity carries information about stimulus identity and intensity. 

(a) Raster plots of six representative projection neurons are shown. Each trial is 40 s in duration: 

15 s pre-stimulus period, 4 s odor presentation window (colored bar on the top), and 21 s post-

stimulus period. The interval between odor presentations in consecutive trials is 60 seconds. For 

each neuron, spiking activities during twenty-five trials are shown (top-row – trial 1, bottom-row 

– trial 25). Note that the rasters are color-coded based on the trial number. The three columns 

correspond to three blocks of trials. In each block, one odorant was repeatedly presented. A 15-

minute no-odor window separated consecutive blocks. Hexanol was presented in two different 

blocks of trials to evaluate reproducibility. 

(b) Pre-stimulus ensemble projection neuron activities in a trial were averaged and visualized using 

principal component analysis (i.e., one high dimensional vector per trial). Lighter colors indicate 

earlier trials, and darker colors are used to distinguish later repetitions of the same odorant. 

(c) Similar plot as (b), but pre-stimulus ensemble projection neuron activities when the same 

stimulus is repeated during two different epochs are visualized. The direction in which the baseline 

activities change between stimulus exposures is highly reproducible when the same stimulus is 

repeated in different time segments. 

 

 

Figure 3.3: Stimulus identity and intensity information can be identified using spontaneous 

activities. 

(a) Confusion matrices summarizing results from a classification analysis are shown. Templates 

of pre-stimulus activities in all but one trial were used to predict the identity of the odorant that is 

expected to be presented in the left-out trial (see Materials and Methods). Each column in the 

matrix shows the probabilities of assigning the identity of the odorant to one of the four possible 

stimuli. Chance level is 25% assignment to each of the four stimuli. High diagonal values 

indicate that the predicted and the actual odor identity matched on most trials.  

(b) The classification accuracy with varying time-bin length. The pre-stimulus PN responses 

were binned using time bins of various sizes before classification using template matching. 

Recognition performance is plotted as a function of time-bin size. Larger the time-bins, more 

likely was the correct recognition of the stimulus to be encountered in the left-out trial. 



 

40 

 

 

3.2.3 PN firing patterns change reliably across trials  

In addition to the spontaneous activity changes, we also noticed systematic changes in the 

odor-evoked firing patterns. Response features such as response latency and duration of inhibition 

changed substantially over trials across many projection neurons (Figure 3.4a). Furthermore, 

when the same stimulus is presented repeatedly after a desensitization period (> 15 min of no odor 

stimulation), these changes in firing patterns are repeatable (Figure 3.4b). Our results indicated 

that the total number of odor-evoked spikes across all recorded neurons reduced over trials. 

Consistent with prior results [72], the spiking activity reduction was greater during the first few 

encounters and was intensity dependent. For the two alcohols examined, the difference in spike 

counts between responses elicited at high and low stimulus intensities were maintained even after 

adaptation (Figure 3.4c; two left-most panels). On the other hand, spike count differences between 

two different stimulus intensities diminished over trials for the other two odorants used (iaa and 

bzald; Figure 3.4c; two right-most panels). More importantly, the earlier trials of odor exposures 

at low intensities elicited a response comparable to those evoked during the later trials of the same 

stimulus but at a higher intensity. These results suggest that adaptation may potentially confound 

the representation of stimulus intensity.   
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Figure 3.4: Inter-trial neural dynamics are diverse in individual projection neurons.  

(a) Responses of ten representative projection neurons (PNs) to various odorants are shown as 

raster plots (25 trials each). Arrows highlight the systematic changes in stimulus-evoked 

response features such as inhibition duration and response latency across trials. Note that the 

spiking activity is shown during the entire four seconds of stimulus exposure.  

(b) Raster plots of four representative PNs responses to two blocks of trials when the same 

stimulus was presented repeatedly in all 25 trials. A no-odor reset period greater than 15 minutes 

preceded each block of trials. The color box represents 4-s stimulus duration, and the arrows in 

the box indicate the systematic change in individual PN responses observed across trials.  

(c) Total spike counts across all PNs during the entire four seconds of stimulus exposure were 

calculated and plotted as a function of trial number. Each panel reveals the total odor-evoked 

response generated across all recorded PNs to two different intensities of the same stimulus (H = 

1% by volume, L = 0.1% v/v). The dotted line indicates the spike count observed during the 25th 

trial of higher intensity odor presentations. Two-way ANOVA was used to compare the spike 

counts between different trials and different odorant concentrations (see Methods). 
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3.2.4 Adaptation-invariant encoding of odor intensity 

Could the information regarding stimulus intensity be robustly encoded in the population 

neural responses? Previous studies have indeed shown the ensemble neural activities cluster based 

on odor identity and intensity [72, 76]. However, this representation of stimulus-specific 

information stabilized only when the first trial responses were not considered. Given that major 

changes in spike counts due to adaptation occurred between the first and second encounters of a 

stimulus, we sought to examine how encoding of stimulus intensity varied before and after 

adaptation (i.e., across all trials). 

To qualitatively understand this, we visualized the high-dimensional neural activities using a 

dimensionality reduction approach. The ensemble responses across multiple trials were 

concatenated to create a 3-D data cube (neuron x time x trial dimensions). Then, we directly 

performed a 3-D tensor decomposition and approximated the data cube as a sum of three rank-one 

tensors (for a rank 3 approximation to facilitate visualization). This pre-processing step, to 

approximate the original tensor by a rank-3 tensor, followed by regular unfolding the data cube for 

linear dimensionality reduction, resulted in neural response trajectories that captured the trial-to-

trial variations in the dataset better than the direct unfold-then-PCA approach[133].  

We plotted the ensemble responses in each 50 ms time bin during the odor presentation time 

window (4 s) and linked them based on the order of their occurrence to generate trial-by-trial odor 

response trajectories (Figure 3.5a-d). Note that each trial generated a single loop response 

trajectory after dimensionality reduction. Six such trajectories (shown in blue) correspond to the 

responses evoked by hex (1% dilution) in representative trials: 1, 5, 10, 15, 20, and 25. Similarly, 

for comparison, six hex (0.1% dilution) trajectories (cyan) for corresponding trials are also shown. 
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The response trajectories showed a systematic change from light colors (early trials) to darker 

colors (late trials). Notably, the population responses changed such that the trajectories evolved in 

similar directions, but the length of the trajectory monotonically reduced over repeated trials. 

Similar results were also observed for the other three odorants used in the study (Figure 3.5a-d). 

Hence, these results suggest that even though the total number of spikes reduced with adaptation 

(correlated with the length of the trajectory), the combination of neurons activated (direction of 

the vector) can still robustly encode information about both odor intensity and identity. Further 

examination of factors extracted along the trial dimension (Figure 3.5e, f) revealed that different 

odorants presented at different concentrations robustly clustered, indicating the availability of odor 

identity and intensity information in the high-dimensional neural responses. The same was retained 

after dimensionality reduction. 
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Figure 3.5: Ensemble neural activity change systematically over repeated trials. 
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(a-d) Odor-evoked ensemble projection neuron response trajectories are shown after 

dimensionality reduction using a tensor decomposition method (see Methods). The ‘Start’ label 

indicates where the trajectories begin following odor onset, and the direction of response 

evolution over time is indicated (colored arrows). The response trajectories of representative 

trials 1, 5, 10, 15, 20, and 25 are shown. A color gradient from light (early trials) to dark (later 

trials) distinguishes responses observed in different trials.  

(e) Information retained (loading elements) in the trial dimension following a 3-rank tensor 

decomposition (see Methods) is plotted as a 3-D plot. Each trial is represented as a symbol in 

this plot (a total of 25 trials are shown for each odor). The solid circle and star symbols represent 

higher (1%) and lower (0.1%) odorant concentrations.  

(f) Similar plot as panel e, but the repeated block of twenty-five trials (hex 1% or iaa 1%) used in 

this study are also shown as squares for comparison. 

To further corroborate our conclusions, we calculated the correlation between responses 

evoked by the same stimulus in different trials and between neural ensemble responses elicited at 

two different concentrations (Figure 3.6). As can be noted, the correlation between neural 

responses evoked in different trials (diagonal blocks) was high, whereas the correlation between 

ensemble neural responses evoked by different concentrations was lower (off-diagonal blocks). 

Similar results were observed for all the four odorants used in the study (Figure 3.6a-d). We also 

performed a trial-by-trial, bin-by-bin classification analysis to quantify whether the concentration 

information was confounded by adaptation (Figure 3.6e-h). We used a leave-one-trial-out 

approach to validate the results. Our results indicate that a nearest-reference template classifier 

could correctly classify time bins in each trial as elicited during exposures to high or low 

concentrations of the odorant.  

In sum, our results show that a combinatorial code could encode information regarding odor 

identity and intensity in an adaptation-invariant fashion. Since the same information about a 

stimulus is represented with fewer spikes in the later trials, we conclude that adaptation refines the 

odor codes by making them more efficient.  
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Figure 3.6: Projection neurons response profiles robustly encode odor identity and intensity 

information. 

(a) Correlations between neural responses observed in different trials are shown. Each pixel 

represents the similarity between mean neural responses in one trial versus those in another trial. 

Diagonal blocks are correlations between trials when the same odorant at a specific intensity was 

repeatedly presented.  

(b) Classification results are shown in a trial-by-trial and bin-by-bin fashion. Each row 

corresponds to a trial, and each pixel corresponds to a 50 ms time bin. A nearest template 

matching scheme with leave-one-trial-out validation was followed to generate these results (see 

Methods). The 4 s odor presentation period is indicated with a black bar along the x-axis. Blue 

pixels indicate pattern match with ensemble responses during high-concentration exposures of an 

odorant, and red pixels indicate pattern match with low-concentration odor responses. Neural 

responses in any time bin outside an angular tolerance threshold (i.e., did not pattern match with 

the reference neural response templates) were labeled as gray pixels. Note that each block of 25 

trials mostly pattern matches with either the high-intensity or low-intensity templates of that 

odorant. 

3.2.5 Contrast-enhanced response to an unexpected stimulus 

We next wondered whether the network-level adaptation allowed differential processing of 

repetitive vs. deviant stimuli. To understand this, we repeatedly presented an odorant (hex) for 

twenty-five trials, but in the twenty-sixth trial (a ‘catch trial’), we switched and presented a 

different stimulus (i.e., a ‘deviant’ stimulus) (Figure 3.7a). Two different odorants were used as 

the deviant stimulus in two different blocks of trials. Note that isoamyl acetate (iaa) is similar to 

hexanol (locusts trained with hex in an appetitive-conditioning assay also respond to iaa, whereas 

apple is less similar to hex (no cross-learning for these two odorants in the behavioral assay [80]). 

We examined the ensemble PN responses to the repetitive and the deviant stimulus. We 

observed four main PN response motifs (Figure 3.7b). Responses of PNs activated by repetitive 

and deviant stimuli were diminished during the catch trial (i.e., overlap reduction; ~31% PN 

responses belonged to this category). At the same time, PNs that were activated by the deviant 

stimulus alone responded without significant reduction during the catch trial (Figure 3.7c; ~12% 
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of PN responses belonged to this category; A paired-sample t-test was used to compare maximum 

spike rates of two trials (catch trial and the first trial in block 2) across projection neurons in this 

category, p=0.1588).  

 To understand how the neural activities were altered at an ensemble level, we again 

visualized the ensemble activities elicited during each trial (Figure 3.7d, e). Notably, while the 

response to the repetitive stimuli systematically diminished across trials (i.e., trajectory length 

shortened), the responses to the deviant stimuli during the catch trial were stronger than responses 

observed during all other encounters of the same odorant (the lone exception being the first trial 

in block 2). Furthermore, consistent with ensemble PN responses (Figure 3.7b), the neural 

response trajectory during the catch trial moved further away from the repetitive stimuli indicating 

a population-level contrast enhancement of neural representation (Figure 3.7d, e). Responses to 

the repeating stimulus, post catch trial, increased modestly in response magnitude but still pattern-

matched well the ensemble activity evoked by that stimulus Figure 3.7f, g).  

To quantify our results, we compared the similarity between ensemble neural activity elicited 

by the repetitive stimulus and the deviant stimulus (Figure 3.8a, b). Consistent with the 

dimensionality reduction results, we found that the ensemble neural responses in the catch trials 

were consistently more distinct from the repetitive hex-evoked responses. In fact, the response 

dissimilarities were lower than those observed when the catch (iaa or app) and recurring (hex) 

stimulus were presented in a separate block of trials. Notably, a simple nearest reference template 

based classification approach still revealed that the contrast-enhanced responses could be correctly 

pattern-matched with the responses evoked by iaa or app (Figure 3.8c, d; see Methods).   

Taken together, these results indicate that repetitive and deviant stimuli are differentially 

processed in this neural network. While the response to the repetitive stimuli is selectively 
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suppressed, the ensemble neural activities are altered to emphasize the unique features of the 

deviant stimuli while still preserving information about their identity. 

 



 

50 

 

Figure. 3.7: Contrast enhancement of ensemble responses to the deviant stimulus. 

(a) Experimental setup: Two blocks of trials were used. First, a block of 30 trials where one odorant 

(hex) was presented in all trials except the 26th trial (the catch trial). A deviant stimulus (iaa or app) 

was presented during the catch trial. After a 15-minute no-odor reset period, the second block of 

ten trials of deviant stimulus was presented. This was done to determine the unadapted (first trial) 

and adapted (later trials) responses of the same set of PNs to the stimulus used in the catch trial.  

(b) PNs responses were categorized into four different groups and shown: activated by the 

repetitive stimulus alone, activated by the deviant stimulus alone, responds to both stimuli, and 

non-responsive to either stimulus. PN responses during four trials are compared in each plot: pre-

adapted response to repetitive stimulus (first trial in block 1; solid blue traces), adapted response 

to the repetitive stimulus (the twenty-fifth trial; dashed cyan traces), response to the deviant 

stimulus during the ‘catch trial’ (twenty-sixth trial in block 1; solid red traces), and unadapted 

response to the deviant stimulus following the 15-minute no-odor reset period (first trial of block 

2; dashed orange traces). Each panel shows the ensemble response averaged across all PNs 

belonging to one category. The fraction of PNs belonging to each response motif is indicated in 

each plot.  

(c) Responses of four representative PNs (uniquely responds to catch stimulus) that have a stronger 

response during the catch trial than the unadapted responses evoked by the same stimulus are 

shown. In each panel, four trials are shown: solid blue trace – pre-adapted response to repetitive 

stimulus (i.e., the first trial in block 1), dashed cyan-trace – adapted response to the repetitive 

stimulus (twenty-fifth trial in block 1), solid red trace – response to the deviant stimulus during 

the ‘catch trial’ (twenty-sixth trial in block 1), and dashed red trace – unadapted response to the 

deviant stimulus following the 15-minute no-odor reset period (first trial of block 2). 

(d, e) Similar trial-by-trial trajectory plots as in Figure. 4. PN ensemble response during each trial 

is shown as a closed-loop response trajectory. Ensemble PN response to the repeated stimulus is 

shown in blue (hex; block 1 – trials 1 - 25).  Orange response trajectories are those elicited by iaa 

or app during block 2 trials. The numbers next to the trajectories indicate the trial number, and a 

color gradient from light to dark indicates early and late trials, respectively. The PN response 

trajectory elicited by iaa or app during the catch trial (block 1 – 26th trial) is shown in red. The 

black arrows indicate the shift in the direction of PN response trajectories during the catch trial.  

(f, g) Trial-by-trial trajectory showing a modest increase in the trajectory length observed during 

the trials following the catch trial (27th and 30th trials) when the repetitive stimulus was presented 

again.  
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Figure. 3.8: Neural responses to the deviant stimulus can be robustly decoded. 

(a) The correlation value (a measure of similarity) between the mean ensemble neural response in 

each trial with the neural activity evoked during the first presentation of the recurring stimulus 

(hex) is shown. Note that hex was repetitively presented during all but the twenty-sixth trial (‘catch 

trial’) in the first 30 trial block. During the ‘catch trial’, a deviant stimulus (isoamyl acetate; iaa) 

was presented. Following the 30-trial block, no odorant was presented for 15 minutes to allow the 

antennal lobe circuit to reset. Subsequently, ten trials of isoamyl acetate (iaa) were presented after 

this reset period. The dashed line shows the mean correlation value between the ten trials of 

isoamyl acetate presented during the second block of trials with the response to the first trial of 

hex in block 1.  

(b) Similar plot as panel (a), but during ‘catch trial’, a different stimulus (apple; app) was 

presented.  

