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 In many organisms, the sense of smell, driven by the olfactory system, serves as the 

primary sensory modality that guides a plethora of behaviors such as foraging for food, finding 

mates, and evading predators. Using an array of biological sensors, the olfactory system converts 

volatile chemical inputs from an organism’s environment into well-patterned neural responses 

that inform downstream motor neurons to drive appropriate behaviors (e.g., moving towards 

food or away from danger). For many external cues, the elicited neural responses are often 

determined by the genetic makeup of the organism, which assigns an innate preference, or 

valence, for these different stimuli. However, our environment is constantly in flux, and the same 

stimulus can be encountered in a variety of different contexts, such as following other cues or 

under different ambient conditions (e.g., humidity). This can modify the neural activation pattern 

ascribed to the stimulus and potentially alter the corresponding behavioral output. The objective 

of this dissertation is to understand how neural responses in the early olfactory system of locusts 

(Schisctocerca americana) are spatiotemporally structured to robustly represent innate valence in 

different scenarios to drive appropriate behaviors and how they can be altered through learning. 
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To achieve this goal, we used a large panel of chemically diverse odorants and 

characterized the neural responses they elicited in the antennal lobe (at the level of ensembles of 

principal or projection neurons) as well as the innate appetitive behavioral response they 

produced. We found that neural responses generated both during (ON response) and after (OFF 

response) termination of the odorant contained information regarding its identity and could be 

used to predict the innate behavioral outcomes. Notably, predictions made using the ON and the 

OFF responses differed in the sets of neurons they used to generate the predictions, indicating 

that neural-behavioral transformations could be achieved in multiple ways. Furthermore, both 

these ON and OFF neural response classifiers outperformed attempts to predict behavior using 

chemical features of the stimuli (detected by NMR or IR spectra), indicating that the antennal 

lobe was transforming and encoding olfactory inputs to map them onto the innate valence 

associated with the sensory cue.  

We found that the organization of odor-evoked neural responses that readily map onto 

innate preferences may also constrain learned odor-reward associations. While odorants with an 

innate positive behavioral preference alone could support learning odor-reward associations, the 

conditioned responses were not odor-specific but appeared to generalize to other odorants that 

evoked similar neural responses. The timing of the behavioral responses could be varied by 

delivering rewards during epochs when the odorant would generate either the ON or the OFF 

neural responses. Overall, we found that the organization of ON and OFF neural responses in the 

antennal lobe clustered into manifolds or subspaces that could be explained using innate 

behavioral preferences and suitability for reinforcement learning.   

To understand the robustness of these results, we developed novel minimally invasive 

experimental methods to record locust neural responses while they actively sampled their 
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surroundings. We found neural responses in this more naturalistic scenario to maintain their 

manifold organization, and classical conditioning enhanced the separation between neural 

responses evoked by innately appetitive and non-appetitive odorants. Our results also indicate 

that neural and behavioral responses in freely moving locusts were consistent with those 

observed earlier in highly compromised preparations. Finally, we exploited our newly-developed 

recording techniques to engineer an insect-based chemical sensor that could be used for a real-

world application. 
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Chapter 1: Introduction 

 
All organisms, ranging from humans to bacteria, have evolved sensory systems to help 

perceive and internalize information about their environment. Chemosensation, or the detection 

of both volatile and non-volatile chemicals, is one of the oldest and most prevalent sensory 

modalities available to an organism. The sense of smell is a form of chemosensation that 

involves the detection of volatile compounds (odorants) in an organism’s immediate 

surroundings. The process of smelling odorants, or olfaction, drives a plethora of human 

behaviors and emotions ranging from pleasurable experiences such as baking a chocolate cake to 

detecting a dangerous gas leak. Odor-evoked memories such as smelling a perfume that reminds 

you of a relative have been shown to activate regions of the brain linked with vividness and 

emotion1,2. Conversely, a loss in the sense of smell (anosmia) has been associated with hazardous 

events such as food poisoning3 and is an early symptom of neurological disorders such as 

Alzheimer’s4 and Parkinson’s5 disease. Thus, from a human perspective, gaining a thorough 

understanding of our olfactory system is highly desirable. However, for many organisms, the 

olfactory system plays an even larger role in survival and propagation.  

In invertebrate organisms such as insects, the olfactory system serves as the primary 

sensory modality. It guides basic behaviors such as foraging for food, finding mates through the 

detection of conspecific cues (e.g., pheromones6), and evading predators7. Colonies of ants, 

which can number in the hundreds of millions, communicate through the detection of 

pheromones via their antennae to signal the presence of food or to alert other members of the 

group to imminent danger8–10. Similar approaches have also been demonstrated in honeybees11, 
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fruit flies (Drosophila)12, and locusts13, making them ideal model systems to study olfaction. In 

this work, I will investigate how the locust (Schistocerca americana) olfactory system encodes 

for different stimuli to drive fast and robust behavioral responses and how we can leverage this 

efficient biological neural network to solve real-world chemical recognition problems.  

1.1 The olfactory system 

1.1.1 Structural organization 

 

 The detection of a chemical begins when its molecules bind to one of the many olfactory 

receptors (ORs) expressed in olfactory receptor neurons (ORNs) located at the periphery of the 

olfactory system (nose in humans, antennae in insects). Each ORN expresses one type of OR, 

which typically detects a limited set of molecular features. The 2004 Nobel Prize in Physiology 

was awarded to Buck and Axel for their groundbreaking work demonstrating the existence of 

approximately one thousand genes that encode for different ORs in the rat DNA14. The exact 

number of these genes varies vastly across species – for example, evolutionary differences15 have 

resulted in humans possessing about four hundred of these genes16,17.  

 In insects, ORNs similarly detect and transduce chemical cues to electrical signals and 

relay them to a region of the brain known as the antennal lobe (AL). In locusts, each antenna 

houses ~50,000 ORNs which project onto a network of ~1,000 glomeruli in the AL. In each 

glomerulus, ORNs make synaptic connections with cholinergic projection neurons (PNs). The 

network of ~830 PNs also forms reciprocal dendro-dendritic connections with GABAergic local 

neurons (LNs). The funneling of information from a large number of ORNs onto fewer PNs as 

well as the feed-forward and recurrent inhibition via LNs serves to minimize single-neuron 

response fluctuations observed at the level of individual ORNs and sharpens the signal-to-noise 
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ratio18–25. Studies have also found that PNs respond to a wider/more diverse set of odorants than 

their upstream counterparts and in more temporally diverse patterns26.  

From the AL, axons of PNs project to the mushroom body (MB) and the lateral horn 

(LH). In the mushroom body, PNs form excitatory synapses with intrinsic Kenyon cells (KC), 

with each KC receiving input from a random subset of approximately half the PNs27. The 

~50,000 KCs also receive inhibitory input from a giant GABAergic neuron (GGN), which 

further sparsens odor responses28. The MB integrates olfactory information with signals it 

receives from other regions such as the optic lobe (visual system) and is believed to be the seat of 

memory and learning29.  

 

 

 

 

 

 

 

 

Figure 1.1: A schematic showing the insect olfactory anatomy 

ORNs detect chemicals in the immediate surroundings and relay this information to PNs and LNs in the 

AL where it is transformed via combinations of excitatory and inhibitory interactions. PNs then relay this 
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to the MB and LH via excitatory outputs, where this information is further sparsened through inhibition 

provided by the GGN. (Figure reproduced as is from Gupta et al.30) 

The role of the lateral horn in locusts is much less understood. Similar to the MB, this 

region receives excitatory input from PNs and inhibition from the GGN, and has also been 

implicated in integrating multi-modal stimuli28,31. However, the exact role of this region is yet to 

be fully understood, with some studies associating it with encoding innate preferences32 and 

others proffering bilateral integration of information and intensity encoding as the primary 

functions28.  Lastly, the mapping from olfactory information from the mushroom body and 

lateral horn to downstream motor areas also remains an open area of research.  

1.2 Olfactory coding principles 
 Along the locust antenna, ORNs are distributed among conical protruding structures 

known as sensilla. There are four major types of sensilla in locusts – basiconica, trichodea, 

coeloconica, and chaetica, and each sensillum houses between 5-50 ORNs within it33. The 

distribution of these sensilla along the length of the antenna varies by type and has also been 

shown to vary as a function of age33. Each sensillum is thought to house ORNs that detect 

chemical stimuli with similar features (e.g., alcohols, ketones), while some function as mechano- 

and hygro- receptors. Typically, ORNs within a sensillum function independently of one another 

and relay their information to glomeruli in the antennal lobe using temporally structured ‘spike 

trains’ (bursts of action potentials). However, an exception to this rule can arise when ORNs 

within the same sensillum compete for limited resources in the extra-sensillar lymph. In such 

cases, the strong activation of one ORN can often transiently silence its neighbors through a 

phenomenon known as ephaptic coupling34,35. While this approach can allow the selective 

detection of biologically important cues in a complex environment and has been shown to 

modulate innate preferences of Drosophila36, it remains to be observed in locusts.  
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 Another popular motif of stimulus encoding is the ‘labeled-line’ approach (Fig. 1.2a), 

where dedicated ORNs respond to ‘private’ odors and ultimately drive behavior by evoking 

neural responses in similarly dedicated downstream channels37–41. A confounding factor for this 

coding approach is the observation that an increase in the intensity (concentration) of a stimulus 

often recruits more and more ORNs to be activated, which can then trigger undesirable/non-

labeled line downstream responses42,43. This form of encoding is primarily ascribed to 

Drosophila and is rarely observed at the level of second-order neurons (PNs) in other model 

systems (note an exception in moths shown in Fig. 1.2b). For instance, in locusts, individual PN 

responses to a chemical are easily perturbed when variations in stimulus history (non-

overlapping cues), stimulus background (overlapping cues), ambient conditions (humidity), and 

stimulus durations were introduced23,44–46. In a recent study46, it was shown that hexanol (a 

commonly studied odorant) elicited strong responses in 42% of recorded PNs when it was 

presented solitarily with no additional confounds. However, the introduction of just five 

distractor cues preceding hexanol (presented as 5 different sequences of distractor-hexanol) 

resulted in no single PN retaining a strong and unique response to hexanol across all 

perturbations (Fig. 1.2c).   
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Figure 1.2: Labeled-line coding scheme  

a) In Drosophila, pheromones and fruity odors are detected by distinct classes of sensilla, which relay 

information to distinct regions of the second- and third-order centers.  

b) Altering the firing properties of a subset of specialized PNs in the moth antennal lobe interfered with 

successful odor detection.  

c) Locust PNs cannot encode for odorants robustly using labeled-line coding schemes. The introduction 

of just five distractor cues resulted in no single PN that could retain unique responses to hexanol. (panels 

a, b reproduced as is from Saha et al.47; panel c reproduced as is from Nizampatnam et al.46) 

Instead, locust PNs encode for stimuli using a ‘combinatorial coding’ approach, where 

the same stimulus evokes excitatory and inhibitory responses across subsets of these PNs (i.e., 

ON-responses). These responses are unique for different chemicals and can vary both in the 

distribution of PNs that produce a response, as well as in the temporal structure of the responses 

(response latency, firing patterns, and duration) (‘spatiotemporal’ coding; Fig 1.3a)22. 

Interestingly, subsets of PNs are also similarly activated when a stimulus is terminated (i.e., 

OFF-responses)44. However, it has been shown that the subsets of PNs that are ON- and OFF-
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responsive to a stimulus are quite distinct with little to no overlap. The exact functional role of 

utilizing similar levels of resources to encode for the onset and offset of a stimulus is still an 

open question, but recent works have proposed that the OFF-responsive neurons could play an 

important role in triggering the termination of a behavioral response44,46(Fig 1.3b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Spatiotemporal coding scheme using ON and OFF responses  

a) Population-level PN spiking responses during the onset and offset of hexanol are visualized using PCA 

dimensionality reduction. The neural responses during (red) and after (blue) stimulus termination appear 

as two looped trajectories that evolve in different directions, indicating different subsets of PNs being 

activated (Figure reproduced as is from Saha et al.44).  
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b) A model combining spatiotemporally diverse ON and OFF PN responses produces robust behavioral 

predictions. (Figure reproduced as is from Traner et al.48) 

Beyond the antennal lobe, the MB responds to olfactory stimuli with relative sparsity, 

with KCs often firing a single action potential in response to a stimulus lasting on the order of 

seconds23. Neurons in the lateral horn (LHNs) have been shown to exhibit great morphological 

and functional diversity, with at least ten different classes identified – each with different 

stimulus-response dynamics28. Given the multi-modal integration behavior of LHNs, the precise 

role of these different classes in the context of olfaction remains to be elucidated.  

1.3 Olfaction and behavior 

1.3.1 Innate and acquired behaviors  

 

 One of the fundamental goals of neuroscience is to understand how the nervous system 

encodes different sensory cues to generate appropriate behavioral responses49. In the context of 

olfaction, behavioral responses can be broadly characterized by how much an organism likes 

(attraction) or dislikes (aversion) a particular smell. We are likely to venture into the kitchen if 

we smell our favorite meal cooking, whereas the smell of rotten eggs would keep us away. These 

preferences for different smells can either be genetically pre-programmed (innate) within an 

organism or can be acquired/learned/altered over its lifetime. 

Innate preferences arise as organisms evolve to successfully interact with their 

environment – for example, mice are innately aversive to the smell of chemicals commonly 

released by their predators such as those found in the excreta of foxes and cats50,51, whereas the 

smell of cheese is more likely to attract them. Most insects are innately attracted to the 

pheromones released by their mates6,9 and are repelled by odorants that signal the presence of 

toxic microbes52. However, the environment around us is constantly in flux, and we can often 
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encounter novel stimuli that do not directly map to any innate preferences. In such cases, we 

develop or acquire preferences for these stimuli based on our experiences. Additionally, our 

innate preferences for a stimulus can also be altered through experience. Getting food poisoning 

after consuming your favorite meal can make you less likely to consume it the next time!   

In the 19th and early 20th centuries, two approaches to induce alterations in or allow the 

acquisition of behavioral responses in response to a stimulus were demonstrated. Ivan Pavlov 

was awarded the Nobel Prize in 1904 for his pioneering work in developing classical 

conditioning, where he famously induced salivation in a dog in response to the ringing of a 

bell53. Pavlov achieved this by pairing the ringing of the bell with the presentation of food, a 

phenomenon that innately triggers salivation in dogs. Through repeated trials, the dog associated 

the bell with the expectation of food and acquired the salivation response even when no food was 

presented. The second approach demonstrated by Thorndike54, and more famously by B.F. 

Skinner55, is known as operant conditioning. This is a more ‘voluntary’ form of learning 

associations compared to classical conditioning. Simple examples of operant conditioning are 

children learning to avoid touching a hot stove to prevent injury or learning to do their 

homework in anticipation of chocolate rewards.   

In many invertebrate model systems, a similar association of behavioral responses to 

stimuli has been well-studied through various classical and operant conditioning assays56. 

Avoidance behaviors have been induced in Drosophila57 and honeybees58 through the pairing of 

electric shocks (negative reinforcement) with otherwise neutral odorants. Similarly, the pairing 

of food rewards with different olfactory stimuli has been successfully demonstrated in moths59,60,  

honeybees61,62, and Drosophila63 (positive reinforcement; Fig. 1.4a). After conditioning, the 

changes in behavior towards different stimuli are typically measured using either unrewarded 
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presentations of the olfactory stimulus or in assays such as T-maze (Fig 1.4b) or free exploration 

(Fig. 1.4c). Recently, a classical conditioning assay was shown to be effective in positively 

conditioning locusts with olfactory cues64. The authors devised a protocol wherein the locusts 

were trained to associate a conditioned stimulus (odorant) with an unconditioned stimulus (food 

reward) that was known to elicit a strong unconditioned response (palp-opening response). The 

efficacy of training was then quantified during an unrewarded testing phase, where the locusts 

who were trained showed an increase in their preference for the trained odorant compared to 

their untrained counterparts. In this work, we will apply multiple behavioral assays to understand 

the robustness of innate olfactory preferences in locusts, and how conditioning assays can be 

applied to alter these innate behaviors.  
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Figure 1.4: Different behavioral assays in insects.  

a) Insects can be classically conditioned to alter their preferences to an odorant. Here, a food reward was 

paired with an olfactory stimulus to condition the palp-opening response in locusts. The protocol used to 

achieve this is shown on the right.  

b) After conditioning, changes in behavioral preferences of insects can be measured using two-choice 

assays such as T-maze. Here, one side of an arena contains an olfactory cue and the other side contains a 

control. The preferences of locusts to different cues are measured by computing the time they spend near 

the odorant relative to control.  

c) Behavioral preferences can also be assayed using odor-detection assays such as plume or trail 

following in wind tunnels or field settings. Metrics such as ease of trail-following, time spent near the 

trail, and time taken to localize the odor source can be used to compare relative preferences of different 

cues. (Figure panels reproduced as is from a64,b47, and c65)  

1.3.2 Quantifying behavior 

Recent progress has allowed both monitoring and controlling large populations of 

neurons with high spatial and temporal resolution. Transgenic insects that express fluorescent 

markers in select groups of neurons are widely being used to characterize how these populations 

encode information about various sensory cues and drive different motor programs66–68. 

However, similar approaches for characterizing invertebrate behavior are only beginning to be 

adopted, given the challenges of their smaller scale and unique anatomy compared to mammals. 

Modern advances in data acquisition and processing allow behavioral responses to be 

monitored at fine temporal and spatial resolutions. Error-prone and time-consuming manual 

tracking of animal position is gradually becoming obsolete as computer vision algorithms that 

can track the centroid/center-of-mass of an object of interest are becoming easier to deploy. The 

addition of markers such as tagging individuals with unique RFID69–73 or QR tags74–78, or 

applying non-inhibitive paint44,79 have further optimized these approaches (Fig. 1.5). Insects are 

highly social organisms, and their behaviors are often modulated by other members of the group 

present in their vicinity. These new behavioral tracking approaches can be easily extended to 

study group behaviors, such as social interactions in honeybees and ants80–85, behavioral variance 
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in groups of locusts86, and social enhancement of light avoidance abilities in cockroaches87. 

More recently, applications of deep learning have allowed markerless recognition of individual 

organisms. Noteworthy tools include DeepPoseKit and DeepLabCut, where the authors trained 

deep convolutional neural networks (CNNs) to detect organisms by providing a handful of 

frames labeled with poses of interest88–90.  

In this work, I will train and apply deep learning frameworks to track and quantify 

different locust behaviors. In particular, the accurate measurement of behavior at fine spatial and 

temporal resolutions will be necessary as we look to understand the nuances of conditioning-

induced alterations in the locusts’ behavioral responses.  

 

 

 

 

 

 

 

 

Figure 1.5: Approaches for quantifying insect behavior 

a) A wide range of tracking such as centroid tracking, addition of QR codes, and non-inhibitive paint. 

Novel markerless tracking approaches using deep learning allow tracking of untagged individuals.  

b) A schematic of a pipeline for extracting behavioral motifs from data using object detection and 

dimensionality reduction. (Figure reproduced as is from Traner et al.48) 
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1.4 Simultaneous neural and behavioral monitoring 
 A drawback of the current approaches in insect neuroscience is that the mapping from the 

neural space to the behavioral space remains largely correlational and not causal. With the 

established techniques to monitor large populations of neurons within an individual organism 

and the ability to quantify the complex behaviors of individuals, the final piece of the puzzle 

remains the simultaneous achievement of these feats in the same organism.  

  One approach to achieve this has been through the use of virtual reality (VR) setups, 

which can be used to study tethered flight or head-fixed walking in most insect models while 

visual, olfactory, or mechanosensory inputs are varied. VR was recently applied to study how 

different insects successfully navigate complex environments and perform long-range search 

behaviors using their visual and olfactory systems while simulating flight91. Going beyond the 

VR environments to more realistic settings has been hindered due to the scale of insects, which 

pose a significant engineering challenge to design and fabricate electrodes. While miniature 

electrode arrays have been developed for use in insect models, their commercial availability 

remains limited, and preparing custom in-house electrodes is often an easier solution92. 

Traditionally, mobile preparations have required balancing the increase in noise with electrode 

length against the mobility offered to the animal. While relatively long electrodes that do not 

hinder the insect’s movement have been used successfully93,94, they still limit experiments to 

laboratory settings. Innovations in technology are now beginning to allow the placement of 

miniaturized amplifiers and digitizers directly on the animal95–97. These systems can additionally 

be combined with onboard data-logging or wireless transmission capabilities to provide 

unrestricted movement to the animal – and increase the physical range of the experiment. 
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However, these developments are still in early stages and require research in optimizing battery 

technology, conserving signal fidelity, and reducing the overall bulkiness of the system. 

In this work, we will develop methods to achieve simultaneous neural and behavioral 

monitoring in freely moving locusts. This will not only enhance our experimental repertoire for 

neuroscientific studies but also have practical use cases, such as those discussed in the next 

section.  

1.5 Insect-based chemical sensing 
 Insect models have been successfully used to not only understand the neural basis of 

olfactory processing but also in many practical applications – such as using Drosophila ORNs to 

detect breast cancer98 or training wasps to detect fungal toxins in healthy crops99. More recently, 

advances in engineering have led to the development of hybrid biosensors. These part biological 

– part engineered systems allow us to tap into the rich repertoire of the insect olfactory system, 

which can robustly detect a wide variety of chemicals at concentrations that are challenging for 

current state-of-the-art silicon-based sensors100–103. Proof-of-concept studies deploying insects 

mounted on manually controlled drones104–107 or through direct control of their flight and 

movement108 have been proposed to perform chemical exploration assays in settings where 

human intervention is infeasible (tightly enclosed spaces) or undesirable (harmful chemicals). 

Recent work in locusts has demonstrated the potential of tapping into their antennal lobe to 

perform chemical localization94 (Fig. 1.6). In this work, we will develop novel experimental 

approaches to demonstrate how the locust antennal lobe can be used as a sensor for fast and 

accurate detection of explosive chemicals.  
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Figure 1.6: A schematic showing how insects can be used to detect chemicals of interest in a 

field setting 

In this experiment, the neural responses of locusts would be monitored as the locust is systematically 

moved on a guided robot in an arena containing a chemical of interest. The concentration of the chemical 

varies in different regions of the arena, which can be mapped by monitoring the locusts’ spiking activity – 

the higher the concentration of the chemical, the higher the spike count. (Figure reproduced as is from 

Saha et al.94)  
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1.6 Thesis outline 
 In this thesis, I will investigate how neural responses to a variety of stimuli in the early 

locust olfactory system are organized to efficiently map onto different innate and acquired 

behavioral outcomes. To achieve this goal, in Chapter 3, I will demonstrate how locusts display a 

broad range of innate appetitive preferences to a large panel of chemicals and how we can use 

information from temporally diverse neural responses in the antennal lobe to predict a chemical’s 

innate preference. In Chapter 4, I demonstrate that locusts can achieve behavioral invariance 

despite neural variability and how this potential confound can be resolved using simple 

algorithms. I will also show how locusts can be conditioned to alter their behavioral responses to 

a stimulus using classical conditioning and explore the limits of this approach. In Chapter 5, I 

show novel recording techniques that allow the simultaneous monitoring of behavior and neural 

activity in the same locust, and how we can use these methods to validate observations made 

from more traditional experimental approaches. 

