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This dissertation explores a 2015 conjecture of Codesido-Grassi-Marino in topological

string theory that relates the enumerative invariants of toric CY 3-folds to the spectra of

operators attached to their mirror curves. In the maximally supersymmetric case, our first

theorem relates zeroes of the higher normal function associated to an integral K2-class on the

mirror curve to the spectra of the operators for curves of genus one, and suggests a new link

between analysis and arithmetic geometry. On the other hand in the ’t Hooft limit, [KM,

MZ] deduced from the [CGM] conjecture that the limiting values of the local mirror map at

the maximal conifold point are given by values of the Bloch-Wigner dilogarithm at algebraic

arguments. Our second theorem establishes these assertions by calculating regulator periods

on the mirror curves attached to 3-term operators coming from triangles. As a consequence

numerous series identities involving the Bloch-Wigner dilogarithm are demonstrated.
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Chapter 1

Introduction

The simplest Calabi-Yau threefolds are the noncompact toric CYs X determined by a convex

lattice polygon ∆ (or more precisely by the fan on a triangulation of {1} × ∆ in R3). Each

such CY has a family of mirror curves C ⊂ C∗×C∗, of genus g equal to the number of interior

integer points of ∆, given by the Laurent polynomials F (x1, x2) with Newton polygon ∆.

Recently a fundamental and novel relationship between (i) the enumerative geometry of X

and (ii) the spectral theory of certain operators F̂ on L2(R) attached to C, has been proposed

by M. Mariño and his school, in the context of non-perturbative topological string theory

[GHM, Ma, CGM]. The goal of this paper is to lay out some mathematical consequences of

this meta-conjecture, and provide evidence for it by proving them.

A Laurent polynomial F = ∑
m∈∆∩Z2 amx

m is promoted to an operator F̂ (or “quantum

curve”) by a process called Weyl quantization, which depends on a real constant ℏ. Writing

r for the coordinate on R, let x̂ denote multiplication by r, and ŷ := iℏ∂r, so that [x̂, ŷ] = iℏ.

Taking F̂ := ∑
ame

m1x̂+m2ŷ, [CGM] define a generalized spectral determinant ΞC(a; ℏ) whose

zero-locus describes those curve moduli a for which ker(F̂ ) ̸= {0}. They conjecture that

under a “quantum mirror map” a 7→ tℏ(a), ΞC is proportional to a quantum theta function

ΘX(t; ℏ) derived from the all-genus enumerative invariants of X; see Conjecture 2.2.1. In

particular, the zeroes of ΘX should recover the spectrum of any fixed quantum curve F̂ .

In the formulation of [BKV], local mirror symmetry relates the “maximally supersymmetric”

case (ℏ = 2π) of (i) to (iii) the Hodge-theoretic invariants (or “regulators”) of algebraic K2-

classes on C. This allows us to reformulate this case of the conjecture of Codesido-Grassi-

Mariño [CGM] in §2.3 as a putative relationship between quantum curves and regulators
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(i.e. between (ii) and (iii)). We do this under the assumption that F ranges only over the

integrally tempered Laurent polynomials, so that the symbol {−x1,−x2} ∈ K2(C(C)) extends

to motivic cohomology classes on the compactifications C̄a ⊂ P∆. This smaller moduli space

M has dimension g, and the resulting regulator classes 1
4π2R(a) ∈ H1(C̄a,C/Z) may be

projected modulo H1,0(C̄a) to yield a section ν of the Jacobian bundle J → M of the

family C → M, called the higher normal function. We deduce from the conjecture of

[CGM] that the locus in M where ν meets a specific torsion shift of the theta divisor in

J should match the zero-locus of ΞC after tweaking the signs of the moduli; this is made

precise in Conjecture 2.3.2.

We may further refine this prediction in the genus-1 case, where ∆ is now reflexive and

the Laurent polynomial F (x) = φ(x) + a now has only one parameter a. In §3.1, we use

integral mirror symmetry to compute the torsion shifts, and show that (after a miraculous

cancellation) they simply translate the theta divisor to the origin! The prediction is now

that the spectrum of the quantum curve is given by1

σ(φ̂) = {a ∈ M | ν(a) ≡ 0 ∈ J(C̄a)}. (1.0.1)

Keeping in mind that g = 1 (∆ reflexive), φ is tempered, and ℏ = 2π, our first main

unconditional result is then the following

Theorem A (Theorems 3.2.2 and 3.3.1). Assume ∆ ⊂ R× [−1, 1]. Then the “⊇” direction

of (1.0.1) holds, and the “⊆” direction holds for “almost all” eigenvalues.

We prove the “⊇” statement in §3.2 by explicitly constructing square-integrable eigenfunctions

of φ̂ with eigenvalue a, using vanishing of ν(a) to show well-definedness. The result (in §3.3)

on the “⊆” inclusion is obtained by using the coherent state representation of φ̂ to bound
1Note the implicit sign flip on a: we are saying that ker(φ̂ − a) ̸= {0} when the regulator associated to

{−x1, −x2} on φ(x) + a = 0 dies in the Jacobian. The notation for the normal function changes from ν to
ν as it no longer has multiple components.
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the accumulation of eigenvalues in a manner that matches growth (∼ const. × log2(a)) of

ν as a → ∞. One perspective on Theorem A is that we may view ν(a) as a multivalued

function solving an inhomogeneous Picard-Fuchs equation, and in effect (1.0.1) states that

the eigenvalues of φ̂ are simply the points where ν(a) ∈ Z (see Remark 3.1.5(i)). The latter

condition is a statement about a period of a mixed motive, and combining this with a variant

of Grothendieck’s period conjecture allows one to show conditionally that the eigenvalues of

φ̂ are transcendental numbers (Prop. 3.3.4).

The conjecture of [CGM] yields a different prediction in the ’t Hooft limit ℏ → ∞,

which is not empty for g = 1 but much more interesting for g > 1. Results of Kashaev,

Mariño and Zakany [KM, MZ] on the limits of spectral traces of three-term operators can be

viewed as providing a general formula for the limiting value of a particular regulator period

Rγ(a) =
´

γ
R{−x1,−x2}|Ca at the maximal conifold point â, in terms of special values of the

Bloch-Wigner (“real single-valued dilogarithm”) function. Here “maximal conifold” means a

particular point in moduli at which C acquires g nodes while remaining irreducible; that is,

the normalization C̃â is a P1. By applying a method from [DK, §6] for computing regulator

periods on singular curves of geometric genus zero, we are able to verify this in two infinite

families of cases, corresponding to

F a
g,g(x) = x1 + x2 + x−g

1 x−g
2 +∑g

j=1 ajx
1−j
1 x1−j

2 and

F
a
2g−1,1(x) = x1 + x2 + x−2g+1

1 x−1
2 +∑g

j=1 ajx
1−j
1 .

The g = 1 case was already verified in [DK, §6.3], while the g = 2 identities were partially

verified in [7K, §6].

To give a more explicit statement of this result, write F̃ a := F a − a1 in either case, and

[·]0 for the operator taking the constant term (in x1, x2) in a Laurent polynomial. Then we

have:

3



Theorem B (Theorem 4.1.1). The regulator periods at the maximal conifold point satisfy

log(2g + 1) −∑
k>0

(−1)k(g+1)

k(2g+1)k [(F̃ â
g,g)k]0 = 1

2πiR
g,g
γ (â) = (2g+1)

π
D2(1 + e

2πig
2g+1 )

and

log(2g + 1) −
∑

k>0
1

k(2g+1)k [(F̃ â
2g−1,1)k]0 = 1

2πiR
2g−1,1
γ (â) = (2g+1)

π D2(1 + e
2πi

2g+1 ).

In fact, the two families are isomorphic under the moduli-map sending aj 7→ ag−j+1, and

the cycles just two amongst g (named γ1, . . . , γg) for which we can compute the regulator

period at â, obtaining g different identities. Part of the proof involves using a method from

[Ke2] to determine (from the series expansions of their periods) how many times the “limits”

of the {γj} at â pass through each of the g nodes, cf. Prop. 4.1.4; this method may be of

independent interest in the study of monodromy. Incidentally, the identities we prove should

have implications for the asymptotic behavior of genus-zero Gromov-Witten numbers of the

corresponding CY X, but we do not pursue this direction here.
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Chapter 2

A conjecture in topological string theory and

its consequences

2.1 Quantum curves.

Let ∆ ⊂ R2 be a polygon with vertices in Z2 whose interior contains the origin 0. Write

F (x1, x2) = ∑
m∈∆∩Z2 amx

m (2.1.1)

for a general Laurent polynomial with Newton polygon ∆. The affine curve C := {x ∈ (C∗)2 |

F (x) = 0} is then smooth of genus g := |int(∆) ∩ Z2|. It admits a smooth compactification

C̄ in P∆, which denotes a minimal toric desingularization of the toric surface constructed

from the normal fan of ∆. For instance, if ∆ is reflexive with polar polygon ∆◦, then g = 1

and P∆ is constructed from the fan with rays passing through each of the nonzero points of

∆◦ ∩ Z2.

Taking a maximal integral triangulation tr(∆), consider the fan Σ on {1} × tr(∆) ⊂ R3.

The resulting toric variety

X := PΣ (2.1.2)

is called a local CY 3-fold since KX
∼= OX .1 This will be our “A-model”, on which we do

enumerative geometry and run the Kähler moduli. Such noncompact CY 3-folds often arise
1To see this, note that −c1(KX) = c1(X) is the sum of the irreducible divisors corresponding to the

elements of ∆ ∩ Z2, which is the divisor of the first toric coordinate w0 on X hence rationally equivalent to
zero.
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from the crepant resolution of a finite quotient of C3. For instance, if 1 ∈ Z2k+1 acts on C3

by diag{ζ2k+1, ζ
k
2k+1, ζ

k
2k+1}, the resolution X is obtained by taking ∆ to be the convex hull

of (1, 0), (0, 1), and (−k,−k) (with g = k). Another set of examples (with g = 1) arises

when ∆ is reflexive: in this case, X is just the total space of KP∆◦ . There is some overlap

with the quotient construction: for instance, KP2 [resp. KF2 , KdP′
6

2] arises from a quotient

of C3 by Z3 [resp. Z4, Z6].

Local mirror symmetry connects the genus-zero enumerative invariants of X to periods

of the “B-model”

Y := {(x, u, v) ∈ (C∗)2 × C2 | F (x1, x2) + uv = 0}, (2.1.3)

an open CY 3-fold with KY trivialized by the form

η := 1
(2πi)2 ResY

(
dx1/x1 ∧ dx2/x2 ∧ du ∧ dv

F (x) + uv

)
∈ Ω3(Y ). (2.1.4)

We shall will say more about this in due course. It has been proposed by Mariño and

collaborators [GHM, Ma, CGM] that one can capture the higher-genus enumerative invariants

of X as well by quantizing the curve C — that is, turning the Laurent polynomial F into

an operator and considering its spectral theory. The idea is to write x1 = ex, x2 = ey,

and promote x, y to noncommuting operators x̂, ŷ on L2(R) with [x̂, ŷ] = iℏ (ℏ ∈ R). More

explictly, writing r for the coordinate on R, we take x̂ = µr (multiplication by r) and

ŷ = −iℏ∂r; and then we set x̂1 = ex̂, x̂2 = eŷ. Notice that if f ∈ L2(R) is the restriction of

an entire function, then x̂2 is a shift operator, viz. (e−iℏ∂rf)(r) = f(r − iℏ).

The promotion of F to F̂ is highly nonunique: for instance, ex̂eŷ and ex̂+ŷ [resp. eŷex̂] differ

by a multiplicative factor of eiℏ/2 [resp. eiℏ] by the Campbell-Baker-Hausdorff formula. The
2We shall use the notation dP′

6 to refer to the generalized del Pezzo of degree 6 defined by the self-dual
polygon with vertices (1, 0), (0, 1), and (−3, −2). (This is called the “E8 del Pezzo” in [GKMR].