(c, d) Classification results for neural responses during block 1 and block 2 trials are shown. In 

this analysis, only the neural responses in the first trial of hex presentation (trial 1 of block 1) and 

the first trial of the deviant stimulus presentation (trial 1 of block 2) were used as responses 

templates to be pattern matched. The classification results for the remaining 38 trials are shown. 

The color of each pixel schematically indicates the results of the classification analysis: blue – 

pattern match with the templates of the repetitive stimulus (i.e., hex), and red – pattern match with 

the templates of deviant stimulus (i.e., iaa for panel c and app for panel d). The 4 s odor 

presentation period is indicated as a black bar along the x-axis. Neural responses in any time bin 
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outside the angular tolerance are indicated as gray pixels (i.e., not pattern matching well with any 

of the response templates). 

3.2.6 Activity-dependent plasticity in single projection neurons 

What mechanisms could underlie the changes in spontaneous spiking activity and stimulus-

evoked responses in individual PNs? To understand this, we performed intracellular recordings 

from individual PNs and monitored spiking activity before, during, and after current injections 

(Figure 3.9). We found that the PN firing rates following a positive current pulse decreased below 

the pre-pulse activity levels (Figure 3.9a). However, for the same neuron, following a negative 

current pulse, the observed post-pulse activity levels were greater than the pre-pulse firing rates 

(Figure 3.9b). Thus, it appears that the spontaneous PN activity is not constant, but changes based 

on recent response history: a period of intense firing is followed by a prolonged period of low 

spontaneous activity (Figure 3.9a right panel), whereas following an epoch of hyperpolarization, 

the spiking activity increases compared to the pre-pulse level (Figure 3.9b right panel). 

 Next, we examined the response of individual PNs to back-to-back current pulses to 

determine whether the PN’s response history can alter its response to subsequent inputs of equal 

magnitude (Figure 3.9c). Our results indicate that the response to the first pulse in the sequence  
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Figure 3.9: Activity-dependent plasticity in individual projection neurons 
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(a) Intracellular voltage traces revealing PN activity before, during, and after a 4 s current pulse 

(+0.2 nA; gray box). Each row corresponds to one trial, and current pulses in successive trials 

were 60 s apart. Right panel: Bar plots comparing PN spike counts during pre- (blue) and post- 

(orange) current injection periods. The height of the bar indicates the mean of spike counts, and 

the error bar indicates s.e. (standard error) across trials. Asterisks indicate a significant decrease 

in spike count (*P < 0.05, NS: P > 0.05, paired t-tests, n = 3 trials for PNa and n = 5 trials for 

PNs b-d). 

(b) Bottom panel, the similar plot as in the top panel but showing similar results but for a 

negative current injection (-0.2 nA). Note, asterisks in the right panel indicate a significant 

increase in spike count.  

(c) Top panel, intracellular voltage traces recorded from a PN are shown. Three consecutive 

positive current input of +0.2 nA (each 4s in duration) separated by a 250 ms IPI were used to 

evoke a firing response. Results from five consecutive trials are shown to illustrate repeatability. 

Middle panel, trial-averaged firing rates into 50 ms time bins are plotted as a function of time. 

Bottom panel, bar plot comparing trial-averaged spike counts in each of the three current 

injection pulses is shown. The height of the bar indicates the mean across four PNs, and 

individual PN responses are indicated using lines of different colors.  

(d) Top panel, firing rates of a PN to a non-overlapping sequence of a 4 s current injection pulse 

followed by 4s odor presentation (500 ms gap) is shown. The blue line corresponds to the trial-

averaged PN firing rates when a positive current (+0.1 nA) was injected before odor pulse (hex 

1%), and the red line corresponds to the case when negative current (-0.1 nA) was injected 

before odor pulse (again hex 1%). Bottom panel, trial-average spike counts, elicited by the 

odorant is shown as bar plots. Red bars correspond to odor responses (hex 1% for PN e, g and 

citral1% for PNf) following a negative current pulse (-0.2 nA for PNe, -0.1 nA for PN f, g) and 

blue bars correspond to mean response to the same odorant following a positive current pulse 

(+0.2 nA for PNe, +0.1 nA for PNf, g). Error bar indicates s.e. (standard error) across trials. 

Asterisks indicate a significant decrease in spike count (*P < 0.05, NS: P > 0.05, paired t-tests, n 

= 5 trials). 

 

was the strongest and the spike count reduced systematically for the second and the third pulse in 

the sequence (Figure 3.9c middle and bottom panels). When the second and third pulses were 

replaced by an odorant pulse, we found that the response to the odorant following a positive current 

pulse was weaker than the response to the same odorant when it was received after a negative pulse 

that hyperpolarized the cell (Figure 3.9d). More importantly, we found that these changes in PN 



 

55 

 

spontaneous activity following current injections, induced by both positive and negative, persisted 

for tens-of seconds after the end of the stimulation period (Figure 3.10).  

Taken together, these results suggest that there may be a cell-intrinsic form of PN response 

plasticity that could contribute to spontaneous spiking activity, gaining a negative correlation with 

stimulus-evoked responses, reduction in response to a recurring stimulus, and enhancing responses 

to a novel stimulus. 

 

Figure 3.10: Persistent changes in PN spontaneous activity following current injections. 

(a) Intracellular voltage traces are plotted similarly as in Figure.11a, b. The PN spiking activity 

during the entire 40 s trial is shown for PNb. The inter-trial-interval was 20 s. Left panel shows 

the spiking activity before, during, and after a negative current pulse (-0.2 nA). The right panel 

shows a similar plot but for a positive current pulse (+0.2 nA). Note that the changes in firing 

rate due to current injections persist for tens of seconds until the end of the trial.  

3.2.7 A simple linear model for adaptation and contrast enhancement 

To summarize our findings, we visualized the mean odor-evoked ensemble response in 

the first trial (i.e., the unadapted response) and the average spontaneous activity observed in each 

trial during the pre-stimulus period (Figure 3.11a). Consistent with our interpretation so far, the 

spontaneous activity vectors progressively re-oriented towards the opposite direction of the odor-

evoked response vector (Figure 3.11a). Note that a linear combination of the unadapted 
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ensemble response with the spontaneous neural activity preceding stimulus in a trial would lead 

to a suppression of response to the recurring stimulus, thus matching observed results (Figure 

3.11b). On the other hand, adding ensemble response evoked by a novel stimulus (red vectors) to 

the spontaneous activity altered by the recurring stimulus should increase the angular distance 

between the summated vector (brown vectors) and the recurring stimulus response (blue vector). 

This was precisely what was observed during the catch trial (Figure 3.11c, d). In sum, these 

results indicate that a simple linear model that considers both the ongoing activity and the 

unadapted antennal lobe response to the odorant can explain the changes in stimulus-evoked 

responses observed for a recurring or a novel stimulus. 
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Figure 3.11: A linear model for repetition suppression and novelty contrast enhancement 

(a) The average odor-evoked ensemble response observed in the first trial and the average baseline 

activity during the pre-stimulus period observed in different trials were visualized using principal 

component analysis. After hex was repeatedly presented, note that the baseline response vectors 

become more anti-correlated with the stimulus-evoked response vector. 

(b) The average baseline activity vector and odor-evoked response vector observed in the 20th trial 

after dimension reduction are shown. For comparison, the average first trial odor-evoked response 

is also shown. The dashed line shows a linear vector addition of the 20th trial’s baseline activity 

vector and odor-evoked response vector in the first trial.  

(c) The average baseline activity and the odor-evoked response observed in the catch trial are 

shown after PCA dimensionality reduction. The odor-evoked response in the first trial of the 

second block (iaa, 1st trial) is also shown. A linear sum of the baseline activity in the catch trial 

and the iaa response during the first trial is shown as a dashed brown vector. The actual ensemble 

response observed during the catch trial is shown as a solid brown vector. Note that the angular 

distance between the iaa response vector during the catch trial and the hex response vector 

increases. 

(d) Similar plot as panel (c) but when the app was used as the catch trial stimulus. 

3.3 DISCUSSION 

The response elicited by a sensory stimulus often reduces when the same stimulus is 

repeatedly encountered. This form of adaptation is found in most sensory systems [72, 134-139], 

and is thought to allow humans and other animals to attend to other more salient or novel stimuli 

in their environment [99, 140-142]. However, could diminishing the neural response to the 

recurring stimulus potentially confound other pertinent information about the same adapting 

stimulus, such as its intensity, or alter how information regarding other stimuli are transmitted? 

Our results indicate that adaptation does not lead to a loss of stimulus-specific information. 

Although neural response strength reduced with repetition, information about the odorant identity 

and intensity could be more efficiently encoded (i.e., with fewer spikes). Further, adapting to one 

stimulus altered how other stimuli were processed by the neural circuit. The response features that 

were unique to the deviant stimulus were unaltered. 

How different are these results from prior work on self- and cross-adaptation? Exposure to a 

stimulus reduces sensitivity to subsequent exposures of the same stimulus and to a lesser degree 
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for other cues as well [138, 139, 143]. The fundamental question investigated in this study is not 

about the information lost due to adaptation, but what is retained after adaptation and whether it 

could allow for stable representation of stimulus identity and intensity. While preserving 

information to decode stimulus identity from being corroded by cross adaptation should be a 

ubiquitous requirement in most sensory systems, the need to preserve intensity information may 

depend on whether the odorant elicits varying behavioral response/percepts at different 

concentrations. For example, molecules such as skatole and indole, which smell like feces at high 

intensity, have been reported to be floral at low intensity. Would these percepts change with 

adaptation? It is logical to expect that no matter how much one is exposed to high-intensity vapors 

of skatole, it would still not smell floral and vice versa? 

 Where does the memory of a recently encountered stimulus reside? While olfactory 

sensory neuron responses have been shown to diminish upon prolonged exposures, they recover 

when the stimulus exposure is intermittent with large temporal gaps between consecutive 

exposures (on the order of tens of seconds [89]). Electroantennogram (EAG) recordings from the 

locust antenna also revealed that the magnitude of the EAG signals recover entirely when given a 

minute to recover (data not shown). However, previous results have shown that individual ORNs 

have responses that tend to outlast stimulus durations, and some have OFF responses following 

termination of odor pulse [33, 144, 145]. Such prolonged stimulus-evoked responses can make the 

post-stimulus activity correlated with the stimulus-evoked activity (data not shown). Therefore, 

the ORN response diversity may not be necessary for response suppression to subsequent 

encounters of the same stimulus, especially with long ISI as used in this study [89]. However, if 

the ORN OFF responses persist for long periods, contrast-enhancement of response to a novel 

stimulus may originate right from the periphery. 
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Our results also indicate that the responses in the second relay center, the antennal lobe, 

continue to diminish even for temporally discontinuous encounters of the recurring stimulus with 

long ISI. One possible mechanism underlying these results is that the synapses between the 

olfactory sensory neurons and the antennal lobe PNs could depress to mediate adaptation [146]. 

Our results reveal that although responses to the repeating odorant reduce in many PNs, the spiking 

activity recovers to higher response levels when a deviant stimulus is presented (Figure 3.7b, c; 

unique responders). This observation is at odds with the suggestion that synaptic depression 

might be a possible basis for response suppressions in PNs. Alternately, since locust PNs are multi-

glomerular, it is possible that sensory input for different odorants is transmitted onto PNs through 

different ORN-PN synapses. In addition to recovery from inhibition, our results also indicate that 

some PN responses to the deviant/unexpected stimulus during the catch trial were stronger than 

the unadapted responses evoked by the same stimulus immediately after a 15 min no-odor reset 

window (Figure 3.7c). These latter results cannot be explained by the depression of ORN-PN 

synapses and indicate that some aspects of this short-term memory may also reside within the 

antennal lobe neural network.  

 Consistent with previous findings[72], our data also indicate that PN response changes 

were largest in the first few trials. However, we found that most PN spiking responses continued 

to change, albeit modestly, even after twenty repetitions of the same stimulus (Figure 3.4). As can 

be expected, compared to the individual PN responses, the ensemble response profiles remained 

relatively consistent across trials (Figure 3.5). As a result, although the overall response strength 

diminished over trials, the combination of PNs activated robustly encoded both the stimulus 

identity and intensity (Figure 3.6). Intuitively, the direction of the PN ensemble response vectors 

varied with stimulus identity and intensity and therefore robustly encoded this information. 
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However, the length of these vectors diminished over trials (as visualized by the length of the 

trajectories shown in Figure 3.5a-d, Figure 3.12) but did not confound information about stimulus 

intensity. Such an encoding scheme could allow the adaptation-invariant representation of stimulus 

intensity. These results are consistent with earlier findings[76] and extend them by including both 

unadapted and adapted responses (i.e., all trials) for analyses. 

 In addition to changes in stimulus-evoked activity, we also found that the spontaneous 

activity in individual PNs changed depending on the identity of the odorant that was repeatedly 

presented (Figure 3.2b). The ensemble-level baseline PN responses during two non-overlapping 

epochs when two different odorants were presented resulted in two distinct spontaneous activity 

clusters (Figure 3.2c). A prior imaging study reported that spontaneous activity in pairs of 

glomeruli (where PN dendrites receive sensory inputs) activated by an odor exposure increased 

following termination of the stimulus [147]. In this study, we focused on understanding the 

similarity between the odor-evoked ensemble response and the change in spontaneous activity that 

persists after odor termination and found a negative correlation between the PN ensemble 

responses during these epochs (Figure 3.1). Note that the spontaneous ensemble PN activities in 

the very first trial were random. However, subsequent evolution after the first encounter with a 

repetitive stimulus reduced the correlation between neural activities observed in these two epochs 

(Figure 3.2d, Figure 3.11, Figure 3.12). 

What could be the neural basis for this short-term memory? Prior work has shown that the 

facilitation of recurrent inhibition onto PNs can explain behavioral habituation in fruit flies[148, 

149]. Further, enhancement of odor-specific inhibition was hypothesized to create a sensory 

memory that is a ‘negative image’ of the stimulus. This short-term memory can selectively impede 

the transmission of a familiar stimulus[99]. Indeed, our result is largely consistent with this idea. 
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Sensory memory of a repetitive stimulus caused the spontaneous activity in the network to 

progressively become negatively correlated with the odor-evoked response (Figure 3.1, 3.11). 

Further, facilitation of inhibition has been shown to entrain oscillatory synchronization of neural 

activity in the antennal lobe [72]. Since both odor-evoked oscillations and spike rate reduction can 

be mediated by facilitating inhibition in this circuit, it is possible that the exact mechanism may 

contribute to both these results.  

In addition to other well-characterized mechanisms that may contribute to repetition 

suppression and novelty contrast enhancement, we found a cell-intrinsic form of plasticity in the 

antennal lobe projection neurons. A projection neuron’s spontaneous spiking activity changes in 

an activity-dependent manner. Typically, the excitability increased following a period of 

hyperpolarization and decreased after a bout of intense spiking. Such bi-directional control of 

individual neuron’s excitability has recently been reported in the mice brain stem and suggested 

as a plausible mechanism for controlling vestibulo-ocular reflex [150, 151]. Our results reveal that 

this simple mechanism observed at the level of individual neurons can confer a negative correlation 

to the activity that persists following the stimulus termination. Further, this negatively correlated 

ensemble activity, when linearly combined with a constant sensory input driven by sensory 

neurons, can provide a potential model for both repetition suppression for recurring stimulus and 

contrast enhancement for novel stimuli.  
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Figure. 3.12: Schematic representation of the main ideas of the chapter. 

(a) A schematic showing how odor identity, concentration can be encoded in an adaptation 

invariant manner. The direction of the high-dimensional vector is determined by the combination 

of the neurons activated, and the response strength determines the length of the vector. Our 

results indicate that the ensemble of PNs activated changes subtly with stimulus intensity and 

drastically with stimulus identity. Although the response strength reduces upon repetition, the 

combination of PNs activated is maintained.  

(b) A schematic showing how baseline ensemble neural responses change upon repeated 

stimulus exposure. Without any odor stimulus, there is some inherent variability in the ensemble 

PN baseline response, which can be represented as a random walk in the high dimensional state 

space (dotted line). When an odor stimulus is encountered repeatedly, the ensemble PN baseline 

changes in a specific direction in the state space. The observed changes in the baseline activity 

are stimulus-specific (red and blue arrows). However, note that repeated encounters of the same 
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stimulus results in similar shifts in the baseline, but the starting points in the state space are 

different (indicated using two blue arrows but with different starting points) 
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Chapter 4: Temporal Organization of Odor-

evoked Responses in a Fly Olfactory Circuit: 

Inputs, Outputs and Idiosyncrasies 
 

4.1 Introduction 

Most neuronal networks consist of many sub-types of neurons that interact through different 

microcircuits and actively reorganize the information they receive. To fully understand the 

information processing carried out, at a bare minimum three pieces of information are essential. 