Additionally, in Chapter 5, I will also explore how our enhanced understanding of the 

biological olfactory coding principles can be exploited to solve real-world chemical detection 

problems.  I will demonstrate how the novel preparations generated in our basic neuroscience 

investigation can be applied to solve the problem of detecting explosive chemicals with high 

accuracy and low latency.  
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Chapter 2: Methods 

2.1 Odor stimulation  

All odorants were delivered at a 1% v/v dilution in mineral oil and placed in dark 60-ml 

bottles. A constant background air stream (desiccated and filtered) at 0.75 L/min was used as the 

carrier stream for 0.1 L/min pulses of odorants. A large vacuum funnel placed directly behind the 

antenna allowed for the constant clearing of the odorants delivered.  

For behavioral experiments to quantify innate and acquired appetitive preferences, each 

odorant in the panel was presented for one trial in a pseudorandomized order. Odorants were 

delivered by displacing a 0.1L/min of headspace in the odor bottles using a pneumatic picopump 

(WPI Inc., PV-820). Each odor pulse was 4 s, except for distractor-hexanol sequences where 

odors were delivered as 4 s – 0.5 s gap – 4 s. The inter-trial interval was 60 s for innate 

preference experiments and at least 20 minutes for acquired preference assays.  

For electrophysiology experiments (Chapter 3-4), each odorant was presented for ten 

trials in a pseudorandomized order. To minimize interference during the experiment, we 

designed and built a custom olfactometer (SMC valves, NI-DAQ controller) that was automated 

and triggered using MATLAB. Each odor pulse was 4 s in duration, and the inter-pulse interval 

was 60 s. For minimally invasive electrophysiology experiments (Chapter 5), each odorant was 

presented for five trials.  

2.2 Behavior experiments to characterize innate palp-opening responses 

Young adult locusts of either sex were starved for 24 hours before the experiment. 

Locusts were immobilized within a plastic tube and their compound eyes were covered using 

black tape. All twenty odorants were diluted to 1% v/v as previously described. Hexanol alone 
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was additionally diluted to 0.1% and 10% dilutions (i.e., a total of 22 odorants in the panel). 

Each locust was presented with all 22 odorants in a pseudorandomized order for 4 s pulses 

separated by 56 s inter-pulse intervals (60 s between the starts of two consecutive pulses). The 

experiments were recorded using a video camera (Microsoft). An LED was used to track 

stimulus onset/offset. The POR responses were scored offline in a blind fashion with no odorant 

information to remove any experimenter biases. Responses to each odorant were scored a 0 or 1 

depending on if the palps remain closed or opened. A successful POR was defined as an opening 

of the maxillary palps beyond the facial ridges as shown on the locust schematic (Fig. 3.1a). 

2.3 Preference index 

As noted above, locust responses to each odorant were binarized. The responses of all 

locusts to an odor were then summed to obtain a Total Score. A normalized score for each 

odorant was then calculated as follows:  

  (2.1) 

The preference index (Fig. 3.1c) was then calculated for each odorant by performing a median 

subtraction from the Norm_score as follows –  

 (2.2) 

Norm_scoremedian was obtained by calculating the median across all odorants. 

2.4 Vapor pressure analysis 

Vapor pressure data for 18 odorants were obtained from an online database (The Good 

Scents Company)109. Data for neem and garlic could not be obtained and these odors were 

omitted from our analyses in Fig. 3.1d. Regression analysis was performed between vapor 

pressure values and the POR Total Scores. An R2 value was obtained using the ‘fitlm’ function 
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in MATLAB (Fig. 3.1d). One of the odorants in the panel (ethyl acetate) had a vapor pressure 

much higher than all other chemicals, and hence the weak correlations in Fig. 3.1d could be 

driven by this potential outlier. To control for this, a similar analysis was performed in Fig. 3.2b, 

but using only seventeen odorants (i.e., excluding ethyl acetate).  

2.5 Monte Carlo simulations for behavior 

We performed Monte Carlo simulations on the data shown in Fig. 3.1b. We randomly 

sampled locusts (‘n’ ranging from 1 to 26) and calculated preference indices for all odors using 

POR scores using the selected subsets of locusts. For each n, we performed 100 such simulations 

and computed an average preference index, which was then compared with the preferences 

obtained using all twenty-two locusts. The mean correlation for each n is shown in Fig. 3.1f. 

Error bars indicate the standard error of the mean (s.e.m.).  

2.6 Electrophysiology experiments – PN recordings 

Young adult locusts of either sex were used for these experiments110. The legs and wings 

were removed, and they were immobilized on a custom platform. The head was fixed into place 

by a wax cup and the antennae were held in place inside a thin tube using epoxy glue. The cuticle 

above the brain was cut open, the air sacs covering the brain were removed, and the locusts were 

degutted to minimize any internal movements. A metal wire platform was then inserted 

underneath the brain to lift and stabilize it. Finally, the transparent sheath covering the brain was 

removed after applying protease enzyme.   

Locust brains prepared this way were super-fused with artificial saline buffer and a 

reference electrode (Ag/Ag-Cl) was inserted into the saline.  Multi-unit recordings were made 

from the antennal lobe projection neurons (PNs) using a 4x4 silicon probe (NeuroNexus) with 

impedance in the 200-300 kΩ range (Fig. 3.3a). Data were acquired at a 15 kHz sampling rate 
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using a custom MATLAB program and filtered between 0.3-6 kHz using an amplifier system 

(Caltech) that provided a 10,000 gain.  

Offline spike-sorting (IgorPro) was performed using the best 4 channels recorded111. To 

identify single units (PNs), the following previously published criteria were used: unit cluster 

separation >5 noise s.d., the number of spikes within 20 ms <6.5%, and spike waveform variance 

<6.5 noise s.d. To account for baseline drift and loss of neurons during an experiment, we only 

included PNs with consistent baseline spiking activity in all 220 trials (22 odors, 10 trials each). 

We defined a PN as being consistent if its baseline firing rate (during a 4 s period before odor 

presentation) in all trials was no less than 15% of the maximum baseline firing rate for that PN. 

A total of 89 PNs were identified using these criteria (originally acquired 131 PNs from 26 

locusts).  

2.7 PID experiment 

We used a fast-photoionization diode (miniPID, Aurora Scientific) to characterize the 

stimulus delivery dynamics of all odors used in the electrophysiology experiments. Each odor 

was presented for 5 trials and PID signals were acquired at 15 kHz using a custom MATLAB 

program. The mean signals for all odors are shown in Fig. 3.3b. 

2.8 Projection neuron response classification 

We defined 4 s of odor presentation as an ON period, and the 4 s immediately following 

odor termination as an OFF period. PNs were classified as ON-responsive if the firing activity 

was 6.5 s.d. above mean baseline (2 s preceding the stimulus) firing activity in at least 5 of the 10 

trials during the ON period. Similarly, PNs were classified as being OFF-responsive using a 

similar metric applied to the OFF period. PNs were classified as ‘Inhibited’ if their firing activity 

did not exceed 2 s.d. of baseline in any time bin during odor presentation and the mean firing rate 
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during the entire stimulus duration (4 s) was lower than mean baseline activity (in at least 5 out 

of 10 trials). These classifications are summarized for all odors in Fig. 3.4. 

2.9 Dimensionality reduction analysis (fully invasive experiments) 

We used Principal Component Analysis (PCA) to visualize ensemble PN activity (Fig. 

3.5a; Fig. 4.14a). The spiking activity for each PN during 4 s of odor presentation was averaged 

across all 10 trials and binned in 50 ms non-overlapping time bins. In this manner, we obtained 

an 89 PN x 80 time-bin matrix for each odorant. We concatenated these data matrices obtained 

for each odor to obtain an 89x1760 data matrix (80 bins * 22 odors). We then computed a 

covariance matrix (89x89) for this data matrix.  

Each 89-dimensional response vector was then projected onto the top three eigenvectors 

(that captured the highest variance). For visualization, the first time-bin was subtracted from 

each odor to obtain a similar pre-stimulus baseline for all odors. The odor trajectories were 

smoothed using a three-point moving average low-pass filter.  

2.10 Hierarchical clustering analysis 

The spiking activity of each PN during 4 s of odor presentation was summed to obtain an 

89x1 (89 PNs) vector per odorant. Agglomerative hierarchical clustering was performed on 

vectors for all 22 odors using the ‘linkage’ function in MATLAB. The odors were clustered 

based on a correlation distance metric, and the farthest pairwise distance between clusters was 

minimized. The clustering was visualized using the ‘dendrogram’ function (Fig. 3.5b) after 

obtaining a leaf ordering using the ‘optimalleaforder’ function. 

2.11 Linear regression to predict valence from PN activity 

Mean odor-evoked activity for each PN (ni) was used as the input for the linear regressor 

and the behavioral Norm_score for each odor was used as the output. A softmax layer was added 
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to ensure that the final prediction was always between 0 and 1. A leave-one-out-cross-validation 

(LOOCV) approach was used, where the model weights were trained using data for 21 odors 

using gradient descent, and then the neural response for the test odorant was used to predict the 

behavioral POR preference index. The mean squared error cost function was minimized.  

  (2.3) 

Where ni is the number of spikes evoked during odor exposure in PNi, and wi is the weight 

assigned by the linear regressor for PN i. 

As controls for the regressors, the POR preference indices of different odorants were 

shuffled randomly before training. We used the entire 4 s of PN activities during odor 

presentation for the ON-regressor, and 4 s of OFF activity immediately following odor 

termination for the OFF-regressor (Fig. 3.7).  

2.12 Monte Carlo simulations for electrophysiology 

We performed Monte Carlo simulations to gauge the performance of the linear regressors 

as a function of the number of PNs used for the analysis was varied. To achieve this, we 

randomly sub-sampled n (where n ranged from 1 to 89) PNs and quantified the predictive 

performance using mean squared error (MSE). For each n, we performed 1000 simulations and 

reported the average MSE (Fig. 3.8). We performed these simulations for both the ON- and 

OFF-regressors.  

2.13 Angle between odors 

To calculate the angular distance between two conditions, we used the high-dimensional 

vectors obtained from the activity of all 89 recorded PNs during 4 s of ON activity and 4 s of 

OFF activity (Fig 3.6). We averaged the response over the duration of the entire periods (4 s) to 
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generate mean ON (mON) and OFF (mOFF) templates. The angle between these vectors was then 

computed as: 

 

The angular distance was computed for each odor combination within a group (attractive or 

aversive as defined above) and across groups (Fig 4.14c, d).  

2.14 Electrophysiology experiments – ORN recordings 

Young adult locusts of either sex were immobilized by placing within a plastic tube with 

their antennae left accessible. The antennae were stabilized using wax, and a reference electrode 

(Ag/AgCl wire) was inserted into the contralateral eye. Glass micropipettes (5–10 MΩ) filled 

with locust saline were inserted into the base of sensilla and odorant stimuli were prepared and 

delivered similar to PN recording experiments. Signals were acquired using a differential 

amplifier (Grass P55) at 15 kHz sampling rate and filtered between 0.3 and 7.5 kHz. Recordings 

across all locusts were pooled and clustering analysis was performed similar to the approach 

described in section 2.10 (results in Fig 3.11) 

2.15 Behavior experiments – classical conditioning   

Appetitive classical conditioning experiments were performed on young adult locusts of 

either sex starved for 24 hours before the experiment. Locusts were immobilized within a plastic 

tube, their eyes were closed using black tape, and their maxillary palps were painted using a 

zero-volatile-organic-chemical green paint (Valspar ultra). A brief 20-minute buffer period was 

allowed for paint to dry and the locust to acclimatize back to baseline activity levels.  

For data shown Fig 4.8 onwards, prior to conditioning, each locust was presented with a 

4 s pulse of all four odorants used in the experiment (hexanol, isoamyl acetate, benzaldehyde, 
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and citral). If a locust had a palp-opening response to any of these odorants, it was deemed ‘pre-

conditioned’ and was discarded from the experiment. A 15-minute buffer was allowed between 

this pre-test and the training phase.  

During the training phase, locusts were presented the training odorant diluted at 1% v/v at 

a rate of 0.1 L/min diluted in a constant background air stream (desiccated and filtered) of 0.75 

L/min. A vacuum funnel placed behind the locust allowed for odor clearance. The odor was 

presented for 10 s and a food reward (wheat grass or glucose solution 1g/10 mL in water) was 

presented at 5 s post-odor onset for ON-conditioning. The odor was presented for 10 s and a food 

reward was presented at 0.5 s, 2 s, or 4 s post-odor termination for OFF-conditioning. Six such 

training trials were performed with an inter-trial interval of 10 minutes. Locusts that met the 

training criteria (>3 food reward acceptances out of 6) were then evaluated in the testing phase.  

During the testing phase, locusts were presented with 4 s pulses of various odorants (at 

1% dilution) in a pseudorandomized manner with a minimum interval of 20 minutes between 

successive tests. The palp-opening responses of the locusts were recorded using a video camera 

(Microsoft) at 30 fps. The odor delivery and video acquisition were synced using a custom 

LabView program.  

Locusts were kept on a 12 h day – 12 h night cycle (7 am – 7 pm day). All behavioral 

experiments were performed between 10 am – 3 pm to ensure that the training phase coincided 

with the daily feeding time for the locusts.  

2.16 Palp-tracking algorithm 

To accurately track maxillary palp separation, we trained a UNet convolutional neural 

network using randomized initialization of weights in Keras and Tensorflow112. During the 
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training phase, the input into this network was a single channel (green) 128x128 image cropped 

around the palps. The outputs were manually labeled palps (as binarized 128x128 matrices with 

1’s indicating palps and 0’s indicating no palps). We trained the network using the Adam 

optimizer and binary cross-entropy loss function. We performed image augmentation using the 

‘imgaug’ Python library and trained the network on approximately 2000 labeled frames.  

Videos were input into the trained network frame-by-frame and the output was 

thresholded and binarized using a combination of Otsu, mean, and triangle filters from the 

‘skimage’ library. Palp distance for each frame was calculated as the distance between the 

centroids of the two predicted palps using the ‘regionprops’ function. 

2.17 Responsive locusts 

Locusts were considered ‘responsive’ to a particular odor if they had a palp-opening 

response that was >6.5 s.d. above pre-stimulus baseline (2 s) for at least 30 frames (1 s) with palp 

separation > 1.5 a.u. (which was the noise threshold of the tracking algorithm) (Fig. 4.9; Fig. 

4.11).  

2.18 Individual locust responses 

For the normalized POR traces shown in Fig. 4.9, we scaled each locust’s response such 

that 0 corresponded to the minimum palp separation and 1 corresponded to the maximum palp 

separation the locust had across all test odors. Note that after each training paradigm, we tested 

locusts on four odors – hexanol, isoamyl acetate, benzaldehyde, and citral.  

2.19 Mapping neural responses onto palp-opening response dynamics 

PN activity and POR responses (distance between palps) for hexanol, isoamyl acetate, 

benzaldehyde, and citral were averaged across trials and down-sampled to 10 Hz. For each odor, 

we used 2 s baseline, 4 s of odor presentation, and 4 s after odor termination to obtain a 10 s 
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vector (100 elements at 10 Hz). We then concatenated responses from all 4 odors to obtain 400-

dimensional vectors. The input data was hence 89x400 (89 PNs; spiking activity at each time 

point) and the output was 400x1 (palp-separation at each time point). A regularized model was 

fitted using ‘lasso’ (sklearn in Python) with an ‘alpha’ value of 0.01. The learned 89x1 weights 

were then used with the input data to generate predicted POR responses shown in red in Fig. 

4.11. 

We trained 6 such models for each training condition shown in Fig. 4.11. The weights 

obtained for all 6 models were sorted using the weights from the hexanol-ON model and are 

shown in Fig. 13a. Fig. 4.13b shows pair-wise correlations between each weight vector pair. The 

weights across all six models were averaged for each PN. 21/89 PNs had a weight > 0 and 19 

PNs had a weight < 0, with the remainder of PNs assigned a weight of 0 due to regularization. 

The PSTH’s of the PNs assigned positive and negative weights are shown for all 4 odors in Fig. 

4.13c. 

2.20 Behavior experiments – operant conditioning 

Young adult locusts of either sex were chosen and starved for 24 hours prior to these set 

of experiments. All odorants used were diluted to 1% (v/v) concentration in mineral oil and the 

food reward was sugar water (glucose 1g/10 mL distilled water). Each locust was trained on only 

one of the four odorants (hexanol, isoamyl acetate, benzaldehyde, or citral). Each experiment 

comprised 100 trials where the odorant was presented as 4 second pulses and the inter-trial 

interval was set to 30 seconds. Food reward was presented to the locust if it performed a palp-

opening response (POR) in a trial (no food was presented in control experiments). The number of 

POR responses were tabulated for each locust and each odorant to obtain final curves as a 

function of trial number (Fig. 4.15).  
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2.21 Minimally-invasive electrophysiology experiments  

We developed a minimally invasive surgical procedure to record PN activity in tethered-

but-intact locusts as well as fully moving locusts (Fig. 5.1). We immobilized locusts by attaching 

them to a custom 3D-printed manifold after removing their two hind legs to prevent jumping. A 

small incision in the cuticle was made to expose the brain, which was stabilized using a twisted-

wire platform, and then de-sheathed to allow electrode implantation. For stationary preparations, 

tetrode design A (see 2.23) was implanted into one of the antennal lobes and odorants were 

presented. Neural signals were amplified and acquired using a miniaturized amplifier (Intan 

Recording System, RHD2132 16-Ch headstage) and a custom MATLAB script. Each odorant 

was delivered for 5 trials with each trial comprising a 4 second odor pulse. The inter-stimulus-

interval was set to 56 seconds (Fig. 5.6, 5.10). A constant background air stream at 0.75 L/min 

was presented to the locust antenna and the odorant pulses were delivered at 0.2L/min atop this 

carrier stream. A vacuum suction was placed behind the locust to constantly clear the air stream.  

2.22 Monitoring neural responses in behaving locusts 

The neural recordings were performed similarly to the previous set of electrophysiology 

experiments. Before conditioning, we recorded 5 trials of responses to each of the 6 odors used 

(appetitive – hexanol, isoamyl acetate, 2-octanol; non-appetitive – cyclohexanone, benzaldehyde, 

citral). After a 15-minute gap, we performed the conditioning as follows - locusts were presented 

with 6 trials of trained odor (hexanol or benzaldehyde) with overlapping presentations of a food 

reward (sucrose in water 1g/10ml concentration) similar to conditioning methods described 

above. To minimize movement of the locust and conserve neural stability, we switched from 

solid food reward (grass) to liquid food reward (sucrose in water) and presented it in an 

automated manner using a pneumatic pump (WPI Inc., PV-820). The inter-trial interval was set 

to 3 minutes for the training phase. Post-training, we waited for 15 minutes and then repeated the 
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presentations of all 6 odors for 5 trials each. In all blocks of neural recordings, we 

pseudorandomized the order of odor presentation. 

The neural data acquired in these experiments could not be reliably spike sorted using the 

approach mentioned above. As a result, we used an alternative approach for processing this 

dataset113. The raw data signals (acquired at 15 kHz) were de-noised using a band-pass between 

300 Hz and 6000 Hz followed by clipping of signals 5 s.d. above or below the baseline level. 

These were then passed through a continuous moving root-mean-squared (RMS) filter with a 20 

ms window (DSP toolbox on MATLAB), down-sampled by a factor of 150, smoothed by a 10-

point moving average filter, and finally down-sampled by a factor of 5 to produce a temporal 

resolution of 20 Hz (50 ms, similar to spike sorted PN responses). The samples were finally 

baseline subtracted using the mean of 1 s baseline prior to odor presentation (two sample 

recordings shown in Fig. 5.6a) to obtain the ΔRMS signal. For the PCA analysis shown in Fig. 

5.6b, we followed a similar approach as mentioned above. We used the mean of 4 s of odor 

presentation and 4 s of responses immediately after odor termination to obtain a 160-dimension 

vector for each odor (8 seconds x 20 samples per second) for each locust. We recorded from 10 

locusts each for hexanol and benzaldehyde training experiments and concatenated these neural 

responses to obtain a final 20 locust x 160 bin response matrix for each odor during both the pre- 

and post-training periods.  

2.23 Custom tetrode fabrication 

Tetrode Design A (PDMS-Embedded Electrodes) 

PDMS (Polydimethylsiloxane) microchannels-based electrode assembly fabrication were 

produced in three major steps, namely, patterning microchannels on a thin PDMS substrate using 

photolithography techniques, securing the fibers in the microchannels, and forming fiber-dip 
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socket connections (Fig 5.2a). Firstly, a chrome mask was made using a Heidelberg DWL66+ 

Laser writer system using a 10 mm lens. Once the laser writing of the pre-defined design was 

completed on the chrome disk, the pattern was finally developed using the Microposit MF -319 

developer for 100 sec. Then the chrome mask was loaded to a UV-LED mask aligner (KLOE 

UV-KUB3) to pattern SU-8 photoresist on a 4-inch Si substrate. Before that, an appropriate 

amount of SU-8 2025 photoresist was spin-coated on the clean Si substrate at 3000 rpm for 30 

sec using a Brewer Science CEE 200X Spin Coater to create a 30 μm photoresist layer. The 

pattern was then developed using a SU-8 developer. All the parameters for photoresist patterning 

were optimized according to the SU-8 2025 photoresist datasheet. Approximately 10 gm of 

bubble-less PDMS mixture (10:1) was poured on the Si master mold and cured at 60° C for 5 

hours to create a 500 μm thick PDMS substrate with microchannels.  

Then the cured PDMS was peeled off from the Si mold, cut into small parts at desired 

dimensions for housing the fibers for electrodes, secured on the appropriate position in a custom-

designed 3D printed structure, and the whole assembly was glued on a dip-socket connector. 

Here, the final electrode housing consisted of four 50 μm channels with 30 μm walls in between 

to assemble the fibers with approximately 80 μm pitch on the PDMS substrate. Then four 12.8 

μm diameter Nickel Chromium (NiCr) fibers were cut into the desired length and placed in the 

microchannels under a stereomicroscope. The PDMS housing with the fibers was then plasma 

etched for 90 s and UV epoxy was applied to the channels to firmly secure the fibers inside the 

channels. Next, the other side of the fibers were burnt using a lighter and connected to a dip-

socket connector using conductive silver paste. Finally, the tips of the fibers at the recording side 

were cut using a serrated/surgical scissor to the desired length (approx. 0.5 -1 mm). 

Tetrode Design B (Flexible Tetrodes) 
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Flexible tetrodes (Fig 5.7a) were produced from nickel-chromium tetrode wires (Sandvik 

RO800, 0.0005" NiCr). The ends of four uniform 1m lengths of nichrome wire were taped 

together, and hung from a clamp above a tetrode twister114. A weight bar was clipped onto the 

dangling end of the wires and rested in the slot of the tetrode twister. The upper clamp was 

adjusted to raise the weight bar approximately 1 cm above the bottom of the slot. The tetrode 

was then twisted to achieve a ratio of 180 turns/meter. A heat gun was used to fuse the filaments, 

and then the upper end of the tetrode was raised to allow the tetrode to uncoil after it had cooled 

for at least one minute. The tetrode was removed from the clamps and cut in half. A 50 cm 

length of coated silver wire (A-M Systems) was inserted along with the tetrode into a flexible 

polyethylene tube. The insulation on the end of the silver wire was removed using a lighter, and 

the cleaned silver wire and the unfused ends of the tetrode were soldered into machine-pin DIP 

sockets. A 32-gauge aluminum wire was soldered to the same pin as the silver wire for use as a 

ground, and a removed dip socket pin was soldered to the end to ensure a consistent ground 

connection. The upper part of the dip socket was then encased in UV-cure epoxy to mechanically 

stabilize and protect the assembled electrode. (Fig 5.7b) 

2.24 Signal processing for RMS 

The raw data were acquired at 15 kHz and processed using previously published 

techniques113. The signal from each recorded electrode was processed independently. Briefly, the 

signals were filtered using a bandpass filter between 0.3 and 7.5 kHz and passed through a 

continuous moving RMS (root-mean-squared) filter (MATLAB DSP toolbox) with a 20 ms 

window size. They were then down-sampled by a factor of 150, smoothed by a ten-point moving 

average filter, and further down-sampled by a factor of 5. This brought the final resolution of the 
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data to 50 ms. Data were then baseline subtracted using 2 s pre-stimulus window to obtain 

ΔRMS. This resulted in an 80-point vector for 4 seconds of odor presentation per electrode/trial.  