6



standard way to fix this (before [CGM]) was to employ a perturbative approach called WKB

approximation, which works modulo successive powers of ℏ. In this context a connection

between quantization and K2(C(C)) was pointed out in [GS].

So suppose that we want a function ψ on C (rather than R) and a choice of F̂ given

by F̂0 := F (x̂1, x̂2) := F (µx1 , e
−iℏδx1 ) mod O(ℏ), for which F̂ψ = 0. (In this case, we will

say C is quantizable.) Begin with formal asymptotic expansions F̂ = ∑
i≥0 ℏiF̂i, and ψ =

e
i
ℏ
∑

j≥0 ℏjSj . Choosing a base point p0 ∈ CF with x1(p0) = 1, we take S0(p) =
´ p

p0
log(x2)dx1

x1

(integral on C), which locally satisfies δx1S0 = log(x2) hence (F̂ψ)(p) = [F (x1(p), x2(p)) +

O(ℏ)]ψ(p) = O(ℏ)ψ(p). Of course, e i
ℏS0 only gives a well-defined function on C if the integral

is path-independent mod 2πℏZ. When this happens, one then solves for the higher-order

corrections Si, by postulating their form in terms of “topological recursion”, and finally solves

for the F̂i. We remark that for ℏ = 2π, the well-definedness condition on S0 is precisely the

statement that the regulator class R{x1, x2} ∈ H1(C,C/Z(2)) of the coordinate symbol

{x1, x2} ∈ K2(C(C)) is trivial. More generally, if the regulator class is torsion (which is the

quantizability criterion proposed by [GS]), then the well-definedness condition is satisfied for

ℏ = 2π
M

for some M ∈ Z. This is a very different condition on the regulator class than the

one appearing in RHS(2.3.13) below, even in the g = 1 case.

For the rest of this paper we consider only the non-perturbative (exact) approach pioneered

in [GHM]. Namely, we fix the single choice

F̂ = ∑
m∈∆∩Z2 ame

m1x̂+m2ŷ (2.1.5)

and try to describe its spectrum as an operator on L2(R). A little more precisely, if int(∆) ∩

Z2 = {m(j)}j=1,...,g, then writing aj := am(j) , Pj = xm(j) , F (0)
j = P−1

j F |a1=···=ag=0 and Fj =

P−1
j F |aj=0, we are interested in determining the eigenvalues {eE

(j)
n (a1,...,âj ,...,ag)}n∈N of F̂j for

7



j = 1, . . . , g.3 We should note here that as long as the {am} are all real, the F̂j, F̂
(0)
j are

obviously Hermitian; even better, their inverses ρj, ρ
(0)
j are expected to be bounded self-

adjoint and of trace class, with a discrete positive spectrum. These properties, which justify

indexing the eigenvalues by N and make the Fredholm determinants

det(1 + ajρj) = ∏
n≥0(1 + aje

−E
(j)
n (a1,...,âj ,...,ag)) (2.1.6)

well-defined, are proved in [KM] and [LST] for all the specific operators we will discuss below.

Definition 2.1.1 ([CGM]). The generalized spectral determinant is

ΞC(a; ℏ) := det(1 +∑g
j=1 ajP̂

− 1
2

j ρ
(0)
j P̂

1
2

j ). (2.1.7)

This function contains all the information we are after. For any fixed {ak}k ̸=j, we may

recover (2.1.6) as ΞC(a; ℏ)/(ΞC(a; ℏ)|aj=0), since their zeroes (in aj) are the same and both

sides are 1 at aj = 0 [CGM, (2.74)]. So the spectra of F̂1, . . . , F̂g are simply slices of the

zero-locus of (2.1.7), a union of hypersurfaces in Rg indexed by N. Note that in the genus

one case, (2.1.7) is just det(1 + a1ρ1).

2.2 Local mirror symmetry and Mariño’s conjecture

Let r := |∂∆ ∩ Z2|, so that |∆ ∩ Z2| = g + r; and denote by L ⊂ Zg+r the rank-(g + r − 3)

lattice of relations vectors {ℓm}m∈∆∩Z2 with ∑m ℓm(1,m) = 0. Each m ∈ ∆ ∩Z corresponds

to a toric divisor Dm ⊂ X, amongst which we have the g compact Dj := Dm(j) . If C ⊂ X

is any compact toric curve (corresponding to any edge of tr(∆)), its intersection numbers

with the divisors of the toric coordinates w0, w1, w2 are zero, leading to a relations vector
3For the time being, one should think of the non-interior parameters am as being fixed. For the assertion

that the spectrum is positive and discrete, further restrictions (such as those we impose for temperedness
later) should be made.

8



ℓm = (C · Dm)X . Such relations integrally span L, although the (Mori) cone generated by

effective curves may not be smooth or even simplicial. We will ignore such “finite data”

issues here, as we will eventually pass to a slice of the complex-structure moduli space where

this is not an issue.

So write {Ci}i=1,...,g+r−3 for independent generators of this cone (i.e. H2(X,Z)eff), with

corresponding relations ℓ(i), and define complex structure parameters

zi = zi(a) := ∏
m∈∆∩Z2 a

ℓ
(i)
m

m (2.2.1)

for C and Y . It is convenient at this stage to fix three vertices of ∆ and set the corresponding

am’s equal to 1. We shall mainly work in a neighborhood of the large complex structure limit

(LCSL) point z = 0, though at times will also be concerned with the maximal conifold point

ẑ — the unique point (if it exists) on the “boundary” of that neighborhood4 where C develops

g nodes (while remaining irreducible) hence has geometric genus zero.

What are the periods parametrized by (2.2.1)? We summarize some results from [BKV].5

One may construct 3-cycles T ,A1, . . . ,Ag+r−3 on Y such that near the LCSL

ˆ
T
η = 2πi, −ti :=

ˆ
Ai

η ∼ log(zi). (2.2.2)

The mirror map z 7→ et, which we usually express as t(z) (or t(a) := t(z(a))) then induces a

biholomorphism between neighborhoods of the LCSL and the large volume point (in Kähler
4i.e., the region of convergence for certain power series representing the periods of C; see §4.
5While stated there for g = 1, the proof — by “limiting” results of [Ir] for compact

CY 3-folds to the local setting — works for any ∆ that makes the BKV polytope ∆ :=
{the convex hull of (−1, 1, 0, 0), (2, −1, 0, 0), and (−1, −1) × ∆ in R4} reflexive. (For instance, take ∆ to
be the convex hull of (1, 0), (0, 1), and (−g, −g) [resp. (−n, −1)] for g | 6 [resp. n | 12]). We also expect
these results to hold more generally. A minor difference in formulation here is that instead of applying the
BKV limit to derivatives of the prepotential Φ of a compact CY, we can directly take derivatives of F0.

9



moduli space6 of X). Next write

F0(t) := 1
6
∑

i ci1i2i3ti1ti2ti3 +∑
d∈H2(X,Z)eff N0,de

−d·t (2.2.3)

for the genus-zero free energy of X, in which the ci ∈ Q are certain triple intersection

numbers7 and the N0,d ∈ Q are genus-zero local Gromov-Witten numbers. The basic Hodge-

theoretic assertion of local mirror symmetry is that there are 3-cycles B1, . . . ,Bg on Y for

which8

´
Bj
η = 1

2πi
∑g+r−3

i=1 Cij∂ti
F0(t) − 1

2
∑g+r−3

i=1 Aijti + 2πiTj (2.2.4)

under the mirror map, where −Cij = (ℓ(i)
m(j) =)Ci ·Dj, Aij ≡

(2)
the coefficient of Ci in D2

j , and

Tj ∈ Q.

The 3-cycles are constructed by describing Y → (C∗)2 as a conic bundle, with fibers

isomorphic to C∗ over (C∗)2 \ C, and to C ∪0 C (pair of complex lines crossing once) over C.

This yields (cf. [DK, §5.1]) an exact sequence of MHS

0 → Q(3) A→ H3(Y ) B→ ker{H1(C) → H1((C∗)2)}(1) → 0 (2.2.5)

in which im(A) = ⟨T ⟩ and the right-hand term has basis (2πi times) α1, . . . , αg+r−3, β1, . . . , βg.

On the level of Q-vector spaces, B has a section M sending this basis to the Ai = M(αi)

and Bj = M(βj). It is constructed by sending φ ∈ ker{H1(C,Q) → H1((C∗)2,Q)} first to its

bounding Q-chain Γφ in (C∗)2 (with ∂Γφ = φ), over which M(φ) is a 3-cycle with S1 fibers

(shrinking to points over φ). Writing R{f, g} := log(f)dg
g

− 2πi log(g)δTf
for the standard

regulator current for Milnor K2-symbols (Tf := f−1(R<0) the cut in branch of log), we have
6If {Ji} ⊂ H2(X) is a basis dual to {Ci}, then the Kähler parameter is

∑
i

−ti

2πi Ji.
7by interpreting X as a (decompactifying) limit of a compact CY and computing intersections −Ji1Ji2Ji3

there.
8The 2nd and 3rd terms are required in order for integrality of the periods, and arise from applying the

procedure described in [BKV]; the second term arises from the fact that ch(ODj ) ≡ [Dj ] − 1
2 [D2

j ] mod Q[p],
where [p] is the class of a point.
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on (C∗)2 the relation d[R{−x,−y}] = dx
x

∧ dy
y

− (2πi)2δ(R>0)2 . This leads at once to

2πi
ˆ

M(φ)
η =
ˆ

Γφ

dx
x

∧ dy
y

=
ˆ

φ

R{−x,−y} =: Rφ, (2.2.6)

which is to say that Rαi
= −2πiti and Rβj

≡ ∑
i Cij∂ti

F0 − πi∑i Aijti mod Q(2).

In the physics literature, the nontrivial am on the boundary are called mass parameters;

if we write these as a′
1, . . . , a

′
r−3, then our complex structure parameters take the form zi =∏g

j=1 a
−Cij

j × ∏r−3
k=1 a

′
k

C′
ik . Taking the aj ≫ 0 large but keeping the a′

k bounded, so that

ti ∼ ∑g
j=1 Cij log(aj), the subleading terms (constant in a) can be shown9 to be Q-linear

combinations of logarithms of the negative roots {qk}k=1,...,r of the edge polynomials of F .

(The latter are defined as follows: if e is an edge of ∆, with vertex ν, and me ∈ Z2 is

a primitive lattice vector along e, then put Pe(w) := ∑
m∈e∩Z2 amw

(m−ν)/me .) The key

observation is that each qk is the Tame symbol of {−x,−y} ∈ K2(C) at a point pk ∈

C̄ ∩ (P∆ \ (C∗)2), so that a loop εk ⊂ C around pk has
´

εk
R{−x,−y} = 2πi log(qk).

The physicists have a grand potential function JX(t; ℏ) which says “everything they know

how to say” about enumerative geometry of X, and includes (refinements of) higher-genus

GW-invariants. We refer the reader to [CGM] for details, as we shall only discuss two special

cases in which those invariants (mostly) drop out. First, in the maximally supersymmetric

case ℏ = 2π, we have10

JX(t; 2π) = 1
8π2

{∑
i1,i2 δti1

δti2
− 3∑i δti

+ 2
}

F̂0(t)

+ F̂1(t) + F̂NS
1 (t) + A(q, 2π),

(2.2.7)

9Done from a physics perspective in [GKMR], and from a regulator perspective in Appendix A. Here
“negative roots” means the roots of Pe(−w). In particular, if edge polynomials are powers of (1 + w), the
qk are all 1.