First, it is necessary to understand the input received by the network. Second, to understand what 

computations arise from which microcircuit, it is necessary to follow this input signal as it 

propagates from one processing compartment to the next. And third, it is necessary to understand 

how different neuronal subtypes that are present in these circuits contribute to the information 

processing. An additional layer of investigation could be added by comparing how information is 

represented by equivalent circuits in different individuals. This would allow us to understand the 

generic rules of signal processing and information transformation and help identify any 

idiosyncratic features that may be utilized in different individuals. Understanding such 

idiosyncrasies in neural encoding can arguably help us better understand a source of variance in 

behavioral outcomes observed across individuals. In this chapter, we dissect how odor signals are 

organized and processed as it propagates through the fruit fly (Drosophila melanogaster) antennal 

lobe neural network. 

In the fruit fly olfactory system, vapors from volatile chemicals are transduced into neural 

responses by olfactory receptor neurons (ORN) present in the antenna that then transmit this 
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information to a region called the antennal lobe (analogous to the mammalian olfactory bulb). The 

ORNs of the same type, i.e., expressing the same receptor–co-receptor gene combination, send 

their axons to either one or two spherical structures of neuropil called glomeruli in the antennal 

lobe[152, 153]. The ORN activity drives responses in three major types of neurons in the antennal 

lobe: GABAergic local neurons (LNs), cholinergic projection neurons (excitatory PNs or ePNs) 

and GABAergic projection neurons (inhibitory PNs or iPNs). The local neurons are diverse[154] 

and play important roles in processing sensory signals within the antennal lobe[155, 156] . 

However, LNs do not send their processes outside the antennal lobe, and thus only the activity 

ePNs and iPNs constitute the outputs from this olfactory neuronal network.  

Notably, the ePNs and iPNs differ in how they receive inputs and transmit their output. 

The ePN dendrites innervate a single glomerulus and therefore receive input from a single ORN 

type[153]. The ePNs project their axons onto both mushroom body (a center associated with 

learning and memory[157, 158] ) and lateral horn (a region with a putative role in driving innate 

behavior[159, 160]. In contrast, iPNs dendrites are multi-glomerular and therefore integrate 

information distributed across several different ORN types. The iPN axons are also exclusively 

sent to the lateral horns. The ePNs and iPNs can influence each other’s activity through chemical 

synapses[161]. While the importance of the ePN and iPN activity for odor recognition is well 

established[162-164] , how the ePN and iPN activities are spatially organized and patterned over 

time to facilitate odor recognition remains poorly understood.   

In this study, we used an in vivo, light-sheet, volumetric, calcium-imaging technique to 

examine this issue with high spatial and temporal resolution. We monitored the odor-evoked 

signals at the ORN axons entering the antennal lobe (input), the responses they drive in ePNs 

dendrites located within the antennal lobe, and ePN and iPNs axons (output) entering mushroom 
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body calyx and lateral horn (iPNs only project to the latter). Using this approach, we examined 

how odorant-evoked responses are patterned over time in each of these neural populations. 

Comparison across flies helped understand generic odor coding principles and how they might 

arise from idiosyncratic processing mechanisms utilized within the antennal lobe network. Lastly, 

we examine odor-evoked responses patterns and idiosyncratic processing features across different 

stimulus trials within the same fly.  

4.2 Results 

4.2.1 Light-sheet imaging of odor evoked neural activity 

We used a custom-built light-sheet imaging setup [165] to monitor nearly in real-time 

calcium signals (GCamp6f) from olfactory sensory neurons expressing the orco co-receptor 

(ORNs), and their two downstream targets, excitatory GH146 projection neurons (ePNs) and 

inhibitory Mz699 projection neurons (iPNs) (Figure 4.1a - c). In each fly, one of these three neural 

populations was labeled (Figure 4.1d). While the axonal outputs alone were monitored for ORNs 

and iPNs (as GCamp6f expression levels were weak in the antennal lobe for the Mz699 line), both 

dendritic and axonal calcium signals were monitored for ePNs (AL, LH, and Calyx, GH146 line). 

This approach allowed us to compare the dendritic inputs in the antennal lobe with the functional 

signals reaching the two downstream targets: mushroom body calyces and lateral horns. The 

responses of ORNs, ePNs, and iPNs were probed to a panel of six odorants with two concentrations 

each. The odor panel was chosen to ensure diversity in functional groups, behavioral valence, 

activation patterns, and concentrations. The light-sheet images acquired were segmented using an 

unsupervised non-negative matrix factorization method. Note that the ROIs corresponded to 

glomeruli for Orco-ORN axons and ePN dendrites (Figure 4.2a; top row), and ePN and iPN axonal 
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boutons in calyx (CX) and lateral horn (LH) (Figure 4.2a; bottom row). A quick summary of the 

number of ROIs extracted from each fly is listed in Figure 4.1c. 

In addition to large spatial coverage, we also acquired images rapidly (4 Hz sampling rate) 

to characterize odor-evoked, spatiotemporal response dynamics across the entire population of a 

specific type of olfactory neuron (Figure 4.2). Consistent with earlier reports[166], we found that 

each odorant activated a unique combination of ORNs. For most ORNs, the sensory input lasted 

the duration of the odor response, and for certain odorant-ORN combinations, the unabated 

response persisted and outlasted the stimulus duration (Figure 4.2b; for example, 1o3ol04 and 

Acet04). In a few ORNs, substantial reduction in calcium signals were also evident during the odor 

presentation (ethyl acetate (EA) and ethyl butyrate (EB)).  

In the downstream antennal lobe level, ePN dendrites showed richer response dynamics for all 

odorants (Figure 4.2c). An increase in calcium signals after stimulus termination (i.e., ‘OFF 

responses’) was observed in many glomeruli. Consistent with prior results[167], we also observed 

that odorants that evoked weak ORN inputs had amplified responses at the level of ePN dendrites 

(e.g., Bzald04). We also found the ePN signals attenuated more rapidly. As noted earlier, ePNs 

send axons to both the mushroom calyces and lateral horns, whereas iPNs project only to lateral 

horns. We found that activation patterns of ePN and iPN axons entering these higher centers were 

broadly distributed across several boutons. The ePN and iPN axonal responses tended to be more 

transient than those observed at the level of ePN dendrites.  Together, these results suggest that 

active signal transformation occurs between input and output compartments of these neurons. The 

activation became stronger for all odorants at the higher concentration but nevertheless remained 

highly transient and attenuated rapidly (Figure 4.3). These observations remained consistent when 

data from across the flies were compared. Primarily, we sought to understand how sensory signals 
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are temporally represented and transformed at the input and output of the antennal lobe. More 

importantly, how sensory signals are processed across multiple flies. 
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Figure 4.1: Light-sheet imaging for volumetric in vivo characterization of odor-evoked 

responses at the input and outputs of the antennal circuitry. 

(a) A schematic of the experimental setup. The fly is mounted on a custom mounting block with 

its antennae exposed to an air stream and brain immersed in saline. At each scanning step, a 

whole-brain plane is illuminated by a light-sheet with two wavelengths (488 nm and 561 nm). 

The fluorescent signals are collected by the objective and the downstream optical components. 

(b) Fly lines labeling any one of the following three distinct neural populations were used in our 

experiments: cholinergic ORNs expressing Orco co-receptor (ORNs), cholinergic projection 

neurons (ePNs), and GABAergic projection neurons (iPNs).  For ORNs and iPNs, axonal activity 

alone was monitored. For ePN, both dendritic responses in the antennal lobe and axonal 

responses transmitted onto mushroom body calyx and lateral horns were near-simultaneously 

monitored.  

(c) The number of regions of interest (ROI) extracted by a constrained non-negative matrix 

factorization algorithm is shown for different regions. Both the median and the interquartile 

ranges (IQR, 50%) are shown. Whisker lengths are 1.5 IQR past the low and high quartiles. 

Points out of this range were regarded as outliers. 

(d) Maximum responses observed during the Bzald0202 presentation window are shown for each 

optical plane. Each row shows changes in calcium activity from a labeled neural population at an 

anatomical location. Each column shows responses monitored at one depth of imaging stacks.  

(e) Similar plots as shown in panel D but now showing responses to EB02. 
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Figure 4.2: Extraction of spatial and temporal patterns of odor-evoked neural activity. 

(a) Region-of-interest (ROI) masks extracted by an unsupervised non-negative matrix 

factorization method are overlaid on top of raw calcium signals recorded from ePN dendrites in 

the antennal lobe (top panel) and ePN axons entering the lateral horn (bottom panel). Three panels 

are shown characterizing odor-evoked responses and ROI masks extracted at three different 

depths. Note the mask contours match the anatomical structures (glomeruli and axonal boutons) 

in both regions very well. 

(b through f) Representative responses to a panel of six odorants are shown as a data matrix. 

Calcium signals from individual ROIs extracted in each fly line/region are shown: olfactory 

receptor neurons in the antennal lobe (b); excitatory projection neuron dendrites in the antennal 

lobe (c); excitatory projection neurons axons in the mushroom body calyx (d); excitatory 

projection neuron axons in the lateral horn (e); inhibitory projection neuron axons in the lateral 

horn (f). The warmer color indicates stronger excitation, whereas cooler colors indicate inhibition. 

In each panel, each row represents the temporal response of one ROI arranged in the order from 

dorsal to ventral. All the ROIs across different depths were pooled together and shown in the plot 

(from dorsal at the top to ventral planes at the bottom of each data matrix). Y-axis indicates the 

ROI numbers. White arrows annotate the typical response dynamics. 
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Figure 4.3: Temporal responses in higher concentrations. 

(a to e) Similar to Figure 4.2 (b to f), Representative responses to the same six stimuli but 

delivered at a higher concentration are shown.  

 

4.2.2 Temporal patterning of odor-evoked responses  

Next, we sought to examine how these odor-evoked responses are patterned over time at a 

population level. Our results indicate that spatial patterns of activity in the antennal lobe, both at 

the level of Orco axons (Figure 4.4) and ePN dendrites (Figure 4.5a), were highly similar 

immediately after the onset of the odorants. However, these spatial patterns of neural activity 

evolved to become more distinct over time.  

To quantify this observation, we computed the cosine similarity between responses evoked 

by different odorants at a specific time point during stimulus presentation (Figure 4.5b). As can 

be observed, the responses evoked by different odorants at all five neural processes (Orco axons, 

ePN dendrites, ePN axons entering calyx and lateral horn, iPN axons entering lateral horn) had a 

high correlation immediately after the onset of the stimulus. However, over time these correlations 

reduced, and responses evoked by different odorants became more distinct from each other (i.e., 

lower correlations/similarity).   

These observations were further corroborated when pairwise similarities between odorants 

across flies were examined (Figure 4.5c). Note that pairwise similarities between most odorants 

immediately after onset were high in all three lines examined (tick marks shown below the 

probability density functions in Figure 4.5c). Before onset of any two stimuli, the pre-stimulus 

activity showed wide dispersion of cosine similarity values with a mode near zero, indicating 

randomness in signals recorded during this period. Immediate after odor onset, the distribution 

shifted right, indicating an increase in odor similarity across pairs of odorants and observed in all 
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flies examined. With the progression of time, the distribution of pairwise cosine similarities shifted 

leftwards (i.e., towards lower values), indicating decorrelation of odor-evoked responses.  

The evolution of mean pair-wise correlation across odorants over time showed variable 

reduction rates in each individual fly examined (Figure 4.5d). As can be expected, in all three 

neural populations, low concentration stimuli decorrelated faster and more than responses to the 

same set of stimuli evoked at a higher concentration (Figure 4.5e). Interestingly, only in the ePN 

axonal projections, the speed of response decorrelation was comparable at both low and high 

concentrations. This result directly suggests that some additional modification of response patterns 

occurred in this neural population to rapidly make the neural activity evoked by each odor more 

distinct from others (Figure 4.5e).  

Taken together, these results indicate that the odor-evoked response patterns and the 

discriminatory information needed for selective recognition evolve over time in the early fly 

olfactory circuits. Consistent with findings from other model systems[63, 168, 169], the observed 

temporal patterning made odor-evoked response patterns to become different from the initial 

stimulus-evoked activity but also more distinct when compared to other odorants.  
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Figure 4.4: Odor-evoked responses decorrelate over time. 

(a) Change in fluorescence signals (ΔF/F) for a few representative ROIs on a single optical plane 

at the level of Orco axons are shown as a function of time since odor onset (shown at the top of 

the panel).  Each row reveals responses evoked by an odorant.  
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Figure 4.5: Odor-evoked responses decorrelate over time 

(a) Similar plot as Figure 4.7, Change in ePN dendrites fluorescence signals (ΔF/F) for a few 

representative ROIs on a single optical plane in the antennal lobe are shown as a function of time 

since odor onset (shown at the top of the panel). The right panel shows the evolution of odor-

evoked responses in the antennal lobe ePN dendrites observed in another fly. 

(b) Pattern similarity matrices for a representative fly for each labeled fly line/region are shown. 

Each element in the matrix is the cosine similarity value between a pair of odorants. Hot colors 

indicate stronger similarity, and cooler colors indicate weaker similarity. Each row reveals how 

pairwise odor similarities evolve over time. Again, time since odor onset is indicated at the top of 

the panel. In total, pairwise similarity matrices at eleven time points are shown. Odor stimulus was 

presented from 0.0 sec to 4.0 sec. Note that similarity matrices start with higher pattern similarities 

(cooler/blue colors) and gradually decorrelate over time (hotter/yellow colors). This can be 

observed in all five rows corresponding to responses observed in ORNs, ePN dendrites, ePN axons 

in the calyx, ePN axons in the lateral horn, and iPN axons in the lateral horn. 

(c) Distributions of pairwise pattern similarity (cosine distance) obtained using kernel density 

estimation are shown. Each curve shows pairwise pattern similarity distribution at one time point. 

In each panel, response similarity distributions are shown for five different time points before and 

during stimulus presentation. Tick marks shown below the distributions represent the pairwise 

similarity between every pair of odorants and across flies. Ticks are color-coded following the 

same scheme used for the distributions shown on the top.  

(d) Mean pair-wise cosine similarity in each region is shown as a function of time. Each trace 

shows the mean cosine similarity value across all odor pairs for each individual fly. The color bar 

indicates the 4 s duration when the odorant was presented. Five panels are shown to illustrate 

results from the three fly lines used in the study.  

(e) Mean pair-wise cosine similarity as a function of time is shown. Two traces, corresponding to 

the two concentrations of odorants used, are shown tracking changes in mean cosine similarity 

across odorants/flies.  

 

4.2.3 Idiosyncratic processing underlies how odorants are segregated over 

time 

Given that the initial olfactory circuits have been reported to be stereotyped across flies[152, 170-

172], it would be reasonable to expect the variability across flies in these peripheral neural circuits 

to be low. However, our results (Figure 4.5d) indicate that decorrelation of odor-evoked responses 

occurs at different rates in different flies.  We also observed some glomeruli respond to the same 

stimulus but with different temporal patterns. To further examine this issue, we compared how 

similarity between pairs of odorants evolved over time in different flies more thoroughly (Figure 

4.6a). Note that the hot colors indicate high correlations/similarity, and cool colors indicate 
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negative correlations. Also, clearly observable in the correlation plots shown for the two 

representative flies is the initial vertical band of high correlation immediately after odor onset. 

However, note that the correlation between different stimulus pairs transformed rapidly. Bands of 

highly correlated responses observed immediately after odor onset (show using hotter colors) 

transitioned to dissimilar responses (less hot colors) at varying points in time. More importantly, 

the pairwise odor correlation patterns differed between flies indicating that although the odor 

responses became more distinct, which pairs of odorants became separable, at which point in time 

depended not only on the odorants but also varied from one fly to another. 

 To further quantify this result, we computed and plotted the standard deviation in pairwise 

odor response correlations across flies (Figure 4.6b). The high standard deviation would identify 

pairs of odorants that were decorrelated differently in different flies. Our results indicate that some 

odor pairs were indeed processed in a relatively conserved manner across flies (identified using 

arrowheads), whereas many differed starting from the activity they evoked at the level of ORN 

axons. The standard deviation between flies was relatively less at the level of ePN axons compared 

to their dendritic activity, whereas the multiglomerular iPNs had higher levels of variability even 

though they integrated inputs from multiple different ORNs. These results indicate that while odor-

evoked response patterns decorrelated to become more distinct over time in all flies, this 

computation was performed in an idiosyncratic fashion.   