2.25 Response stability and correlation 

To measure the stability of responses to an odorant over repeated presentations, the 

pairwise correlation between all five trials for that odor was computed (5-choose-2 or 10 

comparisons) and the mean of all ten resulting comparisons was taken to obtain the average 

correlation or stability of the responses to that odorant [7 per odor per channel, 7*12 channels = 

84 data points]. (Fig. 5.11) 

To measure similarity/distinctness of responses across odorants, cross-odor correlations 

was computed by computing the mean RMS response for each odor and then the pair-wise 

correlation of these mean responses for different odor pairs [7-choose-2 comparison for 1 locust 

= 21, for 4 locusts = 84 comparisons; the same number was used for comparison between 

distributions].   

2.26 Dimensionality reduction analysis (minimally invasive experiments) 

Principal Component Analysis (PCA) was used to visualize the responses to odors across 

all recorded electrodes (n = 12 electrodes from 4 locusts). For each electrode, a response matrix 

was computed as follows. The binned responses (50 ms bin size; 80x1 vector) to 4 s of odor 

presentation for each stimulus were taken and concatenated to obtain 1 large 560-dimensional 

vector for an electrode. This was computed for all 12 electrodes to obtain a 12x560 matrix of 

stimulus responses. PCA dimensionality reduction was then performed, and the data projected on 

to the top three eigenvectors that captured the highest variance (3x560 dimensional matrix). For 

each odor in the reduced PCA-space, a Gaussian distribution was fitted, and the corresponding 

Gaussian ellipse plotted in 3-dimensions as shown in (Fig. 5.11).  
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2.27 Classification analysis 

To predict the identity of an odor from its neural responses, the data after transformation 

in the PCA-space (as described above) was used. For Fig. 5.11c, all data from all 12 electrodes 

was used make predictions. The ‘fitcdiscr’ function in MATLAB was used to fit a quadratic 

discriminating function for each class (odor) and predict the class labels using this set of learned 

classifiers. The results were visualized using a confusion matrix showing the target labels on the 

y-axis and the predicted labels along the x-axis. For predictions in Fig. 5.11e, f, only the data 

from the corresponding 4 electrodes was used, and a similar analysis was performed. Note that in 

each case, the chance level of accuracy was 1-in-7, or approximately 14%.  

For the analysis in Fig. 5.11d, data from all 12 electrodes was used, but the duration 

(number of bins) of responses used as input to train the classifiers was varied. After training, 

predictions were made on all 80 time-bins for each odorant. The classification analysis was 

repeated as described above and the average accuracy of the models across all 7 classes for each 

number of bins n obtained (n going from 4 to 80 bins; 4 being the minimum requirement for the 

model). The average accuracy as a function of time is shown, with a chance level of 14% 

indicated in red.  

2.28 Walking locust recordings  

To record from freely moving locusts, the locust brain was prepared for electrode 

implantation similar to the method described above. For this set of experiments, custom tetrodes 

B (as described above) were used due to their increased flexibility and robustness to movement. 

After de-sheathing the locust brains, the electrodes were implanted and fortified in place using a 

combination of dental wax and epoxy glue. The electrodes were then secured to the back of the 

locusts using a 3D-printed brace attached to the back of the locust, and the locusts allowed to 
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recover for a few minutes. They were then released into the behavioral arena and their behavioral 

and neural responses to different odorants recorded.  

2.29 Freely moving recordings 

A custom two chamber behavioral arena was designed to assay locust preferences in a 

freely moving setting. In the design air was passed through a small 3D printed chamber that 

would hold the KimWipe, into a mixing chamber, and from there the two streams passed through 

the behavioral chamber and out the far side. The two-chamber assay was placed within a wooden 

cabinet into which a faraday cage had been installed, and a red backlight installed beneath the 

chamber provided the only source of illumination to minimize visual stimuli. To ensure light 

isolation, the wooden cabinet was further covered with a black cloth during experiments. A 4” 

fan was used to apply negative pressure to the wooden cabinet and to exhaust the air.  

For these experiments, an odorant was introduced into the arena by pipetting a 100 uL 

onto a KimWipe and background air (2L/min) allowed to flow over it as it entered the box. The 

locust was placed in the center of the box at the start of each trial and was allowed to explore the 

box for a period of 5 minutes and its neural and behavioral responses were recorded. For each 

trial, the side on which the odorant was placed was pseudorandomized. Neural data was acquired 

using Intan (similar as above) and behavioral data was recorded using a webcam (Microsoft 

LifeCam). The neural and behavioral data were synchronized offline using a red LED flash to 

signal the start of the experiment.  

2.30 Processing data from freely moving recordings 

The acquired neural signals were first bandpass filtered to between 0.3 and 7.5 kHz. It 

was found that significant movements of the locusts produced mechanical noise that became 

superimposed atop the neural signals of interest and could not be fully filtered out. Hence, data 
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from segments where the locust produced large movements was discarded. To achieve this, an 

object detection algorithm where we computed the number of pixels showing significant changes 

in their intensities (>30 on a 0-256 grayscale) between successive frames was used. If the 

number of pixels with significant changes crossed 1000 (a threshold found to work well for this 

approach), the corresponding neural data acquired for that particular frame was discarded. After 

discarding frames with significant movement artifacts, the neural signals were also limited to 

within 5 standard deviations of the average baseline signal to remove any remaining noise 

artifacts. Finally, a list of putative spiking events was found using the ‘findpeaks’ function in 

MATLAB and the results confirmed after a manual inspection.  

A pre-trained YOLOv4115,116 model was fine-tuned to accurately track the position of the 

locust in the behavioral arena. The behavioral data was acquired at 30 fps and hence 9000 frames 

per 5-minute trial (300 s * 30 frames/s) was obtained. To allow for comparison with neural 

signals acquired at 15 kHz, the final spiking data was binned to have the same sampling rate as 

the behavioral data. To generate the results shown in Fig. 5.8, 9, 12, the time spent by each 

locust was computed by simply adding up the number of frames in which the locust was on the 

side of the odor and compared to the number of frames/time spent on the control side. To 

compute the mean spiking activity for each side, the corresponding number of spikes in each 

frame was used, and an average across all frames on that side for a particular trial was taken. A 

two-sampled t-test was used to perform the significance analyses shown, with a p-value < 0.05 

indicating significant difference. 
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Chapter 3: Encoding of innate appetitive 

preferences in the early olfactory pathway 

3.1: Introduction 
In many organisms, the olfactory system serves as the primary sensory modality that 

guides a plethora of behaviors such as foraging for food, finding mates, communicating with 

conspecifics, and evading predators. Using an array of biological sensors, the olfactory system 

converts volatile chemical inputs from an organism’s environment into patterned neural 

responses that inform downstream motor neurons to perform appropriate behaviors (e.g., moving 

towards food or away from danger). For many external cues, the elicited neural responses are 

often determined by the genetic makeup of the organism, which assigns an innate preference, or 

valence, for these different stimuli117–122. Given the importance of rapid and robust decision-

making for survival and propagation123–126, how is the information regarding the valence of a 

stimulus encoded in the olfactory system? In this Chapter, I will present a study that examined 

whether and how neural responses in the early olfactory system of locusts are spatiotemporally 

structured to represent odor valence. 

In insects (including locusts), odor stimuli are detected by a family of olfactory receptor 

neurons (ORNs) distributed along the antenna that transduces chemical cues to electrical signals 

and relays them to the antennal lobe. In locusts, the antennal lobe is comprised of a network of 

~830 cholinergic projection neurons (PNs, excitatory) and ~300 GABAergic local neurons 

(inhibitory). In particular, the responses of PNs are patterned over space and time to rapidly 

encode for the identity and intensity of different odorants18–24 and they relay this information to 

higher centers responsible for learning and memory (mushroom body, MB), and overall 
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behavioral preferences (lateral horn, LH)127–129. Until recently, it was believed that information 

pertaining to the encoding of innate preferences for different stimuli was encoded exclusively in 

the LH. However, given that the LH receives direct feed-forward input from the network of 

PNs129, is information regarding the valence of an odorant already organized at the level of 

neural responses in the antennal lobe? 

Recent work in Drosophila, another well-established system for invertebrate olfaction, 

suggests that spatiotemporally patterned neural activity in the antennal lobe appears to encode 

for stimulus valence119,130,131. Using a panel of 12 odorants (6 attractive and 6 aversive), the 

authors found that innately attractive chemicals elicited responses in the medial antennal lobe, 

whereas innately aversive cues activated more lateral regions119. A second study found that the 

selective silencing of particular glomeruli (functional units in the Drosophila antennal lobe) 

could significantly alter the perceived valence to a stimulus118. Finally, work from Yamakazi et 

al. found that neurons in the mushroom body (directly receiving input from antennal lobe PNs) 

of Drosophila also appeared to encode valence information132. This result implies that PNs 

outputs to the MB should be organized in a manner that also encodes for valence. Taken 

together, these findings indicate that in Drosophila, the neural responses in the antennal lobe 

network are also organized to encode valence information. Given that the general principles of 

olfactory organization are similar between Drosophila and locusts133, do we see similar evidence 

for valence encoding in the locust antennal lobe?  

In this study, we explored the innate behavioral preferences (valence) of locusts 

(Schistocerca americana) to a large panel of biologically relevant chemicals. We began by 

assaying the appetitive valence of locusts using the palp-opening response (POR) as a behavioral 

indicator and obtained a broad range of preferences to a set of 22 chemically diverse odorants. 
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Next, we performed extracellular recordings to measure the responses of PNs in the antennal 

lobe to the same panel of odorants. We found that while individual neurons responded 

selectively to different subsets of neurons, the ensemble neural responses were spatiotemporally 

patterned to be highly predictive of odorant valence. A simple linear classifier could accurately 

predict the valence of all chemical cues in the panel using the PN responses as input. Taken 

together, these results indicate that PNs not only encode the identity and intensity of different 

stimuli but do so in a biologically relevant manner that re-formats chemically diverse input 

information to behaviorally relevant patterns.  

3.2 Results 

3.2.1 Innate appetitive preferences of locusts to an odor panel 

Do locusts exhibit distinct innate preferences for different chemicals? Locusts use a pair 

of appendages, known as palps, to guide food into their mouth. They achieve this by extending 

the palps (palp-opening response) in a stereotyped fashion when near a source of food. We 

leveraged this behavior and assayed the innate appetitive preferences of starved young-adult 

locusts (of either sex) to a diverse panel of twenty-two odorants (diluted to 1% v/v unless stated 

otherwise). Each odor in the panel was presented to every locust once using a pseudorandomized 

order and the corresponding palp-opening responses (POR) evoked were recorded (Fig. 3.1a). 

We used a binary metric to quantify each locust’s response to an odor stimulus – a score of 1 to 

indicate a successful POR, and a score of 0 to indicate no response. The performance of all 

locusts (n = 26) used in the assay is summarized in Fig. 3.1b. Note that each locust was 

presented a different sequence of the odors, but for visualization purposes the odors are sorted 

based on the number of PORs they elicited across all locusts.  
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Figure 3.1: Innate appetitive preferences of locusts to a diverse odor panel 

a) A schematic showing a palp-opening response (POR) and experimental protocol. A successful POR 

was defined as an opening of the maxillary palps beyond the facial ridges shown on the locust. Odors 

were delivered in a pseudorandomized order onto the locust antenna. The stimulus delivery was 4 s in 

duration, and the inter-stimulus interval was set to 56 s.  

b) Innate preferences of twenty-six locusts for the twenty-two odorants tested are shown. Each row shows 

the POR responses of a locust to the odor panel. White boxes indicate a successful POR to an odor and 

gray boxes indicate no POR. Note that odors are sorted from those that elicited the highest number of 

PORs across locusts (leftmost) to the lowest (rightmost). The sorted ordering is just to facilitate the 

readability of data and does not represent the actual order in which each locust was tested.  

c) Preference indices were calculated for all odors tested and are shown as a bar plot (n = 26 locusts). 

Blue bars indicate odors classified as appetitive, gray bars indicate neutral odors, and red bars indicate 

unappetitive odors. Odorants with a significant deviation from the median response (one-sided binomial 

test, p<0.1, were classified as either being appetitive or unappetitive; * indicates p<0.1, ** indicates 

p<0.05, *** indicates p<0.01). Error bars indicate s.e.m.  

d) Regression analysis of odor vapor pressure versus number of PORs generated (across 26 locusts) is 

shown for all odorants in the panel. Each open circle indicates values (vapor pressure vs POR count) for 

one odorant. Only odorants with available vapor pressure data were considered for this analysis (18 out of 

22 odors at 1% v/v concentration). Best fit line using a linear regression model is shown in black. The 

calculated R2 value for this model is 0.01. 

e) Regression analysis of POR counts versus trial number in the experiment is shown. Each circle 

indicates the number of locusts with successful PORs in that particular trial. Best fit line using a linear 

regression model is shown in black. The R2 value calculated for this model is 0.23.  
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f) Results from Monte Carlo simulations are shown (see Methods). Valence predictions were obtained by 

using a random subset of locusts of a particular size (i.e., any n-locusts-out-of-26) and were compared 

with overall valence obtained using all 26 locusts using a correlation metric. For each number of locusts, 

100 such simulations were performed with random subsets of locusts chosen in each simulation. The 

mean correlation and s.e.m. across the simulations are shown. An R2 value above 0.95 was obtained for 

simulations with n > 18 locusts.   

 We aggregated the responses from individual locusts (see Methods) to obtain a 

preference index for all odors – higher scores on the index indicating stronger innate preferences 

(Fig 3.1c). Locusts displayed a broad range of preferences to the odor panel. Hexanol (at 10% 

v/v; leftmost odorant), a green-leaf volatile, had the highest preference, whereas linalool 

(rightmost odorant), an active ingredient in insecticides, had the lowest preference. Based on 

their deviation from the median preference score, we categorized odorants as being appetitive 

(significantly above the median), neutral, or un-appetitive (significantly below the median; one-

sided binomial test comparison). In later sections, we will jointly refer to neutral and un-

appetitive odors as ‘non-appetitive’.  

Prior studies have found that even within a species, the preferences for certain odorants 

can vary between males and females117,134,135. To account for this possibility, we noted the sex of 

each locust during our experiments and ensured that the overall dataset was comprised of an 

equal number of male and female locusts (n=13 each). We looked at the cumulative behavioral 

responses of locusts grouped by gender (Fig 3.2a) and found that while appetitive preferences 

for certain odorants did vary between the groups (e.g., hexanal and garlic), these differences 

were not significant (t-test, p>0.1 for all odors).  

Is there a simple stimulus feature that could explain the observed trends? Since the 

odorants were diluted to the same concentration in solution (1% v/v in mineral oil; except two 

additional concentrations of hexanol at 10% and 0.1%) and delivered identically, the vapor 

pressure of the chemicals directly determined how much of each stimulus was delivered 
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(stimulus intensity). Could locusts simply be performing PORs more frequently for more volatile 

odors? To test this, we performed a regression analysis between the vapor pressure of odors and 

the number of PORs each odor elicited. As can be seen in Fig. 3.1d (and Fig. 3.2b), the 

variations in vapor pressure poorly explained the variations we observed in the behavioral 

responses.  

Each locust was exposed to a panel of 22 chemicals, with a new stimulus being presented 

every minute. Despite the sequence of odors being pseudorandomized (Fig. 3.2d, e) for each 

locust, fatigue or loss of motivation to maintain robust behavioral responses for the later trials 

could potentially confound the observed preferences. To eliminate this possibility, we plotted the 

observed number of PORs as a function of the trial number (Fig. 3.1e).  Our results indicate that 

locust performance remains robust and even slightly increased as the experiment progressed 

(marginally higher number of PORs in later trials compared to earlier trials; R2 = 0.23; Fig. 

3.2c).  

Finally, we performed Monte Carlo simulations (see Methods) to verify that population-

level responses were not biased by a handful of individuals. The simulations showed (Fig. 3.1f) 

that this is indeed the case and the results converged (R2 > 0.95 with overall results) when any 

random subset of eighteen or more locusts was used to calculate the behavioral preference 

indices for different odorants. Taken together, this set of control analyses rule out many simpler 

explanations and potential biases in our results. Hence, we can conclude that the behavioral 

preferences obtained here are a strong indicator of the innate appetitive preference of the locusts.  
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Figure 3.2: Additional controls for assaying innate appetitive preference  
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a) Palp-opening responses (PORs) to the odor panel do not show any significant gender-based differences 

(t-test, p>0.1 for all pairwise comparisons). We recorded PORs from 13 male and 13 female locusts to 

measure innate valence. PORs were sorted from highest to lowest based on the male group responses 

(black bars), and corresponding female locust PORs (dark gray bars) are shown next to them. The odors 

are colored using the same convention used in Fig. 3.1c.  

b) Similar plot as in Fig. 3.1d but without ethyl acetate. Ethyl acetate has a reported vapor pressure that is 

much higher than all other odors used, and hence we repeated the analysis in Fig. 3.1d without the outlier. 

The R2 for this analysis is 0.1, which still indicates a very poor correlation between vapor pressures and 

the observed palp-opening responses.  

c) The PORs recorded for every locust are shown as a function of trial number. Similar convention as Fig. 

3.1b, where each row corresponds to a single locust and there are twenty-two trials one for each odorant 

in the panel. White boxes indicate a palp-opening response, gray boxes indicate no PORs. A summary of 

this data is presented in Fig. 3.1d.  

d) The average trial number in which each odor was presented across all locusts is shown. Error bars 

indicate s.e.m.  

e) The sequence of odor presentation for each locust is shown. Each row is the sequence of odorants 

presented to one locust. Colors map to preference index with more bluish odorants being appetitive and 

more reddish odorants being aversive.  

3.2.2 Individual projection neuron responses to appetitive and non-appetitive 

odorants 

Next, we sought to understand the neural basis for this behavioral readout. To examine 

this, we recorded extracellular odor-evoked responses from projection neurons (PNs) in the 

locust antennal lobe (Fig. 3.3a).  We stimulated the antenna with the same odor panel used in the 

behavioral experiments. The stimulus dynamics of each odorant were quantified using a photo-

ionization detector (PID) and the mean voltage responses for all odors are shown in Fig. 3.3b 

(left panel; see Methods). The right panel shows the peak PID response for each odorant 

arranged in order of innate appetitive preferences (cues that evoked the highest behavioral 

responses are on the left and lowest on the right).  
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Figure 3.3: Extracellular PN responses to the odor panel 

a) A schematic of the experimental setup is shown. Extracellular projection neuron (PN) recordings were 

made from the locust antennal lobe. Each odorant was presented for ten repeated trials and the order of 

odorants was pseudorandomized in each experiment.  

b) Left: Mean voltage signals acquired from a photoionization detector (PID) are shown for all 22 

odorants in the panel. Each odorant was presented for 4 s and repeated for 5 trials. Each trace is colored 

using preference indices obtained in Fig. 3.1c. Blue traces indicate appetitive odorants, gray indicates 

neutral odorants, and red indicates unappetitive odorants. Right: The peak voltage signal obtained from 

the PID is shown for all twenty-two odorants. Odorants are sorted from highest (leftmost) to lowest 

(rightmost) appetitive preference or valence. Same color convention as in the left panel. 

c) Representative PN responses to all 22 odorants in the panel are shown. Each tick indicates an action 

potential, each row corresponds to one trial, and ten trial blocks are shown for each odorant. Odors are 

sorted based on their behavioral preferences, with the highest appetitive preferences shown as the top 

block of ten trials, and the lowest shown at the bottom (Fig. 3.1). A black bar along the x-axis indicates 

the four seconds odor presentation window. 

We presented each odorant for ten repetitions in a pseudorandomized order. A total of 89 

PNs (~10% of the total number of PNs in a single antennal lobe) were recorded using this 

approach and used for all subsequent analyses. Consistent with prior data, we found that odor-

evoked responses had two prominent epochs: an ON response that occurred during the 4 s when 



44 

 

the stimulus was presented, and an OFF response that occurred during a 4 s window immediately 

following stimulus termination. We found a PN that had an ON response for most of the 

odorants (Fig. 3.3c, PN A), whereas many PNs responded to a subset of odorants either with an 

ON response or an OFF response. A small fraction of neurons were OFF-responders to a few 

appetitive odors but switched to ON-responses for some of the non-appetitive odorants (Fig. 

3.3c; PN B; 8/89 PNs with similar tuning). Complementing these responses, we also found a 

small fraction of PNs that was ON-responsive to all five appetitive odorants but was OFF 

responsive to one or more non-appetitive odorants (Fig. 3.3c, PN C; 11/89 PNs with similar 

tuning). On average, odorants with higher positive valence elicited stronger ON and OFF 

responses across more PNs than those with lower valence, while inhibition increased as the 

odorants became less appetitive (Fig. 3.4a; see Methods).   
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Figure 3.4: Characterizing individual PN responses   

a) Left panel:  Number of PNs that were activated during the odor presentation window (ON-responsive) 

is plotted for twenty-two different odorants in the panel. Odorants are again sorted based on their 

appetitive valence (highest – leftmost to lowest – rightmost). Middle and right panels: Similar plots but 

showing the number of PNs that were inhibited during odor presentation, and that number of PNs 

activated after odor termination (OFF-responsive) are shown for different odorants on the panel. The 

odorants are again arranged based on appetitive valence (same as left panel).  

b) Left panel: For each PN, we took the mean of the spiking activity across 4 s of odor presentation and 

across all 10 trials for each odor to obtain a 22-dimensional vector. We computed the correlation between 

this vector and the appetitive preferences obtained for each odor (also a 22-dimensional vector; Fig. 3.1). 

The distribution of correlations obtained using this approach is shown for all 89 PNs. Right panel: Similar 

plot as the left panel, but the OFF-period PN activity (4 s immediately following odor termination) was 

now correlated with the overall odor valences.  

c) Left: Responses of individual PNs to all twenty-two odors during the ON-period are shown. Each row 

corresponds to a single PN, and the odorants (columns) were organized from highest valence to lowest 

(from left to right). PNs were classified as ON responsive (white box) or unresponsive (gray box). Bar 

plot on the left indicates the number of odorants (‘Count’) that activated each PN. PNs are sorted such 



46 

 

that those that responded to most odorants are at the top (i.e., least selective). Right: Similar plot as the 

left panel, but characterizing OFF-responses across all eighty-nine PNs to all odorants in the panel. 

We computed the correlation between the individual PN responses to different odorants 

with the overall behavioral preferences to the same panel (Fig. 3.4b).  Notably, we found a small 

subset of neurons that had either a strong positive or negative correlation with the POR responses 

observed (correlations > 0.75 for 4/89 PNs for ON responses and 2/89 PNs for OFF responses). 

Furthermore, our results indicate that such correlations could be found when either the ON or 

OFF responses were used. Although, it would be worth noting that different subsets of PNs had a 

high correlation with appetitive preference during the ON and the OFF periods. 