10Remark that q is an abuse of notation since the qk are B-model coordinates; one would ideally replace
them by monomials in the eti which equal qk under the mirror map. (Similar remarks apply to m in (2.2.8).)
But we don’t need to be more precise here as these terms quickly become irrelevant.
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where F̂0, F̂1, F̂NS
1 are free energies in which the instanton part is twisted by a “B-field”

B ∈ Zg+r−3:11

• F̂0(t) = 1
6
∑

i citi1ti2ti3 +∑
d N0,de

−d·(t−πiB);

• F̂1(t) = ∑
i biti + F inst

1 (t− πiB); and

• F̂NS
1 (t) = ∑

i b
NS
i ti + FNS, inst

1 (t− πiB).

In the ’t Hooft limit, where ℏ → ∞ (and aj → ∞) while mk := e− 2π
ℏ log(qk), ζj := log(aj)

ℏ , and

τi := 2πti

ℏ remain finite, one finds that

ℏ−2JX(t; ℏ) = { 1
16π4 F̂0(τ) + 1

4π2
∑

i b
NS
i τi + A0(m)}︸ ︷︷ ︸

=:JX
0 (ζ,m)

+O(ℏ−2). (2.2.8)

We may disregard the unknown functions A0(m), A(q, 2π) of the mass parameters.

To state the main physics conjecture, we need two more ingredients. First is the quantum

theta function

ΘX(t; ℏ) := ∑
n∈Zg exp {JX(t+ 2πi[C]n; ℏ) − JX(t; ℏ)} , (2.2.9)

where [C] is the matrix Cij (and so [C]n is a (g + r − 3)-vector with entries ∑g
j=1 Cijnj).

Terms in JX which are 2πi-periodic in the {ti}, including all but ∑i(bi + bNS
i )ti in the second

line of (2.2.7), drop out. The second is a “quantum deformation” tℏ(z) = t(z) +O(ℏ) of the

mirror map. (We shall also write tℏ(a) := tℏ(z(a)) where convenient.) Again, we describe

this where we need it: at ℏ = 2π it is given by

ti(z) := t2π
i (z) = ti((−1)Bz) + πiBi; (2.2.10)

11In the g = 1 case, Bi is just Ci1; see §2.3 below and [SWH] for g > 1.
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like ti(z), this is asymptotic to − log(zi), but the signs are (in general) different in the power-

series part. In the ‘t Hooft limit, the previous asymptotic relation ti ∼ ∑
j Cij log(aj) +∑

k Dik log(qk) becomes exact in the sense that

τi = 2π∑j Cijζj −∑
k Dik log(mk). (2.2.11)

Conjecture 2.2.1 ([GHM],[CGM]). Under the quantum mirror map, the generalized spectral

determinant of C is given (up to a nonvanishing factor) by the quantum theta function of its

mirror:

ΞC(a; ℏ) = eJX(tℏ(a);ℏ)ΘX(tℏ(a); ℏ). (2.2.12)

This postulates a fundamental and very general relation between spectral theory (of the

B-model) and enumerative geometry (of the A-model). Since local mirror symmetry relates

the latter to Hodge theory of the B-model, it should imply relationships between Hodge/K-

theory and spectral theory of our curves with no reference to mirror symmetry. We now

derive these in our two special cases, under the assumption that F is integrally tempered: all

qk = 1 = mk; equivalently, all edge polynomials of F are powers of w + 1. Accordingly, by a

(resp. z(a)) we henceforth shall mean just (a1, . . . , ag), with the remaining {am} determined

uniquely by this constraint.

2.3 Consequences in the “maximal SUSY” case

Of course, the last paragraph was a bit glib, since the classical and quantum mirror maps are

not the same. One should rather expect a relation between Hodge theory of Cz and spectral

theory of a “partner” Cz′ given by z = t−1(tℏ(z′)) or some variant thereof. (In fact this is

still too vague, since the spectral theory and the regulator class really depend on a.) We

now work this out at ℏ = 2π.
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First we address the nature and significance of B. Because the monomials xm in F̂ were

quantized as em1x̂+m2ŷ = e
iℏ
2 m1m2x̂m1

1 x̂m2
2 , at ℏ = 2π we have F̂ = ∑

m(−1)m1m2amx̂
m. The

B-field is determined mod 2 by the effect on the signs of the zi were we to replace am by

(−1)m1m2am: namely, Bi ≡
(2)

∑
m m1m2ℓ

(i)
m . Under the assumption that

∂∆ ∩ (2Z × 2Z) = ∅, (2.3.1)

this is compatible with taking B to be in the Z-span of the columns of [C], which we write

Bi = ∑g
j=1 AjCij.12 Notice that then t((−1)Aa) = (−1)Bt(a), so that by (2.2.10) we have

t2π((−1)Aa) = t(a) + πiB and the conjectured equality (2.2.12) becomes

ΞC((−1)Aa; 2π) = eJX(t(a)+πiB;2π)ΘX(t(a) + πiB; 2π). (2.3.2)

That is, after absorbing the “+πiB” twist into ΘX and JX , our Hodge/ spectral “partners” are

related by at most a change of sign in the complex structure parameters. The main question

is what the quantization condition looks like: which values of a make ΘX(t(a) + πiB; 2π),

hence the spectral determinant, zero?

This is where the local mirror symmetry enters. Under our assumption (2.3.1), its

previous incarnation in (2.2.4) can (by a tedious intersection theory argument) be expressed

as13

Rβj
(a) = ∑

i Cij∂ti
F̂0 (t(a) + πiB) + (2πi)2B◦

j (B◦
j ∈ Q). (2.3.3)

Next, since our temperedness assumption has eliminated the Tame symbols, the {Rαi
}g+r−3

i=1

are no longer independent (unless r = 3). More precisely, there are g cycles γj ∈ H1(C̄,Z)
12mod 2, A is just the characteristic function of ∆ ∩ (2Z × 2Z).
13Although the regulator periods Rφ [resp. periods Ωj1j2 in (2.3.7) below] are infinitely multivalued, they

are periods of a class R [resp. classes {ωj}] which are single-valued in a [resp. z]; so we shall loosely write
them as functions thereof.
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with regulator periods Rγj
∼ −2πi log(aj) (cf. Appendix A), whence

Rαi
= ∑

j CijRγj
; (2.3.4)

and the Aj can be chosen so that {γj, βj}g
j=1 is a symplectic basis.14 The regulator class

R = R{−x1,−x2} ∈ H1(C̄,C/Z(2)) then has a local lift15 to H1(C̄,C) given by

R̃ = ∑g
ℓ=1 (Rγℓ

γ∗
ℓ +Rβℓ

β∗
ℓ ) , (2.3.5)

whose Gauss-Manin derivatives

ωj := ∇∂/∂Rγj
R̃ = γ∗

j +∑g
ℓ=1

∂Rβℓ

∂Rγj
β∗

ℓ (2.3.6)

are classes of holomorphic 1-forms by Griffiths transversality. Evidently these are normalized

so that the symmetric g × g matrix

Ωj1j2(z) : = − 1
2πi
∑

i1,i2 Ci1j1Ci2j2∂ti1
∂ti2

F̂0(t(z) + πiB)

= − 1
2πi
∑

i1 Ci1j1∂ti1
Rβj2

= ∑
i1 Ci1j1

∂Rβj2
∂Rαi1

=
∂Rβj2
∂Rγj1

=
´

γj1
ωj2

(2.3.7)

is the standard period matrix of C̄.

We have already observed that the isomorphism class of C̄ depends only on z, which

parametrizes the standard coarse moduli space for toric hypersurfaces; and we are restricting

to a “tempered slice” of this space. However, R only becomes single-valued in a, forcing
14This is again by local mirror symmetry: the Rγj [resp. Rαi ] are the A-model periods of flat sections

arising from curves dual to the Dj [resp. Ji]; while the Rβj are those arising from ch(ODj (−Ej)) ∪ Γ̂(X) for
suitable curves Ej .

15For our purposes, this can be regarded as living on an open neighborhood (in z-space Cg) of (0, ϵ)g for
some ϵ > 0.
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us to work on the finite cover M := {a ∈ (C∗)g | Cz(a) is smooth} of this slice. Let

C̄ π→ M be the universal (compactified) curve, and set H := R1π∗C ⊗ OM, H := R1π∗Z,

and J := H/{H + F1H}. Then J is the sheaf of sections of the Jacobian bundle

J ρ→ M, and H /H is the sheaf of sections of the C/Z cohomology bundle H1
C/Z → M,

which factors through the obvious Cg-torsor H1
C/Z

ϖ→ J . By temperedness, the symbol

{−x1,−x2} ∈ K2(C(C)) lifts to a motivic cohomology class Z ∈ H2
M(C̄,Z(2)), and we make

the key

Definition 2.3.1. By the higher normal function associated to Z, we shall mean the well-

defined section 1
(2πi)2 R of H1

C/Z, or its projection ν := ϖ( 1
(2πi)2 R) to a section of J . The

latter is computed by evaluating R as a functional on holomorphic 1-forms (modulo periods),

i.e. by the column vector

νj : = 1
(2πi)2 ⟨R, ωj⟩ (j = 1, . . . , g)

= −1
4π2

∑g
ℓ=1⟨Rγℓ

γ∗
ℓ +Rβℓ

β∗
ℓ , γ

∗
j +∑

ℓ′ Ωjℓ′β∗
ℓ′⟩

= 1
4π2 (∑g

ℓ=1 Rγℓ
Ωjℓ −Rβj

)

(2.3.8)

modulo the Z-span of columns of (Ig | Ω).

To use mirror symmetry to compute ν, put R̃βj
:= Rβj

− (2πi)2Tj, and observe that by

(2.3.3) thru (2.3.7) (together with Ωjj′ = Ωj′j)

ξj(a) : = 1
4π2

∑
i1 Ci1j(

∑
i2 δti2

− 1)∂ti1
F̂0(t(a) + πiB)

= 1
4π2 (∑i δti

− 1)R̃βj
= 1

4π2 ( −1
2πi
∑

i Rαi
∂ti
Rβj

− R̃βj
)

= 1
4π2 ( −1

2πi
∑

i,ℓ CiℓRγj
∂ti
Rβj

− R̃βj
)

= 1
4π2 (∑ℓ Rγℓ

Ωjℓ − R̃βj
) = νj − B◦

j .

(2.3.9)
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Returning to the quantization condition, the exponent in (2.2.9) is

JX(t+ 2πi[C]n; 2π) − JX(t; 2π)

= πitn[Ω̂]n+ 2πin · ξ̂ − πi
3
∑

i,j ci
∏3

ℓ=1 Ciℓjℓ
njℓ
, (2.3.10)

where

• Ω̂j1j2 := −1
2πi
∑

i1,i2 Ci1j1Ci2j2∂ti1
∂ti2

F̂0(t) and

• ξ̂j := 1
4π2

∑
i1 Ci1j(

∑
i2 δti2

− 1)∂ti1
F̂0(t) +∑

i Cij(bi + bNS
i )

by a straightforward computation, cf. [CGM, (3.28)]. Substituting in t = t(a) + πiB, the

first two terms of (2.3.10) become

πitn[Ω(a)]n+ 2πin · (ν(a) + B + 1
2 [Ω(a)]A) (2.3.11)

(for B ∈ Qg) by (2.3.7)-(2.3.9). By an intersection theory argument and the identity n3 ≡
(6)

n, the cubic third term becomes −πi
3
∑

j njD
3
j mod Z(1), which may be absorbed into B.

Therefore, writing A := 1
2A and θ for the usual Jacobi theta function,

ΘX(t(a) + πiB; 2π) = θ(ν(a) + B + [Ω(a)]A, [Ω(a)]). (2.3.12)

We have thus deduced from Conjecture 2.2.1 a striking relationship between the quantization

condition and the higher normal function. Let Dθ ⊂ J be the theta divisor and Dθ[AB] its

translate by (minus) the torsion section B + [Ω]A.