To illustrate the variability across flies, for each stimulus pair, we plotted the median 

response similarity (Figure 4.6c; median over time and each row shows variance across flies for 

each odor-pair). Our results indicate that the attractive odorants (indicated using arrowheads at the 

bottom of the panel) were more reliably represented across flies and evoked fewer variable 

responses in ORNs and ePNs. Overall, the variability was reduced at the level of ePN axonal 
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responses in the calyx and lateral horns. In sum, these results indicate that odor-evoked responses, 

even in the early olfactory circuits, are not stereotyped for most odorants.  

We wonder if we can further compare odor responses between flies in a precise manner. 

We have identified nine glomeruli from ePN dendrites in the antennal lobe across different flies. 

To obtain such glomeruli, we first registered the same ROIs across flies and assigned registered 

ROIs into specific glomeruli based on flies’ atlas map. Figure 4.7 shows an example of identified 

glomeruli from our calcium imaging data and corresponding confocal imaging atlas map. Note 

that the light-sheet imaging illuminates the antennal lobe at a different angle than what would be 

conventionally done with 2Photon or 1Photon illumination done in confocal microscopes. 

Therefore, the shape of some glomeruli would differ from those published in anatomically atlas. 

With nine glomeruli identified across all flies Figure 4.8, we can further compare temporal odor 

responses and verify our observations. We found that responses preference remains similar across 

different flies (Figure 4.9). However, glomeruli may elicit responses with different temporal 

patterns across flies. Some flies may respond more transiently (Or92a, EB02, fly 7 and 9), while 

others have more lasting responses (Or92a, EB02, fly 8). This observation further confirms 

different flies respond with idiosyncratic features.  
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Figure 4.6: Pairwise odor similarities vary across flies. 
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(a) Pairwise cosine similarities of ePN dendritic responses and how they evolve as a function of 

time are shown as a heatmap. Each row tracks response similarity between one odor pair, and each 

column represents one time point. The identity of each stimulus pair tracked in a given row is 

indicated using a color bar on the left of the heatmap. The four-second odorant presentation 

window is indicated using black vertical lines. Hotter colors indicate more similarity and cooler 

colors indicate less similarity. The right panel shows the evolution of pairwise cosine similarity 

for the same pairs of odorants (ordered as shown on the left panel) but in a different fly. 

(b) For each odor pair, the standard deviation in pairwise odor similarity across individuals was 

calculated and plotted as a function of time. Hot regions in the heatmap show the standard 

deviation of the cosine similarity across individual fly was greater (i.e., more variability across 

flies). Similar plots but characterizing variation in pairwise odor similarity in the five fly-

line/regions studied are shown.  The color bar on the left identifies the odor pair tracked in each 

row. Note that the rows are sorted in descending order based on standard deviation values observed 

in the ORN level. 

(c) The median cosine similarity during the 4s stimulation period for each stimulus pair, and for 

each fly, is shown as a scatter plot (bottom). Therefore, each marker represents median pairwise 

odor similarity observed in a single fly, and each row tracks variation across flies. The identity of 

the odor pairs corresponding to each row is indicated using the color bar on the left. Tighter 

packing of individual markers along a single row indicates responses observed across individual 

flies were highly reliable. The overall distribution across odor pairs and flies is shown on the top.  

 



 

82 

 

 

Figure 4.7: Identified glomeruli examples. 

(a) Left panel, glomeruli from antennal dendrite identified from a confocal imaging setup as atlas 

map in one plane. The red region indicates the specific glomeruli we identified from our functional 

dataset. The name of each glomerulus is also shown. Right panel, another four glomeruli in the 

deeper plane were identified and shown. 

(b) The glomeruli identified from functional imaging of one example fly. The images were 

segmented first and then assigned to the ground truth glomeruli identified from the atlas map by 

matching the relative size and shape. The Left and right panels show two different planes of images 

recorded. 
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Figure 4.8: Identified glomeruli across all flies. Glomeruli identified for two planes in each 

GH146 labeled fly are shown. Each sub-panel shows nine identified glomeruli in two planes as 

Figure 4.4b.  
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Figure 4.9: Comparing temporal responses of the same glomerulus across flies. 

(a) Temporal responses (DF/F) of Or67d to odorants Bzald02 and EB02 are shown. Different 

rows show Or67d responses in 3 different flies. The odor presentation period was indicated with 

a black bar.  

(b, c) Similar plots as panel a, but show the temporal responses of glomerulus Or83c and Or92a. 

 

4.2.4 Idiosyncratic processing under short-term memory 

We compared the neural responses of the first and second trial of stimulus presentation by 

directly plotting the ensemble responses after dimension reduction using PCA (Figure 4.10). We 

found, consistently across all sub-regions and neuronal types, the responses still evolve within the 

same manifold for the same stimulus identity like what we have observed in PNs responses in the 

locust antennal lobe. Similarly, the responses decrease after the very first trial of odor presentation. 

However, responses from iPN tend to have more reduction compared to other responses regions. 

This indicates the adaptation already starts from olfactory sensory neurons, but processing from 

network interactions further increases the reduction of the response, resulting in more adaptation 

in downstream neurons. 

Next, we examined if the decorrelation effect observed remains the same under the short-

term memory. We compared the pairwise correlation between odor-evoked responses observed 

across trials within a single fly, and across observations made in different flies (Figure 4.11a, b; 

for GH146 PN responses in the antennal lobe). Note that each heatmap matrix still has the 

following structure: (i) each row reveals similarity between a specific odor pair before, during 

(between the vertical lines) and after stimulus presentation window, (ii) different rows correspond 

to different pairs of odorants, (iii) hotter colors indicate higher similarity in odor-evoked responses, 

and cooler color indicates dissimilarity. As can be noted, the spontaneous activity, i.e., odor-

evoked responses during the period before stimulus onset, is random. However, after stimulus 
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onset, the similarity between odor pairs increases for almost all odor pairs (initial column of hot 

color after odor onset). Subsequently, the similarity between different odorant pairs decreases at 

different rates as the stimulus is sustained. It would be worth pointing out that the pairwise 

correlation heatmaps are strikingly similar across two trials of recordings made from a single fly 

(Figure 4.11a or b; left vs. right column). However, note that the correlation patterns across 

different flies are qualitatively different (Figure 4.11a vs b). To quantify this result, we computed 

the Frobenius norm between the two pairwise odor correlation matrices. We performed this 

comparison for responses observed in two different trials within the same fly and between two 

trials across different flies. As expected, within fly response correlations were higher indicating 

stability of responses observed during different trials. Responses observed in different flies, while 

consistent across trials for each fly, had significantly lower levels of response correlations. This 

result also identifies the noise floor (variations across trials in the same fly) and how differences 

in odor-evoked response correlations observed across flies are significantly higher (Figure 4.11c).  

Further, the evolution of mean pair-wise correlation across odorants over time showed 

variable reduction rates in each trial (Figure 4.12). The overall speed at which decorrelation 

between odorants occurred was accelerated during the second block of trials. Interestingly, ePNs 

dendrites and axons showed a stronger reduction compared to the other neuron population. This 

result suggests that a role of short-term memory was to expedite the speed of discrimination 

between odorants.  
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Figure 4.10: Short-term memory across different microcircuits. 

(a) Odor-evoked orco-AL ROIs response trajectories are shown after dimensionality reduction 

using PCA. Solid trajectory represents the responses from the first trial. The responses in the 

second trial are shown by dashed trajectories. In total, three different stimuli were shown.  

(b, c, d, e) Similar trajectories plots as panel a, but from GH146-AL(b), GH146-Calyx(c), 

GH146-LH(d) and Mz699-LH(e) are shown. 
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Figure 4.11: Within-fly vs. across-flies comparison. 

(a) Both panels show similar pairwise cosine similarities matrices as panel Figure 4.9a, but the 

matrices are obtained from responses of two trials within the same fly. 

(b) Similar plot as panel a, but neural responses correlation matrices from another fly are shown. 

(c) Within fly variation was quantified by the correlation between cosine similarity matrix during 

the odor-evoked period across two flies. The distribution of correlation values was summarized 

by the bar plot. The first column shows the correlation of similarity matrix within fly across two 

trials. The second column shows the correlation distribution for the same trial (first trial) but 

across flies. The third column shows the correlation distribution of the second trial across flies. 

The last trial shows correlations calculated from different flies and different trials. Note that 

within fly correlations are significantly larger than across flies’ variations.  
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Figure 4.12: Mean pair-wise cosine similarity comparison across trials. 

(a-e) Mean pair-wise cosine similarity traces as a function of time in each fly line/region are 

shown. For each trace in each neuronal population, the mean pair-wise cosine similarity was 

obtained by averaging across all stimulus pairs and all flies. Two traces, corresponding to the two 

trials, are shown tracking changes in mean cosine similarity due to short-term memory. 

 

4.2.5 Stimulus evoked ON and OFF responses 

Finally, we examined how stimulus-evoked responses were patterned after the stimulus 

termination (i.e., the stimulus-evoked OFF responses). We found that at the level of ORNs, two 

types of responses were observed after stimulus termination: continuation of the ON response and 

inhibition in new ROIs that did not have an ON response. Excitatory responses only during the 

OFF period were seldom observed at the level of sensory neuron responses (Figure 4.13a).  

 In comparison, the OFF responses observed at the level of ePN dendrites and ePN/iPN 

axons showed response patterns that were more orthogonal with respect to the ON responses 

(Figure 4.13a). ROIs that were active during the ON period returned to baseline activity levels or 

even below baseline level responses (i.e., inhibition) in many ROIs. Whereas ROIs that were not 

activated by stimulus exposure or even inhibited during the ON periods tended to have a strong 

OFF response.  

 To understand how dissimilar the neural responses were observed during and after stimulus 

termination, we performed a cross-correlation analysis. A snapshot of activity across all ROIs was 

regarded as a high-dimensional vector. The similarity between each response vector with every 

other response vector that was observed over time was computed and shown succinctly as a 

correlation matrix (Figure 4.13b). Hot colors were used to indicate high correlation/similarity and 

cool colors to indicate negative correlation/dissimilarity. Note that while response vectors 

observed during odor presentations (i.e., the ON responses) were well correlated amongst 
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themselves, the responses observed after odor termination (i.e., the OFF responses) poorly 

correlated with these ON responses (arrowhead). This relationship between the ON and the OFF 

responses was observed in all three neural populations and every fly studied. 

To quantify how much the OFF patterns deviated from the ON patterns, we computed the 

angles between the mean population vectors during the ON and OFF periods (Figure 4.13c). 

Consistent with the interpretation of the correlation plots, for most odorants, the ON and OFF 

response vectors evoked by the same odorant had an angular similarity in the 60– 100range 

(closer to 0 indicates similar responses and 90 indicates orthogonal responses).  

Finally, we examined whether the response patterns evoked after odor termination are as 

diverse as those observed during stimulus presence. To compare pattern diversity, we used the 

number of principal components that were required to capture 90% of the total variance of the data 

(can also be thought of as a measure of intrinsic dimensionality of the dataset; Figure 4.13d). 

Surprisingly, compared to the ON responses, our results indicate that the OFF patterns were more 

diverse and needed more principal components to capture the same amount of variance in the 

response patterns observed.  

In sum, our results indicate that for most odorants, another round of diverse response 

patterns were observed following stimulus termination. More importantly, these response patterns 

were dissimilar to the odor-evoked ON responses and were a common encoding feature in all three 

neural response populations and all flies studied. 
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Figure 4.13: Odor evoked ON vs. OFF responses. 

(a) The top and bottom 5% of traces sorted by the mean amplitude during stimulus are shown, 

with the top 5% in red, and the bottom 5% in blue. The ON and OFF response windows are 

schematic schematically identified in the plot. Responses evoked by two representative odorants 

in each of the five fly-line/region combinations are shown. 

(b) Evolution of correlation between neural activity before, during and after odor exposure are 

shown as a heatmap. The black bar on the left and top indicates the time period when the stimulus 

was delivered. Hot colors indicate high similarity and cool colors indicate low similarity. Note that 

each non-diagonal pixel represents the similarity between ensemble ROI activities in one time bin 

versus those in another time bin. One row or column represents the correlation between one 

ensemble ROI activity vector with all other ensemble ROI vectors. Correlation heatmaps for two 

representative stimuli are shown for all three fly lines and five locations imaged.  

(c) Angle between mean ON and OFF response patterns evoked by each odorant is shown. 

Different colors represent different stimuli, and the line style represents the two concentration 

levels. 

(d) The number of principal components needed to account for 90% of the data variance during 

ON and OFF response periods are plotted as a pair of points for each fly line/regions. Colors 

indicate individual flies.  

 

4.3 Discussion 

We sought to understand how sensory input from olfactory receptor neurons is temporally 

reformatted by two different downstream neural populations: ePNs and iPNs. While ePNs are 

cholinergic and receive input from a single glomerulus [153] , iPNs are mostly GABAergic and 

multiglomerular [173]. Further, while ePNs project to both calyx and lateral horn, iPN axons only 

innervate the lateral horns [163]. So, given the differences in the nature of input received (from 

one vs. many types of ORNs), and the downstream centers they feed onto, it is reasonable to expect 

that the ePNs and iPNs use different transformations to reformat sensory information received. 

However, our data reveal that several temporal aspects of odor-evoked responses were strikingly 

similar in both these neural populations.  

Our results indicate that the odor-evoked responses were dynamic and evolved over time 

at the level of sensory neurons and in both ePNs and iPNs. The initial responses immediately after 

the stimulus onset were strong but did not have much discriminatory information. Over time, 
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neural activity patterns evoked by different stimuli became more odor-specific. This decorrelation 

of odor-evoked responses over time was observed in all three neural populations examined. 

However, the trends observed (which odor pair became distinct when) varied even between the 

dendritic and axonal compartments of the same neural populations, and between flies. This result 

indicates that a generic computational function can be achieved in an idiosyncratic fashion in flies, 

and that the information transmitted to the calyx and lateral horns may be qualitatively different. 

The decorrelation result is strikingly similar to what has been reported in other model 

organisms, particularly in zebra fish[63], with one caveat. We found that decorrelation already 

happens at the ORN level and gets accelerated downstream. 

 However, it is in stark contrast with a recent hypothesis put-forth for odor recognition that 

suggests initial responses carry information odor identity[174]. One possible explanation for the 

lack of odor-specificity at the stimulus onset could be that the neural activity immediately 

following stimulus presentation indicates stimulus presence and help with localization. Such 

localization signals have been reported in many other sensory systems[175]. We note that the 

responses immediately following this localization signal may still be extremely important for the 

fly to recognize the odorant.  

Extraction of odor-specific information may happen in two different ways. First, the 

information may be refined in a systematic manner, such that the initial responses recognize odor 

groups and additional features are extracted to allow precise recognition (Odor present -> fruity -

> tropical -> pineapple; analogous to a decision tree). In this case, a snapshot of activity during a 

later time point is sufficient to recognize the stimulus, while the initial responses may be utilized 

for other sensory computations. The second possibility is that features are extracted in a serial 

fashion, but the later responses need not be the most unique features. This latter scenario is 
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analogous to serial parsing of words (r·e·a·d· vs. r·e·e·l· vs. r·a·i·l· vs. m·e·e·t·). While the initial 

letters are still important for word recognition, the subsequent letters extracted are necessary but 

in isolation are not sufficient to allow precise recognition. In this case, an integration of all the 

features extracted might be necessary for stimulus recognition. Our results indicate that temporal 

patterning observed in the fly antennal lobe may be more analogous to the first scenario (i.e., 

pairwise similarity smoothly reducing over time), but achieved in an idiosyncratic fashion, 

indicating multiple different solutions may exist to this problem.  

It would be important to point out that variations across different individuals could arise 

trivially due to unaccounted differences in experimental conditions between different experiments. 

However, we have identified the noise floor by finding much lower within fly variations compared 

to across fly variations (Figure 4.11). Further, our results reveal that not all results we observed 

varied across individual flies. Even in the temporal dimension, certain pairs of odorants evoked 

responses that were highly consistent (Figure 4.6). Such robustness in temporal features, at least 

for a subset of odorants, indicates that the variations observed in our dataset cannot be attributed 

solely to trivial differences in experimental conditions. It would be worth pointing out that such 

variations in neural responses could underlie differences in behavioral preferences in individual 

flies[176]. What variations are important and therefore get translated to mediate idiosyncratic 

differences in odor preferences, and what variations are squashed to underlie robust recognition 

needs further examination. 