How selective are individual PN responses? To answer this, we computed a tuning curve 

for each PN during both the odor ON and OFF periods (Fig. 3.4c). We found that most PNs 

responded to at least two odorants or more during the ON period (84/89 PNs) and a small 

fraction of neurons (11/89 PNs) responded to ten or more odorants (Fig. 3.4c, bar plots along the 

y-axis). The odor-evoked responses were more selective during the OFF period, with 70/89 PNs 

responding to two or more odors and only three PNs responding to more than ten odorants. In 

sum, these results indicate that individual PNs responded to the odor panel with great diversity.  

3.2.3 Ensemble projection neuron responses to appetitive and non-appetitive 

odorants 

Next, we examined how the odor-evoked responses vary at an ensemble level. To 

visualize the ensemble neural responses and how they change as a function of time, we used a 

linear dimensionality reduction technique (Principal Component Analysis, PCA; see Methods). 

PCA neural response trajectories for the ON period are shown for all odorants (Fig. 3.5a). 

Consistent with prior findings22,136–138, our data also reveal that each odorant produced a distinct 

looped response trajectory. Interestingly, we observed that neural response trajectories evoked by 
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odorants that were labeled as innately appetitive in the behavioral assay evolved in a similar 

direction (blue trajectories). This indicates that the combination of PNs excited by these odors 

had overlap and hence the PN ensemble vectors were near one another in the state space. 

Similarly, the trajectories for odors labeled as unappetitive also evolved in a similar direction 

(red trajectories) and occupied a different region of the state space. Note that the sets of red and 

blue trajectories did not overlap, indicating that odors within different groups (appetitive and 

unappetitive) were being encoded by distinct subsets of PNs.  

 

Figure 3.5: Ensemble PN responses for appetitive and non-appetitive odorants 

a) Visualization of the ensemble (n = 89) PN responses to the odor panel after Principal Component 

Analysis (PCA) dimensionality reduction are shown (see Methods). 4 s of ON-responses for all twenty-

two odorants were used for this analysis, and the data were projected on to the first 3 principal 

components that captured the highest variance (~30% captured along the three axes shown). Neural 

response trajectories evoked by innately appetitive odors are colored in blue, neutral odors response 

trajectories are indicated in gray, and unappetitive odors responses are shown as red trajectories. Note that 

the ensemble neural response trajectories cluster based on overall appetitive valence.  

b) Dendrogram showing the overall hierarchical organization of 89-dimensional PN ON-responses. 

Odorants are again colored based on the corresponding behavioral preferences (blue indicates appetitive 

odors, gray indicates neutral odors, red indicates unappetitive odors). Appetitive odors cluster along the 

left branch, while unappetitive odors cluster on the right branch. It is worth noting that these results are 

similar to the overall arrangement of responses shown after dimensionality reduction in panel a. 
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Given the limited variance captured by the visualized dimensions (~33%), we confirmed 

these PCA results with a high-dimensional clustering analysis (Fig. 3.5b). We found that the 

spiking profiles for odors that belonged to the same group (appetitive or unappetitive) were 

similar, and hence clustered within the same branch when visualized using a dendrogram. These 

results support our interpretation that unique subsets of PNs in the antennal lobe are activated in 

a manner that is representative of the innate appetitiveness of the stimulus.  

Consistent with our previous findings139, we found that ensembles of PNs encoding for 

the onset and offset of odors were highly non-overlapping. Therefore, ensemble responses during 

these epochs were nearly orthogonal to each other (Fig. 3.6a). PCA visualization of odor-evoked 

response trajectories revealed that ON and OFF responses evolved in non-overlapping subspaces 

(Fig 3.6b). Notably, we found that odorants with the highest positive POR preferences evoked 

neural responses that were highly pattern matched during both ON (blue trajectories) and OFF 

(red trajectories) epochs.   

 

Figure 3.6: ON and OFF responses to odorants are encoded by distinct subsets of PNs   

a) Angle between ON- and OFF- periods are shown for each odor. The mean activity across the 

respective odor period (and all 10 trials) was computed for each PN to obtain 89-dimensional vectors (89 

PNs) for the ON- and OFF- periods. The angle between these vectors was computed for each odor and is 

shown as a polar scatter plot using a similar color convention as Fig. 3.5. Each dot corresponds to a single 
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odorant – the odor index shown along the horizontal axis ranks odors from 1 to 22 based on innate 

appetitiveness (same color scheme as previous plots). The distance along this dimension is arbitrary. The 

angles are close to 90° for almost all odors, indicating that the ON- and OFF- vectors are almost 

orthogonal in this high-dimensional space.  

b) Similar analysis as Fig. 3.5a, but using the odor ON- and OFF-periods for 3 odors – hexanol, isoamyl 

acetate, and 2-octanol are shown. The blue ON-trajectories evolve in a different direction than the red 

OFF-trajectories. Note that the blue and red trajectories have minimal overlap, indicating different subsets 

of PNs are activated during the ON and OFF periods.  

3.2.4 Predicting behavioral preferences from odor-evoked neural responses 

How well do the neural responses map onto the behavioral preferences for different 

odorants? To examine this, we used linear regression to predict the probability of generating a 

POR given the ensemble PN activity elicited by that odorant. (Fig. 3.7a). Note that for these 

predictions, we used the normalized behavioral responses for each odor (see Methods), which 

could also be interpreted as the probability of a palp-opening response to a given odorant (across 

locusts). The regression weights were trained using all but one odorant and used to predict the 

probability of POR for the left-out odorant (i.e., a leave-one-out-cross-validation approach; 22 

different linear regression models were used). We found that this simple approach yielded robust 

predictions for all odorants (Fig. 3.7b, c). 
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Figure 3.7: Neural response patterns robustly predict innate behavioral preferences for 

odorants  

a) Schematic of the linear regression approach is shown. The input data was the mean PN spiking activity 

during odor onset for the ON-regressor, or the mean PN responses in a 4 s window post odor termination 

for the OFF-regressor (i.e., 89 dimensional ON or OFF response vectors). The output to be predicted was 

the normalized preference score (interpreted as a probability of POR; see Methods) for each odorant. The 

regressors were trained using a gradient descent approach and validated using a leave-one-out-cross-

validation (LOOCV) approach. Therefore, the POR probability for each odorant (that was left out of the 

training), was based on a regression model learned using the data for the remaining twenty-one odorants. 

This resulted in twenty-two ON-regressors (one for each odorant), and twenty-two OFF-regressors (again 

one for each odorant).  

b) Left: Predictions from the ON-regressor versus the actual probabilities obtained from the behavioral 

assay for all odorants in the panel are shown. Overall, the R2 value between the predicted value and the 

actual behavioral response was high (R2 = 0.726). Right: Similar plot but for the shuffled control is 

shown. Here, the behavioral POR probabilities were randomized, and a regression model was fit similar 

to learning the unshuffled case.  Note that the predictions are centered around the mean valence of ~0.4 

(R2 = 0.001).  

c) Similar plots as panel b, but using models trained on the OFF-period responses are shown. The OFF-

regressors (R2 = 0.489) performed poorer than the ON-regression models but were still well above 

shuffled control performance levels (R2 = 0.001).  

d) Left: The ON-period linear regression model was validated by training 22 different models, leaving 1 

of the 22 odors out each time for validation. The weights obtained for each PN are shown for all 22 

models trained using this LOOCV approach. The weights assigned to eighty-nine PNs were sorted (i.e., 

lowest to highest) based on the model used to predict POR responses to hexanol. Inset shows the 

distribution of pairwise correlations between each weight vector obtained for predicting POR for different 

odorants. Right: Similar plot as left panel, but for the twenty-two OFF-regressors are shown.  
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e) Left: Blue curves indicate weight vectors obtained from the ON-period regressors as shown in panel d. 

Red traces show weights learned by the OFF-period regressors but sorted using the same indices as the 

ON-period vectors. As can be seen, the blue and red curves are uncorrelated. Right: Correlation analysis 

quantifying the similarities in weights assigned to PNs by the ON- and the OFF- regressors. As can be 

expected from panel d, weights learned by the PNs are highly correlated within the ON-period and OFF-

periods (darker colors along the diagonal blocks). However, as shown in the left panel, the weights 

assigned to each PN are different between the ON- and OFF-regressors, and hence the off-diagonal blocks 

have lower correlations (lighter colors).  

Note that we made predictions using the mean ensemble PN activity during 4 s of odor 

exposure (i.e., an ‘ON-regressor’), and using 4 s of odor-evoked activity after the termination of 

the odorant (i.e., an ‘OFF-regressor’). Both the regressors performed relatively well with the 

ON-regressor performance being better than the OFF-regressor. Further, the performance of the 

linear regression approach with shuffled prediction probabilities for different odorants (i.e., 

‘shuffled control’ for both ON and OFF cases) predicted values around the mean POR 

probability for all odorants (Fig. 3.7b, c; mean = ~0.4), and was significantly inferior compared 

to the ON- and OFF- regression approaches. The poor performance of the shuffled control 

approach compared to the ON- and OFF- regressors suggests that the spiking activity across PNs 

is indeed organized to enable mapping between neural and behavioral responses spaces.  

How consistent were the different regression models? Our results indicate that the 

weights assigned to each PN remained stable irrespective of the odor that was left out to train the 

regression model (Fig. 3.7d). This consistency of the assigned weights across regressors 

indicates that no particular odorant disproportionately influenced the regression model used to 

transform neural responses into POR probabilities. Additionally, Monte Carlo simulations (see 

Methods) revealed that both the ON- and OFF- regressors’ performance improved as the number 

of PNs used in the analyses was increased (Fig. 3.8).   
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Figure 3.8: Monte Carlo simulations. We 

used Monte Carlo simulations to quantify the 

performance of the linear regression approach as a 

function of the number of projection neurons used 

to predict the behavioral preference indices. Note 

that the performance of both ON- (blue) and OFF- 

(red) regressors are plotted to allow comparison. 

For each n, we performed 1000 such simulations 

and obtained the average mean squared error for 

the predictions across all simulations.  The average 

error goes down with an increase in the PN count 

and appears to saturate when around eighty PNs 

are used for the analyses.  

 

We wondered whether the same set of PNs contributed during both ON and OFF periods 

to predict the preference index for different odorants. To understand this, we calculated the 

correlation coefficient between the weights assigned by both these regression approaches (Fig. 

3.7e). Our results indicate that there was only a weak correlation between weights assigned by 

the ON- and OFF- regressors. As an additional control, we applied the weights learned by the 

ON-regressors to predict the preference index using the OFF-period responses of the held-out 

odorant, and vice versa (Fig 3.9). Both these classifiers had poorer performances than those 

shown in Fig 3.7, indicating that the weights assigned to PNs were indeed dependent on which 

odor period was used during the training phase.  These results indicate that information regarding 

the overall appetitive preference is distributed across different sets of PNs during the ON and 

OFF epochs. In sum, we conclude that the ensemble neural responses during odor presentations 

and after their terminations are unique, and contain information about the overall innate 

behavioral response generated by that odorant. 
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Figure 3.9: Additional controls for regressor specificity 

a) We trained regressors to predict behavioral probability similar to the approach in Fig 3.7. Note that for 

this analysis, the regressor learned weights for PNs using the ON-period odor responses but made 

predictions using the OFF-period odor responses for the held-out odorant. These predictions had an R2 = 

0.291 and were poorer than those obtained in Fig 3.7b (R2 = 0.726).  

b) Similar analysis as panel a but weights were learned using OFF-period responses and predictions were 

made using the ON-period responses of the held-out odorant. These predictions had an R2 = 0.156 and 

were poorer than those obtained in Fig 3.7c (R2 = 0.489).  

3.3 Discussion and conclusions 
In this study, we examined the neural correlates of innate olfactory preferences. Our 

results indicate that while the neural responses evoked by an odorant were patterned over 

combinations of neurons activated and over time, the ensemble neural responses are still 

primarily constrained by the overall behavioral relevance of the chemical cue. Odorants that have 

a positive appetitive preference, or valence, evoked ensemble neural responses that overlapped 

during odor presentations (i.e., ON responses) and after their terminations (i.e., OFF responses). 

Similarly, odorants with a neutral or negative appetitive preference evoked spiking activities that 

formed similar ON and OFF response clusters that were distinct from the appetitive response 

clusters. As a direct consequence of this spatiotemporal organization of neural responses, the 

innate behavioral responses were entirely predictable from neural responses during both these 

epochs but using distinct subsets of neurons.  
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3.3.1 Chemical (input) vs. neural vs. behavioral (output) spaces 

Could the observed appetitive preferences to different odorants be predicted directly from 

the stimulus/chemical space135,140,141? We found that chemical features such as those extracted by 

nuclear magnetic resonance spectra (NMR) or infrared (IR) spectra did not have good 

correlations with the overall appetitive preferences for different chemicals on the odor panel 

(Fig. 3.10).   

 

Figure 3.10: Mapping chemical features/properties onto behavioral valence  

a) We obtained NMR-spectrum data142 for 16 odors (all at 1% concentration) in our panel. Using an 

approach similar to that in Fig. 3.7, we trained linear regressors to predict the valence of odorants in the 

panel based on their NMR-spectra. The plot shows the actual POR probability along the x-axis and the 

predictions from the regressors along the y-axis. The predictions were poor and had a calculated R2 value 

of 0.0041.  

b) Similar approach as in panel a, but using IR-spectrum data obtained for 17 odors142. The predictions 

were again poor and had a calculated R2 value of 0.0009.  

Our results indicate that chemically similar odorants evoked divergent neural responses 

(isoamyl acetate and ethyl acetate – both esters but opposite valences). Conversely, we found 

odorants that had different chemical features mapped onto similar appetitive preferences 

(benzaldehyde and cyclohexanone). Even features such as the vapor pressure that controls the 
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number of molecules reaching the antenna did not have a good correlation with the overall 

behavioral preference. While this is not an exhaustive list of chemical features that can be 

extracted, these results appear to indicate that it would be difficult to find a simple linear 

mapping of the chemical space onto the behavioral space. Similar results have recently been 

reported in the mouse olfactory bulb143. Contrasting the non-linearity between the chemical – 

neural transformations, a linear mapping was indeed found between neural and behavioral 

spaces. These results support the idea that neural responses, even in those circuits very early in 

the olfactory pathway, are organized to generate appropriate behavioral outcomes rather than 

faithfully represent the chemical features of the odorants. 

3.3.2 Individual PN responses vs. ensemble responses 

 Interestingly, at the individual neuron level, we found that responses in a small subset of 

PNs had a strong correlation with the overall innate preference for different odorants (Fig. 3.4b; 

correlations > 0.75 for 4/89 PNs for ON responses and 2/89 PNs for OFF responses). Such 

encoding of overall odor valence by individual neurons so early in the olfactory pathway has 

been reported in other invertebrate models118–120.  While the simplest model to predict the 

behavioral outcomes from the neural activity would be to just use a few of these neurons, 

whether such a model would be robust is unclear. Earlier studies have shown that individual 

projection neurons responses change unpredictably with changes in stimulus dynamics, intensity, 

competing cues, stimulus history, and ambient conditions23,139,144–146. Notably, the behavioral 

recognition of odorants was found to remain invariant under a battery of these perturbations147. 

Therefore, a more robust and fault-tolerant model to overcome such variations in neural 

responses that arise due to natural perturbations would involve a combinatorial read-out of the 

ensemble activity as proposed in our regression analyses.  
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3.3.3 Valence encoding at the level of sensory neurons 

 Do sensory neurons distributed along the locust antennae encode for valence. The 

primary task ascribed to these neurons is to serve as chemical feature detectors, with different 

ORN classes having sharp tuning curves to specific molecular groups148. The responses of these 

neurons to repeated presentations of stimuli were also found to be inconsistent compared to their 

downstream counterparts (PNs) in the antennal lobe149. This could be because each PN 

aggregates inputs from multiple ORNs, and hence can accommodate the inconsistencies of a 

subset of its inputs. Additionally, the antennal lobe has a network of inhibitory interneurons 

(local neurons; LNs), which have been implicated in transforming the neural representation of 

stimuli150,151 through the sharpening of projection neuron responses as well as through 

phenomena such as lateral inhibition to achieve gain control26,152. Taken together, these 

phenomena make the antennal lobe more suited to perform non-linear computations such as 

assigning different valences to chemically similar odorants (refer valences of aldehydes - hexanal 

and benzaldehyde, esters – isoamyl acetate and ethyl acetate in Fig. 3.1).  

In locusts, each antenna has an approximate distribution of 50,000 ORNs that serve as the 

primary sensory modality for the olfactory system33. These neurons are found in cone-like 

structures known as sensilla, which are broadly categorized into 4 classes – basiconica, 

trichodia, coeloconica, and chaetica33. Each sensillum houses a varying number of ORNs (~5-

50) and the relative distribution of different sensilla can change over the locust’s lifetime33. 

Given the large number of receptors, any thorough investigation of the valence encoding at the 

level of ORNs would require monitoring of responses across thousands of experiments. Our 

preliminary results (Fig. 3.11) indicate that locust ORNs appear to do a poor job in tuning their 
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neural responses to encode for innate preferences compared to PNs in the antennal lobe (Fig. 

3.5b).    

Figure 3.11: Mapping odorant responses in 

olfactory receptor neurons to innate valence  

Dendrogram showing the overall hierarchical 

organization of odor responses recorded from 

olfactory receptor neurons (ORNs; n = 9 

experiments). Odorants are again colored based on 

the corresponding behavioral preferences from Fig. 

3.1 (except geraniol, which is assigned a neutral color 

based on previous studies23,144,153). Clustering was 

performed using the same approach as shown in Fig. 

3.5b for comparison purposes.  
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Chapter 4: Neural constraints on acquired 

appetitive preferences 

4.1 Introduction 
The primary goal of the nervous system is to faithfully translate external cues into 

meaningful behavioral responses. In Chapter 3, we discussed how innately encoded preferences 

that are determined by an organism’s genetic makeup play an important role in achieving this 

feat. However, our environment is constantly in flux, and the same stimulus can be encountered 

in a variety of different contexts, such as following other cues or under different ambient 

conditions (e.g., humidity). This can modify the neural activation pattern ascribed to the stimulus 

and potentially alter the corresponding behavioral output. In this study, we investigate this issue 

using the locust olfactory system. Specifically, we look at how robustly locusts can recognize 

and maintain their behavioral response to an odorant when it is presented following different 

distractor cues as well as under different ambient conditions.  

The neural representation of a stimulus can also change over an organism’s lifetime, 

potentially altering the behavioral output produced. For example, through a phenomenon known 

as conditioned taste aversion154, the taste of a certain food can become associated with nausea or 

sickness, and consequently change our preference for the food, making us less likely to consume 

it in the future. In many invertebrate model systems, similar alterations of behaviors to stimuli 

have been well-studied through various classical and operant conditioning assays. Avoidance 

behaviors have been induced in Drosophila57 and honeybees58 through the pairing of electric 

shocks (negative reinforcement) with otherwise neutral odorants. Similarly, pairing of food 

rewards with different olfactory stimuli has been successfully shown in moths59,60,  
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honeybees61,62, and Drosophila63 (positive reinforcement). Recently, a Pavlovian conditioning 

assay was shown to be effective in positively conditioning locusts with olfactory cues64. The 

authors devised a protocol wherein the locusts were trained to associate a conditioned stimulus 

(odorant) with an unconditioned stimulus (food reward) that was known to elicit a strong 

unconditioned response (palp-opening response). The efficacy of training was then quantified 

during an unrewarded testing phase, where the locusts who were trained showed an increase in 

their preference for the trained odorant compared to their untrained counterparts. In this study, 

we will investigate if there are rules that determine which odors can be reinforced using this 

approach– or if all odors can be reinforced equally/similarly.  

In the locust antennal lobe, odorant stimuli continue to evoke neural responses well after 

they are terminated (on the order of seconds). Recent studies have shown that the spatiotemporal 

patterns of these neural responses change most dramatically after the stimulus is 

terminated139,147. The set of PNs activated during the stimulus presence (i.e., the ON responders) 

and those that get activated after stimulus termination (i.e., the OFF responders) have minimal 

overlap136,139. Intriguingly, as our results show in Chapter 3, these OFF responses also tend to be 

odor-specific and appear to contain almost as much information as the ON responses (refer 

performances of ON and OFF regressors in Fig 3.7). The importance of timing between a 

stimulus and reward, and how it controls learning and the rate of learning is also well 

documented19,61,127,155–158. Given that we can precisely time the delivery of rewards, can we 

reinforce the offset of an odorant? In this study, we will examine if the termination of a stimulus 

can be reinforced and whether this approach differs from reinforcing the onset of the same 

stimulus. Finally, we will examine how the spatiotemporal coding logic that informs the innate 
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neural representation for odorants (from Chapter 3) also impacts learned behavioral preferences 

and sensory memory.  

We began by assaying the robustness of neural and behavioral responses when locusts 

were presented with the same stimulus under different perturbations. Our results show that PNs 

in the locust antennal lobe exhibited variations at the individual and ensemble level when the 

same stimulus (target stimulus) was encountered under perturbations such as varying stimulus 

histories and ambient humidity conditions. However, locusts could reliably produce behavioral 

responses to the target stimulus when it was encountered under the same set of perturbations. 

Interestingly, a simple linear classifier extracting information from flexible subsets of neurons 

could map PN activity to the behavioral responses with high accuracy. Next, we looked to 

further understand how locusts can form appetitive associations with odorants of different innate 

valences. We found that only innately appetitive odorants (from Chapter 3) could be used to 

induce PORs through appetitive conditioning, and locusts also appeared to encode a temporal 

component during the training phase to represent the latency between food reward and 

conditioned stimulus presentations. Finally, we distilled the high-dimensional PN activity to low-

dimensional planes (‘manifolds’) that constrained odor representations to indicate whether an 

odorant could be successfully reinforced to induce behaviors through conditioning. These results 

are consistent with those we report in Chapter 3 and provide a single framework to better 

understand both innate and acquired olfactory preferences in locusts.  
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4.2 Results 

4.2.1 Stimulus history and ambient conditions induce variations in PN 

responses  

Can projection neurons (PNs) in the locust antennal lobe faithfully maintain their 

response to a stimulus under different perturbations? We found that PN responses to an odorant 

can be significantly altered when the same odor was encountered following different distractor 

cues, or in varying ambient (humidity) conditions. For example, in Fig 4.1a, two sample PNs 

that are ON-responsive to hexanol in solitary conditions (no distractor stimuli) are shown. 

However, the introduction of different distractor cues altered the subsequent response to hexanol. 

These variations were also seen at the population level (Fig. 4.1b) where we found that the 

hexanol-evoked PN responses created multiple, separable clusters, one for each stimulus history.  

 

Figure 4.1: Projection neuron responses vary in a stimulus-history dependent manner  

a) Raster plots showing the spiking responses of two sample PNs are shown. Hexanol (pink rectangles) 

was presented in solitary conditions as well as after 5 different distractor cues (blue rectangles). The 

distractor cues used were 2-octanol, isoamyl acetate, benzaldehyde, citral, and apple. For PN1, the 
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response to hexanol is limited when presented after 2-octanol and citral. For PN2, the response to hexanol 

is altered when presented after benzaldehyde.  

 

b) Population-level PN responses are shown after linear discriminant analysis dimensionality reduction 

(n = 85 PNs). Each 3D-sphere represents an 85-dimensional PN activity vector in a 50 ms time bin. Eighty 

data points corresponding to the ensemble neural activities evoked during 4 s of hexanol presentation with 

a particular stimulus history are assigned the same color.  

 

Similar results were also seen when we varied ambient humidity. In Fig 4.2a, we found 

individual PNs could modulate their firing responses to changes in humidity by both increases 

(PN 1) and decreases (PN 2) in their activity when conditions were more humid. When analyzing 

hexanol responses (taking only pink rectangles from the stimulus presentation protocol) at the 

population level, we found humid and dry responses across PNs also formed distinct clusters.  