Conjecture 2.3.2. For ∆ satisfying (2.3.1) and F integrally tempered, the zero-locus of the

twisted spectral determinant ΞC((−1)Aa; 2π) is exactly the locus where the normal function
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meets this torsion shift of the theta divisor: as subsets of M, we have

ZL
(
ΞC((−1)Aa; 2π)

)
= ρ

(
ν(M) ∩ Dθ[AB]

)
. (2.3.13)

In genus g = 1, there are 15 reflexive polygons (up to unimodular transformation) which can

be presented inside R × [−1, 1]. After making the torsion shifts completely explicit in §3.1,

we prove the “⊇” direction of (2.3.13) for these cases in §3.2.

2.4 Consequences in the ’t Hooft limit.

The spectral determinant ΞC has fermionic spectral traces which generalize, from the (g = 1)

case of a single operator, the traces of ρ⊗N
1 acting on ∧N L2(R), cf. [CGM, §2.3]. Defined by

ΞC(a; ℏ) =: ∑N1,...,Ng≥0 ZC(N, ℏ)aN , (2.4.1)

these can clearly also be expressed in terms of loop integrals about 0:

ZC(N, ℏ) = 1
(2πi)g

˛
· · ·
˛

ΞC(a; ℏ) da1

aN1+1
1

∧ · · · ∧ dag

a
Ng+1
g

. (2.4.2)

Applying Conjecture 2.2.1 replaces ΞC(a; ℏ) by ∑
n∈Zg eJX(tℏ(a)+2πi[C]n;ℏ), where the 2πi[C]n

simply accounts for the change in tℏ(a) as the aj go nj times around 0 — or equivalently, as

µj := log(aj) increases by 2πinj (for each j). Accordingly, (2.4.2) becomes

1
(2πi)g

´ i∞
−i∞ · · ·

´ i∞
−i∞ eJX(tℏ(a);ℏ)−

∑g

j=1 Njµjdµ1 ∧ · · · ∧ dµg, (2.4.3)

Recall from §2.2 that the ‘t Hooft limit takes ℏ → ∞ while essentially fixing ζj = µj

ℏ and

τi = 2πti

ℏ , which we will also impose on λj := Nj

ℏ . As temperedness makes the qk = 1 hence

mk = 1, we write JX
0 (ζ) := JX

0 (ζ, 1), and note that (2.2.11) reduces to τi = 2π∑j Cijζj.
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Remark 2.4.1. In fact, even if we don’t assume temperedness, but fix the edge polynomials

hence the {qk}, the effect is the same since mk(= e− 2π
ℏ log(qk)) = 1 in the limit.

Now by (2.2.8), for ℏ ≫ 0 (2.4.3) becomes

ℏg

(2πi)g

´ i∞
−i∞ · · ·

´ i∞
−i∞ eℏ

2{JX
0 (ζ)−

∑
j

λjζj+O(ℏ−2)}dζ1 ∧ · · · ∧ dζg; (2.4.4)

and we write ζ̂(λ) for the stationary point of (the leading part of) the exponential, where

0 = ∂ζi
(JX

0 (ζ) − ∑
j λjζj), or equivalently λj = ∂ζj

JX
0 (ζ), for each j. By the saddle-point

method, we can write (2.4.4) as exp(ℏ2{JX
0 (ζ̂(λ)) − ∑

j λj ζ̂j(λ) + O(ℏ−2)}), which is to say

that

lim
ℏ→∞

(∂λj
ℏ−2 logZC(ℏλ, ℏ))|λ=0 = −ζ̂j(0). (2.4.5)

Moreover, according to [CGM, §2.3], τ̂i(λ) = 2π∑j Cij ζ̂j(λ) is nothing but the classical

mirror map in the “conifold frame”, with λ a parameter which vanishes at the maximal

conifold point ẑ.16 In other words, if â is any preimage of ẑ in M, then we have Rαi
(â) ≡

−2πiτ̂i(0) and

Rγj
(â) ≡ −4π2iζ̂j(0) mod Q(2). (2.4.6)

On the other hand, if we set Nj = 0 for j > 1, then the asymptotic expansion of

ZC(N1, 0 . . . , 0; ℏ) = tr∧N1 L2(R)((ρ
(0)
1 )⊗N1) can be computed via operator theory and asymptotic

properties of the quantum dilogarithm. This is worked out in [KM, MZ] for the three-term

operators (ρ(0)
1 )−1 = ex̂ + eŷ + e−mx̂−nŷ, corresponding to the Laurent polynomials

F ◦
m,n(x) := x1 + x2 + x−m

1 x−n
2 +∑g

j=1 ajx
m

(j)
1

1 x
m

(j)
2

2 . (2.4.7)
16We are not aware of a proof of this statement, but there is strong computational evidence; it is also

consistent with the observation, in view of (2.3.3), that the vanishing of ∂ζj
JX

0 (ζ) at ζ̂(0) is equivalent to
that of a Q(2)-translate of Rβj

(a) at a ∈ t−1(τ̂(0) − πiB). This is exactly what should happen at a g-nodal
fiber.
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(Here we recall that the {m(j)} index the interior integral points of ∆; for instance, if

m = n = g, then m(j) = (1 − j, 1 − j).) Note that by Remark 2.4.1, τ̂(λ) will actually

compute the mirror map/regulator periods in the conifold frame for the families defined by

the integrally tempered polynomials17

Fm,n(x) := x1 + x2 + x−m
1 x−n

2 +∑g
j=1 ajx

m
(j)
1

1 x
m

(j)
2

2

+∑g1−1
ℓ=1

(
g1
ℓ

)
x

1−ℓ m+1
g1

1 x
−ℓ n

g1
2 +∑g2−1

ℓ=1

(
g2
ℓ

)
x

−ℓ m
g2

1 x
1−ℓ n+1

g2
2 ,

(2.4.8)

where g1 := gcd(m+ 1, n) and g2 = gcd(m,n+ 1). Anyway, the result of [op. cit.] (see also

[Ma, §4.3]) is that

lim
ℏ→∞

(∂λ1ℏ−2 logZC(ℏλ1, 0, . . . , 0; ℏ))|λ1=0

= m+n+1
2π2 D2(−zm+1

m,n wm,n), (2.4.9)

where D2 is the Bloch-Wigner function, zm,n := e
πi

m+n+1 , and wm,n := zm
m,n−z−m

m,n

zm,n−z−1
m,n

. Since

LHS(2.4.9) must agree with LHS(2.4.5) (with j = 1), in view of (2.4.6) we arrive at

Conjecture 2.4.2. For the families Cm,n arising from (2.4.8), the regulator period Rγ1

asymptotic to −2πi log(a1) at the origin has value

1
2πiRγ1(â) ≡ m+n+1

π
D2(−zm+1

m,n wm,n) =: Dm,n mod Q(1) (2.4.10)

at the maximal conifold point.

Example 2.4.3. A toric coordinate change brings F2,2 into the form F3,1, but with a1 and a2

swapped. So Conjecture 2.4.2 actually yields predictions for both nontrivial regulator periods

at â = (5,−5), namely 1
2πiRγ1(â) ≡ D2,2 = 5

π
D2(e

2πi
5 w) and 1

2πiRγ2(â) ≡ D3,1 = 5
π
D2(e

πi
5 w)

17Of course, there is no distinction between (2.4.7) and (2.4.8) if g1 = 1 = g2.
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mod Q(1), where w := 1+
√

5
2 . This assertion was checked in [7K] by a computation we will

generalize (and make more rigorous) in §4.
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Chapter 3

From higher normal functions to

eigenfunctions

In this section we state and prove a precise version of Conjecture 2.3.2 in the genus 1 case.

3.1 Integral mirror symmetry and quantization conditions

The condition g = 1 is equivalent to reflexivity of ∆, whereupon X becomes simply the total

space of KP∆◦ . There is a unique compact toric divisor D = D1 ∼= P∆◦ ⊂ X, corresponding

to the ray through (1, 0, 0), which amounts to the zero-section of ρ : X ↠ D. Denoting by

E◦ ⊂ D a general anticanonical (elliptic) curve, we remark that D2 = −E◦ in H∗
c (X).

Let φ be the unique integrally tempered Laurent polynomial with Newton polygon ∆

and coefficients 1 at the vertices, and (writing a = a1) take F = a+ φ. After compactifying

fibers in P∆ and birationally modifying the total space, this produces a relatively minimal

elliptic fibration E → P1
a with rational total space, fibers Ea, and discriminant locus Σ∪{∞}.

Writing r := |∂∆∩Z2| and r◦ := |∂∆◦∩Z2|, E∞ has type Ir◦ , and Σ is cut out by a polynomial

PΣ of degree 12 − r◦ = r.1

A section of the relative dualizing sheaf for our family is given by

ω(a) := 1
2πiResEa(dx1/x1∧dx2/x2

1+a−1φ(x) ), (3.1.1)

1For a generic choice of φ, the remaining singular fibers of E are I1’s. Since E is rational (as a blowup of
P∆), the degree of the relative dualizing sheaf must be 1; and as each Ik contributes k

12 to this degree, there
must be 12 − r◦ I1’s. Each of these contributes 1 to deg(PΣ), and this degree is invariant as we specialize φ.
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with period2

ωγ(a) :=
´

γ
ω(a) = 1 +∑

k>0(−1)k[φk]0a−k (3.1.2)

in a neighborhood of the large complex structure point ∞. More precisely, this series

converges on D∗ := {a | |a| > |â|} ⊂ U := P1 \ (Σ ∪ {∞}), where the conifold point â

can be described by −â := min(φ(R+ ×R+)) since the coefficients of φ are all positive [Ga].

By assumption, all the tame symbols of {−x1,−x2} are trivial, and so the Rαi
(i =

1, . . . , r−2) must be integer multiples of Rγ ∼ −2πi log(a). More precisely, we have −1
2πiRαi

=

ti = Ci1t = −(Ci · D)t = dit, where di ∈ [0, 4] ∩ Z is the lattice-length of the edge of ∂∆

corresponding to Ci. From Appendix A, we have on the cut disk D− := D∗ \ (D∗ ∩ R−)

t = t(a) := −1
2πiRγ(a) = log(a) +∑

k>0
(−1)k−1

k
[φk]0a−k, (3.1.3)

which gives ω = −1
2πi∇δaR hence (in the notation of §2.3) ω1 = ω/ωγ globally on U . We

also see that e−t ∼ a−1 makes sense as a coordinate on D = D∗ ∪ {∞}. The local mirror

symmetry results in [BKV] can be made very explicit:3

Lemma 3.1.1. On D− we have the following identifications:

(a) Rβ(a) = r◦

2 t(a)2 + πir◦t(a) + (2πi)2(1
2 + r◦

12) −∑
k>0 kNke

−kt(a),

(b) Ω(a) (= ωβ(a)
ωγ(a)) = ir◦

2π
t(a) − r◦

2 − 1
2πi
∑

k>0 k
2Nke

−kt(a), and

(c) ν(a) = r◦

8π2 t(a)2 + (1
2 + r◦

12) + 1
4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a),

where Nk is the local GW-invariant for D counting rational curves whose classes C ∈ H2(D)

satisfy (C · E◦)D = k.