Finally, our results indicate that the stimulus-evoked responses do not stop after stimulus 

termination. At the level of sensory neurons, these are the persistence of activity, in some cases 

excitation and other inhibition, that was observed during the stimulus. However, in the ePN and 

iPN dendrites and axons, the responses often switched from one ensemble to another. Therefore, 
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stimulus ON and OFF responses were orthogonal to each other, and was observed in all flies. 

These results are consistent with those reported in other sensory systems, and in particular the 

locust olfactory system[177].  

What is the purpose of these elaborate OFF responses? In cockroaches, such responses 

were observed directly at the level of sensory neurons and were thought to indicate a reduction in 

stimulus concentrations[178]. Such dedicated ON and OFF neurons were not found in flies. A 

single ROI in any region was able to respond during either ON or OFF periods depending on the 

odor. In a different study, it was reported that these OFF responses may indicate ‘unsensing’ of a 

stimulus (analogous to a pause after a tone or space after a word) and were found to be better 

predictors of termination of behavioral responses[179]. Furthermore, our results here indicate that 

the response patterns observed after stimulus termination were stimulus specific and more diverse 

than those observed during the stimulus presence period. Further, when odorants are encountered 

in sequences, the OFF response of the first stimulus was found to contrast enhance the neural 

activity evoked by the second stimulus. While these results are similar to the findings observed in 

locusts, the causal relationship between OFF responses and their behavioral contributions remains 

to be determined.   
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Chapter 5: Invariant Odor Recognition with 

ON-OFF Neural Ensembles  
 

5.1 Introduction 

Robustly recognizing a sensory stimulus is a necessity for the survival and propagation of all 

animals. Since this capability is demonstrated in all sensory systems, it raises the following 

question: what is the neural basis that underlies this feat of pattern recognition? In the previous 

two chapters, we have examined how short-term memory alters odor processing in the antennal 

lobe network. As was noted interferences arose from changes in the sensory circuit due to plastic 

changes arising either from prior exposures or co-occurrence with other sensory cues. These 

changes can be regarded as intrinsic perturbations as the sensory stimulus encountered is the same, 

but the processing network of neurons have been altered some way or the other. 

Additionally, most stimuli are encountered in a multitude of ways in natural environments. 

Often, stimulus features such as intensity, duration, and recurrence could vary. External 

perturbances due to changes in environmental conditions (such as changes in humidity or 

temperature), the presence of other competing cues, or the temporal context (i.e., when it is 

received in a stimulus sequence) could also change independently of the variation in stimulus-

specific features. Given the complexity in carrying out the basic task of recognizing a stimulus, 

we wondered if there exists a computational framework that can compensate for all these disparate 

sources of variation and allow robust recognition of a stimulus. In this chapter, we will examine 

this issue using comprehensive datasets we have obtained in the locust olfactory system [8, 65, 67, 

69, 76, 78, 122, 130, 179-183]. 
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 In the locust olfactory system, odorants activate olfactory receptor neurons in the antenna. 

This signal is transmitted downstream to the antennal lobe (analogous to the vertebrate olfactory 

bulb) where it drives responses in cholinergic projection neurons (PNs) and GABAergic local 

neurons (LNs). The interaction between PNs and LNs transforms the sensory input received into 

complex patterns of spiking activities distributed across ensembles of PNs that become the output 

of the antennal lobe circuit. Prior work has shown that information about the identity and intensity 

of an odorant is encoded by spatiotemporal PN activity patterns[76]. While individual PN 

responses were perturbed by manipulating stimulus dynamics[122, 184], stimulus history[77, 80], 

and presence of background chemicals[67], the ensemble neural patterns still allowed recognition 

of odorants. Behavioral evidences also support this interpretation and reveal that odorants can be 

recognized independent of background cues[67]  and stimulus history[80].  

It is worth noting that prior studies examined neural response variabilities that arose due to 

each of these perturbations in isolation. In natural contexts, such interferences could occur 

independently or in conjunction with one another. Could robust odor recognition still be achieved? 

Would an array of schemes that extract information from a variety of response features be 

necessary for compensating changes associated with each perturbation? Alternately, can the 

variable neural responses be decoded in a manner that can simultaneously allow invariant odor 

recognition independent of all these perturbations? If so, what neural response features would be 

important for achieving this result? We sought to examine these issues in this study.  

5.2 Results 

5.2.1 Robust odor recognition under short-term memory 
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In the locust antennal lobe, odor-evoked PN responses reduced over repeated exposures of 

the same stimulus. During the earlier trials of odor exposures, responses elicited at low intensities 

were comparable to those evoked during the later trials of the same stimulus but at a higher 

intensity (Figure 3.5). We found combinatorial PN activity profiles can still retain information 

about odor identity and intensity and is robust to changes that occur due to adaptation (Figure 3.5, 

3.6). Can odorants still be robustly recognized independent of variations induced by short-term 

memory? We will study this question in this chapter. 

 To investigate this issue, we first pooled the ensemble activity across all PNs in a 50 ms 

time bin as a high-dimensional neural activity. To detect the presence of the target odorant and 

selectively recognize the identity of the target odorant, we trained a linear support vector machine 

classifier. As the stimulus was presented 25 times (25 trials), we used a leave-one-trial out scheme 

to train the classifier. For example, to test the presence of the last trial stimulus, we will use the 

responses in the first 24 trials to train the SVM classifier. Figure 5.1 summarizes the result from 

a bin-by-bin, trial-by-trial classification analyses. Each tick represents the class label that was 

predicted in a given 50 ms time bin in a specific trial. If the ensemble neural responses were 

correctly recognized and predicted by the SVM classifier, that time bin will be labeled by the 

corresponding identity/intensities labels. This method allows us to precisely examine the 

recognition ability in a trial-by-trial manner. 

For results shown in Figure 5.1a, we trained two different classifiers: one for recognizing 

Hex and another for recognizing Oct. The classification results clearly showed that all trials of 

introductions of the hex or oct, even in later trials, were correctly detected and recognized by the 

SVM classifier. More interestingly, during spontaneous activities window, some time segments 
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were also classified as Hex or Oct, indicating the altering of spontaneous activities due to short-

term memory as discussed in Chapter 3. 

Next, we examined robustness of odor recognition when we trained two different classifiers 

to discriminate between two different intensities of the same odorant. Note that the overall spiking 

activities during later trials of higher intensity odorant presentation were comparable to those 

during early trials of lower intensity odorant presentation.  As can be noted in Figure 5.1b, the 

lower concentration of hex presentation can still be robustly recognized and separated for its higher 

concentration regardless of trials number. This result suggests that the odor identity and intensity 

information can still be robustly recognized under the perturbation of short-term memory.  

We also applied SVM classifier to the catch trial dataset (Figure 3.7). In this dataset, to 

obtain the classification results during the first 25 trails of Hex or ten control trials of the catch 

odorant (Iaa or App), a similar leave-one-trial-out scheme was used to train SVM classifier. 

However, to obtain the results during catch trial (the 26th trial after 25 trials of Hex repetition), 

both 10 control trials and first 25 trials of Hex were used as the training dataset. Similarly, after 

25 trials of repetitive Hex presentation, the linear SVM classifier can still correctly recognize the 

responses evoked by deviant stimulus (Iaa or App) in the 26th catch trial (Figure 5.1c, d). 
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Figure 5.1 Robust odor recognition independent of perturbations from short-term memory. 

(a, b) Linear SVM classification analysis results are shown in a bin-by-bin, trial-by-trial fashion. 

A leave one trial out scheme, in which if one trial is the target prediction trial, the remaining trials’ 

neural response will be used as training data, was used to train the classifier. If the neural response 

was classified and assigned to the correct target class, a class label would be assigned (a, blue: 

Hex 1%, red: Oct 1%; b, blue: Hex 1%, Red: Hex 0.1%). The Gray bar indicates the stimulus 

presented period.  

(c, d) Similar plots as panels a and b, but for catch trial dataset was used (Figure 3.7). To obtain 

the classification result of the catch trial, neural responses from the first 25 trials of Hex 

presentation and ten control trials of the catch odorant (Iaa or App) were used as the training set. 



 

103 

 

 

Figure 5.2 Comparison of weights and PNs’ responsiveness.  

(a) The PSTHs of each PN during 4 s solitary hex presentation and 4 s after stimulus termination 

are shown. Each trace shows PSTH of one PN. The PSTHs are sorted and color-coded based on 

the hex SVM classifier weights assigned to each PN (n = 80 PNs). The neurons assigned the most 

positive weights are at the top, and the most negatively weighted neurons are near the bottom. 

SVM classifier weights assigned to each PN are also schematically shown as a heatmap to the 

right. 

(b) The fraction of ON and OFF neurons that received ‘+ve’ or ‘-ve’ weights are shown as a bar 

plot for comparison. 

(c, d) Similar plots as panels a and b, but Iaa-SVM classifier with catch trial datasets were shown. 
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To understand why the classification results were robust, we examined the weights 

assigned to different PNs in the dataset (Figure 5.2). We sorted the PNs based on the weights 

assigned by the SVM classifier and plotted their average PSTH to the solitary target odor pulse 

(i.e., training data that was used). In Figure 5.2a, b, we showed the PSTHs and weights from Hex 

classifier and in Figure 5.2c, d, the PSTHs and weights from Iaa (catch odorant) were shown. 

Note that PNs with strong ON responses are at the top, and PNs with stronger OFF responses are 

at the bottom. The weights assigned to each PN by the hex-SVM (Figure 5.2a) or iaa-SVM 

(Figure 5.2c) classifier were shown next to the firing rate plots respectively to allow comparison. 

Our results indicate that ON responsive PNs received mostly positive weights, and the OFF 

responsive PNs were assigned negative weights (Figure 5.2b, d).  

We wondered whether this simple approach would be sufficient to deal with more complex 

extrinsic perturbations such as those induced by varying recurring stimuli, background cues, 

distractor odorants and humid ambient conditions. In the following sections, we will systematically 

study the generalization of this approach for robust odor recognition. 

5.2.2 Robust odor recognition in a behavioral assay 

We began by testing our core hypothesis that locusts could indeed recognize an odorant in 

an invariant fashion. To do this, we used an appetitive conditioning assay (Figure 5.3a; left panel). 

In this assay, starved locusts were presented with an odorant (conditioned stimulus; CST) followed 

by a food reward (unconditioned stimulus; UST). The food reward is alone sufficient to evoke an 

innate extension/opening of sensory appendages close to the mouth of the locusts (called the 

maxillary palps). After training with six trials when CST and UST were delivered in an overlapping 

sequence, the ability of the locusts to recognize the CST was examined in an unrewarded testing 

phase. Opening of the maxillary palps following presentation of the CST was regarded as an 
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indicator of successful recognition of the trained odorant. Note that the palp opening response 

(POR) was selective to the CST (with a few caveats discussed below). Further, to make the readout 

quantitative, locust palps were painted with a non-odorous green paint, and the distance between 

the palps was tracked as a function of time (Figure 5.3a; right panel). Notably, the PORs remained 

consistent when probed multiple times with the CST in the unrewarded test phase thereby allowing 

us to examine the POR when we made a battery of perturbations. 

First, we examined how PORs changed as we varied the duration of the stimulus. We found 

that the PORs initiated rapidly, and the palps were kept open for the duration of the odor pulse and 

terminated following cessation of the trained odorant. Although we trained locusts using a 

particular duration of CST pulse (4 s pulse of hexanol for results shown in Figure 5.3b), we found 

that POR duration was briefer for a shorter CST pulse, and the palps remained open for the entire 

duration of a longer CST pulse. These results indicate that locusts recognized the CST and 

maintained their responses to the trained odorant independent of the stimulus duration during 

training. Further, when two short, non-overlapping pulses of the CST were presented in quick 

succession, the locust palps opened, began closing, and again opened matching the dynamics of 

the stimulus delivery (Figure 5.3b; rightmost panel). The fact that the second CST pulse in the 

stimulus sequence elicited a POR comparable to the first pulse indicates that locusts could respond 

to the trained odorant robustly independent of variations in the stimulus delivery/encounters. 

Could response to a stimulus change depending on what other cues were encountered 

recently? To understand this, we presented the CST in different non-overlapping sequences with 

a number of distractor cues. Note that the distractor cues terminate before the onset of CST, and 

are only used to determine if stimulus history can alter recognition performance. Our results 
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indicate that locusts could robustly recognize the trained odorant irrespective of the stimulus that 

was encountered before (Figure 5.3c).   

Next, we wondered whether locusts trained to recognize a particular odorant could do so 

independent of the presence of other competing cues (Figure 5.3d). Note that locusts trained with 

a CST had a POR only when tested with the trained odorant (isoamyl acetate or iaa), and had no 

detectable POR response following the presentation of an untrained odorant (benzaldehyde or 

bzald). Presentation of the trained odorant (iaa) atop the untrained background cue (bzald) with 

different latencies did not alter the locust POR response to the trained odorant. In all the cases, a 

rapid and vigorous POR response was observed following the introductions of the CST, and the 

palps started closing upon the termination of the CST. Similar results were also reported when 

locusts trained with hexanol were tested by presenting hex alone or atop a background cue[67]. 

Taken together, these results indicate that the locusts could recognize the trained odorant in a 

background invariant manner.  

Could changes in ambient conditions impact recognition performance? To understand this, 

we trained locusts in dry conditions (0% relative humidity). In the testing phase, we examined the 

ability of locusts to recognize the conditioned stimulus presented either in dry or humid (100% 

relative humidity) conditions. Our results show that locusts opened their palps to all the 

introductions of the conditioned stimulus in both dry and humid conditions (Figure 5.3e; left 

panel). The performance was near identical indicating a robust odor recognition that was invariant 

with respect to changes in ambient conditions. Similar results were also obtained when locusts 

were trained in humid conditions and tested in both dry and humid conditions (Figure 5.3e; right 

panel). These results indicate that locusts can recognize trained odorants independent of changes 

in ambient conditions.  
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The locust recognition performance under the battery of perturbations discussed is 

summarized in Figure 5.4. Taken together, these results support the idea that locusts could 

recognize an odorant independent of variations in stimulus features such as its duration and 

dynamics, and extrinsic features such as encounters with other distractor cues, presence of other 

competing cues, or changes in ambient conditions (Figure 5.4b-e). Furthermore, while locust 

responses were selective and the CST evoked the strongest response, locusts trained with one 

odorant also showed PORs to a select few other odorants (generalization; Figure 5.4a). These 

observations raise several questions regarding whether certain odor-evoked neural response 

features remain robust to such perturbations to invariant odor recognition, and whether achieving 

robust odor recognition also causes behavioral responses to generalize across odorants.  
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Figure 5.3: Invariant odor recognition in an appetitive conditioning assay.  

(a) Schematic showing the training and testing protocols followed for the palp-opening response 

assays. Briefly, starved locusts were presented six trials of the training odorant (conditioned 

stimulus) followed by a food reward (unconditioned stimulus). The odorant pulse was 10 s in 

duration and the food reward was presented 5 s following the onset of the conditioning stimulus. 

Locusts that accepted food rewards in 4/6 training trials were regarded as successfully ‘trained 

locusts,’ and their palp-opening responses (PORs) were evaluated in an unrewarded testing phase. 

Selective opening of their maxillary palps (sensory appendage close to the mouth) upon onset of 

the conditioning stimulus was regarded as successful recognition of the training odorant. The 

PORs were quantified by painting and tracking the distal ends of the palps (see Methods). A 

sample POR trajectory is shown on the right where the training odor presentation (color bar) led 

to increased palp separation, indicating a palp-opening response. 

(b) Locusts were trained using hexanol as a conditioning stimulus and were tested using hexanol 

pulses that varied in their duration. The mean palp opening responses ( s.e.m.) of all trained 

locusts are shown for test pulses of 0.75 s (n = 30 locusts), and 10 s (n = 30 locusts) durations, and 

a sequence of two pulses that was 2 s ON–2 s gap–2 s ON (n = 27 locusts). The color bar indicates 

when the odor was presented.  

(c) Locusts were trained using hexanol as the conditioning stimulus and tested by presenting 

hexanol pulses in a non-overlapping sequence following the termination of a distractor odorant 

(i.e., introducing variations in stimulus history). Trained locusts first encountered a distractor odor 

pulse for 4 s, followed by a 0.5 s gap, which was then followed by a 4 s pulse of hexanol during 

the testing phase. The mean responses ( s.e.m.) of locusts (n = 27) tested with hexanol 

presentations following two distractor odors (bza and cit) are shown. The color bars indicate when 

odors were presented. Blue bars indicate the time periods when the distractor was presented, and 

the red bars indicate the duration of exposure to the trained odorant. 