 

 

 

 

 

 

 

 

 

Figure 4.2: Projection neuron responses vary under altered humidity conditions 

a) Raster plots showing the spiking responses of two sample PNs are shown. In each trial, hexanol (pink 

rectangles) was presented in short pulses, or atop benzaldehyde (green rectangles), or following citral 

(blue rectangles). The same sequence was presented in both dry and humid ambient conditions. Note that 

PN1 increased its activity in humid conditions whereas PN2 reduced its responses.  

 

b)  Population-level PN responses are shown after principal component analysis dimensionality reduction 

(n = 89 PNs). Only the periods corresponding to hexanol presentation (pink rectangles in panel a) in dry 

(red dots) and humid (blue dots) conditions were used for this analysis.  
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4.2.2 Robust odor recognition despite varying history and ambient conditions 

 

Can locusts, then, reliably maintain their behavioral response to the stimulus under these 

perturbations? To test the recognition of an odorant across multiple different encounters, we 

combined the palp-opening response (POR) behavior (Chapter 3) with an appetitive conditioning 

assay (Fig. 4.3). In this assay, starved locusts were presented with an odorant (conditioned 

stimulus; CST) followed by a food reward (unconditioned stimulus; UST). The food reward 

alone is sufficient to evoke an innate POR response. After training with six trials, where the CST 

and UST were delivered in an overlapping sequence, the ability of the locusts to recognize the 

CST was examined in an unrewarded testing phase. To make the readout quantitative, locust 

palps were painted with non-odorous green paint, and the distance between the palps was tracked 

as a function of time (Fig. 4.3; right panel).  

 

 
Figure 4.3: An appetitive conditioning assay to train locusts 

Left: The protocol followed to train locusts to associate an odorant with a food reward is shown. Right: A 

representative test trial is shown where the palp-opening response of a locust in response to a test odorant 

was tracked. The response was plotted as the distance between the palps as a function of time. Red bar 

indicates when the test odorant was presented.   

 

Could behavioral response to a stimulus change depending on what other cues were 

encountered recently? To understand this, we conditioned locusts using hexanol as the trained 

odorant. During the unrewarded testing phase, we presented hexanol solitarily (4 second pulse) 

as well as in non-overlapping sequences with ten different distractor cues. Each distractor cue 
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was presented for 4 seconds, followed by a 0.5 second gap, after which hexanol was presented 

for 4 seconds. Since prior results64 showed that trained locust responses to conditioning stimuli 

remained consistent for up to six unrewarded test phase trials, we limited the testing phase to six 

unrewarded trials in these set of experiments. Hence, to accommodate ten distractor cues, we 

performed two sets of conditioning experiments with the testing phases comprising one solitary 

presentation of hexanol and five presentations following distractor cues. During the test phase, 

we presented solitary hexanol as the first trial (to establish a baseline) and pseudorandomized the 

presentations of the 5 distractor-hexanol sequences for each locust. The results from these 

experiments are summarized in Fig. 4.4. In panels Fig. 4.4a and Fig. 4.4b, the mean (± s.e.m.) 

responses of locusts to solitary presentations of hexanol (top-left plot in each panel) and 

following different cues are shown. As can be seen, locusts reliably responded to hexanol across 

all conditions. Note that two distractor cues (iaa and 2-octanol) also elicited PORs. To ensure 

that the mean responses were not dominated by a handful of locusts, we computed the fractions 

of locusts that had a significant response (palp separation > 6.5 s.d. above baseline) for each odor 

presentation. Hexanol evoked significant responses in more locusts than any distractor cue (Fig 

4.4c) and hexanol responses following distractor presentations were also reliable across locusts 

(Fig. 4.4d). These results indicate that locusts can recognize a trained odorant even when it is 

encountered soon after a distractor cue.  
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Figure 4.4: Locusts can robustly respond to an odorant with varying stimulus history 

a) Mean (± s.e.m.)  palp-opening response (POR) of locusts trained to recognize hexanol are shown. 

(n = 27). In each plot, pink rectangles indicate 4 seconds of hexanol presentation and blue rectangles 

indicate when different distractor cues were presented. The distractors used were 2-octanol, isoamyl 

acetate, benzaldehyde, citral, and apple.  

b) Similar plot as panel a but for a different set of 20 locusts also trained to recognize hexanol. For this 

set of experiments, the distractors used were neem, cyclohexanone, geraniol, L-carvone, and methyl 

salicylate.  

c) The fraction of locusts that produced significant PORs to different odors are shown. Note that only the 

solitary presentation of hexanol (red) across both sets (panels a and b) of experiments was combined to 

obtain the red bar (n = 47 locusts).  

d) The fraction of locusts that produced significant responses to hexanol when it was presented following 

different distractor cues is shown.  
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Could changes in ambient conditions impact recognition performance? To understand 

this, we trained locusts in dry conditions (0% relative humidity). In the testing phase, we 

examined the ability of locusts to recognize the conditioned stimulus presented either in dry or 

humid (100% relative humidity) conditions. For these experiments, we pseudorandomized the 

order of testing between dry and humid conditions. Our results show that, on average, locusts 

opened their palps to all the introductions of the conditioned stimulus in both dry and humid 

conditions (Fig. 4.5a, b). The performance in both backgrounds was nearly identical indicating 

robust odor recognition that was invariant with respect to changes in ambient conditions. Similar 

results were also obtained when locusts were trained in humid conditions and tested in both dry 

and humid conditions (Fig. 4.5c, d). These results indicate that locusts can recognize an odorant 

independent of changes in ambient humidity conditions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Locusts can robustly respond to an odorant with varying ambient humidity 

conditions 
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a) Locusts trained with hexanol in a dry background were tested for hexanol responses in dry (red) and 

humid (blue) conditions. The mean PORs of trained locusts (n = 21) are shown and the shaded regions 

indicate the s.e.m.  

b) The fraction of locusts that produced significant PORs to hexanol in dry and humid conditions from 

panel a are shown.  

c) Similar plot as panel a but for locusts (n = 20) trained in a humid background.  

d) Similar plot as panel b but for locusts trained in humid conditions.  

Taken together, these sets of experiments show that despite variations in PN responses, 

locusts could recognize and respond to a conditioned stimulus (i.e., hexanol in these 

experiments) when it was encountered solitarily, immediately following a distractor cue, or in 

varying ambient humidity conditions.  

4.2.3 A flexible neural decoder produces accurate behavioral predictions 

How do locusts achieve this behavioral invariance despite neural variances? We propose 

a flexible decoding mechanism to address this potential confound. We found that while solitary 

presentations of hexanol elicited strong responses in ‘n’ PNs, any perturbations (such as varying 

history) usually resulted in only a subset ‘m’ of those ‘n’ neurons being activated. Additionally, 

which neurons comprised this subset also varied for different perturbations. Therefore, we 

reasoned that a classifier capable of exploiting information distributed in a flexible subset of 

neurons would allow robust recognition of the target odorant (hexanol). Indeed, a linear classifier 

that required activation of only m PNs (i.e., an activation threshold of m) could produce 

behavioral predictions that were highly correlated with our observed results (Fig. 4.6). This 

mechanism allows the antennal lobe to flexibly adapt its responses to different external 

perturbations while allowing the organism to maintain stable recognition of a target stimulus. 
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Figure 4.6: A flexible classifier can accurately predict behavior from PN responses  

Observed mean (± s.e.m.)  PORs to various presentations of hexanol (same as in Fig. 4.4a) are shown in 

black. The predicted PORs generated from the flexible classifier are shown in purple. The correlation 

coefficient between the actual and predicted PORs is shown on each of the six panels.  

4.2.4 Effectiveness of the classical conditioning approach 

Locusts can be trained to recognize hexanol under various perturbations. However, in 

Chapter 3, we found that hexanol (at 1% v/v) induced innate PORs in approximately 2/3rd of the 

test locusts (18/26 locusts or ~69%). Since we did not discard locusts that could produce innate 

PORs to hexanol prior to the training phase in the conditioning experiments, it can be argued that 

the assay did not induce any notable learning, and what we observed were simply innate 

responses to hexanol. However, there are two important caveats to consider. First, note that 

across all testing paradigms shown in Figs. 4.4-5, we found at least 80% of locusts produced 

significant responses to hexanol presentations (100% responsive locusts for humid testing shown 

in Fig. 4.5d!). Therefore, across all 16 presentations of hexanol (12 presentations in Fig 4.4 and 

4 presentations in Fig 4.5), we obtained above-innate levels of hexanol responses. 

 Adaptation or habituation to repeated unrewarded encounters of hexanol is a second 

caveat. Habituation is the reduction in behavior to repeated encounters of the same stimulus. It 
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has been reported that honeybees, another well-established model for invertebrate olfaction, 

habituate to repeated presentations of odorants (geraniol and isopropyl alcohol) by gradually 

reducing the number of proboscis extension reflex responses (a behavior analogous to the palp-

opening response in locusts) over trials in the absence of food rewards159. Habituation has also 

been demonstrated in locusts, where a reduction over time in the frequency of avoidance 

responses and jumps was reported in new locusts when they were introduced into a colony160. 

Therefore, it is not unreasonable to expect that untrained locusts would display some reduction in 

their frequency of responses to hexanol over multiple unrewarded encounters. Do we see a 

similar result for trained locusts? We computed the fraction of locusts that produced significant 

PORs to hexanol as a function of trial number for the experiments in Fig. 4.4. As can be seen, 

the locusts are able to maintain consistent responses (significantly above baseline levels) to 

hexanol over trials, indicating a lack of habituation (Fig. 4.7). Note that this result is different 

from those presented above since we pseudorandomized the presentation sequence of distractor-

hexanol pairs across locusts. In Fig 4.7, we are classifying hexanol responses by the trial number 

in the experiment and not by distractor identity as shown in Fig 4.4.  
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Figure 4.7: Locust responses to hexanol are consistent across multiple unrewarded trials 

a) The fraction of locusts with significant responses to hexanol (from Fig 4.4a) are shown as a function of 

trial number during the testing phase. Error bars indicate the standard deviation.  

b) Similar plot as panel a but for the results shown in Fig 4.4b.  

Thus, while we cannot rule out the effect of innate responses to hexanol, our results 

indicate that conditioning locusts does appear to increase the frequency (to above innate levels) 

and maintains the consistency of responses (lack of habituation) to hexanol.  

4.2.5 Innate versus acquired preferences for odorants 

In the previous set of experiments, hexanol was the only trained odorant used. Can any 

odorant be similarly paired with food rewards to produce PORs? Using our results from Chapter 

3, we selected 4 four chemically and behaviorally diverse odorants (Fig 4.8) to use as 

conditioned stimuli to pair with food rewards. To remove the confound of innate responses 

discussed above, we additionally pre-screened locusts prior to the training phase to check for 

innate responses to all the odorants. Only those locusts that did not have innate responses to any 

of the four odorants were used for the appetitive-conditioning experiments. 
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Figure 4.8: Diverse odorants used for Pavlovian conditioning assays 

We used 4 odors – hexanol, isoamyl acetate, benzaldehyde, and citral for the appetitive conditioning 

assays. As can be seen here, these 4 odorants have very diverse chemical structures with unique 

functionalities, as well as diverse innate preference indices. 

We trained different sets of locusts with each of the four odorants as conditioned stimuli 

using the same approach as described in Fig 4.3 (referred to now as ‘ON-training paradigm’). 

Following training, we examined the ability of the trained locusts to respond to all four odorants 

in an unrewarded test phase. We found that locusts trained with hexanol or isoamyl acetate as 

conditioned stimulus robustly responded to the presentation of these odorants in the test trials. 

However, we found that locusts trained with citral and benzaldehyde showed no palp-opening 

response during the testing phase to these odors (Fig. 4.9a, b).  
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Figure 4.9: Only innately appetitive odorants can be reinforced using classical conditioning 

a) Results from ON-training using 4 different odors are shown. The mean POR response of locusts during 

the unrewarded testing phase is shown in each plot. The testing odor was the same as the training odor, as 

indicated on each plot. Colored bars indicate 4 s of odor presentation and 4 s immediately following odor 

termination. Error bars indicate s.e.m., and the number of locusts that had significant PORs for each 

conditioning odorant is indicated in parentheses. As can be seen, locusts trained with hexanol and isoamyl 

acetate were able to produce POR responses in the test phase, while benzaldehyde and citral training 

yielded no responses. Note that different sets of locusts were trained/tested for each odorant.  

b) POR traces for the four sets of locusts trained with hexanol, isoamyl acetate, benzaldehyde or citral are 

shown.  The PORs shown were recorded during the testing phase. Each row corresponds to the response 

observed in one locust. The responses were normalized to range between [0, 1] for each locust (see 

Methods; blue – 0 and yellow -1). Note that for a small fraction of locusts (such as citral, first row) that 

only had minimal palp movement during the entire trial, the normalization protocol followed produced 

spurious shades of yellow, but these locusts still did not have a significant response to that odorant.  

c) Similar traces as shown in panels a and b but for OFF-conditioning using hexanol or benzaldehyde are 

shown. Hexanol-OFF training produced significant PORs in 12/20 locusts, whereas benzaldehyde-OFF 

training yielded no significant responses. Note that the PORs for hexanol-OFF training are delayed and 

persisted well into the OFF period (compared to hexanol-ON trained responses shown above). 
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Next, we examined whether locusts could be conditioned when the reward was delayed 

until half a second after the termination of the conditioned stimulus (i.e., ‘OFF-training 

paradigm’). For this set of experiments, we only used hexanol and benzaldehyde as the 

conditioned stimuli (CS, Fig. 4.9c). Once again, our results indicated that only locusts trained 

with hexanol robustly responded with PORs to the trained odorant in the testing phase. However, 

the POR dynamics observed in OFF-paradigm trained locusts were noticeably different from 

those we noted in the ON-training paradigm case. In the ON-training case, we found that locust 

PORs began immediately after the onset of the CS, lasted the duration of the stimulus, and the 

palps began to close following the termination of the stimulus. The peak of the PORs always 

occurred during the CS presentations. In contrast, for the OFF-training case, locust PORs were 

significantly slower (Fig 4.10), and the peak of the PORs in many locusts occurred after the 

termination of the stimulus. 

 

 

 

 

 

 

 

 

Figure 4.10: ON- and OFF- conditioning produce temporally distinct responses 

Latency of locust PORs to hexanol (left) and isoamyl acetate (right) are shown. Response latency here is 

defined as the time taken by locusts to reach 50% of the peak palp separation (time = 0 along the y-axis 

indicates odor onset). Each bar plot shows the mean latency across locusts, and error bars indicate s.e.m. 

For each odorant tested, POR latency for two groups of locusts either trained using hexanol ON-training 
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paradigm (blue bars) or OFF- training paradigm (red bars) are shown for comparison. For this analysis, 

we used only those locusts that had significant responses to the test odorant (refer Fig. 4.9 for fractions; 

see Methods). For both odors, locusts trained in the hexanol OFF-training paradigm were significantly 

slower in opening their palps (* indicates p < 0.05, one-sided t-test). 

In sum, these results indicate that only innately appetitive odorants can successfully be 

associated with the food reward to produce PORs. Furthermore, both presentations during and 

after the termination of the stimulus can lead to odor-reward association but the behavioral 

response dynamics are significantly different between the two cases.  

4.2.6 A linear model predicts behavioral response dynamics and cross-

learning 

Next, we wondered how locusts conditioned with a particular odorant (i.e., ‘the training 

odor’) respond when tested using other untrained odorants. Our results indicate that locusts 

trained with hexanol also responded robustly to presentations of isoamyl acetate (another odorant 

with a positive valence; Fig. 4.11). Exposures to citral and benzaldehyde evoked no responses in 

hexanol-trained locusts. Surprisingly, while locusts trained with citral and benzaldehyde showed 

little to no responses to the trained odorant, a significant fraction of them showed PORs to 

hexanol and isoamyl acetate (Fig. 4.12a-c). For the OFF-training paradigm, we found that 

learning/cross-learning was observed only in those locusts that received rewards within 2 s of the 

termination of the conditioned stimulus. The efficacy of this offset-conditioning weakened as the 

gap between the stimulus and food reward was extended, with almost no learning observed in 

locusts trained with the longest gap (4 s gap training shown in Fig. 4.12 b, c). This result served 

as an in-built control that our assay was not simply producing trivial innate responses upon 

sufficient encounters with an odorant (sensitization) and that pairing the conditioned stimulus 

sufficiently closely with food rewards was essential to produce POR responses. Indeed, the lack 

of any increase in responses to non-appetitive odorants (even to their innate levels) also refutes 

this potential pitfall. 
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Figure 4.11: Predictable behavioral response dynamics, cross-learning, and generalization 

between trained odors 

Summary of observed and predicted POR responses for six different training conditions are shown: row 1 

– ON-trained with hexanol, row 2 – ON-trained with isoamyl acetate, row 3 – ON-trained with 

benzaldehyde, row 4 – ON-trained with citral, row 5 – OFF-trained (0.5 s gap) for hexanol and row 6 – 

OFF-trained with benzaldehyde. The number of locusts tested in each training paradigm is shown on the 

left. Responses of the trained locusts were examined for all four odorants during the unrewarded testing 

phase. The mean PORs to each odorant are shown in black and error bars indicate s.e.m. Colored bars 

indicate odor ON and OFF time periods. Red traces on each plot show PORs produced by linear 

regression model that used ensemble PN activity for the four different odorants as inputs (see Methods). 

How predictable are these behavioral response dynamics and memory cross-talks given 

the neural responses evoked by these four odorants? To understand this, we set up determining 
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the neural-behavioral transformation as a regression problem with sparsity constraints.  For each 

training paradigm, the goal was to predict the POR responses to all four odorants examined given 

the time-varying ensemble neural responses evoked by each odorant. Six such regression 

problems were set up, one for each training paradigm used in our study. We found that POR 

responses to all four odorants could be predicted reliably for all cases (red curves, Fig. 4.11). We 

found that a linear mapping could indeed be found where the POR dynamics predicted from the 

neural responses were in good agreement with those observed in behavioral experiments (Fig. 

4.11; black (actual) vs. red (predicted); Fig. 4.12d). Notably, the regression weights assigned to 

different PNs to predict the POR for each training paradigm were highly similar (Fig. 4.13a, b). 

This result indicates that the mapping between neural responses and the PORs is highly 

consistent. However, this is not surprising since the main trend observed in all cases were PORs 

to positive valence odorants (hex and iaa) and a lack of response to those with negative valence 

(citral and bzald).  
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Figure 4.12: Quantifying locust learned responses and model performances 

a) Heatmap showing the fraction of locusts that produced significant PORs to the test odorant (x-axis) for 

ON-training with four different odorants (y-axis).  

b) Similar plot as panel a but for locusts trained with hexanol using ON- and OFF-training (0.5 s, 2 s, 4 s 

gaps) paradigms.  

c) Similar plot as panel a but for locusts trained with benzaldehyde using ON- and OFF-training (0.5 s, 2 

s, 4 s gaps) paradigms.  

d) The two tables show the correlation between the predicted POR versus the observed behavioral 

response dynamics (R, top table) and significance (p-value, bottom table) (red traces in Fig. 4.11). Similar 

to the convention in Fig. 4.11, each row corresponds to one training paradigm and each column shows 

one test odor. 

 

Next, we visualized the neural responses to PNs that received a non-zero weight. Given 

the sparsity constraints used to learn the weights, 21 PNs were assigned a positive weight, 19 

were assigned a negative weight, and the remaining 40 PNs were assigned a weight of 0. We 
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found that those PNs that received positive weights responded strongly to both positive valence 

odorants and had relatively weaker responses to exposures of benzaldehyde and citral (Fig. 

4.13c). On the other hand, the negatively weighted PNs had strong spiking activities to the non-

appetitive odorants, which would allow the suppression of POR responses (Fig. 4.13c; gray 

traces taller than black traces for benzaldehyde and citral). This was further quantified by 

looking at the correlation between the magnitude of response of a PN and the weight assigned to 

it (Fig 4.13d, e). Hexanol and isoamyl acetate had positive correlations for these comparisons for 

both positively and negatively weighted neurons, with a slightly stronger trend in the positively 

weighted subset (r-values in top panels). More interestingly, for non-appetitive odorants, we 

found the model weights to be negatively correlated with neural activity for positively weighted 

PNs (r < 0 in bottom panels Fig 4.13d), and this trend reversed for negatively weighted PNs (r > 

0 in bottom panels Fig 4.13e), indicating how the model suppressed POR predictions for these 

odorants. 
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Figure 4.13: Linear regression models to map neural responses to behavior 

a) We trained 6 linear regression models with sparsity constraints to map PN responses to PORs from 6 

training paradigms (Fig 4.11). The weights learned by these models are shown here. PN indices are sorted 

by the weights assigned for the hexanol-ON model.  
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b) The distribution of pairwise correlations between different pairs of weight vectors from panel a are 

shown. As can be seen, the weights assigned to PNs are highly similar, given the high correlation for all 

pairwise comparisons.  

c) Summed spiking activities of all PNs that were assigned positive (black) or negative (gray) weights are 

shown. 21 PNs were assigned positive weights, 19 PNs received negative weights < 0, and the remaining 

49 PNs were assigned a weight of 0.  

d) Relationship between the mean firing rate and model weight for PNs assigned positive weights are 

shown for all four odorants. The correlation coefficient for each distribution is indicated.  

e) Similar plot as panel d but for PNs assigned negative weights.  

In sum, these results indicate that the behavioral responses’ strength and dynamics 

evoked by different odorants could be predicted from time-varying ensemble neural responses 

observed in the antennal lobe, and that a robust linear mapping involving ~50% of the total 

neurons (40/89 PNs assigned non-zero weights) was sufficient to transform neural activity into 

POR output. 

4.2.7 A neural coding logic for encoding appetitive odor preferences 

Are the neural responses to appetitive and non-appetitive odorants organized in an 

interpretable fashion to explain the diverse set of neural and behavioral observations? To 

understand this, we visualized the ensemble neural activities of different odorants during both the 

ON and OFF periods. As can be observed, the odor-evoked ensemble responses were organized 

into four well-defined subspaces/clusters: appetitive ON, appetitive OFF, non-appetitive ON, and 

non-appetitive OFF (Fig. 4.14a, b).  Note that the different directions in this coding space 

indicate different combinations of PN responses, and nearby regions indicate pattern-matched 

neural responses. Therefore, these results indicate that while the neural activities during 

appetitive odorant exposures varied from one odorant to another (Fig. 4.14a, b – cluster 1), they 

were still constrained to exploit only a limited combination of PN responses and therefore 

restricted to a particular subspace/region in this coding space. Extending this logic, these results 

also indicate that activities after the termination of appetitive odorants (Fig. 4.14a, b – cluster 2), 
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during exposures to non-appetitive odorants (Fig. 4.14a, b – cluster 3), and after cessation of the 

non-appetitive stimuli (Fig. 4.14a, b – cluster 4) all employed restricted combinations of 

ensemble neural responses that were different from each other. 