Proof. X is described in [BKV, §6] as the large-fiber-volume limit of an elliptically-fibered

compact CY 3-foldW → P∆◦ with sectionD. Let C1, . . . , Cr be the components of P∆◦\(C∗)2

2[·]0 takes the constant term; γ is γ1 from §2.3.
3Here as above β = β1, Ω = Ω11, ν = ν1.
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(and their images in X), D′
i := ρ−1(Ci), and C0 := ρ−1(pt). Then {C0, C1, . . . , Cr−2} span

H4(W,Q), {D,D′
1, . . . , D

′
r−2} span H2(W,Q), and we can write −D2 = E◦ = ∑r

i=1 Ci =∑r−2
i=1 eiCi for unique ei ∈ Q, whereupon D3 = ∑r−2

i=1 diei = r◦. Let J0, . . . , Jr−2 denote a

basis of H2(W,Q) dual to C0, . . . , Cr−2, and define J1, . . . ,Jr−2 by Ji := Ji − ei

r◦J0. Then

the ci in (2.2.3) are given by ci1i2i3 = −Ji1Ji2Ji3 .4

The integral periods of the A-model VHS given by [BKV, (6.13-15)] lead (in the LMHS

as t0 → 0) to the following periods for our A-model VMHS. First, the limit of the Gamma

class for W yields Γ̂(X) := 1 − 1
2D

2 + (11r◦+r
24 )C0 = 1 +∑r−2

i=1 eiCi + (1
2 + 5

12r
◦)C0 ∈ H∗(X,Q).

Next, for integral periods we need to compose ch(·) ∪ Γ̂(X) : Kc,num
0 (X) → H∗

c (X,Q) with

the following assignment of periods to cohomology classes: pt 7→ 1; Ci 7→ 1
2πiti = −1

(2πi)2Rαi
;

and D 7→ 1
(2πi)2

∑r−2
i=1 di∂ti

F0(t). Applying this to OD, we have ch(OD) = D − 1
2D

2 + 1
6D

3,

whence ch(OD)∪ Γ̂(X) = D+ 1
2
∑

i eiCi +(1
2 + r◦

12), and finally (after multiplying the resulting

integral period by (2πi)2)

Rβ = ∑
i di∂ti

F0(t) + πi∑i eiti + (2πi)2(1
2 + r◦

12). (3.1.4)

We also recall from (2.3.7) that the period ratio is given by Ω = −1
2πi
∑

i di∂ti
Rβ, and the

normal function by ν = 1
4π2 (RγΩ −Rβ).

The last step is to substitute ti = dit, which gives

F0(t) = −1
6(∑i Jiti)3 +∑

C N0,Ce
−(C·E◦)Dt = r◦

6 t
3 +∑

k>0 Nke
−kt (3.1.5)

since ∑i Jidi = ∑
i diJi −∑

i
eidi

r◦ J0 = (J0 −D) − J0 = −D [BKV, (6.5)]. Using di∂ti
= ∂t in

(3.1.4)ff now gives (a)-(c).

4The results of [loc. cit.] are stated in terms of derivatives of the prepotential Φ(t0, t) of W in the limit as
t0 → ∞. One can obtain the free energy F0(t) for X by substituting t0 = −

∑r−2
i=1

ei

r◦ ti into Φcl and taking
t0 → ∞ in Φinst; we then have 1

(2πi)3 ∂DΦ = 1
(2πi)2 (−∂0 +

∑
i di∂i)Φ = 1

(2πi)2

∑
i di∂iF0, hence the version of

the A-model periods given here.
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Remark 3.1.2. We point out two immediate consequences of Lemma 3.1.1. First, along with

(3.1.3), (c) makes it clear that ν(a) as well as

V (a) := ωγ(a)ν(a) = 1
4π2 (Rγωβ −Rβωγ) (3.1.6)

are real-valued on D∗ ∩ R+. Second, notice that 1
(2πi)2∂

2
tRβ = ∂2

Rγ
Rβ = ∂Rγ

δaRβ

δaRγ
= ∂Rγ

ωβ

ωγ
=

Y(a)
ω3

γ
, where the Yukawa coupling Y(a) = ωγδaωβ −ωβδaωγ blows up at â. Differentiating (a)

twice expresses this as a power series in e−t, from which one deduces that

lim supk→∞
k

√
|Nk| = exp(ℜ(t(â))). (3.1.7)

as in [DK, §5.4] (though this result in now unconditional).

We may now identify all of the torsion constants in §§2.2-2.3:5

Lemma 3.1.3. In Q/Z the following equalities hold:

(i) b := ∑
i dibi = r◦

12 − 1
2 and bNS := ∑

i dib
NS
i = r◦

24 − 1
2 .

(ii) T = 1
2 + r◦

12 and B◦ = 1
2 − r◦

24 .

(iii) A = 1
2 = B, where B is as in (2.3.12)-(2.3.13).6

Proof. (i) These are the coefficients of t in F1 and FNS
1 (after substituting ti = dit), which

can be derived from [GKMR, (4.18) and (4.21)].7 Namely, we have bi = 1
24c2(X) ·Ji [GKMR,

(4.18)] and c2(X) = (11r◦ + r)C0 + 12∑i eiCi = (10r◦ + 12)C0 − 12D2 [BKV, §6.2] hence

b = 1
24c2(X) · ∑i diJi = − 1

24c2(X) · D = −10r◦+12
24 + 12r◦

24 = r◦

12 − 1
2 . According to [GKMR,

(4.21)], we have FNS
1 ∼ − 1

24 log(PΣ(a)) ∼ −deg(PΣ)
24 log(a) ∼ − r

24t ∼ ( r◦

24 − 1
2)t. (So of course,

(i) holds in Q, but we’ll only need it mod Z.)
5Again, for simplicity writing T = T1, B◦ = B◦

1, B = B1, and A = A1.
6and not as in (2.3.11), where B does not yet incorporate the correction from the cubic term.
7We should point out here that our “r” is not the “r” in [GKMR], where it means gcd{di}. (Moreover,

their “t” is rGKMR times our t.)
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(ii) The value of T is immediate from Lemma 3.1.1(a). To compute B◦ = ν(a) − ξ(a), we

need to revisit ξ from (2.3.9). The B-field is given by Bi = di (cf. §2.3 above or [GKMR,

§3.2]), and A = A1 = 1, which means that replacing t by t+ πiB is equivalent to replacing t

by t+ πi. Together with ∑i δti
= t

∑
i di∂ti

= t∂t = δt and (3.1.5), this gives

ξ(a) = 1
4π2 (δt − 1)∂tF̂0(t(a) + πi)

= r◦

8π2 t(a)2 + r◦

8 + 1
4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a)
(3.1.8)

and, together with Lemma 3.1.1(c), the claimed value of B◦.

(iii) We already have A = 1
2A = 1

2 . For B, we compute

ξ̂(t(a) + πi) = 1
4π2 ((t+ πi)∂t − 1) ∂tF̂0(t(a) + πi) + (b+ bNS)

= ξ(a) + πi
4π2∂

2
t F̂0(t(a) + πi) + (b+ bNS)

= ν(a) + 1
2Ω(a) + (b+ bNS − B◦)

(3.1.9)

and note that the cubic term in (2.3.10) becomes −πi
3 D

3n3 = − r◦

3 πin3 ≡ − r◦

6 2πin mod Z(1).

Together with (i)-(ii), this results in the apparently miraculous cancellation

B = b+ bNS − B◦ − r◦

6 = −3
2 ≡ 1

2 (3.1.10)

modulo Z.

Finally, we turn to the quantization conditions, i.e. to the spectrum (as an operator on

L2(R)) of8

φ̂ = ∑
m∈∂∆∩Z2(−1)m1m2amx̂

m1
1 x̂m2

2

= ∑
m∈∂∆∩Z2(−1)m1+m2+1amx̂

m1
1 x̂m2

2 = −φ(−x̂1,−x̂2)
(3.1.11)

8Remark that φ = F1 and ρ = ρ1 in the notation of §2.1. We have m1m2 ≡
(2)

m1 + m2 + 1 because (2.3.1)
always holds for reflexive polygons.
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or ρ := φ̂−1. Writing σ(·) for spectrum and Λ(a) := Z⟨ωγ(a), ωβ(a)⟩ for the period lattice,

we have the

Proposition 3.1.4. In the genus-1 case, Conjecture 2.3.2 is equivalent to

σ(φ̂) = {a ∈ U | V (a) ∈ Λ(a)}. (3.1.12)

Proof. Noting that M = U , in the LHS of (2.3.13) we are taking the zero-locus of Ξ(−a; 2π) =

det(1−aρ), which is precisely the spectrum of φ̂. The RHS of (2.3.13) is the locus in U where

ν(a) meets the theta divisor (which is 1+Ω(a)
2 mod Z⟨1,Ω(a)⟩) shifted by AΩ(a) + B = 1+Ω(a)

2 ,

which is to say where ν(a) is zero mod Z⟨1,Ω(a)⟩. Outside of D−, this condition is only

well-defined in the sense of analytic continuation; to fix this, we multiply by ωγ to get the

form displayed in RHS(3.1.12).

Remark 3.1.5. (i) The condition V (a) ∈ Λ(a), which is well-defined on U , reduces to ν(a) ∈

Z⟨1,Ω(a)⟩ for a ∈ D−. Moreover, the argument in [LST, §3.1] using the coherent state

representation obviously shows more generally (for any φ considered here) that σ(φ̂) belongs

to R+, and is countable with eigenvalues λj limiting to ∞ (so that ρ is bounded). In fact,

we expect that σ(φ̂) ⊂ (|â|,∞), as is clear for φ = x1 + x−1
1 + x2 + x−1

2 or x1 + x−1
1 + x2 +

x−1
2 + x1x

−1
2 + x−1

1 x2 and experimentally observed in other cases. This would mean that the

quantization condition “V ∈ Λ” reduces not just to ν ∈ Z⟨1,Ω⟩, but to

ν(a) ∈ Z, (3.1.13)

as ν is real by Remark 3.1.2. We’ll have more to say about this in §3.2.

(ii) The most crucial “torsion” invariant in Lemma 3.1.3, leading to the cancellation in

(3.1.10) and the simple form of (3.1.12), is surely the constant term T of the regulator period

Rβ. As an independent check, one can directly compute this constant term without using
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mirror symmetry and the Gamma class; see Appendix A for examples. Another check on

our quantization condition is that it should coincide with that in [GKMR, §3.3.2] when all

Qmk
= 1 ( =⇒ D0(m) = 0 and B(m, 2π) = b + bNS = r◦

8 − 1). Since vol0(E) in [GKMR,

(3.24)] is just Rβ, we may also identify “C” there as r◦

2 . Taking E = log(a) and Eeff = t(a),

[GKMR, (3.105)] collapses to ξ(a) − r◦

24 ∈ Z + 1
2 , hence to ν(a) ∈ Z.

(iii) There is an interesting sign discrepancy in (3.1.12): quantizability of φ̂− a is being

linked to a regulator class on the curve Ea ⊂ P∆ compactifying solutions to φ(x) + a = 0.

Blame it on the B-field! Or better yet, proceed to the next section for a more basic reason

why it has to be this way.

3.2 Construction of eigenfunctions for difference operators

In this section we assume that ∆ is a reflexive polygon satisfying

∆ ⊂ R × [−1, 1], (3.2.1)

and φ is as in §3.1, so that

φ(x) = xmu
1 (x1 + 1)dux2 + φ0(x1) + xmℓ

1 (x1 + 1)dℓx−1
2 . (3.2.2)

Remark 3.2.1. Regarding unimodular change of coordinates (x1, x2 7→ xa
1x

b
2, x

c
1x

d
2 with ad −

bc = 1) as an equivalence relation on reflexive polygons, there are 16 equivalence classes.

All but one9 of these has representatives satisfying (3.2.1).