(d) Locusts were trained using iaa as a conditioned stimulus and tested by presenting iaa atop a 

background odorant (bza). Left panel, the mean palp opening responses to solitary presentations 

of iaa and bza are shown. Note that only the conditioned stimulus evokes POR responses, whereas 

the bza introductions did not elicit any detectable POR responses. Middle and Right panels, PORs 

(mean  s.e.m; n = 21 locusts) are shown during presentations of iaa that was introduced 2 s and 4 

s after the onset of a sustained bza pulse (i.e., the background odorant). The color bars indicate 

when odors were presented and how they overlapped. 

(e) Left: Locusts trained with hexanol in a dry background (0% RH) were tested for hexanol 

responses in dry (red) and humid (100% RH, blue) conditions (see Methods). The mean PORs of 

trained locusts (n = 21) are shown. The color bar at the bottom indicates when the odor was 

presented. The shaded regions indicate the s.e.m. Right: Similar plots as the left panel, but for 

locusts trained for hexanol in humid (100% RH) conditions are shown (n = 20 locusts). 
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Figure 5.4: Summary of odor recognition performance in the behavioral assay.  

(a) The probability of PORs for locusts trained using hexanol (hex) as conditioning stimulus is 

shown as a bar plot. PORs to the trained odorant (shown in red) and to a diverse odor panel (non-

trained odors shown in gray) are shown to allow comparison (see Methods). A higher probability 

indicates a larger proportion of trained locusts performed significant PORs during the testing phase 

when presented with that corresponding odorant (identified along x axis). As can be seen, locusts 

had the highest POR probability to the trained odorant. Interestingly, locusts trained with hexanol 

also had significant PORs to 2-octanol (2-oct) and isoamyl acetate (iaa). Other odorants: citral 

(cit), benzaldehyde (bza), apple (app), L-carvone (L-carv), neem, geraniol (ger), cyclohexanone 

(chex), and methyl salicylate (m-sal) did not evoke strong PORs in hex-trained locusts. These 

results were obtained by combining two datasets to yield n = 47 locusts for hex, n = 27 locusts 

tested with random presentations of hex, 2-oct, iaa, cit, bza, app, and n = 20 locusts tested with 

random presentations of hex, L-carv, neem, ger, chex, m-sal. 

(b) POR response probability for locusts trained and tested with the same conditioning stimulus 

(hexanol) but presented for different durations (0.75 s or 10 s), or in a pulsatile fashion (2s ON – 

2s gap – 2s ON). Refer Figure 1B for representative POR traces. As can be noted, locusts have a 

high probability of response for all test pulses indicating robust recognition invariant of the 

stimulus duration or dynamics. 

(c) POR response probability following iaa introductions either solitarily or atop a background 

odorant (bza). Note that iaa was presented with two different latencies (2s and 4s) following the 

onset of the sustained bza pulse. Representative POR traces for this stimulation protocol are shown 

in Figure 1D. Iaa-trained locusts showed a very low probability of response to the untrained 

distractor odor (bza). All introductions of iaa, either solitarily or atop bza background, evoked 
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strong POR responses with a high probability of response across locusts. These results indicate 

that locusts could recognize a trained odorant in a background-invariant fashion. 

(d) POR probabilities during hex introductions following ten different non-overlapping distractor 

pulses are shown. Hexanol was used as the conditioning odorant. Representative PORs are shown 

in Figure 1C. As mentioned earlier, n = 27 locusts were tested with 2-oct, cit, iaa, bza, app as 

distractor stimuli, and a different set (n = 20 locusts) were tested neem, ger, L-carv, chex, m-sal as 

distractors. Distractor odorants, the first pulse used in the sequence, are identified along the x-axis. 

These results indicate that hex-trained locusts have a high probability of response to the trained 

odor irrespective of which distractor odorant was encountered prior to their onset (i.e., invariance 

with respect to stimulus history). 

(e) The POR probability for locusts trained with hexanol in a dry background (left) and for locusts 

trained with hexanol in a humid background (right) are shown. As can be seen, for both training 

paradigms, locusts have a high probability of response to hex under both dry and humid testing 

conditions. The results indicate that a trained stimulus could be recognized independent of changes 

in ambient humidity conditions. The difference in POR responses, though they appear to be 

slightly stronger in training conditions, are not statistically significant (p = 0.405 for dry training, 

p = 0.054 for humid training; t-test). 

 

5.2.3 Stimulus dynamics, history and competing cues induce variations in PN 

responses 

How were odor-evoked responses of individual projection neurons (PNs) in the locust antennal 

lobe perturbed? To understand this, we designed a stimulation protocol that presented two ‘target 

odorants’, hexanol (hex) and isoamyl acetate (iaa), in a pulsatile fashion (Figure 5.5a, b). Note 

that the two target odorants (hex and iaa) were also used as CST in the behavioral experiments. 

These target odor introductions were of different durations with varying inter-stimulus intervals, 

or presented atop a background cue (benzaldehyde; bzald), or following a distractor odorant (citral; 

cit).  

We recorded responses of eighty-nine PNs in the locust antennal lobe (n = 25 locusts). 

First, we examined the ability of individual PNs to robustly encode the identity of two ‘target’ 

odorants. In general, we found that most individual PNs had robust and reliable responses during 

certain exposures of the target odorant but not all. In the entire ensemble of PNs that was recorded 

(n = 89 in total), we found that four PNs had a detectable response to all encounters of the target 
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odorants (Figure 5.5a, b; PN6). Since these ‘reliable’ PNs were activated by both the target 

odorants (hex and iaa), and their response intensity and spiking patterns varied considerably across 

pulses (Figure 5.5c), we note that these PNs individually did not provide discrimination between 

these two odorants.  

 To quantify the response variability observed at the level of individual PNs, we computed 

 

Figure 5.5: Individual projection neuron responses are highly variable. 
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(a) Left plots, raster plots showing PN responses (PN1 and PN2) during a pulsatile presentation  

of a target stimulus (hexanol; hex) in back-to-back sequences of variable duration and inter-pulse  

intervals, atop a background cue (benzaldehyde; bzald), following a distracting stimulus (citral; 

cit). Each black tick represents an action potential fired by the PN. PN responses are shown for 10 

consecutive trials (10 rows). Right plots, similar plots as in the left, but the target stimulus was 

isoamyl acetate (iaa). Notice the responses evoked by the target odorant in these six PNs were 

highly variable. 

(b) Firing rates of the two PNs (50 ms time bins; trial averaged) shown in panel a are now plotted 

as a function of time. While both the PNs responded strongly to the first pulse of the target odorant, 

the response diminished during later encounters of the same stimuli. 

(c) Firing rates of three PNs that reliably responded across all the encounters of hex/iaa are plotted. 

Each panel shows trial-averaged first 1 s response to 11 encounters of hex (orange) or iaa (red). 

When compared across all the 11 encounters of the same stimulus, response features such as the 

peak firing rate, response latency, and firing rate changes over time all seem variable and did not 

vary consistently with odor identity. 

 

correlations between the PN response to the first pulse of the target odorant and all the other 

introductions of the same chemical (Figure 5.6a;). A high correlation value would indicate that 

PN firing rate patterns remained consistent across different pulses. However, the computed 

distribution of the PN response correlations in our dataset revealed that spiking activities during 

different encounters of the target odorant had only a weak pattern match with the responses elicited 

during the very first encounter of an odorant (Figure 5.6b, c). Note that even for those PNs that 

had detectable responses across different pulses (PN6 in Figure 5.5a), the mean correlations were 

low as the spike patterns across the different target odor pulses were not consistent.   

Furthermore, we computed the ratio of mean spike counts across the eleven pulses of the 

same odorant (and across the ten trials) with variance in spike counts (i.e., Fano factor; Figure 

5.6d, e). A Fano-factor of one indicates Poisson variability. As can be noted, most PNs had a supra-

Poisson variability. Taken together, these results suggest that individual projection neuron 

responses vary considerably and may not provide a reliable read-out of odor identity across diverse 

conditions. 
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Figure 5.6: Projection neuron responses are highly variable under different encounters of 

stimuli. 

(a) Left, Raster plot and PSTH of a PN are shown. Average spike rates across ten trials are plotted 

as a function of time. The color line shown on the top of each hex presentation indicates the first 

1 s response that was used to compute correlations. Right, a schematic showing how the 

correlations were computed. Neural response to the first pulse was used as the response template 

to be pattern matched. Pairwise correlations with the first stimulus pulse were computed and 

averaged to obtain a mean correlation value for each PN. Note that a higher mean correlation value 

indicates a consistent response across all odor pulses.  

(b, c) Similarities between PN responses evoked during the first pulse of hex (target odorant) with 

all other encounters were computed. For this quantification, PN response was first binned into 50 

ms time bins and averaged across 10 trials. The first 1 s response following the onset of each target 

odorant pulse was used to compare response similarity between different target odor encounters 
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(i.e., 20-dimensional response vectors). For each PN, the mean similarity across odor pulses was 

determined, and the response similarity across PNs was then plotted as a distribution. (c) Similar 

distribution as plotted in panel b but for iaa. 

(d, e) Distributions of the Fano factor are shown across 89 PNs for hex and iaa. Panel d, 

distributions are shown for hex pulses. Mean of the first 1 s neural response across 11 presentations 

of hex and 10 repeated trials was used to compute Fano factor (𝜎2/𝜇) for each PN. Panel e, the 

similar plot as in left but Fano factors were computed for iaa trials. 

 

5.2.4 Variations due to changes in ambient conditions 

Next, we examined whether changes in humidity conditions would further exacerbate the problem 

of robustly encoding odorant identity. For this purpose, we used the same stimulus delivery 

protocol but using either dry air (0% relative humidity (RH)) or humid air (100% RH) as the carrier 

stream. We found that again most PNs in our dataset had responses that were variable in both dry 

and humid conditions (Figure 5.7a, b). The overall distribution of response correlation between 

the first pulse and the subsequent encounters of the same odorant was low but comparable between 

dry and humid conditions (Figure 5.7c). 

 Next, we sought to examine whether the ensemble neural responses across all PNs could 

reliably represent information about the identity of the target stimulus. To understand this, we 

visualized data after a principal component analysis dimensionality reduction. Briefly, spikes were 

binned in non-overlapping 50 ms time bins, and the average spike counts (across ten trials) of all 

eighty-nine neurons became a high-dimensional snapshot of odor-evoked neural response in a 

particular time bin. The high dimensional vectors were projected onto the three eigenvectors of the 

data covariance matrix (corresponding to the largest eigenvalues) for the purpose of visualization. 

The three-dimensional representations of the ensemble PN activity were color-coded to 

differentiate among the eleven target odor pulses (Figure 5.7d; left panel). As can be noted, the 

ensemble responses were variable and did not form a single well-defined cluster (i.e., not a 

unimodal distribution). More importantly, the PN response vectors in dry and humid conditions 
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clearly formed distinct response clusters (Figure 5.7d; right panel), indicating that changes in 

humidity might also pose an additional challenge for achieving invariant odor recognition.  

 

 

Figure 5.7: Changing humidity conditions alters both individual and ensemble level PN 

activity. 

(a) Similar raster plot showing PN responses to the stimulation protocol used in Figure 1. For each 

PN shown, the top and bottom plots reveal the spiking activity of the same PN between dry (carrier 

stream – 0% RH) and humid (carrier stream – 100% RH) conditions are shown. Note that changes 

in humidity levels of the carrier stream resulted in an increase or decrease in spiking activity in 

individual PNs. (b) Similar plots as in panel a but showing PN responses to a different target 

stimulus (iaa). Note that the same set of PNs is shown. (c) Similar plot as in Figure 5.6b but 

comparing response similarity between PN responses observed in dry and humid conditions. ‘NS’ 
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indicates that the two distributions are not significantly different (Two-sample Kolmogorov-

Smirnov test; p = 0.05). (d) Left, spiking activities of all 89 PNs during different pulses of the 

target odorant are shown after PCA dimensionality reduction. Spikes in individual PNs were 

binned in 50 ms non overlapping windows and treated as vector components. Each colored sphere 

represents an 89-dimensional PN spike count vector along with the first three principal 

components. Different time segments are indicated by different color codes. The right panel shows 

a similar plot but comparing odor-evoked responses in dry and humid conditions. Red and blue 

colored spheres are used to indicate the differences observed in the ensemble PN spiking activity 

in dry and humid conditions, respectively. 

5.2.5 A decoding scheme for robust odor recognition  

Our results indicate that the behavioral recognition (i.e., the POR) remained invariant with respect 

to stimulus dynamics, history, the presence of competing cues, and changes in ambient conditions 

(Figure 5.4; also refer to prior results on background[67] and history invariance[80]). However, 

odor-evoked neural responses at single-cell and ensemble-level vary with most of these 

perturbations (Figure 5.5, 5.6 and 5.7). Given this discrepancy between variability in neural 

encoding and robustness in behavioral output, we sought to determine whether a neural decoder 

could be designed for achieving robust odor recognition.  

 To investigate this issue, we again regarded the ensemble activity across the 89 PNs 

recorded in a 50 ms time bin as a high-dimensional neural activity (i.e., 89-dimensional firing rate 

vector). To detect the presence of the target odorant and selectively recognize the identity of the 

target odorant, we trained a linear support vector machine classifier (SVM). Note that the SVM 

classifier was trained using a separate set of training trials where only a solitary four-second pulse 

of the target odorant was presented. Two different classifiers, one for recognizing hexanol (hex-

SVM; Figure 5.8) and another for recognizing isoamyl acetate (iaa-SVM; Figure 5.9) were 

trained. The probability that hexanol is present in any particular 50 ms time segment, as predicted 

using the hex-SVM, is plotted as a function of time (Figure 5.8a-c; similar plots for iaa-SVM 
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shown in Figure 5.9a-c). As can be noted, all introductions of the target odorant are detected and 

selectively recognized by both hex-SVM and iaa-SVM classifiers.   

 How did the linear classification approach manage to robustly recognize the target odorant 

from highly variable neural responses? To understand this, we examined what weights were 

assigned to different PNs in the dataset (Figure 5.8d, Figure 5.9d). We sorted the PNs based on 

the weights they were assigned by the SVM classifier, and plotted their average spike counts to 

the solitary target odor pulse (i.e., training data that was used). Note that PNs with strong ON 

responses are at the top and PNs with stronger OFF responses are at the bottom. The weights 

assigned to each PN by the hex-SVM classifier are shown next to the firing rate plots to allow 

comparison. Our results indicate that ON responsive PNs received mostly positive weights and the 

OFF responsive PNs were assigned negative weights (Figure 5.8d, e). A similar weighting scheme 

was also used by the iaa-SVM classifier (Figure 5.9d, e). This result suggests that although 

individual and population neuron responses vary, both detection and recognition of the odor 

identity can still be achieved using a linear coding scheme and the weight assignment to individual 

neurons had a simple structure, i.e., positive weights to ON neurons and negative weights to OFF 

neurons.  
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Figure 5.8: Support Vector Machine classification for robust hexanol recognition. 

(a) Classification probabilities for the target stimulus, hexanol (hex), under different conditions 

using a support vector machine (SVM) classifier are shown. The classifier was trained using ten 

trials where only a solitary pulse of hexanol was presented. For each time bin, the probability was 

obtained by averaging classification results across ten trials. Time segments when a stimulus was 

presented, and the identity of the stimulus that was presented are indicated using colored bars. The 

dotted line indicates the classification probability of 0.5 (an arbitrary threshold) that was used to 

detect the presence of hexanol. The segments when the trial-averaged classification probability 

exceeded this threshold are indicated using an asterisk. 

(b) Performance of the hexanol classifier but tested during those trials in the humid condition. 

Note that humidity did not perturb target order classification. 

(c) Performance of the hexanol classifier but tested during those trials when isoamyl acetate (iaa) 

was used as the target odorant. Note that none of the iaa presentations were classified as the target 

stimulus being present. 

(d) The PSTHs of each PN during 4 s solitary hex presentation and 4 s after stimulus termination 

are shown. Each trace shows PSTH of one PN. The PSTHs are sorted and color-coded based on 

the hex SVM classifier weights assigned to each PN. The neurons that were assigned the most 

positive weights are at the top and the most negatively weighted neurons are near the bottom. SVM 

classifier weights that were assigned to each PN are also schematically shown as a heatmap to the 

right. 