 

Figure 4.14: Neural manifolds can explain innate and acquired behaviors 

a) PCA trajectories showing ensemble neural responses during both the ON- and the OFF- periods for all 

22 odors are shown along the top 3 principal components (n = 89 PNs; see Methods). The trajectories 

were colored as follows: blue – appetitive odorants ON responses, cyan – appetitive odorants OFF 

responses, red – non-appetitive odorants ON responses, and magenta – non-appetitive odorants OFF 

responses. Variances in odor-evoked responses of appetitive odorants were not uniformly distributed but 

confined a subspace and are shown as using a linear plane (see Methods; plane colored in blue that 

encompasses appetitive ON and appetitive OFF neural ensembles). Similarly, non-appetitive odorants 

ensemble responses are confined to a distinct neural manifold schematically shown in red.  

b) Dendrogram showing the categorization of odor-evoked ON and OFF responses of all twenty-two 

odorants in the panel are shown. A correlation distance metric was used to assess the similarity between 
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89-dimensional PN response vectors. Coloring convention similar to panel a. Note that the appetitive and 

non-appetitive odorants form supra-clusters, each containing ON and OFF responses sub-clusters.  

c) Plot showing the average similarity of an odorant to other appetitive and non-appetitive odorants. For 

each odor, we took the ON-response across 89 PNs (i.e., 89-d vector) and computed its cosine similarity 

with the ON-responses for all other odorants. Twenty-one such angles were obtained for each odorant (22 

odors, ignoring self-comparison). The angles obtained from comparison with appetitive and non-

appetitive odorants were grouped, and the average for each group was taken. The difference between the 

average angles for each group (non-appetitive minus appetitive) is shown here as a bar plot (smaller 

cosine angle denotes higher similarity between vectors). The odorants along the x-axis are shown in order 

of decreasing innate valence going from left to right, and the bars are colored to indicate the probability of 

innate PORs (Fig. 3.1). Note that a positive similarity score indicates the odor responses were more 

similar to appetitive odors while a negative score indicates better pattern-match with non-appetitive 

odorants. On average, the probability of PORs appears to reduce as the neural similarity with appetitive 

odorants diminishes.  

d) Similar plot as panel c but using the OFF-responses across all 89 PNs.  

 Notably, the variance in neural responses evoked by appetitive odorants primarily 

spanned a low-dimensional space (i.e., a ‘neural manifold’) that contained clusters 1 and 2. Only 

odorants that evoked neural responses limited to this manifold could be associated with food 

rewards (therefore referred to as the ‘learning manifold’; Fig. 4.14a). Presenting the reward 

during activation of neurons primarily in either cluster 1 or 2 led to learning. However, the 

behavioral response dynamics significantly varied depending on whether the reward overlapped 

with cluster 1 or 2 (Fig. 4.10). In contrast, the variance in neural responses evoked by non-

appetitive odorants spanned a different manifold that contained clusters 3 and 4. Presenting 

reward during the activation of either of these ensembles of PNs did not result in successful 

conditioned stimulus-reward associations (therefore referred to as the ‘non-learning manifold’).  

We further quantified these low-dimensional patterns by computing the similarity 

between odor-response vectors obtained using all 89 PNs. For each odor, we obtained an 89-

dimensional vector to capture the mean response during the ON period and calculated the angle 

between all such vectors for all odors. Note that a smaller angle (in degrees) represents greater 
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similarity between two vectors. For each odor, we computed 21 angles (22 odors, ignoring self-

comparison) and grouped them based on comparison with either appetitive or non-appetitive 

odors. We then subtracted the average angle of the appetitive group from the non-appetitive 

group to obtain a single similarity angle for each odor. A net positive angle indicates that the 

odor’s responses were more similar to the appetitive group while negative angles denote better 

pattern-match with non-appetitive odors. In Fig 4.14c, we plot this net angular similarity for each 

odor. The odors are sorted by valence and the bars are colored to denote the probability of innate 

PORs (Fig 3.1) for the odorant. Overall, these results are quite similar to those obtained from the 

manifold analyses (clusters 1 and 2), indicating that high-dimensional neural responses agree 

with the low-dimensional approximations. A similar result was also obtained when using the 

OFF-period responses to perform this analysis (Fig 4.14d; similar to clusters 3 and 4).   

 In sum, these results reveal an organizational logic for patterning ensemble neural 

responses to mediate not only innate (Chapter 3) but also acquired appetitive preferences.  

4.3 Discussion and conclusions 

4.3.1 Invariant odor recognition 

We began by examining how invariant recognition of odorants can be achieved in a 

relatively simple locust olfactory system. Our results indicate that while individual and ensemble 

PN responses can vary with perturbations such as stimulus history and changes in ambient 

humidity conditions, locusts could maintain robust behavioral recognition of a target stimulus.  

Interestingly, this seeming mismatch between the lack of stability in the neural representation 

and behavioral robustness could be addressed through a simple linear classification scheme that 

decoded information from flexible subsets of neurons to produce highly accurate behavioral 

predictions. How generalizable is this approach? Recent work suggests that a similar decoding 
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approach using information from combinations of ON- and OFF-responsive PNs can also be 

used to accurately predict behavioral responses when a stimulus is encountered with variable 

durations or in an overlapping fashion with other distractor stimuli147. While the exact 

mechanism(s) through which this invariance is achieved remains to be investigated, candidates 

include variable adaptation at the level of sensory neurons (ORNs)161,162, interference from OFF-

responses of distractor stimuli139, and variable inputs from inhibitory local neurons163.     

4.3.2 Acquired appetitive preferences 

Next, we wanted to understand the appetitive preferences of locusts to different appetitive 

and non-appetitive odorants (from Chapter 3) using the palp-opening response. To understand 

the rules that constrain learning in this paradigm, we screened and identified locusts that did not 

have any innate responses. We were concerned that repeated exposures to an odorant may induce 

PORs in these locusts. In this scenario, the PORs observed in the testing phase may not arise 

from conditioning but rather from sensitization due to repeated exposures to a stimulus. 

However, our results indicate that when the introductions of the reward were delayed to occur 

well after the termination of the odorant (hexanol OFF 4 s and benzaldehyde OFF 4 s 

paradigms), locusts did not show PORs and maintained their lack of responses to the 

conditioning odorants (Fig. 4.12). We interpreted this result as an appropriate control indicating 

that locusts did not become sensitized to generate PORs to the conditioned stimulus, and that 

PORs in these locusts were observed only in certain scenarios that suited associative learning. 

 Our conditioning experiments revealed that only two of the four odorants (hex and iaa) 

used resulted in successful associations between the odorant and the reward. As a result, locusts 

responded with PORs to presentations of these odorants during the testing phase. We observed 

generalization of the observed responses to other odorants. Locusts trained with hexanol also 
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showed responses to isoamyl acetate and vice versa. Intriguingly, locusts trained with citral and 

benzaldehyde also increased PORs to hexanol and isoamyl acetate. We again found that a linear 

mapping between neural and behavioral responses existed and captured all the important trends 

in our data (Fig. 4.11). 

 We found that delaying reward such that it was delivered either during the presentation of 

hexanol (ON-training paradigm) or immediately after its termination (OFF-training paradigm) 

both resulted in associative learning. However, we found that the POR dynamics were different 

between these two training paradigms. We note that locusts in the ON-training paradigm had 

PORs that were significantly different from those observed in locusts trained using the OFF-

paradigm. This result suggests that the timing of the reward could be controlled to coincide 

during different phases of neural response dynamics and such manipulations result in predictable 

changes in behavioral responses.  

4.3.3 Neural manifolds for generating and patterning behavioral outcomes 

In Chapter 3, we demonstrated that linear mappings could generate robust predictions for 

innate preferences from PN responses. Extending those results, we found that there exists a 

theoretical framework that would allow us to integrate the observations from this study with 

those from Chapter 3 to better understand the neural underpinnings of behavior. We regarded the 

ensemble neural activity to each odorant as a high-dimensional neural response trajectory. Each 

odor-evoked response trajectory consisted of two non-overlapping segments, one during odor 

presentation (i.e., ON response), and the other after its terminations (i.e., OFF response). 

Notably, we found that ON responses and OFF responses evoked by innately appetitive odorants 

were on or near a low dimensional sub-space or ‘manifold’ (Fig. 4.14a). Similarly, we found that 
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ON and OFF responses evoked by odorants with non-appetitive valences were on or near a 

separate low-dimensional manifold in the coding space (Fig. 4.14a).  

We note that neuronal manifolds that encode for different behavioral response motifs 

have been reported in other model organisms164,165. In C. elegans, these neuronal manifolds 

appear to arise globally and engage several circuits throughout the entire brain. Importantly, even 

those neuronal circuits that are directly downstream of sensory neurons were incorporated in 

these brain-wide dynamics to orchestrate the innate behavioral outcomes164. If this is indeed a 

generic phenomenon, we would expect the spiking response patterns in the early olfactory 

circuits such as invertebrate antennal lobe or vertebrate olfactory bulb would be organized into 

behaviorally relevant neural manifolds. Our results indeed reveal that this is the case at least in 

the locust olfactory system.  

Results from our conditioning experiments indicated that delivering rewards while the 

odor-driven neural activities were in the ‘appetitive manifold’ resulted in successful 

conditioning, whereas no associative learning occurred while delivering rewards during 

responses excursion in the ‘non-appetitive manifold’. Interpreted differently, this result suggests 

that neural activity patterns on some manifolds are conducive for learning, while activity patterns 

outside this manifold could be harder to learn. Similar results have been reported in the context 

of motor control in primate motor cortex166,167. While the motor cortex result arose from 

constraints imposed by the neural circuitry making certain neural activity patterns difficult to 

generate, here the antennal lobe network could generate neural response excursions in both 

learnable and non-learnable manifolds depending on the identity of the stimuli. 
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4.3.4 Operant conditioning  

 In this study, we looked at acquired olfactory preferences using classical or Pavlovian 

conditioning. An alternative method to induce and study learning is through operant 

conditioning. Operant conditioning has been widely demonstrated in vertebrate model 

systems168,169, but is less commonly studied in invertebrates61,170. We attempted to reinforce the 

POR response to different odorants using an operant paradigm. For each locust, we performed 

100 trials where an odorant was presented for 4 seconds every 30 seconds and the locust was 

given a food reward if it performed a successful POR in the trial. We also performed a set of 

control experiments where the locusts were similarly presented with 100 trials of an odorant but 

were not rewarded in any trial. We used the same set of four odors – hexanol, iaa, benzaldehyde, 

and citral, as conditioned stimuli for this set of experiments.  

 Our results show that while operant reinforcement of all four odorants could increase the 

frequency of PORs (Fig 4.15a, solid lines vs dotted controls), the efficacy of this assay appeared 

to be significantly higher for innately appetitive odorants (Fig 4.15b, hex and iaa) vs. non-

appetitive odorants (bzald and citral). While preliminary, these results agree with the neural 

manifolds we propose in this study, indicating a more generalized learning constraint governed 

by neural responses.        
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Figure 4.15: Operant conditioning to reinforce locusts using appetitive and non-appetitive 

odorants 

a) We attempted to reinforce the palp-opening response (POR) in locusts using an operant conditioning 

paradigm. For this set of experiments, we used hexanol, isoamyl acetate (innately appetitive odorants), 

benzaldehyde and citral (innately non-appetitive odorants) as the trained odorants. In these experiments, 

each locust was presented 100 trials of an odorant and a food reward was provided in trials where locusts 

performed PORs to the trained odorant (no food reward was presented in control cases or if no POR was 

performed). Our results show that using this approach, the average number of palp-opening responses can 

be increased for all odorants.  

b) The average number of PORs elicited across all locusts and training conditions are shown. Error bars 

indicate s.e.m. PORs almost double (compared to control) for rewarding innately appetitive odorants, 

while the change is less pronounced for non-appetitive odorants (* indicates p<0.05, two-sampled t-test). 
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Chapter 5: Neural recordings in moving and 

behaving insects: from neuroscience to 

engineering applications  

5.1 Introduction 
Olfactory encoding has primarily been studied in different insect systems under well-

controlled laboratory settings. These setups typically involve complete immobilization of the 

insect, often including the removal of external (appendages) and internal (digestive system) 

sources of perturbations, as well as precise and well-characterized delivery of odorant stimuli 

(square-wave odor pulses). The strict control of variables in this approach has informed our 

understanding of how insects, including locusts, may perform essential tasks such as odorant 

identification and discrimination to guide their behaviors. However, it remains to be seen 

whether the principles uncovered in the laboratory are still applicable in more naturalistic 

settings.  

In a typical laboratory experiment, the antennae are restrained to limit any movements 

and the stimuli are delivered directly onto them in stereotyped on-off square pulses controlled via 

highly precise automated systems23,171,172. While it minimizes extraneous noise, this approach 

precludes the insect’s ability to actively move its antennae using well-characterized flicking and 

sweeping motions that create localized turbulences in the odor stream173. This method of active 

sensing is odor-specific173 and hence, limiting this ability may obfuscate our understanding of 

how odor detection is performed in natural settings. Moreover, natural odor sources are rarely 

encountered as sharp on-off pulses, but rather as volatile plumes with varying concentration 

gradients174. Whether the encoding principles observed in the pulsatile scenarios are also 



91 

 

applicable in detecting more chaotic encounters remains to be seen. In this study, we develop 

novel, minimally-invasive neural recording methods that allow us to study odor-coding while 

preserving the ability of locusts to actively sense their environment using their antennae.  

In Chapters 3 and 4, we determined the nature of mappings between neural response 

patterns in the antennal lobe and overall olfactory preferences. However, in these experiments, 

different sets of locusts were used for the behavioral and neural studies. How reliable and robust 

are the conclusions drawn using this approach? To answer this, we develop an experimental 

approach that allows us to monitor neural activity in locusts as they are trained to associate 

odorants with food rewards (as in Chapter 4). We will assess if our proposed ‘neural manifolds’ 

approach of encoding for innately appetitive and non-appetitive odorants is also observed in this 

less invasive approach and if so, whether the neural-behavioral transformations are perturbed as 

we classically condition locusts.  Additionally, the innate olfactory preferences reported in 

Chapter 3 were assayed using immobilized locusts. Whether the results obtained in such 

stationary preparations are also observed in more realistic, mobile assays remains to be 

investigated. In this study, we will assay olfactory preferences in more naturalistic settings and 

make advances towards recording neural activity from freely moving locusts as they are exposed 

to different odorants in a two-choice assay.   

We began by developing a stable and robust minimally invasive recording technique to 

allow long-term monitoring of antennal lobe neural activity in tethered locusts with freely 

moving antennae. We classically conditioned locusts while acquiring PN responses to a panel of 

appetitive and non-appetitive (from Chapter 3) odorants. Our results indicate that the manifold-

based organization of odor-responses we proposed is conserved in naïve (before conditioning) 

locusts and that reinforcing odorants enhances the separability of these latent structures (after 
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conditioning). Next, we demonstrated the feasibility of recording neural activity from freely 

moving locusts. We validated our approach by designing a simple two-choice behavioral arena 

and found that locusts show similar preferences to odorants in this assay as those reported in 

Chapter 3. Finally, we applied these novel recording techniques to demonstrate how the locust 

can be used as a biological sensor to recognize explosive chemicals. In sum, these results show 

the efficacy of our novel recording techniques and indicate that neural coding approaches and 

behavioral preferences appear to be conserved as we move towards untethered experiments.  

5.2 Results 

5.2.1. Minimally invasive neural recording technique 

We began by developing a stable and robust minimally invasive recording technique to 

allow long-term monitoring of antennal lobe neural activity in tethered locusts with freely 

moving antennae. An overview of the procedure is illustrated in Fig 5.1. Locusts were tethered at 

the neck to allow stable access to their brain while their antennae were left free to move. A small 

incision was made in their cuticle and the air sacs above the brain were cleared to allow access to 

the antennal lobe. Next, a metal wire was inserted below their brain to minimize mechanical 

noise from the movements of their limbs and digestive tract. Finally, the layer of glial cells above 

the antennal lobe was removed (i.e., the brain was de-sheathed), recording electrodes were 

inserted, and a reference wire (Ag/AgCl) was placed proximal to the brain. This entire process 

was optimized to take approximately 15 minutes, making it significantly faster than fully 

invasive techniques that can require up to 2 hours.  
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Figure 5.1: Minimally invasive surgical technique 

The key steps involved in performing our minimally invasive surgery are illustrated. We begin by 

attaching intact locusts (1) to a custom 3D-printed manifold by tethering them at the neck region (2). A 

small incision is made in the cuticle (3) and the air sacs covering the brain are removed (4). To minimize 

noise from mechanical movements of the limbs or digestive tract, we attach a metal wire platform (5) 
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below the brain and secure it to the cuticle using wax. Finally, the antennal lobe is de-sheathed, recording 

electrodes are inserted into the brain, and a reference wire is placed proximal to the brain (6).  

We designed custom tetrodes that would allow us to sample a large proportion of the 

antennal lobe simultaneously. Each electrode channel in the tetrode was a NiCr alloy wire with 

an impedance in the range of 3-4 M and the spacing between wires was kept between 40-60 

m to span across most of the width of the antennal lobe (average diameter of ~400m) (Fig 

5.2a).  

Figure 5.2: Custom tetrodes for minimally invasive recordings 

a) Tetrode design A used for recording neural activity in stationary minimally invasive recordings. These 

electrodes were designed to span a large proportion of an antennal lobe using 4 independent NiCr wires 

(see Methods) with impedances in the 3-4 M range. 

b) Sample neural response traces. Sample neural response traces recorded simultaneously from a set of 4 

electrodes (1 tetrode) from a single locust. Raw voltage traces showing distinct neural signals recorded 

from four electrodes (tetrode design A) on the same tetrode. All four channels pick up action potentials as 
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shown by the zoomed insets, and they are unique, as can be seen in the overall voltage traces as well as 

the insets.  

The signals recorded from these electrodes were unique (Fig. 5.2b) and our overall 

preparation allowed the monitoring of antennal lobe activity over long periods of time (Fig 5.3), 

with strong odor-evoked responses observed for multiple hours after electrode implantation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Long-term acquisition of odor-evoked signals 

Neural responses to presentations of hexanol are shown as raw extracellular signals at four time points 

after electrode implantation (0 hours, 3 hours, 5 hours, and 7 hours) into the antennal lobe after minimally 

invasive surgery.  

5.2.2 Effect of appetitive conditioning on odor representation  

 We wanted to understand how associative learning can affect the representation of 

innately appetitive and non-appetitive odorants at the level of antennal lobe projection neurons 

(PNs). For conditioning assays reported in Chapter 4, grass was used as the food reward and was 
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presented to the locust manually during the training phase. However, since the locust antennal 

lobe is located in close proximity to its mouthparts, this approach would compromise the 

acquired signals by inducing noise artifacts through the chewing of the grass as well as through 

motion of the experimenter. Hence, we switched to sugar water as a liquid food reward (glucose 

1g/10 mL in water solution), which could be accepted by the locust without chewing, and be 

delivered in an automated fashion.  

 To ensure that sugar water is an appropriate unconditioned stimulus to induce palp-

opening responses (PORs), we first performed a set of control experiments similar to the 

protocol in Chapter 4 (Fig 4.3). Hexanol was used as the conditioned stimulus for both ON-

training and OFF-training (2 s gap) paradigms. Our results (Fig 5.4a) show that sugar water can 

also be used to induce PORs for hexanol in naïve locusts, and locusts trained under the OFF-

training paradigm display delayed responses during the testing phase relative to ON-trained 

locusts (Fig 5.4b). These results indicate that sugar water could be substituted for grass for our 

proposed set of experiments.   

  

 

 

 

 

 

 

Figure 5.4: Using glucose as a food reward for appetitive conditioning 

a) Results from conditioning experiments where glucose was used as food reward and hexanol was used 

as the conditioned stimulus are shown. We trained two sets of locusts, using both ON-training and OFF-
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training paradigms (see Methods and Fig 4.3), and then tested them for POR responses to hexanol in an 

unrewarded phase. The mean (± s.e.m.) responses for both sets of experiments are shown and the blue bar 

indicates 4 s of odor presentation.  Results from both paradigms are similar to grass-trained experiments 

(Chapter 4), with ON-trained locusts producing faster and stronger responses on average.  

b) Latency of locust PORs to hexanol during the test phase are shown. Response latency here is defined 

as the time taken by locusts to reach 50% of the peak palp separation (time = 0 along the y-axis indicates 

odor onset). Each bar plot shows the mean latency across locusts, and error bars indicate s.e.m. These 

results are similar to those reported in Fig 4.10. 

The setup used for the minimally invasive conditioning experiments is shown in Fig 5.5a. 

Using the minimally invasive technique, a recording probe was inserted into the antennal lobe 

and a reference was placed just outside the lobe, an odorant line was placed near the antennae, 

and a tube to deliver sugar water was placed near the mouthparts. Note that for these set of 

experiments locusts were placed in small tubes to prevent their legs from displacing the food 

delivery system. Prior to the training phase, we recorded PN responses to a panel of 6 odorants – 

3 appetitive (hexanol, isoamyl acetate, 2-octanol) and 3 non-appetitive (cyclohexanone, 

benzaldehyde, citral). Each stimulus was presented for 5 repetitions in a pulsatile fashion, with 

each pulse lasting 4 s, and the inter-pulse-interval was set to 56 s. The signals acquired from 

these experiments could not be reliably spike-sorted using the same approach as in previous 

Chapters and led to a loss of information. Instead, we used a recently published protocol94 to 

extract the energy of the acquired signals by filtering and converting them to their root-mean-

squared (RMS) values (see Methods). A brief schematic of how we performed this signal 

processing is illustrated in Fig 5.5b. We then performed conditioning using hexanol and 

benzaldehyde as the conditioned stimuli for two sets of 10 locusts using the ON-training 

protocol. After the training phase, we recorded PN responses to the same panel of 6 odorants as 

before.  
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Figure 5.5: Simultaneous neural recordings and appetitive conditioning assay  

a) The experimental setup for training locusts and monitoring their PN activity is shown. A small incision 

was made in the locust cuticle, a recording electrode was placed in the locust antennal lobe, and a 

reference (Ag/AgCl) wire was placed just outside. An automated sugar water (glucose 1g/10 mL water 

solution) dispenser was placed near the locust mouthparts, and a tube presenting the training odorant and 

carrier air stream was directed to both antennae.  

b) A schematic showing the signal processing pipeline. The raw voltage traces were converted to a RMS 

signal in 50 ms time-bins after smoothing and baseline subtraction (see Methods). Colored rectangle 

indicates 4 seconds of odor presentation. Increases in the RMS signal at the onset (on-response) and offset 

(off-response) of the stimulus can be seen, indicating stimulus-evoked ON and OFF responses. 

To quantify the net effect of conditioning, we compared the PN responses prior to and 

after the training phase. Two sample sets of recordings obtained from these experiments are 

shown in Fig 5.6a. As can be seen, responses to odorants could increase, decrease, or remain 

unchanged after the training phase. In general, for individual experiments, we found the changes 

in responses to odors to be highly variable/unpredictable. Hence, we combined the results across 

all 20 conditioning experiments to obtain high-dimensional response matrices similar to PN 

recordings in Chapter 3 and performed PCA to visualize the population-level responses. Our 

results show that similar to Fig 4.14, appetitive and non-appetitive odorant responses were 
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organized to be primarily constrained in low-dimensional manifolds. Interestingly, prior to 

conditioning, these manifolds had considerable overlap (Fig 5.6b, left panel), but they became 

more separated after the training phase (Fig 5.6b, right panel). These results indicate that even in 

less constrained settings, PNs encode odorants in a similar manner as we observed in fully 

invasive preparations. While these neural responses cannot be directly mapped to behavior, the 

increase in separation between the appetitive and non-appetitive responses (as seen by the 

reduced overlap between the planes after conditioning) could be one potential mechanism by 

which naïve locusts (which did not produce any PORs) learn to perform PORs to appetitive 

odors after the training phase.  
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Figure 5.6: Neural response manifolds in behaving locusts  

a) Representative recordings showing the average odor-evoked responses (see Methods) to the odor panel 

before (yellow) and after training (gray). In example 1 (left panel), hexanol was used as the training 

odorant, and in example 2, benzaldehyde was used as the training odorant (right panel). In each panel, the 

top row contains the appetitive odorants and the bottom row contains stimuli that were non-appetitive. 