For each a ∈ U , Ea ⊂ P∆ denotes as before the Zariski closure of E∗
a := {x ∈ (C∗)2 |

φ(x)+a = 0}. Forgetting x2 produces a 2 : 1 map π : Ea → P1 with corresponding involution
9represented by ∆ = convex hull of {(−1, −1), (2, −1), (−1, 2)}, with P∆ = P2
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ι : Ea → Ea and discriminant

(φ0(x1) + a)2 − 4xmu+mℓ
1 (x1 + 1)du+dℓ =: D(x1). (3.2.3)

The latter is a Laurent polynomial (in x1) with “Newton polytope” an interval [−c−, c+]

containing [−1, 1] (and contained in [−2, 2]), whose length is the number of ramification

points of π−1(C∗) =: E×
a

π×
→ C∗; denote the set of these by B ⊂ E×

a , and let p0 ∈ B be one

of them. The holomorphic function

δ(p) := x1(p)mu(x1(p) + 1)du(x2(p) − x2(ι(p))), (3.2.4)

on E×
a satisfies δ2 = (π×)∗D , thereby providing a well-defined lift of

√
D to E×

a .

Writing Ẽ×
a for the fiber product of π× and (− exp) : C → C∗ yields a diagram

Ea

π
����

E×
a

? _oo

π×
����

Ẽ×
a

Poooo

Π
����

z̃_

��

∋

P1 C∗? _oo C− exp
oooo z∋

(3.2.5)

with vertical maps of degree 2, and points in Ẽ×
a [resp. C] denoted by z̃ [resp. z = Π(z̃)].

We also write P(z̃) =: (x1(z̃), x2(z̃)), where x1(z̃) = x1(z) = −ez, and z̃0 ∈ Ẽ×
a for the point

with P(z̃0) = p0 and ℑ(z0) ∈ (−π, π]. For later reference put Ẽ∗
a := P−1(E∗

a), which is either

all of Ẽ×
a or the complement of Π−1(Z(1)).10

Now suppose V (a) ∈ Λ(a). If a ∈ D−, then γ, β, ωγ, ωβ,Ω, Rγ, Rβ, and ν are well-

defined; if not, we take them to be analytic continuations (along the same path) to a of those

objects from D−. (We will not write ω(a) etc., just ω, since a is fixed and understood.) Then
10There are 4 equivalence classes of ploygons for which Ẽ∗

a = Ẽ×
a , corresponding to X = P2, P1 × P1, F1,

and F2. Otherwise, for z̃ ∈ Ẽ×
a \ Ẽ∗

a , in view of (3.2.2) we have −1 = x1(z̃) = x1(z) = −ez =⇒ z ∈ Z(1).
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we have

ν = 1
4π2 (RγΩ −Rβ) = n1 + n2Ω (3.2.6)

for some n1, n2 ∈ Z. Notice that the regulator class R is only well-defined in H1(Ea,C/Z(2)),

so its value on γ is still represented by Rγ := Rγ − 4π2n2. This replaces (3.2.6) by

Rβ − Rγ
ωβ

ωγ
= −4π2n1 ∈ Z(2), (3.2.7)

and we claim this allows us to define a holomorphic function on Ẽ∗
a by

χ(z̃) := exp
(

i
2π

{´
P z̃

z̃0
z dx2(z̃)

x2(z̃) − Rγ

ωγ

´
P z̃

z̃0
P∗ω

})
, (3.2.8)

where ω is as in (3.1.1), and P z̃
z̃0 is any path from z̃0 to z̃.

The issue here is well-definedness, since nothing in the braces blows up on Ẽ∗
a. To check

this, we remind the reader that for a loop L on E∗
a based at p0, the value of R on its

homology class is computed by11

RL ≡
Z(2)

´
L

log(−x1)dlog(−x2) − log(−x2(p0))
´

L
dlog(−x1), (3.2.9)

where log(−x1) is analytically continued along L [Ke1]. If L lifts to a loop L̃ on Ẽ∗
a, then

clearly
´

L
dlog(x1) = 0, and (3.2.9) pulls back to

´
L̃
z dx2(z̃)

x2(z̃) . Now given two paths P,P ′

from z̃0 to z̃ on Ẽ∗
a, take L̃ to be the loop obtained by composing P with the “reverse” of

P ′, and write L = k1γ + k2β in H1(Ea,Z). (By integral temperedness of {−x1,−x2}, this

determines RL mod Z(2).) The difference between the braced expression in (3.2.8) for these
11Of course, dlog(−x) = dlog(x) = dx

x . Note that (3.2.9), which is due to Beilinson [Be] and Deligne
[unpublished], is different from the regulator formula using the current R{−x1, −x2} (in which the function
“log” is not analytically continued but has a branch cut), but is easily shown to give the same integral
regulator.
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two paths is then

´
L̃
z dx2(z̃)

x2(z̃) − Rγ

ωγ

´
L̃

P∗ω =
´

L
log(−x1)dlog(x2) − Rγ

ωγ

´
L
ω

≡
Z(2)

k1Rγ + k2Rβ − Rγ

ωγ
(k1ωγ + k2ωβ)

= k1(Rγ − Rγ) + k2(Rβ − RγΩ)

= 4π2(k1n2 − k2n1) ≡
Z(2)

0,

(3.2.10)

using (3.2.7). After multiplying by i
2π

, this discrepancy is killed by the exp and the claim is

verified.

In fact, χ(z̃) extends to a meromorphic function on Ẽ×
a which is holomorphic at Π−1(0).

Of course, ω has no poles on Ea, and so P∗ω has none on Ẽ×
a ; the potential culprit is dx2

x2
,

when du, dℓ are not both zero. Writing z = 2πin+ w +O(w2), x2 = wd (for d = −du or dℓ),

we find
´
z dx2

x2
∼ 2πidn log(w) hence exp( i

2π

´
z dx2

x2
) ∼ w−nd, as desired.

Finally, writing ι̃ : Ẽ×
a → Ẽ×

a for the involution over C, we put

Ψ̃(z̃) := χ(z̃) − χ(ι̃(z̃))
δ(P(z̃)) . (3.2.11)

The denominator has zeroes at P−1(B), which does not intersect any of the poles of the

numerator.12 Moreover, these are simple zeroes, and the numerator also has zeroes at these

points (which are just the fixed points of ι̃). So Ψ̃ is holomorphic on Ẽ×
a . Notice also

that applying ι̃ to z̃ changes the sign in the numerator and denominator of (3.2.11) (since

P ◦ ι̃ = ι ◦ P). Conclude that there exists a meromorphic function Ψ on C, with (at worst)

poles on 2πi(Z \ {0}), such that Ψ̃ = Π∗Ψ; we write this loosely as

Ψ(z) := χ(z̃) − χ(ι̃(z̃))
δ(P(z̃)) , (3.2.12)

12The only way ι has a fixed point at x1 = −1 is if du = dℓ = 0.
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and denote its restriction to the real line by ψ(r). We are now ready to prove the

Theorem 3.2.2. For ∆ satisfying (3.2.1), the “⊇” direction of (3.1.12) holds. That is, if

V (a) ∈ Λ(a), then a ∈ σ(φ̂).

Proof. First note that x̂1 = multiplication by er (not −er), x̂2 = e−2πi∂r , and φ̂ = −φ(−x̂1,−x̂2)

are unbounded operators on L2(R), whose domains are roughly the proper linear subspaces

on which each operator preserves square integrability. (See [LST] for details.) In particular,

it is possible in this sense to be in the domain of φ̂ while failing to be in that of x̂±1
1 and

x̂±1
2 , which is just what happens for ψ(r). Indeed, assuming V (a) ∈ Λ(a), we claim that

ψ ∈ L2(R) \ {0} and

φ̂ψ = aψ, (3.2.13)

which will obviously prove the theorem.

As Ψ is holomorphic on {z ∈ C | −2πi < ℑ(z) < 2πi}, with meromorphic extension to a

neighborhood of its closure, we have

e±2πi∂rψ(r) = e±2πi∂zΨ(r) = Ψ(r ± 2πi)

=: Ψ(τ±(r)) =: (S±Ψ)(r) =: (S±ψ)(r).
(3.2.14)

Furthermore, τ± has a unique lift τ̃± : Ẽ×
a → Ẽ×

a with the property that P ◦ τ̃± = P ; and so

the difference operator S± lifts to (S̃±χ)(z̃) := χ(τ̃±(z̃)). By the independence of path in

(3.2.8), we can take our path from z̃0 to τ̃±(z̃) to be the composition of τ̃±(P z̃
z̃0) with a fixed

path P±
0 from z̃0 to τ̃±(z̃0). That is, writing P(P±

0 ) =: L ±
0 , we have

χ(τ̃±(z̃)) = exp
(

i
2π

{´
τ̃±(P z̃

z̃0
)+P±

0
z dx2(z̃)

x2(z̃) − Rγ

ωγ

´
τ̃±(P z̃

z̃0
)+P±

0
P∗ω

})
= exp

(
i

2π

{´
P z̃

z̃0
(z ± 2πi)dx2(z̃)

x2(z̃) − Rγ

ωγ

´
P z̃

z̃0
P∗ω

})
× exp

(
i

2π

{´
L ±

0
log(−x1)dx2

x2
− Rγ

ωγ

´
L ±

0
ω
})
.

(3.2.15)
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Adding and subtracting − log(−x2(z̃0))
´

L ±
0

dx1
x1

(= ∓2πi log(−x2(z̃0)) ) in the last braced

expression, (3.2.15) becomes

χ(z̃)e∓{log(−x2(z̃))−log(−x2(z̃0))} × e
i

2π
{R

L ±
0

−Rγ
ωγ

ω
L ±

0
}
e∓ log(−x2(z̃0)). (3.2.16)

By the same calculation as in (3.2.10), we have RL ±
0

− Rγ

ωγ
ωL ±

0
∈ Z(2), and so after cancelling

log(−x2(p0))’s, we arrive at

(S̃±χ)(z̃) = −x2(z̃)±1 · χ(z̃). (3.2.17)

Since −x̂1 = −µer = µ−er = µx1(r), φ̂ acts on ψ as −φ(µx1(r),−S−), which lifts to

−φ(µx1(r),−S̃−) for functions on Ẽ×
a . Applying this to χ(z̃) gives −φ(x1(z), x2(z̃)) · χ(z̃) =

aχ(z̃), and applying it to χ(ι̃(z̃)) yields −φ(x1(z), x2(ι̃(z̃))) · χ(ι̃(z̃)) = aχ(ι̃(z̃)). (Here we

are just using the equation of the curve, φ(x1(z), x2(z̃)) + a = 0; and we can ignore δ(P(z̃))

in the denominator of Ψ̃ since S̃± doesn’t affect it.) So the overall effect on Ψ̃, hence ψ, is

multiplication by a. This proves (3.2.13).

We still need to check is that ψ is indeed square-integrable. Clearly
´

P∗ω has a finite

limit as r → ±∞, so we consider the behavior of

´
r dz2(r̃)

z2(r̃) =
´

log(−x1(r))dlog(−x2(r̃)). (3.2.18)

Let q ∈ Ea \ E×
a , and set oj := ordq(xj); then (−1)o1o2 limp→q

x1(p)o2

x2(p)o1 = 1 by integral

temperedness. Hence there is a local holomorphic coordinate on Ea vanishing at q, with

−x1 = wo1 and −x2 = ±wo2(1 + O(w)), and (3.2.18) = o1o2
2 log2 w + O(w logw) is just

o2
2o1
r2 (with o1 ̸= 0) plus terms limiting to zero. Since this is multiplied by i

2π
before taking

exp, we conclude that χ(z̃) is bounded on Π−1(R). On the other hand, in the denominator

δ(P(r̃)) =
√

D(er) of ψ, D(er) = ∑c+
j=−c− aje

jr (a−c− , ac+ ̸= 0) is dominated by the ec+r term
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as r → +∞ and the e−c−r term as r → −∞. That is, |ψ(r)| ≤ Ce−|r/2| for some constant

C, hence ψ belongs to L2(R).

Finally, we must show that ψ is not identically zero. If it were, then by basic complex

analysis Ψ would be zero; so it suffices to check that (say) Ψ(z0 + 2πin) ̸= 0 for some n ∈ Z.