(e) The fraction of ON and OFF neurons that received a ‘+ve’ or ‘-ve’ weights are shown as a bar 

plot for comparison. 
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Figure 5.9: SVM classification for robust isoamyl acetate recognition. 

A similar set of plots as in Figure 5.6 shows the results for an SVM classifier trained to recognize 

isoamyl acetate (iaa). Note that all iaa introductions were correctly detected and recognized. Like 

the hex-SVM classifier, most ON neurons received ‘+ve’ weights and most OFF neurons were 

assigned ‘-ve’ weights. 

5.2.6 Discrete classifier with ternary weights allows robust recognition 

Finally, we wondered how stable this classification approach was. The variations we 

examined here are but only a few of the many intrinsic or extrinsic perturbations feasible. 

Therefore, we particularly wondered how important the analog weights assigned to each neuron 

were. The PNs that had the strongest ON and OFF responses to solitary pulses of the target odorant 

might not necessarily have similarly intense responses during other encounters of the same 

stimulus. However, the set of PNs that get excited or inhibited can be expected to be maintained 

across different encounters of the same odorant. Therefore, we wondered if the classification 

approach could be simplified by replacing the analog weights assigned to each neuron with a 

simpler scheme. 

  The first simplification we examined was converting the analog SVM weights into just 

three values: {-1, 0, +1}. This discretization was done by comparing the analog SVM weights with 

two arbitrarily chosen thresholds. We found that this simpler approach was still able to allow robust 

detection as well as discrimination of both the target odorants (Figure 5.10a and Figure 5.11a).   
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Figure 5.10: Performance comparison between discrete SVM vs. ternary vs. Boolean 

classifiers. 

(a) Classification probabilities for an SVM classifier that used discrete set of weights: {-1, 0, 1} 

are shown. The ternary weights were obtained from the SVM classifier by discretizing SVM 

weights using two preset thresholds. Other conventions are the same as Figures 3 and 4 (bottom 

row). Performance of the Hex-SVM classifier with discrete weights on recognizing isoamyl acetate 

introductions. 

(b) Similar plots as earlier but showing performance of a Bayesian logistic regression approach 

where each neuron was directly assigned a ternary weight (‘-1’ or ‘0’ or ‘1’; see Methods for 

details). Ten trials of solitary exposures to hexanol were used to train the classifier. 

(c) Similar plots as earlier but showing performance of a Bayesian logistic regression approach 

where each neuron was directly assigned a Boolean weight {‘1’ or ‘0’}. Ten trials of solitary 

exposures to hexanol were used to train the classifier. 

 

Since the thresholding of analog SVM weights might not provide an optimal approach to 

derive a ternary classifier, we sought to directly determine the optimal ternary weights (see 

Methods). We found that the ternary weights learned using this constrained approach also 

provided robust recognition of the target odorants (Figure 5.10b and Figure 5.11b). Further 

simplification of this approach by just using Boolean weights {1 or 0}, allowed detection of the 

target odorant, but discrimination between the two target odorants was compromised (Figure 

5.10c and Figure 5.11a). Furthermore, as a control, random assignment of ternary weights to 

individual PNs failed to provide decent recognition performance (Figure 5.12). A comparison of 

the weights assigned by the different classifiers is shown in Figure 5.13. These results indicate 

that the ternary classifier provides a sort of lower bound on the recognition performance that could 

be achieved. In other words, it strikes a fine balance between decoding scheme complexity and 

recognition performance.   

 In sum, our results indicate that a very simple classification scheme using just ternary 

weights could provide robust odor recognition.  
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Figure 5.11: Performance comparison for isoamyl acetate recognition. 

Similar results as in Figure 5.8 but showing performance of discrete weights classifiers that were 

trained to recognize isoamyl acetate. All color conventions are the same as in Figure 5.8. 

 

 

 

Figure 5.12: Performance of a classifier with randomized weight assignment. 

(a, b) A classifier with randomized ternary weights was used to test the presence of the target odor 

(panel a, Hex; panel b, Iaa). Note that none of the target odor introductions were picked up by the 

classifier with randomized weights. 
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Figure 5.13: Weights assigned to each PN in different classification schemes are shown.  

(a) The neurons are sorted such that the most positive weights are at the top and the most 

negatively weighted neurons are near the bottom. The first column shows analog SVM weights 

learned. The ternary weights after discretization that were assigned to each PN are shown in the 

second column: red indicates a weight of ‘+1’, white indicates a weight of ‘0,’ and blue indicates 

a weight of ‘-1’. The third column shows the ternary weights learned using the Bayesian 

framework as a heatmap. The fourth column shows the Boolean weights learned and the last 

column shows random weights generated. All columns use the same index as column one. 

(b) The weight vector learned by the analog SVM trained with hexanol exposures (i.e., hex-

SVM) and its ternarized version are shown along with analog and ternary weights learned by the 

SVM classifier trained with iaa exposures (i.e., iaa-SVM). Note that each weight vector has the 

same number of components as the number of neurons in the dataset. The weights are sorted 

based on the values assigned by the analog Hex-SVM classifier. 

 

5.2.7 A generic binary neural network inspired by the insect olfactory system 

We wondered whether the simple approach for achieving invariance in the locust olfactory 

system could be extended to create a general-purpose pattern recognition neural network. Note 
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that the goal is to develop an artificial neural network (ANN) that has a similar architecture to the 

insect olfactory system and uses binary values ({-1 and 1} or {0 and 1}) as learned 

parameters/weights for connections between individual nodes (Figure 5.14A). Most ANNs use 

real-valued parameters that are unconstrained and routinely learned through a back-propagation 

algorithm. However, with a Boolean or ternary weights constraint, backpropagation with regular 

gradient descent would not be feasible. To overcome this issue, we reformulated this problem as 

one of fitting a Bayesian model and choosing a Boolean distribution as a prior distribution for 

ANN weights. As direct inference of weights using the posterior distribution would be intractable, 

we used a variational inference approach to approximate the posterior with a lower bound. An 

unbiased estimator of the derivative of the lower bound can be found by relaxing and 

reparametrizing the weights using Gumbel-Softmax variables (Figure 2.2; see Methods).  

 An advantage of this Bayesian neural network architecture is that it can be simply scaled 

to multiple layers in a neural network. Additionally, we can train the neural network with different 

layers that take different combinations of weights (for example, binary or ternary), but are still 

limited to a set of discrete weights. This is particularly advantageous when the desired outcome 

can be obtained from an interpretable neural network model.  

 To examine how well a neural network with only binary weights can perform, we trained 

a fully connected neural network with one hidden layer on the MNIST dataset (Figure 5.14). We 

constrained the first layer with weights {1, -1} and the second layer with weights {1, 0}. After 

training to classify the ten digits, we found that the loss function had converged within a similar 

window of iterations compared to a regular neural network with real-valued weights (Figure 

5.14a). Next, we wondered how this simple neural network compares with state-of-the-art deep 

neural networks when it comes to image classification. The performance of the trained binary 
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weights neural network on a held-out dataset revealed an error rate of 2.68%, only modestly poorer 

than the benchmark performance of 1.8% for an ANN with similar architecture but with real-

valued weights [185]. This result indicates that constraining the weights in a layer of neural 

network with just two values only results in a minimal drop in performance.   

 As mentioned earlier, the binary-valued ANN allowed us to understand what features 

were extracted and how they were used to improve classification performance. We found that the 

hidden-layer neurons performed two types of feature extraction (Figure 5.14c): a subset that 

weighted ‘ON pixels’ for a digit with a weight of ‘1’ and ‘OFF pixels’ with a weight of ‘-1,’ and 

another subset that weighted the pixels in the opposite fashion (i.e., ‘-1’ for ON pixels and ‘1’ for 

OFF pixels). It is worth noting that this approach is strikingly similar to the one we used for 

robust recognition of the odorant in this study.  In sum, these results indicate that a binary neural 

network, inspired based on results from the insect olfactory system, performed relatively well as 

a general-purpose pattern recognition algorithm. 

5.3 DISCUSSION 

We examined how invariant recognition of odorants can be achieved in a relatively simple 

locust olfactory system. Our results indicate that individual PN responses can vary with one or 

several of the perturbations we studied, including stimulus dynamics, repetition, stimulus history, 

presence of background odorants, and changes in humidity conditions. Nevertheless, a simple 

linear classification scheme was sufficient to extract the relevant information. The classifier 

essentially boiled down to adding the contribution of PNs that were strongly activated when the 

odorant was presented (ON neurons) and subtracting the contribution of PNs that were activated 

after the termination of the odorant (OFF neurons). Notably, such a classifier was not only able to 
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robustly detect all introductions of a target stimulus (i.e., solve the detection problem), but also 

provided sufficient discrimination between the two target odorants (i.e., solve the recognition 

problem as well).  

We found that not all neurons were perturbed and only a small subset (4/89 PNs) of them 

responded reliably to all introductions of both the target odorants. While these neurons allowed 

robust detection of the target odorants, they were not specific and responded to both the target 

odorants examined in this study. Furthermore, various response features such as spike counts, 

response latency, etc. varied across different encounters of the same stimulus thereby making 

discrimination between target odorants based on just these reliable PNs not feasible (Figure 5.3c). 

Therefore, an approach based on a single or on a small subset of neurons encoding for a stimulus 

under all conditions cannot be expected to be fault tolerant.  
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Figure 5.14: Boolean neural network for non-olfactory pattern recognition. 

(a) Schematic of a feed-forward neural network model. Note that all the weights were constrained 

to be discrete. The weights from the first layer to the hidden layer were constrained to be either 1 

or -1. The weights from the hidden layer to the output layer are constrained to 1 or 0. 

(b) The learning curve of the network is shown in panel (a). 

(c) Representative learned weights connecting the input layer with the hidden layer neurons are 

shown. To compare with the input patterns, the weights were reshaped to match the size of the 

input image. In each sub-panel, the top image shows a ‘close’ input digit and the bottom image 

shows the representative weights. Note that weight assignment mimicked ON pixels to +1 (digits 

0, 1, 2, 4, 5, 7, 8, 9) and OFF pixels to -1 or vice versa (digits 3, 6). 
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Prior publications[67, 77, 80, 122, 184] have also found individual neurons to be unreliable 

but found that robustness emerged at an ensemble level. However, our prior results indicated that 

odorants delivered atop different background cues generated ensemble responses that only 

partially overlap across conditions[67]. When additional perturbations were introduced, our results 

indicate that the ensemble response features also tend to vary unreliably. In other words, even at 

the ensemble level, there was not a single feature that could remain consistent when the odor-

evoked responses were minimally perturbed. How then could sensory invariance be achieved? 

Given the complexity of individual PN response changes, we did not expect that a linear 

classifier could provide robust recognition. Nevertheless, both a linear support vector machine and 

logistic regression classifier were able to decode target odor identity independent of the 

perturbations made. Surprisingly, simplification of this approach by constraining weights to 

assume ternary values {-1 or 0 or 1} also provided robust recognition. The goal for constraining 

the decoding scheme in this fashion was two-fold: interpretability of the approach taken and 

determining the simplest possible approach i.e., a sort of a lower-bound in recognition 

performance. Our results indicate that not only did such a scheme exist, but it exploited a simple 

stratagem. We found that successful decoding schemes (discrete SVM or a logistic regression 

approach) assigned ‘+1’ weights to ON neurons, ‘0’ weight to non-responders, and ‘-1’ weight to 

OFF neurons (i.e., an ‘ON minus OFF’ classifier).  Notably, robust recognition was achieved using 

this simple approach in both dry (Figure 5.10) and humid conditions (Figure 5.15a, b). 

If ensemble response features varied across conditions, how did this ‘ON minus OFF’ 

classification approach achieve invariance? It is worth breaking this classification scheme into its 

two components: the ON component and the OFF component. Assigning ‘+1’ to the most strongly 

responding ON neurons and setting a recognition threshold that is less than this sum allows the 
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classification scheme to be flexible. Interpreted differently, this indicates that an odor can be 

recognized as long as a subset of strongly responding ON neurons are activated so that their sum 

reaches the threshold. The composition of this subset can change across conditions thereby 

allowing this approach to be more flexible. 

What then is the contribution of the OFF component of the classifier? In an earlier 

study[179], we found that OFF responses were better at predicting when the behavioral response 

to a conditioned odorant terminated. In this study, we found that the OFF component increased 

separability between activation patterns of different odorants. This effect was particularly 

noticeable when the ternary weights were further simplified to a Boolean classifier with binary 

weights. While the Boolean classifier allowed detection of the target odor pulses, there was a 

significant increase in the false positive rates. Therefore, we conclude that assigning a negative 

weight to the OFF neurons enhanced discrimination between odorants and thereby reduced false 

positives.  

There were other considerations that went behind considering this simpler classification 

scheme. As we have noted, the response evoked by an odorant in each neuron (i.e., changes in 

firing rates) can vary with most of the perturbations we introduced. In addition, repeated 

presentation of a stimulus will also lead to adaptation that can further attenuate the neural 

responses. Therefore, weighing individual neurons based on their response to solitary exposures 

of the target odorant might make the classification scheme unstable when recognition under other 

conditions/perturbations are required.  Could the combination of neurons activated alone be a more 

robust indicator than the firing rate distribution across the same set of neurons: i.e., vector direction 

being more important than the length of the vector in any direction? If this is the case, a ternary 

weight vector should allow robust decoding of odor identity. Our results confirm this expectation. 
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Furthermore, it can be shown that a ternary version of a high-dimensional weight vector in a 

classifier is highly aligned with the analog version of the same weight vector (i.e., angular distance 

is low compared to pairs of random vectors; see Figure 5.16).  

Earlier studies have argued that the antennal lobe neural network can be viewed as a non-

linear dynamical system [65, 186, 187]. Under this perspective, both the initial conditions and 

odor-evoked response dynamics become important for recognizing the identity of the encountered 

stimulus. Our data indicate both the odor-evoked responses, and the spontaneous activity can vary 

across conditions. Yet at direct odds with our neural data, we find the behavioral recognition is 

robust even during these drastic changes. No detectable differences in response latency, intensity 

or duration were found. Hence, our results indicate that the rules for translating neural responses 

and their dynamics to generate appropriate behavioral output need further investigation. 

The behavioral data also indicates that locusts trained with one odorant as CST generalized 

their responses to a few other odorants (Figure 5.4a). Both analog SVM and the ternary 

classification schemes were able to generate prediction results from neural data that matched with 

the observed trends in behavioral data (Figure 5.17). These results further support the proposed 

scheme for translating the variable neural responses to robust behavioral outcomes.  
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Figure 5.15: Performance of ternary classifiers in humid condition.  

(a) Hex-classifier showing robust recognition of hexanol introductions in 100% RH ambient 

conditions. 

(b) Similar plot but showing performance of iaa ternary classifier. 
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Figure 5.16: Similarity analysis between analog and discrete high-dimensional weight 

vectors. 

The angular distance between high-dimensional vectors is analyzed and shown. The red curve 

shows the distribution of angles between pairs of randomly generated analog weight vectors. The 

blue curve shows angles between analog and ternarized forms of the same weights vector. Like 

the approach used to threshold SVM weights, random vectors were thresholded and assigned 

{+1, 0, -1} values. 
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Figure 5.17: Generalization performance of the Hex-trained classifier. 

(a) The output of a ternary Bayesian logistic regression classifier is shown for a panel of odorants. 

The classifier was trained using ten trials where only a solitary pulse of hexanol was presented. 

The pre-, and post-stimulus periods, and 1 trial of all other odorants were included as a negative 

class to train the classifier. The odors used during the testing phase are identified in each panel. 

(b) The peak classification probabilities (ternary classifier) during odor presentation (x-axis) are 

plotted against the POR probabilities from behavior experiments (y-axis, Figure. 5.2A). A 

regression analysis (solid line) revealed that the correlation between the peak classification 

probabilities and POR is significant (R2 = 0.91, p = 8.45e-4; n=7 odors). 

(c) The peak classification probabilities (analog SVM) during odor presentation (x-axis) are 

plotted against the POR probabilities from behavior experiments (y-axis). A regression analysis 

(solid line) revealed that the correlation between the peak classification probabilities and POR is 

significant (R2 = 0.828, p = 4.48e-3; n=7 odors). 