Black bars below the plots indicate 4 s of odor presentation.  

b) PCA visualization showing ensemble neural responses during both the ON- and the OFF- periods for 

all 6 odors are shown along the top 2 principal components (n = 20 locusts; see Methods). The data points 

were colored as follows: blue – appetitive odorants ON responses, cyan – appetitive odorants OFF 

responses, red – non-appetitive odorants ON responses, and magenta – non-appetitive odorants OFF 

responses. Variances in odor-evoked responses of appetitive odorants were not uniformly distributed but 

confined to a subspace and are schematically shown as using a linear plane (plane colored in blue that 

encompasses appetitive ON and appetitive OFF neural ensembles). Similarly, non-appetitive odorants 
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ensemble responses were confined to a distinct neural manifold schematically shown in red. Note that the 

two subspaces became less overlapping post-training (right panel versus left panel). 

5.2.3 Neural activity in fully moving locusts 

The innate olfactory preferences reported in Chapter 3 were assayed using immobilized 

locusts. Are behavioral results obtained in such stationary preparations are also observed when a 

locust is freely moving? Do odorants evoke neural responses when they are encountered in more 

realistic plume-like presentations rather than sharp on-off pulses? To answer these questions, we 

adapted our minimally invasive technique to record neural activity in freely moving locusts.  

 

Figure 5.7: Setup for freely moving locust experiments  

a) Tetrode design B used for recording neural activity in freely moving locusts. We adapted design A to a 

longer, more flexible tetrode to acquire PN activity from moving locusts. Similar to design A, we used 

four NiCr wires, but they were twisted together to provide greater mechanical stability. Additionally, the 

reference wire was also twisted with recording probes and placed into the antennal lobe to minimize 

mechanical noise artifacts during motion (rightmost picture).  
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b) We performed minimally invasive surgeries as described above and inserted the long, flexible tetrodes 

and reference wire into the locust antennal lobe. They were then secured in place using a combination of 

dental wax and UV-cured epoxy glue as shown here (under UV-light).  

c) The behavior chamber used in walking experiments. We quantified the odor distribution dynamics 

using dry ice mixed in carrier air stream, and a laser light. Constant air was flown from the top to the 

bottom on both sides of the arena. The stimulus (dry ice in this case) was presented only to the left half 

and appears to be primarily contained to one side (more white smoke on the left side).  

We designed longer, more flexible twister-wire tetrodes (Fig 5.7a; see Methods) using 

the same NiCr alloy wires as in Fig 5.2. After exposing the locust brain using the same 

minimally invasive technique as above, we implanted these tetrodes into the antennal lobe and 

covered the exposed cuticle with a combination of dental wax and epoxy glue (Fig 5.7b). 

Locusts were then released from the tether around their necks and moved into a behavioral arena 

(Fig. 5.7c) for a two-chamber exploration assay.  

We used two chemical cues that were used across all previously reported results for ease 

of comparison – hexanol (innately appetitive) and benzaldehyde (innately non-appetitive). The 

behavior chamber was divided into two halves with independent and constant clean air flowing 

through two separate inlets. Odorants were pipetted onto KimWipes and placed in small 

chambers (Fig. 5.8a), and their vapors were introduced into the arena as air passed over them. 

Mixing chambers were designed to allow time for the odorant to diffuse uniformly into the air 

stream prior to introduction into the arena. Vacuum suction was placed beyond the arena to 

create a constant flow and clear out excess vapors, and the air flow rates were adjusted to ensure 

the odorant was primarily limited to one half of the arena (Fig. 5.7b). An overhead camera 

recorded the locust’s movements while neural data were acquired using the same approach as 

above. An LED flash at the start of each recording was used to synchronize the neural and 

behavioral data offline.  
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Figure 5.8: Neural recordings from freely moving locusts  

a) Schematic showing a freely-moving locust implanted in the ‘behavioral arena’ with electrodes in its 

antennal lobe. A constant airflow was presented to both sides of the arena (entering from the left) and a 

vacuum suction (not visible) was placed beyond the right end to create constant flow. Odorants and 

control were introduced by pipetting them onto KimWipes placed in the ‘odor inlets’ and were allowed to 

mix with the background air in the ‘mixing chambers’ before being introduced into the arena. In each 

trial, the locust was placed at the center of the chamber and allowed to explore the arena for 5 minutes 

while its neural responses were recorded using the ‘amplifier’ and behavioral responses recorded using 

the ‘overhead camera’. The data were synchronized offline using a start flash signaled by the 

‘synchronizing LED’.  

b) Summary of a single 5-minute trial of a freely moving locust in the behavioral arena is shown. The top 

plot shows the arena as recorded by the overhead camera, with the position of the locust over time shown 

as dots going from red (t = 0 s) to blue (t = 300 s). The odorant was placed on the left half for this trial 

with the flow going from top to bottom. As can be seen, the locust starts in the center of the box, explores 

the control side (air stream with no odorant), and then moves into the side with the odorant. Bottom plot 
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shows the corresponding spiking rate recorded from the locust antennal lobe (see Methods) as a function 

of time.  

c) Summary of behavioral responses (see Methods) recorded from locusts in the behavioral arena for two 

sets of experiments. Different sets of locusts were assayed for the behavioral preferences to hexanol (an 

innately appetitive odorant) and benzaldehyde (an innately non-appetitive odorant) in the behavioral arena 

while neural activity was recorded from the antenna lobe. In these plots, we show the average time spent 

by locusts in the halves containing the odorant and control, respectively. Locusts spent significantly more 

time near hexanol (n = 11 locusts) and away from benzaldehyde (n = 10 locusts) (* indicates p < 0.05, 

two-sampled t-test). Error bars indicate s.e.m.  

d) Similar plots as panel c, but showing the average spiking activity recorded (see Methods) for the 

locusts in each set of experiments. Locusts had strong neural responses for hexanol compared to control 

but evoked significantly lesser responses when exposed to benzaldehyde. Error bars indicate s.e.m. 

 

We performed multiple trials for the different odorants by randomly placing the odor in 

one inlet, with the other side serving as control. We then introduced the locust into the arena by 

placing it in the center and recording neural and behavioral activity for a period of 5 minutes. 

Note that to remove any visual biases, the arena was only dimly lit using a uniformly distributed 

array of red LED lights, which insects are primarily unable to see175,176. The position of the 

locust over time was accurately tracked using a YOLOv4 convolutional neural network model 

(see Methods). As shown in Fig. 5.8b, we can see the locust start a trial at the center of the box, 

veer into the control half, and then spend time in the left half containing the odorant. 

Corresponding to the movement data, we also de-noised and extracted spiking events from the 

neural recordings (see Methods). In Fig. 5.8b, the bottom plot shows the spiking activity 

evolution for the corresponding trial.  

 The results from these set of experiments are summarized in Fig. 5.8c, d. Note that a 

different set of locusts was used for each odorant. For each trial, we compiled the time locusts 

spent on either side of the arena and computed the average spiking rate for the time spent in 

either half. We find that consistent with innate preferences obtained in stationary preparations, 

locusts preferred spending significantly more time near hexanol and away from benzaldehyde. 
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Interestingly, locusts also tended to have higher spiking activity when they were near hexanol 

(relative to control), whereas benzaldehyde appeared to reduce neural activity (relative to 

control), indicating that the odorants evoked unique neural responses.  

 

Figure 5.9: Controls for walking locust experiments 

a) Locusts without surgical implantation of electrodes were used in two-choice assays using hexanol (n = 

24 locusts) and benzaldehyde (n = 36 locusts) as the stimuli. The average time spent in each half is 

shown. Error bars indicate s.e.m. On average, locusts spent relatively more time near hexanol (130 

seconds) vs benzaldehyde (113 seconds). 

b) We performed similar walking locust experiments (n = 12 locusts) as in Fig 5.8, but tested the same 

locust using both hexanol and benzaldehyde as stimuli. The order in which the odors were presented was 

randomized for each locust. i) Locusts spent relatively more time near hexanol vs control but lesser time 

near benzaldehyde vs control. ii) On average, time spent in the hexanol half elicited stronger neural 

activity vs control. Benzaldehyde appeared to reduce spiking activity vs control. iii) Same results as 

panels i and ii, but only plotted for the odorants for comparison purposes (* indicates p < 0.05, t-test).  
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c) Similar results as panel b, but for locusts (n = 15) tested on three stimuli – colony odor, hexanol, and 

benzaldehyde.  

Given the novelty of the assay and recording technique, we also performed multiple sets 

of control experiments to ensure the robustness of our results. Could our surgical methods have 

diminished or limited the locusts’ olfactory sensing capabilities and alter their behavioral 

preferences? To control for this, we conducted these two-choice assays on a set of locusts with 

no surgical manipulations performed and found that these locusts also preferred to spend more 

time near hexanol relative to benzaldehyde (Fig 5.9a). We used different sets of locusts for each 

odor for results reported in Fig. 5.8c, d. To control for potential differences in behavioral 

preferences and neural responses across individuals, we collected two additional datasets where 

each locust was presented all the odorants in the panel (Fig 5.9b, c). For one dataset, we used 

hexanol and benzaldehyde as the odors, and for the second dataset, we used hexanol, 

benzaldehyde, and a colony odor (see Methods)177. For both experiments, we found our results 

for time and spiking activity for hexanol and benzaldehyde to be similar to those in Fig. 5.8c, d. 

Taken together, these experiments helped validate our experimental approach and showed 

repeatability of our results across multiple datasets. 

5.2.4 Explosive detection using minimally invasive recordings 

 Next, we wondered if our minimally invasive technique (Fig 5.10a) could be applied to 

solve a real-world problem of detecting explosive chemicals. For this set of experiments, we 

selected 6 chemicals of interest (Fig 5.10b). These chemicals have extremely low volatilities, 

and hence delivering them in their vapor phase to the locust antenna can be challenging. We 

placed small amounts of each chemical in independent bottles with an inlet and outlet, and 

placed the bottles in a water bath maintained at 50C. To deliver the chemical vapors, we simply 

pulsed clean, desiccated air into the bottles through the inlet and obtained vapors through the 
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outlet. This allowed us to deliver pure chemical vapors, and added only one additional control – 

a heated empty bottle to deliver ‘hot air’. Each stimulus was presented for 5 repetitions in a 

pulsatile fashion, with each pulse lasting 4 s, and the inter-pulse-interval was set to 56 s. Given 

the physical distance between the wires on these new electrodes, we again were unable to 

reliably spike sort without heavy loss in information. Hence, we used the RMS-based signal 

processing protocol described above to analyze this dataset. A sample set of neural responses 

collected from 1 recording electrode to all the odorants in the panel is shown in Fig 5.10c. Each 

curve is the average RMS signal obtained in response to repeated presentations of the different 

chemicals over the five trials. Note that there are strong responses at the onset of three of the 

chemicals – TNT, DNT, and pATP, as well as moderate responses at the termination of TNT and 

pATP. 
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Figure 5.10: Minimally invasive procedure to record PN responses to different explosive 

chemicals  

a) We applied the minimally invasive technique to implant custom-made tetrodes in the locust antennal 

lobe to record extracellular PN activity. In the left picture, the antennal lobes, tetrode wires, and reference 

electrode can be seen. In the right picture, an overall view of the recording setup including stimulus 

delivery can be seen.  

b) The different explosive/precursor chemicals used in the odor panel are shown. Each of the 6 chemicals 

was heated to 50C prior to being presented and hence we also added hot air as a control stimulus.  

c) A representative set of responses to all the stimuli used in the odor panel recorded from a single 

electrode are shown. Each stimulus was presented for 5 repetitions, the signals were converted to RMS 

as shown in Fig 5.5b, and a mean across the trials was taken to obtain a single RMS curve for each 

stimulus. Colored rectangles indicate 4 seconds of stimulus presentation. As can be seen, different stimuli 

evoked different levels of responses at both the onset and offset of the chemicals. In particular, TNT, 

DNT, and pATP elicited strong on-responses but with varying strengths, whereas the other stimuli had 

negligible responses relative to baseline activity. 
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How stable and unique are these responses to the different stimuli? To answer this, we 

recorded responses to the odorant panel from 12 electrode channels spread across 4 different 

locusts. To gauge the stability of the responses, we looked at the consistency of odor-evoked 

responses across all 5 repeated presentations of each chemical. We computed the average 

pairwise correlation across different trials for an odorant (see Methods) and found them to be 

highly correlated/consistent. The mean value for the distribution of correlations obtained for all 

such comparisons (Fig 5.11a, orange distribution) was 0.82, indicating that odor-evoked 

responses were very stable and repeatable across trials. To measure the uniqueness of responses, 

we computed similar pairwise correlations, but across the mean odor-responses for different odor 

pairs. We found that on average, comparisons of responses for different odors had a correlation 

of 0.40 (Fig 5.11a, blue distribution), which we found to be significantly lower than the within-

odor correlations (p < 10-50, two-sampled t-test). These results show that our novel surgical and 

recording methods were able to elicit stable as well as unique responses to different chemicals. 

How distinct or separable are the odor responses? To visualize the high-dimensional data 

(n = 12 electrodes or dimensions), we performed principal component analysis (PCA) to reduce 

the dimensionality of the data to just the top three eigenvectors capturing the maximum variance. 

The result of this analysis is shown in Fig 5.11b, where each dot corresponds to a single 50 ms 

time-bin, and the different colors indicate different stimuli, as indicated by the corresponding 

colored text labels. The responses for each chemical appear to cluster into well-separated regions 

in this 3-D space. To help visualize this, we also fit a Gaussian distribution to each odor’s 

responses and plotted the resulting 3-D ellipse using the same color convention. The PCA 

clusters indicated that odor responses were quite distinct. To quantify this, we used a quadratic 

discriminant classifier (see Methods) to accurately classify each time bin to its corresponding 
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odor. The results of this analysis are shown in Fig. 5.11c, where we show a confusion matrix of 

results from this classification approach. The confusion matrix appears largely diagonal, 

indicating that most of the target odorants were accurately identifiable, with an average accuracy 

of over 70%. Note that the chance level of accuracy for a naïve classifier would be 1-in-7 or 

approximately 14%. 
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Figure 5.11: Neural responses can be used to decode chemical identity  

a) The distribution of average pair-wise correlation of responses to a stimulus across five trials (see 

Methods) is shown in orange. The correlations are clustered around 0.8, indicating that the responses to a 

stimulus are robust and repeatable across trials. The distribution of pairwise correlations of mean 

responses to different odors is shown in blue. The correlations are clustered around 0.4, indicating a 
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weaker similarity across odors vs between repeated presentations of the same stimulus (orange 

distribution). The two distributions were found to be significantly different (p < 10-50, t-test).  

b) Clustering of neural responses (n = 12 electrodes from 4 locusts) after PCA dimensionality reduction is 

shown for all 7 stimuli (see Methods). Each colored dot indicates a 50 ms time-bin during the odor 

presentation period, and the identity of the stimulus is indicated using the same color. A Gaussian ellipse 

was fit to each cluster corresponding to an odorant and is plotted using the same color as the stimulus for 

visualization purposes. Note that the odors appear to form well-separated clusters in this reduced space.  

c) Confusion matrix showing the results of fitting quadratic discriminants (see Methods, n = 12 electrodes 

from 4 locusts) to the odorant responses after PCA analysis. The y-axis shows the target labels, and the x-

axis shows the predicted labels. Note that the matrix is primarily diagonal, indicating that each target 

stimulus can be accurately predicted from its neural responses.  

d) Curve showing the performance of the quadratic classifier as a function of increased duration of neural 

responses used for training. We computed the accuracy of predictions for each odor (diagonal values 

along the confusion matrix) and the average accuracy across all 7 classes is shown for each time point. As 

can be seen, the accuracy of the classifier increases as more data is provided for training. The 

performance accuracy exceeds chance levels (indicated in red; 1-in-7 or 14%) within 250 ms and reaches 

50% in 500 ms.  

e) Similar plot as in panel c but using only data from 4 electrodes recorded from an individual locust. 

f) Similar plot as in panel c but using only data from 4 electrodes recorded from a different locust. 

The results shown in Fig. 5.11c were obtained using all 4 seconds of odor-evoked 

responses. However, it is well-established22,23 (also refer to rasters in Fig 3.3c) that PNs in the 

antennal lobe can start responding to an external cue within hundreds of milliseconds. Thus, we 

wondered how the accuracy of the classifier would look like if we systematically altered the 

amount or duration of odor responses used to fit the discriminants. To test this, we trained the 

model using n bins (n ranging from 4 to 80; 4 being the minimum requirement of the classifier) 

of size 50 ms each, and then tested the accuracy of classifying all 80 bins of data. The results of 

this approach are shown in Fig. 5.11d, where we found that the accuracy of this approach 

increased as more data was used to learn the parameters. Remarkably, however, the classifier 

reached above-chance levels of performance within the first few hundred milliseconds and 

achieved 50% accuracy using just the first 500 ms of data. 
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Could neural responses from a single locust be used to detect and classify these different 

chemicals? We designed our new recording tetrodes to allow recording from up to four distinct 

regions within a single antennal lobe. For two locusts in our experiments, we were able to 

successfully pick neural activity on all four of these electrodes simultaneously (Fig 5.2). We 

used data from these sets of recordings to test the capabilities of our tetrodes as well as single 

locusts in solving this identity decoding task. We repeated the discriminant classifier analyses as 

described above, but using only data from single locusts where all four channels picked up neural 

activity. The results of these analyses (Fig. 5.11e, f) show that even 4 channels from a single 

locust can successfully classify chemicals well above chance levels (values along diagonals > 

35% for all chemicals for both classifiers; chance level = 14%).  

Finally, we wanted to test if locusts displayed any behavioral preferences for explosives 

(chemicals typically not encountered by locusts). We performed recordings in freely moving 

locusts by introducing ammonium hydroxide into the behavioral arena. Similar to benzaldehyde, 

locusts appeared to significantly prefer spending time away from ammonium hydroxide, but 

unlike benzaldehyde, maintained a higher spiking activity when nearer to it (relative to control).  
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Figure 5.12: Freely moving locust responses to an explosive precursor 

a) Similar plot as Fig 5.8c, but for ammonium hydroxide. Locusts spent significantly more time away 

from ammonium hydroxide (n = 5 locusts). 

b) Similar plot as Fig. 5.8d, but for ammonium hydroxide. Despite spending lesser time near the odorant, 

locusts had stronger neural responses when near ammonium hydroxide relative to control. 

5.3 Discussion 
How do classical conditioning assays drive changes in behavioral preferences? In vivo 

imaging of insect brains monitoring odorant responses before, during, and after associative 

learning has implicated higher centers of processing such as the mushroom body (directly 

downstream from the antennal lobe) in driving the observed behavioral changes. Indeed, the 

mushroom body is believed to be the primary center of the insect brain that is responsible for 

forming and maintaining memories178–180. However, recent studies indicate that we could 

observe reinforcement-induced changes at the level of the antennal lobe itself. In moths, 

olfactory conditioning was shown to recruit additional neural responses in the antennal lobe181. 

Odor representation was also altered in the projection neurons of Drosophila during positive 

reinforcement assays182, while in honeybees, injection of a neuromodulator into the antennal lobe 

was shown to affect memory formation183. In this study, we applied our newly developed 
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minimally invasive surgical protocol to test the validity of our manifold-based organization of 

odor responses and to gauge the effect of classical conditioning on odor responses in the locust 

antennal lobe.  

Using a panel of six odorants (3 appetitive and 3 non-appetitive) we observed PN 

responses in naïve (untrained) locusts to organize similarly to the structure obtained in Chapter 4 

(Fig 4.14). Interestingly, this organization was altered after conditioning assays to decrease the 

overlap between the appetitive and non-appetitive manifolds while still constraining odor-

responses primarily to these latent structures. At the neural level, this indicates a reduction in the 

amount of overlapping PNs that respond to odorants from both groups – potentially informing 

how naïve locusts with no behavioral responses to appetitive odors can produce PORs after being 

conditioned. Whether this phenomenon is achieved via suppression of commonly activated PNs 

or through recruitment of additional uniquely responsive PNs as a consequence of conditioning 

remains to be tested. Additionally, due to the duration of the overall experiment, we were limited 

to studying six odorants. Whether these results are observed more generally (such as 22 odors in 

Chapters 3-4) or are specific to these chemicals also remains an open question.  

Next, we adapted the procedure to allow the locust to fully recover, move and sample its 

environment while we continued to monitor its neural responses. Our results indicate that 

behavioral preferences obtained from stationary locusts are also observed in freely moving 

locusts. We recorded the movements of the locusts and tracked their position using a deep 

learning framework to allow fast inference and validated the overall approach by collecting 

multiple datasets using traditional biological chemicals. This protocol can be further enhanced in 

future iterations by using machine learning and 3D pose estimation algorithms to classify 

idiosyncratic behavioral motifs of locusts in response to chemicals in their surroundings such as 
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antennal flicking and grooming, which can provide an additional axis of chemical readout88,89,184–

188. 

These initial sets of experiments indicate that odor encoding patterns appear to remain 

conserved as we move from fully invasive preparations with fixed antennal positions to 

minimally invasive techniques with actively sampling antennae. The new procedure not only 

minimizes harm to the locust, but is also significantly faster to perform (~2 hours for fully 

invasive vs. 15 minutes for minimally invasive procedure). Hence, we next wanted to use this 

preparation to solve a real-world chemical detection problem. Combined with the fabrication of 

tetrodes that allow monitoring activity from distinct regions of the antennal lobe, we showed that 

even a single locust could be used to classify six different chemicals of interest within hundreds 

of milliseconds. These results, combined with the long-term stability of our preparations (up to 3 

days shown in Fig. 5.13) open up the potential for applying our approach to develop low-cost, 

minimal-maintenance chemical detectors with applications in homeland security and 

environmental monitoring189–193.  
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Figure 5.13: Long-term recording from walking locusts  

Spiking activity recorded from a single freely moving locust recorded at 4 time points – 0, 24, 48, and 72 

hours after electrode implantation.  
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Chapter 6: Conclusion 
 Understanding how the brain encodes for stimuli to drive appropriate behavioral 

responses is a fundamental goal of neuroscience. In this work, we aimed to gain an 

understanding of the organization of olfactory information in the locust antennal lobe and how it 

relates to innate and acquired behaviors. We developed novel experimental approaches to 

validate the robustness of our results as we move from tightly controlled laboratory settings to 

more naturalistic scenarios. Finally, we demonstrated how these tools can be applied to solve 

real-world challenges such as the detection of explosive chemicals. 