We may choose a local holomorphic coordinate u on Ẽ×
a about z̃0, such that (locally) ι̃ sends

u 7→ −u and z = z0 + u2. Clearly x2(z̃) = x2(p0)(1 + c1u+O(u2)) and P∗ω = (c2 +O(u))du

for constants c1, c2 ∈ C∗. The expression in braces in (3.2.8) (integrating on a path from

z̃0 to z̃(u)) takes the form (c1z0 − Rγ

ωγ
c2)u+ O(u2), and we can ensure the coefficient of u is

nonzero by replacing z0 by z0 + 2πin if necessary (since this affects nothing else). So the

numerator of (3.2.11) becomes ec0u+O(u2) − e−c0u+O(u2) ∼ 2c0u, and since the denominator

also has a simple zero at u = 0 we are done.

Remark 3.2.3. Returning to the “sign flip” between curve and operator highlighted in Remark

3.1.5(iii), we remind the reader that it is {−x1,−x2}, not {x1, x2}, which is integrally

tempered for the simplest choices of Laurent polynomial φ.13 So it is the regulator integral

for this symbol which produces a well-defined Ψ̃(z̃). But the signs in the symbol force the shift

operator x̂2 to act on χ(z̃) through multiplication by −x2(z̃) rather than x2(z̃), which in turn

forced us to use (− exp) (not exp) in (3.2.5) so that x̂1 acts through multiplication by −x1(z),

resulting in the action of φ̂ = −φ(−x̂1,−x̂2) through multiplication by −φ(x1(z), x2(z̃)). The

upshot is that the signs in the symbol14 are ultimately responsible for the presence of the

B-field.

Without stating any results formally, we want to briefly address the higher genus hyperelliptic

case, where F1 = φ still takes the form in (3.2.1)-(3.2.2) but ∆ is no longer reflexive. (Note

that φ0 will have a2, . . . , ag as coefficients.) One easily checks that the construction of ψ

and the proof of Theorem 3.2.2 still go through after modifying χ(z̃), provided we impose
13e.g. x1 + x2 + x−1

1 x−1
2 , and including the examples studied in [GKMR] with trivial mass invariants

Qmk
= 1.

14along with those in (3.1.11) arising from Weyl quantization and the CBH formula.
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a stronger quantization condition than that in RHS(2.3.13). Namely, referring to (2.3.8),

suppose that

the normal function vector ν(a) belongs to (Ig | Ω)Zg. (3.2.19)

Then replacing the expression in braces in (3.2.8) by

´
P z̃

z̃0
z dx2(z̃)

x2(z̃) −∑g
j=1 Rγj

´
P z̃

z̃0
P∗ωj (3.2.20)

for appropriate determinations of Rγj
, the obvious generalization of (3.2.10) goes through,

ensuring that the generalized χ(z̃) is well-defined. Under an additional assumption like

(2.3.1), and changing the signs in φ̂ of those aj’s attached to even powers of x̂1, one finds as

before that φ̂ψ = a1ψ.

The criterion (3.2.19), which we expect corresponds to the exact NS quantization conditions

of [SWH], will only hold at countably many points in moduli. On the other hand, Conjecture

2.3.2 predicts the existence of eigenfunctions for a in a codimension-1 subset of moduli. So it

stands to reason that there should be something special about the eigenfunctions ψ, which we

can only construct for a in the smaller locus. In the genus-2 example worked out explicitly in

[Za, §4.3], whose “fully on-shell” quantization conditions (cf. [loc. cit., (4.45)]) should agree

with (3.2.19), Zakany highlights the enhanced decay of his explicit eigenfunctions. Indeed,

in our construction, for g > 1 the discriminant D will involve higher powers of both x1 and

x−1
1 than for g = 1, which leads to decay better than e−|r/2| at infinity for ψ(r); this perhaps

begins to explain the discrepancy.

3.3 Remarks on the spectrum of φ̂

Notably absent from the last section is any discussion of the “converse question”, as to

whether every eigenfunction of φ̂ arises from the construction described there. We will prove
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a fairly strong result in this direction, to the effect that “almost every” eigenvalue λ satisfies

V (λ) ∈ Λ(λ). As already mentioned in Remark 3.1.5,15 the spectrum σ(φ̂) is a countable

subset of [c,∞) for some c > 0, whose elements can be arranged in an increasing sequence

{λj}j≥1 with λj → 0. We may replace φ̂ by its self-adjoint Friedrichs extension to L2(R)

without affecting these statements, cf. [LST].

Suppose P is a proposition (that can be true or false) about elements of σ(φ̂). Write

N(λ) := |{j ∈ N | λj ≤ λ}| and

NP(λ) := |{j ∈ N | λj ≤ λ and P(λj) holds}|.

We will say that P holds asymptotically if

lim
λ→∞

NP(λ)
N(λ) = 1. (3.3.1)

Theorem 3.3.1. In the setting of Theorem 3.2.2, the “⊆” direction of (3.1.12) holds asymptotically.

Proof. The statement P(λj) about eigenvalues here is, of course, that ν(λj) ∈ Z.16 From

Lemma 3.1.1(c), we know that ν(a) = r◦

8π2 log2 a+O(log a), whence

N(λ) ≥ NP(λ) ≥ ⌊ν(λ) − ν(|â|)⌋ ≥ r◦

8π2 log2 λ+O(log λ). (3.3.2)

Now given f, g ∈ L2(R), write ⟨f, g⟩ :=
´
R f(r)g(r)dr, and

f̃(y1, y2) := 2−5/4π−3/2 ´
R e

− 1
4π

{(r−y1)2+2iy2r}f(r) dr (3.3.3)

for the coherent state transform of f . Adapting the calculations of [LST, §3.1] to our setting
15The point is that the proof of [LST, Prop. 3.4] trivially generalizes to all φ we consider here, because ∆

always contains a reflexive triangle (or square). The proof of Theorem 3.3.1 involves, in contrast, a rather
nontrivial generalization of [op. cit., §3.2].

16We can always throw out a finite set of eigenvalues less than |â|, if they exist (cf. Remark 3.1.5).
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gives

⟨φ̂f, f⟩ =
˜

R2 Φ(y1, y2) |f̃(y1, y2)|2dy1 dy2 (3.3.4)

where

Φ(y1, y2) := ∑
m∈∂∆∩Z2 ame

− π
2 (m2

1+m2
2)︸ ︷︷ ︸

=:ãm

em1y1+m2y2 . (3.3.5)

This implies, for instance, the semi-boundedness of φ̂, as Φ ≥ c := miny∈R2 Φ(y) > 0 =⇒

φ̂ ≥ c · Id =⇒ σ(φ̂) ⊂ [c,∞).

Let (·)+ be the function on R defined by (s)+ = s for s ≥ 0 and (s)+ = 0 for s ≤ 0, and

note that
´ λ

0 N(s) ds = ∑
j≥1(λ− λj)+. (3.3.6)

Reasoning with Jensen’s inequality as in [op. cit., §2.2], we have

∑
j≥1(λ− λj)+ ≤ 1

4π2

˜
R2(λ− Φ(y1, y2))+ dy1 dy2. (3.3.7)

Choose M > 0 so that Mãm ≥ am (∀m ∈ ∂∆ ∩ Z2). Writing Yj := eyj and ΓL := {Y ∈ R2
+ |

L ≥ φ(Y1, Y2)}, note that the boundary ∂ΓL is the cycle β on E−L. Together with Lemma

3.1.1(a) and (2.2.6), this gives

RHS(3.3.7) ≤ 1
4π2M

˜
R2(Mλ− φ(Y1, Y2))+

dY1
Y1

dY2
Y2

≤ λ
4π2

˜
ΓMλ

dY1
Y1

dY2
Y2

= λ
4π2Rβ(−Mλ)

= r◦

8π2λ log2 λ+O(log λ).

(3.3.8)

Putting the last three equations together, we get

r◦

8π2 log2 λ+O(log λ) ≥ N(λ), (3.3.9)
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which combined with (3.3.2) gives the result.

The constraints imposed on the zero locus of ρ ◦ ν by its interpretation as eigenvalues

of φ̂ (Theorem 3.2.2), and vice versa (Theorem 3.3.1), seem worth exploring further. For

instance, per Remark 3.1.5, we expect (and know in some cases) that c > |â|; together with

the following Lemma, this essentially rules out points a ∈ U at which V (a) ∈ Λ(a) (the

exact quantization condition) and R(a) is torsion (the perturbative quantization condition

proposed in [GS]).

Lemma 3.3.2. For a ∈ (|â|,∞), R(a) ∈ H1(Ea,C/Z(2)) is a nontorsion class.

Proof. From the known integrality of local instanton numbers of toric CY 3-folds [Ko],

it follows that LHS(3.1.7) ≥ 1, hence that ℜ(t(â)) ≥ 0. From (3.1.3) (and positivity of

coefficients of φ, and negativity of â), it is immediate that t(|â|) > ℜ(t(â)), hence t(a) ∈ R+

for a ∈ (|â|,∞). But if R(a) is torsion, then Rγ(a) ∈ Q(2) =⇒ t(a) ∈ Q(1) ⊂ iR.

More striking is a conditional transcendence result on the eigenvalues that arises from

their asymptotic Hodge-theoretic interpretation in Theorem 3.3.1. A mixed version of

the Grothendieck period conjecture (which we will simply call the GPC) says that the

transcendence degree of a period point arising from a motive defined over Q̄ is equal to

the dimension of the minimal mixed Mumford-Tate domain containing it. The (mixed)

motive in question is the K2-cycle {−x1,−x2} on Ea, with MHS the extension of Z(0) by

H1(Ea,Z(2)) given by 1
(2πi)2 R. The possibillities for the M-T group are an extension of SL2

or a 1-torus (depending on whether Ea is CM) by G×2
a or {1} (depending on whether R is

torsion); the corresponding domain is H, a CM point in it, or the product of either one with

C2. The coordinates of the period point are Ω(a) (in H) and ( Rγ(a)
(2πi)2 ,

Rβ(a)
(2πi)2 ) (in C2).17

17We have to divide by (2πi)2, of course, because a torsion class must have coordinates in Q, not
transcendental ones in Q(2).
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Conjecture 3.3.3 (GPC). If a ∈ Q̄ and R(a) is nontorsion, then the transcendence degree

of Q̄(Ω(a), Rγ(a)
(2πi)2 ,

Rβ(a)
(2πi)2 )/Q̄(Ω(a)) is 2.

Proposition 3.3.4. Assuming the GPC, asymptotically σ(φ̂) consists of transcendental

numbers.

Proof. Let λ ∈ σ(φ̂) be an eigenvalue for which ν(λ) ∈ Z. (We may assume λ ∈ (|â|,∞).)

That is, we have an algebraic relation 1
4π2 (Rγ(λ)Ω(λi) −Rβ(λ)) = n on Rγ(λ)

(2πi)2 and Rβ(λ)
(2πi)2 over

Q̄(Ω(λ)). By the GPC, either λ /∈ Q̄ or R(λ) is torsion. But the latter possibility is ruled

out by Lemma 3.3.2, and so we are done by Theorem 3.3.1.

We conclude with somthing of a curiosity: in case φ = x1 + x−1
1 + x2 + x−1

2 + x1x
−1
2 +

x−1
1 x2, our normal function is closely related to the Feynman integral I associated to the

sunset graph with equal masses [BKV]. This is written in [op. cit.] as a function of

s = 1
3−a

= the inverse norm of the external momentum, but written as a function of a we

have I(a) = (2πi)2

a
V (a) (see [op. cit., (7.17)]). The condition that V (a) ∈ Λ(a) means that

V , or equivalently I, belongs to its own lattice of ambiguities under monodromy. As we have

seen, the values of a at which this happens correspond to eigenvalues of φ̂. One wonders if

there is any deeper physical relation here between Feynman amplitudes and quantum curves.
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Chapter 4

Regulator periods at the maximal conifold

point.