 

Finally, we wondered if the internal state of an organism such as its hunger level and 

whether it was trained to associate a particular target odorant with a reward would alter the stability 

of neural responses. To examine this issue, we compared the neural responses in locusts with 

different hunger levels (unstarved vs. starved) and/or training states (untrained vs. trained). Our 

results indicate that irrespective of the internal state, the neural responses to target odorants were 

highly variable (supra-Poisson Fano factors), and the odor-evoked responses were just as 

inconsistent across different encounters of the same target odorant Figure 5.18-20). While hunger 

level and odor-reward pairing have been suggested to alter certain odor-evoked response features 

in this neural circuit[188-190], our data indicate that such state-dependent changes may still not 

compensate for variations induced by the battery of extrinsic perturbations such as those explored 

in this study. Moreover, we applied our SVM classifier on the neural responses from PNs pooled 

across unstarved locusts, starved locusts and starved then trained locusts. We were noted that, with 

this dataset, the lack of solitary presentation resulting in slightly less recognition performance. 

However, the decoder can still pick up the majority of stimulus presentations with various 
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perturbations (Figure 5.21). Therefore, we conclude that the decoding scheme proposed by our 

results would still be relevant and necessary for robust odor recognition.  

 

Figure 5.18: Characterization of PN responses recorded from unstarved locusts. 
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(a) Similar raster plots as Figure 3 but showing PN responses recorded in unstarved locusts. Left 

panel, PN responses to a pulsatile presentation of a target stimulus (hexanol; hex) in back-to-back 

sequences of variable durations and inter-pulse intervals, atop a background cue (benzaldehyde; 

bza), and following a distracting stimulus (citral; cit). Each black tick mark represents an action 

potential fired by the PN. PN responses are shown for 10 consecutive trials (10 rows). Right panel, 

similar plots as in the left, but the target stimulus was isoamyl acetate (iaa). Notice the responses 

evoked by the target odorant in these six PNs were highly variable. 

(b) Firing rates of the three PNs (50 ms time bins; 10 trials averaged) shown in panel A are now 

plotted as a function of time. While all the PNs responded strongly to the first pulse of the target 

odorant, the response diminished during later encounters of the same stimuli. 

(c) Similar plot as in Figure 3d, e. Similarities between PN responses evoked during the first pulse 

of hex (target odorant) with all other encounters were computed and shown. PN responses were 

first binned into 50 ms time bins and averaged across 10 trials. The first 1 s response following the 

onset of each target odorant pulse was used to compare response similarity between different target 

odor encounters (i.e., 20-dimensional response vectors). For each PN, the mean similarity across 

odor pulses was determined, and the response similarity across PNs was then plotted as a 

distribution. The correlation distribution for PNs recorded from unstarved locusts and the 

distribution of PN response correlation observed in the original dataset shown in Figure 3 are 

overlaid to allow comparison. No significant difference in the mean of the two distributions was 

found (two-sample t test; p value = 0.7848). (d) Similar comparison as in panel c but showing 

response correlations for the second target odorant (iaa).  

(e, f) Distributions of the Fano factor are shown across PNs for both target odorants hex and iaa. 

Panel e, distributions are shown for hex pulses. Mean of the first 1 s neural response across 11  

presentations of hex and 10 repeated trials were used to compute Fano factor (𝜎2/𝜇) for each PN. 

Panel f, the similar plot as in left but Fano factors were computed for iaa trials. The original  

distribution of Fano factors (from Figure 3) is shown in the background to allow comparison. 



 

141 

 

 

Figure 5.19: Characterization of PN responses recorded from starved locusts. 

Similar plots as Figure 5.15, but for PNs recorded from starved locusts. Note that locusts were 

starved for 24 hours prior to surgery.  
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Figure 5.20: Characterization of PN responses recorded from starved and then trained 

locusts. 

Locusts were starved for 24 hours. Following this starvation period, locusts were trained using the 

same appetitive-conditioning paradigm used in Figures 1, 2. This was followed by a testing phase 

when the behavioral POR responses to the conditioned stimulus (hex) and an untrained stimulus 

(bza) were evaluated. Subsequently, the locusts were surgically implanted with electrode arrays 

and the response of PNs to the same stimulation protocol was evaluated. 

(a-f) Similar plots as Figure 5.15, but PNs are recorded from trained locusts. 

(g) Palp-opening responses of the five locusts that were trained with hexanol as the conditioning 

stimulus are shown. Note that the PN responses shown above were recorded from these five 

locusts.  

(h) Palp-opening responses of the trained five locusts to benzaldehyde, an untrained odorant, are 

shown. As can be noted, none of the locusts responded with a POR upon introduction of the 

untrained odorant. 

 

Figure 5.21: Performance of SVM classifiers for PNs pooled across from unstarved locusts, 

starved locusts and starved then trained locusts.  

(a) Hex-classifier showing recognition of hexanol from PNs pooled across from unstarved 

locusts, starved locusts and starved then trained locusts. 

(b) Similar plot but showing performance of iaa SVM classifier. 
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Chapter 6: Conclusion 

The main objective of this work is to study how sensory memory impacts olfactory 

information processing. To achieve this goal, we used both locust and fruit fly olfactory systems 

as our models. In the locust olfactory system, we examined how spontaneous neural activity in the 

antennal lobe network was altered upon repetition of a stimulus and how short-term memory 

impacted processing novel cues. Using the genetic and imaging tools available in the fruit fly 

olfactory system, we examined how temporal patterning of odor-evoked responses changed due to 

short-term memory in different sub-types of neurons within the antennal lobe. Overall, this 

dissertation work provides several key insights on the role of short-term memory in olfaction.  

6.1 Short-term memory in locust antennal lobe 

First, we started by examining how PNs responses in the locust antennal lobe changed upon 

repeated presentation of the same stimulus. The response elicited by a sensory stimulus often 

reduces when the same stimulus is repeatedly encountered [138, 139, 143]. In this study, we 

examined whether the spontaneous activity in the neural network also gets altered in an odor-

specific manner indicating persistence of odor-specific memory. After the first exposure to an 

odorant, our results indicated that the spontaneous spiking responses became negatively correlated 

with the odor-evoked PN ensemble responses (Fig. 3.1). The spontaneous activities changed 

depending on the identity of the odorant that was repeatedly presented (Fig. 3.2b). Repeated 

presentations of two different odorants presented during two non-overlapping epochs resulted in 

distinct ensemble-level PN spontaneous activity clusters (Fig. 3.2c). Note that the spontaneous 

ensemble PN activities in the very first trial were random. However, subsequent evolution after 
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the first encounter with a repetitive stimulus reduced the correlation between neural activities 

observed in these two epochs (Fig. 3.2d, Fig. 3.11, Fig. 3.12). 

 Exposure to a stimulus reduced sensitivity to subsequent exposures of the same stimulus 

[138, 139, 143]. Consistent with previous findings[72], our data also indicated that odor-evoked 

PN responses reduced, and response changes were most significant in the first few trials. However, 

we found that most PN spiking responses continued to change, albeit modestly, even after twenty 

repetitions of the same stimulus (Fig. 3.4). Could diminishing the neural response to the recurring 

stimulus potentially confound pertinent information about the same adapting stimulus, such as its 

intensity? Our results indicate that adaptation does not lead to a loss of stimulus-specific 

information. The ensemble response profiles remained relatively consistent across trials (Fig. 3.5). 

The combination of PNs activated robustly encoded both the stimulus identity and intensity (Figs. 

3.6). Information about odorant identity and intensity was encoded more efficiently with fewer 

spikes. This result also suggests that percept about odor intensity won’t change with adaptation, 

but this remains to be behaviorally tested. Intuitively, such an encoding scheme does make sense 

as no matter how many times one is exposed to high-intensity vapors of skatole, it is expected to 

still not smell floral! 

Could the short-term memory induced by the recurring stimulus also alter how information 

regarding other stimuli gets encoded? Previous results showed exposure to a stimulus also reduces 

sensitivity to subsequent exposures of other cues but to a lesser degree [138, 139, 143]. This carry-

over cross adaptation effect happens when two odorants are chemically similar (same functional 

groups; e.g., hexanol to octanol) [72]. In this study, we tested the cross adaptation by using two 

pairs of odors (hexanol and isoamyl acetate; hexanol and apple). we repeatedly presented an 

odorant (hex) for twenty-five trials, but in the twenty-sixth trial (a ‘catch trial’), we switched and 
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presented a different stimulus (i.e. a ‘deviant’ stimulus). Our results reveal that although responses 

to the repeating odorant reduced in many PNs, the response features unique to the deviant stimulus 

were unaltered (Fig. 3.7b, c; unique responders). Responses of PNs that were commonly 

activated by both repetitive and deviant stimuli were diminished during the catch trial. As a result, 

during the catch trial, the neural response trajectory became more distinct from the repetitive 

stimuli at the ensemble level, indicating a population-level contrast enhancement of neural 

representation. 

In sum, our results present unique insights about how repeated stimuli alter the post-odor 

spontaneous activities and how stimulus intensity information remains unchanged under sensory 

adaptation. Further, it provides insights regarding how adapting to one stimulus altered how the 

neural circuit processed other stimuli. Lastly, we proposed a simple linear model that considers 

both the pre-adapted response and the ongoing activity to explain the changes in stimulus-evoked 

responses observed for a recurring or a novel stimulus. 

6.2 Short-term memory in fruit fly olfactory system 

 What is the loci of short-term memory in the antennal lobe? Do different sub-types of 

neurons that are part of the same network, and different compartments of same neural subtype 

adapt differently? To answer these questions, we used a light-sheet, volumetric, calcium-imaging 

technique and simultaneously monitored the odor-evoked activities at the ORN axons entering the 

antennal lobe (input), ePNs dendrites located within the antennal lobe, and ePN and iPNs axons 

(output) entering mushroom body calyx and lateral horn in fruit fly olfactory system.  

Our results indicate that during the first stimulus presentation, the initial responses 

immediately after the stimulus onset (during the first 500 ms of stimulation) were strong but did 
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not have much discriminatory information (Figure 4.4, 4.5). Neural activity patterns evoked by 

different stimuli became more distinct, e.g., stimulus-specific, over the time course of the stimulus. 

This decorrelation of odor-evoked responses over time was observed in all three neural populations 

examined: ORNs, ePNs and iPNs.  

When the same set of stimuli were repeated for a second block of trials, our results 

indicated that the odor-evoked responses elicited by the odor panel again decorrelated over time. 

The pairwise correlation between odorants were strikingly similar across two trials of recordings 

made from a single fly (Figure 4.11a or 4.11b; left vs. right column). However, the overall speed 

at which decorrelation between odorants occurred was accelerated (Figure 4.12) during the second 

block of trials. Such acceleration was observed in ePNs from antennal lobe dendritic inputs to 

lateral horn and calyx outputs. This result suggests that a role of short-term memory was to 

expedite the speed of discrimination between odorants.  

We also found neural responses across all sub-populations decreased in strength. However, 

similar to results from locust studies, overall responses patterns across different trials still clustered 

in an odor-identity dependent manner (Figure 4.10). Notably, ensemble iPNs responses exhibited 

a more significant reduction in overall response strength than other sub-group of neurons (Figure 

4.10). 

Although the decorrelation over time was ubiquitous and observed in all flies, both the 

pairwise odor decorrelation patterns (Figure 7A) and decorrelation rates (Figure 6D) varied from 

one fly to another. Across all regions recorded, the standard deviation between flies were relatively 

low at the level of ePN axons compared to their dendritic activity, whereas the multiglomerular 

iPNs had the higher levels of variability (Figure 7B). These results indicate that while odor-evoked 
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response patterns decorrelated to become more distinct over time in all flies, this computation was 

performed in an idiosyncratic fashion. 

Lastly, we examined the responses after stimulus termination. In flies, less attention has 

been paid to the ensemble dynamics after the stimulus termination. At the level of the sensory 

neurons, activities observed during the odor presentation period persisted after odor termination. 

However, in the ePN and iPN dendrites and axons, nearly orthogonal stimulus ON and OFF 

responses were observed in all flies (Figure 4.13). These nearly orthogonal, sometimes anti-

correlated patterns are consistent with those reported in other sensory systems, particularly the 

locust olfactory system[179].  

6.3 Robust odor recognition with ‘ON’ and ‘OFF’ features 

 Can odorants still be robustly recognized independent of variations induced by short-term 

memory? In the locust antennal lobe, we found combinatorial PN activity profiles can retain 

information about odor identity and intensity and is robust to changes that occur due to adaptation 

(Figure 3.5, 3.6); In the fruit fly olfactory system, decorrelation of neural responses between pairs 

of odors persisted and became faster upon repetition. We wondered if there exists a classification 

scheme that can robustly recognize stimulus independent of any interference from 

adaptation/short-term memory induced by the same of a different odorant. Surprisingly, a simple 

linear support vector machine classifier could decode target odor identity in a robust fashion 

(Figure 5.1). Moreover, we found that this simple approach was sufficient to deal with more 

complex extrinsic perturbations such as those induced by varying recurring stimulus, background 

cues, distractor odorants and humid ambient conditions. Additionally, we found that this linear 
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decoding scheme assigned ON responsive neurons with mostly positive weights and OFF 

responsive neurons with mostly negative weights (Figure 5.2).  

If ensemble response features varied across conditions, how did this ‘ON minus OFF’ 

classification approach achieve invariance? Essentially, this classification scheme can be 

segregated into the ON and OFF components. Assigning ‘+1’ to the most strongly responding ON 

neurons and setting a recognition threshold that is less than this sum allows the classification 

scheme to be flexible. The composition of this subset can change across conditions, thereby 

allowing this approach to be more flexible. What then is the contribution of the OFF component 

of the classifier? In an earlier study[179], we found that OFF responses were better at predicting 

when the behavioral response to a conditioned odorant terminated. In this study, we found that the 

OFF component increased separability between activation patterns of different odorants. This 

effect was particularly noticeable when the ternary weights were further simplified to a Boolean 

classifier with binary weights. While the Boolean classifier allowed detection of the target odor 

pulses, there was a significant increase in the false positive rates (Figure 5.10, 5.11). Therefore, 

we conclude that assigning a negative weight to the OFF neurons enhanced discrimination between 

odorants and reduced false positives. 

Lastly, we wondered whether the simple approach for achieving invariance in the locust 

olfactory system can be extended to create a general-purpose pattern recognition neural network. 

We developed an artificial neural network (ANN) using layers with binary values ({-1 and 1} or 

{0 and 1}) (Figure 5.14a). We trained the network with the Bayesian variational inference method 

and achieved performance close to the benchmark performance of an ANN with similar 

architecture but with real-valued weights (Figure 5.14b) in the well-studied MNIST digits 

dataset[191]. In addition, the binary weights made the features extracted by each hidden unit highly 
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interpretable (Figure 5.14c). Taken together, these results indicate that the neural circuits in the 

insect olfactory system delicately balance discrimination between odorants with the flexibility 

necessary for robustness and fault tolerance to achieve sensory invariance.  

 

6.4 Future work  

What’s the potential mechanism for short-term memory? One possible mechanism that 

could underlie these results is that the synapses between the olfactory sensory neurons and the 

antennal lobe PNs could depress to mediate adaptation [146]. However, our results have shown 

some PN responses to the deviant/unexpected stimulus during the catch trial were stronger than 

the unadapted responses evoked by the same stimulus immediately after a 15 min no-odor reset 

window (Fig. 3.7c), which cannot be explained by the depression of ORN-PN synapses and 

indicate that some aspects of this short-term memory may also reside within the antennal lobe 

neural network. The feedback inhibition from local neurons may play a role in adaptation. Prior 

studies found strengthening of inhibitory synapses from LNs to a subset of PNs [149]. This 

synapse-specific enhancement of recurrent inhibition was hypothesized to cause odorant-selective 

response adaptation in the PNs [192, 193]. Further systematic studies of the contribution made cell-

intrinsic adaptation mechanisms and network-level adaptation due to LNs would be needed to 

dissect the precise contribution to the phenomenological results we reported in this dissertation. 

We sought to take functional mapping one step further. Nine ROIs have been registered 

across flies and assigned to corresponding glomeruli in the reference fly brain. However, the 

current methods are still preliminary and require human expert knowledge for ROI labeling across 

flies. Computational approaches to register all ROIs and map to glomeruli maps automatically still 
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need to be developed. A more quantitative investigation into conservative/variable features across 

organisms can also be realized with such a method.  

We developed a discrete weights neural network inspired by the architecture and results 

from the locust olfactory system and tested it in the standard MNIST dataset. Current states of 

deep learning technologies have gone beyond digits recognition[194]. It could be interesting to try 

different neural network structures with discrete weights on other tasks, such as speech 

recognition, machine translation, language modeling, etc. The binary weights can also utilize to 

help reduce network model size and accelerate neural network computation.  
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