6.1 Summary of findings 
 We began by assaying the innate appetitive preferences of locusts to a panel of 

chemically diverse and biologically relevant odorants. Understanding these appetitive 

preferences is important since innate behaviors are genetically encoded in an organism and are a 

direct consequence of evolution. For locusts, the fast and accurate determination of whether an 

encountered stimulus is favorable or harmful is key for survival. We used a well-characterized 

behavior, the palp-opening response (POR), to classify odorants as being innately appetitive or 

non-appetitive. By pooling results across multiple locusts, we obtained a range of preferences 

where a green-leaf volatile found in the food locusts consume was classified as the most 

appetitive odorant, whereas a chemical used in pesticides against locusts was classified as being 

least appetitive. Our attempts to explain these results as a consequence of our experimental 

design or the chemical features of the stimuli proved unsuccessful, and hence, we hypothesized 

that the locust olfactory pathway must be playing an active role in producing these results.   
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 To test this, we probed projection neurons (PNs) in the locusts’ antennal lobe using 

extracellular electrophysiological recordings to observe their responses to all the assayed 

odorants. Once again, we pooled results from multiple locusts to obtain PN responses from a 

large fraction of neurons in the antennal lobe (~10% of all PNs). Each odorant evoked strong 

excitatory responses across multiple PNs when it was presented (i.e., an ON response). The 

subsets and number of neurons that were activated varied across stimuli. However, at the 

population level, we found that the subsets of PNs that were activated by odorants with similar 

innate valence had significant overlap. We wondered then if neural responses from PNs could be 

used to make predictions about an odorant’s behavioral outcome. We found that a simple linear 

classifier that was trained to predict an odorant’s behavioral outcome from its neural responses 

produced results that correlated strongly to observed behavioral results. These results indicate 

that computations in the locust antennal lobe produce PN responses that are encoding for the 

onset of stimuli in a valence-dependent manner.  

 Projection neurons have been shown to produce responses not only at the onset of stimuli 

but also at their offset (i.e., OFF response). These OFF responses tend to be almost as strong and 

spatiotemporally diverse as ON responses, but their exact functional role remains to be 

elucidated. We found PNs to elicit strong responses at the termination of all odorants in our 

dataset. Different subsets of PNs were activated by different odorants, and there was minimal 

overlap between the subsets of PNs that responded to the onset and offset of an odorant. We 

applied our linear classifier approach to predict behavioral outcomes using the OFF responses of 

PNs and found surprisingly accurate predictions, indicating that these bouts of activity are also 

information-rich. We confirmed that the two classification approaches used were not redundant 

and were combining information across PNs using very dissimilar weighting schemes. These 
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results indicate that computations in the locust antennal lobe produce PN responses that are 

encoding for the onset and offset of stimuli in a distinct yet valence-dependent manner. 

 In a small subset of PNs, the odor-evoked ON or OFF responses were highly correlated 

with innate preferences. Could these individual neurons be sufficient to encode the preferences 

of all stimuli (akin to the ‘labeled-line’ approach discussed in Chapter 1)? Individual PN 

responses to encounters of the same stimulus under different perturbations were found to be 

highly variable. The ambient humidity conditions and recent history prior to encountering a 

stimulus altered how PNs responded to an odorant (hexanol). However, we found that locusts 

could produce robust behavioral responses to the odorant under the same perturbations. Hence, 

while we cannot definitively rule it out, we deem it extremely unlikely that individual PNs could 

be used to encode such amounts of information. Instead, we propose a flexible coding approach, 

which does not rely on any fixed sets of PNs to produce behavioral outputs. Briefly, this 

approach requires activation of only subsets of neurons in response to different encounters of a 

stimulus (any ‘m’ activated neurons in an encounter out of ‘n’ total responders when the stimulus 

is encountered solitarily; m<n). Classification results using this scheme and combining activity 

from both ON- and OFF-responsive PNs produced behavioral predictions that were highly 

correlated with observed results. Taken together, these results provide insight into how the 

antennal lobe network could encode for the onset and offset of stimuli to signify their valence 

and how the information-rich OFF-responsive neurons could contribute to producing behavioral 

dynamics.  

 During the behavior experiments, not all locusts produced PORs to an odorant. We 

wondered then if we could apply an appetitive conditioning assay to induce PORs in locusts that 

originally did not respond to a stimulus. We attempted to condition locusts to both appetitive and 
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non-appetitive odorants by pairing them with food rewards. Locusts produced PORs to appetitive 

odorants after conditioning, but no responses could be induced for non-appetitive odorants. 

Interestingly, the learned responses for an appetitive odorant appeared to generalize to other 

appetitive odorants. Moreover, locusts conditioned on non-appetitive odorants also produced 

responses to appetitive odorants during the test phase.  

Finally, given that the ON- and OFF-responsive PNs for an odorant appear to have 

minimal overlap, we wondered if delaying the food reward till after odor termination would 

produce differences in learned responses. Indeed, the pairing of the offset of appetitive odorants 

with food rewards significantly delayed behavioral responses, indicating that not only the 

identity of the stimulus but the temporal delay could also potentially be conditioned. The 

efficacy of this offset-conditioning weakened as the gap between the stimulus and food reward 

was extended, with almost no learning observed in locusts trained with the longest gap. This 

result served as an in-built control that our assay was not simply producing trivial innate 

responses upon sufficient encounters with an odorant and that pairing the conditioned stimulus 

sufficiently closely with food rewards was essential. Indeed, the lack of any increase in responses 

to non-appetitive odorants (even to their innate levels) also refutes this potential pitfall.  

For these behavioral experiments, we trained a deep neural network to accurately track 

the position of the locusts’ palps over time. This allowed us to make comparisons pertaining to 

the strength and efficacy of the learned responses to different odorants as well as the temporal 

delays introduced by delaying the food reward during training. Using linear models (with added 

sparsity constraints) we found that responses from only half the PNs we recorded from were 

sufficient to faithfully capture the behavioral results obtained across all paradigms.  
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Finally, we visualized the ON and OFF PN responses evoked by all odorants using a 

dimensionality reduction technique (PCA). In this latent 3D space, we observed two planes 

(neural manifolds) along which the odor-evoked response trajectories appeared to align. 

Trajectories that lay on/were closer to the first plane appeared to be for innately attractive 

odorants and locusts could be trained to respond to them, whereas trajectories on/near the second 

plane were for odorants that were innately less attractive, which locusts could not learn to 

respond to. These results were further validated using a clustering analysis, which produced 

similar results using the high-dimensional data (information from all recorded PNs).  

The results thus far were obtained from different sets of locusts used in behavioral and 

electrophysiological experiments, precluding any causational links. Additionally, we wanted to 

understand if the results we observed in tightly controlled experimental settings would still be 

conserved as we tested locusts in more realistic/practical scenarios. To address these concerns, 

we first developed a novel surgical method that allowed us to probe PN responses while the 

locust retained full movement of its limbs and antenna, and could continue to accept food. Next, 

we demonstrated that sugar water (glucose) is an effective food reward to induce PORs through 

conditioning. These advances allowed us to perform conditioning assays in locusts while 

recording the activity of their PNs.  

We conditioned locusts using both appetitive and non-appetitive odorants. In order to 

gauge the effects of this assay at the neural level, we recorded PN responses to a panel of 

odorants prior to and after the conditioning. We observed that prior to conditioning, the PN 

responses in naïve (untrained) locusts organized into similar neural manifolds as our earlier 

results (appetitive and non-appetitive). This indicated that odor representation principles in this 

less restricted protocol agreed with those observed in fully invasive preparations. Interestingly, 
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after conditioning, we found the neural manifold structure to remain conserved, but the 

appetitive and non-appetitive manifolds became segregated and were almost non-overlapping. At 

the neural level, this implied that the PN responses for appetitive and non-appetitive odorants 

became less correlated. Whether these results were due to commonly activated neurons 

becoming suppressed, or as a result of new uniquely responding PNs being recruited due to 

conditioning remains to be tested. However, these results do indicate a potential mechanism by 

which conditioning can alter innate odor representation in the antennal lobe. Whether these 

alterations drive the gain in POR responses after conditioning and the generalization of POR 

responses across multiple similarly encoded stimuli remains to be elucidated. Further 

experiments using different conditioning odorants as well as a larger panel of test odorants would 

also be useful in estimating how generalizable these preliminary results are.  

Next, we wondered if locusts implanted with electrodes could freely move around, 

explore, and detect chemicals in their surroundings.  This would open up the potential for open-

field studies and have applications in remote sensing and environmental monitoring. We 

modified our custom electrode design to make them longer and more flexible to allow locusts to 

freely move while implanted. We found locusts to recover very quickly (on the order of few 

minutes) after electrodes were placed in their antennal lobe and secured to their cuticle. After 

recovery locusts moved freely, and we were able to acquire stable neural activity over multiple 

days. A simple two-choice behavioral assay was used to validate this recording approach and to 

understand locust olfactory preferences in more mobile settings. We introduced odorants with 

strong innate behavioral and neural responses into one half of the behavioral arena (other half 

with just background air serving as control) and recorded the locusts’ movements and neural 

activity. A deep neural network was trained and applied to allow fast and accurate inference of 
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the locusts’ position in the arena. We found that consistent with our results from previous 

experiments where the locusts were stationary, locusts spent significantly more time closer to 

hexanol (innately appetitive) versus benzaldehyde (innately non-appetitive) and the spiking 

responses elicited near these odorants was also much higher for hexanol. These results were 

replicated in multiple datasets to ensure their robustness. Taken together, these results indicated 

that freely moving locusts with implanted electrodes were still able to produce unique behavioral 

and neural activity to different stimuli even when they were encountered in these more realistic 

(constant and plume-like vs periodic and pulsatile) scenarios. 

The minimally invasive technique produced odor-evoked PN responses similar to those 

observed in traditional preparations. Not only was this preparation less harmful to the locust, but 

it was also significantly faster than fully invasive techniques (~15 minutes vs ~2 hours to prepare 

locust for electrode implantation). Hence, we wondered if this approach could be applied to solve 

a real-world challenge of detecting explosive chemicals (and their precursors). Using data from 

just 4 locusts, we found that locust PNs could produce highly discriminable responses to 

different chemicals of interest. A quadratic classifier trained to classify the chemicals produced 

results above chance levels within just 250 ms of odorant exposures, reached 50% accuracy in 

just 500 ms, and finally peaked close to 75%. By designing new electrodes that could sample 

PNs from distinct regions of the antennal lobe, we were able to produce well above chance level 

classifications using neural responses from just individual locusts. These results show how we 

can apply this new recording technique to use the locust’s neural network as an inexpensive and 

efficient biological sensor. Finally, we tested an explosive precursor in the behavioral arena and 

recorded neural activity in freely moving locusts. Locusts behaviorally preferred to spend less 
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time near this chemical (ammonium hydroxide; compared to control) but still produced very 

strong neural responses when they were closer.  

In this work, we gained an understanding about how the locust antennal lobe encodes for 

olfactory cues to facilitate quick and robust behavioral decisions. We demonstrated how results 

obtained from tightly controlled, invasive experiments are also observed in more 

realistic/practical experimental setups. Finally, using minimally invasive techniques, we establish 

the potential of locusts to be used as inexpensive, real-time sensors to detect chemicals at levels 

that are challenging for silicon-based counterparts. In the next section, I discuss how the 

experimental and analytical pipelines created to achieve these results can be further enhanced for 

specific applications.  

6.2 Future work 

6.2.1 Mechanisms in the antennal lobe 

Neural recordings from PNs and preliminary results from ORNs indicate that information 

relayed from sensory neurons is re-formatted by the antennal lobe (AL) network to represent 

innate appetitive preferences for a diverse panel of chemicals. Intriguingly, the ORNs are not 

known to produce significant OFF-responses at the termination of stimuli, but our results show 

that OFF-responses across ensembles of PNs are generated for all stimuli and also contain 

valence information. The mechanism underlying how the AL network reshapes its input and how 

it produces stimulus-specific OFF-responses remains to be elucidated. In particular, the role of 

AL-intrinsic, inhibitory local neurons (LNs) is not well understood.  

Similar to PNs, LNs have been shown to generate stimulus-specific responses. However, 

unlike PNs, these neurons do not fire full-blown sodium spikes, which can be recorded 
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extracellularly, but instead produce calcium spikelets. Additionally, the primary neurotransmitter 

they release is GABA, whereas PNs release acetylcholine. Given the current lack of genetic 

labeling tools in locusts, LNs are typically studied individually using intracellular recordings. 

Recent work has shown that LNs come in two flavors – those with high and low baseline activity 

levels194. Whether one or both of these subsets are differentially activated for innately appetitive 

and non-appetitive odorants remains to be analyzed. Similar anatomical/morphological studies 

can also be performed in PNs to study their distribution in the AL as well as their downstream 

projections in the lateral horn and mushroom body. This can inform us if, similar to results in 

Drosophila195, the locust AL also exhibits spatial segregation to encode for innately appetitive 

versus non-appetitive odorants.  

6.2.2 The functional role of opponent PN ensembles 

 In Chapters 3 and 4, we demonstrated how population-level PN responses for appetitive 

and non-appetitive odorants aligned in different neural manifolds. Behaviorally, odorants 

aligning with the appetitive manifold produced more frequent innate POR responses and only 

these odors could be conditioned using reinforcement with food rewards to induce behavior. 

Here, we re-analyze these PN responses and observe the emergence of “opponent” subsets or 

ensembles.  

 

 

 



127 

 

Figure 6.1: Opponent PN ensembles for behaviorally distinct odorants  

a) PCA trajectories of hexanol and 2-octanol (both appetitive) odorant responses re-plotted from Fig. 

4.14a. Blue plane shows the learning manifold and red plane represents the non-learning manifold. The 

trajectories of both odorants lie close to the blue manifold and are similar to each other.  

b) Raster plots showing the PN spiking activity across all ten trials for hexanol presentations in ten 

representative PNs (described in text). Gray rectangle indicates 4 s of odor presentations. Bottom plot 

shows the PSTH for these ten PNs with the ON and OFF periods indicated.  

c) Similar plot as panel b, showing the responses of the same PNs but for 2-octanol.  

d) Similar plot as panel a but for hexanol and benzaldehyde.  

e) Raster plots for PN responses to ten trials of hexanol presentations in a different set of ten PNs. Similar 

convention as panel b.  

f) Similar plot as panel e, showing the responses of the same PNs but for benzaldehyde.  

 We analyzed the PN responses for different odor pairs – some pairs belonging to the 

same category (i.e., both appetitive or both non-appetitive) and others containing one odorant 
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from each category. For each pair, we looked to extract the top ten PNs that had the most distinct 

responses for the two odors – i.e., the PNs that could discriminate between these odors the best. 

We achieved this by sorting the PNs based on the difference in average firing rates evoked by the 

two odors during the ON period – PNs with the highest difference would encode the two odors 

with the highest discriminability. Our results show that for odorants belonging to the same group, 

even the most discriminable PNs had similar responses. In Figs. 6.1a-c, we show the results for 

hexanol and 2-octanol, which are both innately appetitive (Fig. 6.1a). The activity across the top 

ten PNs with maximal differences in firing rates for these odors are shown in Fig. 6b, c 

(individual PN rasters for ten trials for each odor on top, PSTH for all ten PNs on the bottom). 

As can be seen, even these most unique neurons appear to be ON-responsive for both odors. In 

contrast, the results from comparing hexanol and benzaldehyde, two odors with different innate 

preferences are shown in Figs. 6d-f.  Here, the most unique PNs appear to have contrasting 

responses, being primarily ON-responsive for hexanol, and OFF-responsive for benzaldehyde. 

These results were not unique for these odorants but were also found when comparing other pairs 

belonging to the same group (hexanol-hexanal, cyclohexanone-citral) and across groups 

(hexanal-linalool, cyclohexanone-isoamyl acetate). Taken together, these results indicate the 

existence of these “opponent” ensembles that are observed only when making comparisons 

between odors with opposing behavioral outputs.  
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Figure 6.2: Concentration coding in PNs  

a) PCA trajectories showing the ON- and OFF- response trajectories for iaa presented at two 

concentrations (1% and 0.1%; n = 70 PNs). The trajectories corresponding to the same odor period evolve 

in similar directions, indicating similar ensembles of PNs being activated. The length of the trajectories 

indicates the strength of the responses.  
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b) Similar plot as panel a but for iaa presented at 1% and 0.01%. Note that the yellow and orange 

trajectories now deviate from the higher-concentration trajectories, indicating a change in the underlying 

PN ensembles.  

c) PSTH plots for representative PNs (n = 10) showing responses to 1%, 0.1% and 0.01% iaa. Note that 

the responses for the lowest concentration of iaa (0.01%, magenta) is significantly different from 

responses for the highest concentration (1%, green).  

d-f) Similar plots as a-c but for hexanol at 1%, 0.1% and 0.01%.  

g-i) Similar plots as a-c but for citral at 0.1%, 0.01% and 0.001%.  

j-l) Similar plots as a-c but for benzaldehyde at 1%, 0.1%, and 0.01%. [Dataset in this figure was 

collected by Srinath Nizampatnam and re-analyzed by R.C.] 

Are these opponent ensembles unique for this dataset or behavioral axis? We re-analyzed 

unpublished datasets from our laboratory where PN responses across multiple concentrations of 

the same odorant were recorded. For every odorant, we visualized PN ON- and OFF- responses 

across different concentrations (separated by one order of magnitude) using PCA. We observed 

that for the two closest concentrations, the ON- and OFF-trajectories evolved in similar 

directions, indicating that these concentrations were evoking responses across similar subsets of 

PNs. This is shown in Fig 6.2 a,d,g,j (left panels), where the blue and green trajectories align in 

similar directions. Interestingly, when making similar comparisons across PN responses for 

concentrations separated by two orders of magnitude, we see significant differences. Both the 

ON- and OFF-response trajectories for these two concentrations evolve in different directions, 

indicating a change in the subsets of PNs activated. This is shown in Fig 6.2 b,e,h,k (middle 

panels) where relative to the left panels, the blue trajectories are much more distinct from the 

yellow/orange trajectories for every odorant. For these odors, we looked for the top ten PNs 

which had the maximum discriminability for these different concentrations (Fig 6.2, right panels; 

similar as analysis in Fig 6.1). We observed that PNs that were strongly activated at the lowest 

concentrations (magenta curves) were primarily inhibited for the highest concentrations (green 

curves) and produced OFF-responses. Similar results were also observed when looking at 
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concentration-based responses in humid ambient conditions (Fig 6.3), indicating that this 

phenomenon may be conserved across external perturbations.  

 

Figure 6.3: Concentration coding in humid ambient conditions  

PCA plots showing hexanol responses for 1%, 0.1% and 0.01% hexanol (n = 80 PNs) recorded in humid 

conditions. Similar color convention as used in Fig. 6.2. 1% and 0.1% hexanol have much higher overlap 

compared to 1% and 0.01% hexanol responses, indicating a similar change in subsets of PNs encoding 

these concentrations as observed in dry conditions reported in Fig 6.2. [Dataset in this figure was 

collected by Srinath Nizampatnam and re-analyzed by R.C.]  

These results are unintuitive if we extend the mechanism of concentration coding from 

the level of ORNs to PNs. At the sensory level, an increase in the concentration of a stimulus 

typically leads to a monotonic increase in the spiking rate of activated ORNs as well as the 

recruitment of additional ORNs196,197. However, our results indicate that at sufficiently different 

concentrations, the ensembles of PNs that are activated are altered. Instead, these results are 

similar to those shown in Fig 6.1 where nearby concentrations of an odorant are encoded similar 

to odors from the same innate group (both appetitive), whereas odors separated by two orders of 

magnitude are encoded similar to odors from different innate groups. Whether the behavioral 

responses at extreme concentrations are also switched similar to innate valence remains to be 

investigated – concentration-based changes in an odorant’s valence have been reported in 
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Drosophila198, but the neural mechanism underlying those observations also remains 

unexplained. Additionally, whether this mechanism of encoding behaviorally different stimuli 

with opposing ensembles is a more generalized feature of the antennal lobe (such as for encoding 

acids vs. bases, pheromones vs. non-pheromones) is also an interesting direction for future work.  

6.2.3 Understanding behavioral readout of olfactory inputs 

 In this work, we found that applying Pavlovian conditioning techniques could induce 

POR responses for innately appetitive odorants and not for non-appetitive odorants. However, 

these induced responses were not unique to an odorant but appeared to generalize to other 

innately appetitive odorants (hex-trained locusts responded to iaa and vice versa).  

Can locusts be trained to selectively respond to only one chemical and not others 

(respond to hexanol but not to isoamyl acetate), or are learned responses always generalized? 

Differential conditioning is an adaptation of classical conditioning where two stimuli are 

presented during training but only one is paired with a food reward, with the goal being the 

selective reinforcement of one chemical versus another. Combining this approach with our 

minimally invasive recording techniques can be used to test whether learning in locusts is always 

generalized and how neural responses to rewarded and unrewarded odorants are uniquely 

affected through this paradigm.  

 Our classical conditioning results were obtained using four odorants – two appetitive and 

two non-appetitive. In Chapter 4, we also showed preliminary results when applying operant 

conditioning techniques to increase PORs to the same panel of four odorants. Extending these 

experiments to additional appetitive and non-appetitive odorants would be useful in 

demonstrating the robustness of the conclusions drawn in this work and understanding how these 
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two popular conditioning techniques produce similar or distinct results – including changes 

observed in odor coding at the level of PNs via minimally invasive recordings.    

6.2.4 Real-world chemical detection using locusts 

 In this work, we demonstrated how PN responses can uniquely encode for different 

explosive chemicals within just hundreds of milliseconds. We developed a freely moving locust 

preparation that allows monitoring of PN responses as locusts explore a behavioral arena. Our 

results indicate that this approach does not appear to alter the innate olfactory preferences of 

locusts and can be used to record neural and behavioral activity across multiple days. Here, we 

discuss how these developments can be enhanced for practical applications such as open-field 

detection of chemicals of interest.  

 Our current recording apparatus comprises long and flexible tetrodes that are connected 

to an amplifier/recording computer using physical wiring. For open-field experiments, we could 

adapt this setup to a wireless neural acquisition system that can either transmit data in real-time 

with minimal loss/lag, or can log the data on-board for retrieval and offline analysis. This would 

require the design of lightweight amplification systems that can be directly mounted on the back 

of the locust – given the payload carrying capacity of locusts and the physical recovery observed 

after electrode implantations, this approach should be feasible with sufficient advances in 

miniaturized fabrication of circuits. A reduction in the distance between the antennal lobe and 

amplifier (through a reduction in length of electrodes that would only be required to attach to the 

back of the locust) would also reduce external noise being introduced into the recordings.  

 In laboratory experiments, the concentrations and timing of stimuli are predictable and 

tunable – luxuries that are not afforded in open-field explorations. It is also possible that neural 

responses are weakened to the level of the noise floor. In such instances, simultaneous 
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monitoring of behavioral responses can provide a second axis along which stimuli can be 

detected and classified. Our current analytical pipeline has a deep learning framework that can 

detect locusts in each frame. The output of this model can easily be fed into a secondary network 

that can then classify different behavioral motifs (such as grooming, antennal flicking; Fig. 6.4), 

which can be used to predict not only the presence of a chemical in the locust’s vicinity but also 

the identity of the stimulus. 

 

 

 

 

 

 

Figure 6.4: Markerless tracking for pose estimation in locusts  

A neural network88 was trained to perform markerless tracking of locust body positions in a 

behavioral arena. The network’s output labels each body part by a different colored dot, with 

connections between parts indicated by red lines. The relative positions of body parts can be 

constructed into postures over time, and the sequence of postures can be used to construct 

complex behavioral motifs.  

 Finally, we optimized our protocol to allow a locust to be implanted with electrodes and 

ready for movement within 30 minutes. This turnaround time combined with the long-term 

stability of recordings can be used to perform experiments using groups or swarms of locusts, 

such as releasing multiple locusts into a large field to sample different regions. Miniaturized 

cameras can also be mounted on the back of the locusts to obtain a visual map of unexplored 
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regions. Locusts undergo a marked phase change (from solitary to gregarious) when they are 

assembled into groups199. Our protocol can be directly applied to study any neural changes that 

take place as locusts undergo phase changes in group settings and whether odor coding principles 

remain conserved as they transition from the solitary phase to the gregarious phase200.  
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