In this section we prove Conjecture 2.4.2 in the cases (m,n) = (g, g) and (2g − 1, 1), for

every g ≥ 1.

Because we have to enumerate multiple nodes on the maximal conifold curve, it is better

in this section to replace (x1, x2) as toric coordinates by (x, y), which we do throughout. We

also denote the zero-locus of a polynomial by Z(·).

4.1 The main result and some preliminaries

Consider the families of genus-g curves cut out of (C∗)2 by the (integrally tempered) polynomials

Fg,g(x, y) and F2g−1,1(x, y) from (2.4.8). In contrast to §2, Cg,g and C2g−1,1 will denote their

compactifications in P∆. There are no mass parameters in either case, so r = 3 and the

equations take the simpler form (2.4.7). Moreover, Cg,g is torically equivalent to C2g−1,1 via

the map u = x−1y−1, v = xgyg−1. The effect of this map is straightforward: for n = 1, . . . , g

it simply shifts n 7→ g − n + 1 on the level of indices; that is, if Fg,g(x, y) is written

with parameters an, then the image (under the above map) is precisely F2g−1,g(u, v) with

parameters ag−n+1. The upshot of this connection is that statements concerning regulator

periods of C2g−1,1 can be pulled back to those corresponding to Cg,g, provided we choose the

correct cycles. For our purposes here, the important case is that the cycle γg−n+1 of C2g−1,1

giving rise to Rγg−n+1 ∼ −2πi log(ag−n+1) pulls back to the cycle γn of Cg,g corresponding to
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Rγn ∼ −2πi log(an).

Theorem 4.1.1. Conjecture 2.4.2 holds for the families Cg,g and C2g−1,1; that is,

1
2πiRγ1(â) ≡

Q(1)
Dg,g and (4.1.1)

1
2πiRγg(â) ≡

Q(1)
D2g−1,g. (4.1.2)

Remark 4.1.2. The predictions of [CGM] aligning with Conjecture 2.4.2 are written in terms

of the complex structure parameters zi := zi(a). Translated into statements about the

corresponding regulator periods (cf. (2.3.4)), these essentially amount to1

1
2πi
∑g

i=1[C−1]1jRαi
(ẑ) ≡

Q(1)
Dm,n, (4.1.3)

which of course is equivalent to (2.4.10). While zi and Rαi
are more natural from the

standpoint of GKZ systems, the {aj} and the corresponding regulator periods Rγj
simplify

the statement of the result, and are more natural to compute directly (cf. Appendix A).

As we will see, the {γj} are also the cycles which limit to loops passing through individual

nodes at the maximal conifold point â.

Remark 4.1.3. As R{−x,−y} ≡ R{x, y} mod Q(2) we may work with the latter. Note

also that (2.4.10) is stated in terms of the regulator period asymptotic to −2πi log(an); it

is convenient in this section to drop the negative sign and work with one asymptotic to

2πi log(an). Thus from now on

Rγn ∼ 2πi log(an).

Furthermore, since we intend to investigate different components of the discriminant locus

throughout this section, it will be important to track the moduli; so henceforth we will
1Here [C−1] is the inverse of the first g × g minor of the intersection matrix [C]. The Rαi “correspond”

to zi in the sense of being asymptotic to 2πi log(zi).
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rename Fg,g and F2g−1,1 to F a
g,g and F

a
2g−1,1.

Let us outline a proof of Theorem 4.1.1. Denote by Ĉg,g the fiber of the family over the

maximal conifold point â. It has g nodes {p̂j}, and the cycles {γ̂j}g
j=1 passing through each

node generate H1(Ĉg,g); we set Rγ̂j
:=
´

γ̂i
R{x, y}. Writing κ = γ̂[Id]γ(â) for the change-of-

basis matrix, we have

Proposition 4.1.4. Let κj := gcd(2j − 1, 2g + 1). Then

κ = diag(κ1, . . . , κg). (4.1.4)

It then follows from temperedness that

1
2πiRγj

(â) ≡
Q(1)

κn

2πiRγ̂j
. (4.1.5)

In §4.2 we detect monodromies via power series representing classical periods, verifying

Proposition 4.1.4 in the process. In §4.3 we use a key technique developed in [DK, §6] (cf.

Appendix B) that allows us to connect conifold limits of regulator periods to special values

of the Bloch-Wigner function; this method coupled with Proposition 4.1.4 settles Theorem

4.1.1. As a consequence g-many series identities are borne out in §4.4 — not just the two

required for the Theorem.

We conclude this subsection with two preliminary results. The first will help us to control

certain power series asymptotics, and the second gives us information on nodal fibers of Cg,g.

Lemma 4.1.5. If a, b, c ∈ R≫0 are such that a = 2b+ c, then

Γ(1 + a)
Γ2(1 + b)Γ(1 + c) ∼ 1

2πb

√
a

c

a
c

(
c

b

)2b/a
a

. (4.1.6)
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Proof. Stirling’s approximation yields

Γ(1 + a)
Γ2(1 + b)Γ(1 + c) ∼ 1

2πb

√
a

c

aa

b2bcc
e−a+2b+c = 1

2πb

√
a

c

aa

b2bca−2b

= 1
2πb

√
a

c

aa

ca

c2b

b2b
= 1

2πb

√
a

c

a
c

(
c

b

)2b/a
a

for b, c → ∞ (and a = 2b+ c).

Lemma 4.1.6. Suppose that the fiber over ã = (ã1, . . . , ãg) has g-many singularities, say

p̃j := (x̃j, ỹj), n = 1, . . . , g. Then for each j, p̃j is a node, and x̃j = ỹj.

Proof. Since x∂xF
a
g,g(x, y) − y∂yF

a
g,g(x, y) = x − y, any singularity must have symmetric

co-ordinates; that is, x̃j = ỹj. By toric equivalence we may replace F ã
g,g(x, y) by

F
ã
2g−1,g(u, v) = u+ v +∑g

ℓ=1 ãℓu
−ℓ+1 + u−2g+1v−1 (4.1.7)

(reversing the order of the {aℓ}); by abuse of notation we continue to label the singularities of

F
ã
2g−1,1 by p̃j, but with coordinates (ũj, ṽj) satisfying ũ−2g+1

j = ṽ2
j . Since the edge polynomials

of (4.1.7) are all w + 1, the curve intersects each component of the toric boundary with

multiplicity 1, and so all p̃j ∈ C∗ × C∗. Moreover, (4.1.7) is irreducible since it is quadratic

in v, with discriminant D(u) of odd degree. As a consequence, the vanishing cycle sequence

associated to the smoothing F ã
2g−1,1 + s takes the form

0 → H1(C ã
2g−1,1) → H1

lim → H1
van → 0. (4.1.8)

Since rk(F 1H1
lim) = g and the g singularities each contribute nontrivially to rk(F 1H1

van), each

contribution must be exactly 1. So the p̃j are either nodes or cusps, and to show they are

nodes it will suffice to show that the Hessians H
F

ã
2g−1,1

is non-degenerate at p̃j.
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To do this, define

P̃ (u) := 2g + 1 +∑g
j=1(2g + 1 − 2j)ãju

−j, (4.1.9)

and observe that

P̃ (ũj) = 2g−1
ũj

F
ã
2g−1,1(p̃j) + 2∂uF

ã
2g−1,1(p̃j) = 0. (4.1.10)

Thus Z(P̃ ) = {ũ1, . . . , ũg}. It follows that P̃ has no repeated roots; that is, P̃ ′(ũj) ̸= 0 (∀j).

To compute the Hessians, write

∂uuF
ã
2g−1,1(p̃j) = ∑g

ℓ=1 ℓ(ℓ− 1)ãℓũ
−ℓ−1
j + 2g(2g − 1)ũ−2g−1

j ṽ−1
n

= ∑g
ℓ=1 ℓ(ℓ− 1)ãℓũ

−ℓ−1
j + 2g(2g−1)ỹj

ũ2
j

, (4.1.11)

∂uvF
ã
2g−1,1(p̃j) = (2g − 1)ũ−2g

j ṽ−2
j = 2g−1

ṽj
, and (4.1.12)

∂vvF
ã
2g−1,1(p̃j) = 2ũ2g−1

j ṽ−3
j = 2

ṽj
. (4.1.13)

At this point a few simplifications can be made. Differentiating the defining equation of P̃

and plugging in u = ũj, we obtain,

P̃ ′(ũj) = 2∑g
ℓ=1 ℓ(ℓ− 1)ãℓũ

−ℓ−1
j −∑g

ℓ=1(2g − 1)ℓãℓũ
−ℓ−1
j (4.1.14)

On the other hand ∂u(F ã
2g−1,1(u, v)/u) vanishes at p̃j, which yields

− ṽj

ũ2
j

−∑g
ℓ=1 ℓãℓũ

−ℓ−1
j − 2gũ−2g−1

j ṽ−1
j = 0

=⇒ ∑g
ℓ=1(2g − 1)jãℓũ

−ℓ−1
j = − (2g−1)(2g+1)ṽj

ũ2
j

(4.1.15)
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Combining everything, we arrive at

∂uuF
ã
2g−1,1(p̃j) = (2g−1)2ṽj

2ũ2
j

+ P̃ ′(ũj)
2 (4.1.16)

Therefore,

H
F

ã
2g−1,1

(p̃j) =
(
∂uvF

ã
2g−1,1(p̃j)

)2
− ∂uuF

ã
2g−1,1(p̃j)∂vvF

ã
2g−1,1(p̃j)

= (2g−1)2

ũ2
j

− (2g−1)2

ũ2
j

− P̃ ′(ũj)
ṽj

= − P̃ ′(ũj)
ṽj

̸= 0

as was to be shown.

4.2 Monodromy calculations via power series

Consider a 1-parameter family of curves C → P1 with coordinate t, endowed with a section ω

of the relative dualizing sheaf; on smooth fibers Ct, ω1 is a holomorphic 1-form. Assume that

Cc has a single node pc (i.e. is a “conifold fiber”), and let δ0 be the “conifold” vanishing cycle

pinched at pc. Writing ε0 for a cycle invariant about t = 0, its monodromy about t = c is a

multiple of δ0, say kδ0 for some k ∈ Z≥0. We would like to compute this conifold multiple k.

Writing ϵ0(t) = ∑
m≥0 bmt

m :=
´

ε0
ωt, we have

ˆ
kδ0

ωt = (Tc − I)ϵ0 = 2πiC0 +O(t− c) (4.2.1)

for some C0 ∈ C. Observe that

ˆ
kδ0

ωc = k

ˆ
δ0

ωc = k · 2πi · Res
pc

ωc =⇒ C0 = k · Res
pc

ωc. (4.2.2)
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On the other hand, [Ke2, Lemma 6.4] (with B(t) = ϵ0(t), λ = 2πiC0, and w = 1) yields

bm ∼ C0

cm ·m
. (4.2.3)

provided C0 ̸= 0.2 Therefore we have proven

Lemma 4.2.1. The conifold multiple is computed by

k =
lim

m→∞
bm · cm ·m

Respc ωc

. (4.2.4)

Example 4.2.2. Consider the Legendre family, y2 = x(x − 1)(x − t). Setting c = 1 gives

rise to a node at (1, 0). Taking ωt = dx
y

, we have

Res(1,0) ωc = Resx=1
dx

(x−1)
√

x
= 1. (4.2.5)

Moreover bm = 2π
(

−1/2
m

)2
, hence (4.2.4) implies

k = lim
m→∞

2πm
(

−1/2
m

)2
= 2. (4.2.6)

Example 4.2.3. Now consider the family Ct defined by ft(x, y) = xy − t1/3(x3 + y3 + 1).

In this case c = 1
33 and bm = (3m)!

m!3 , but Cc = Z(∏3
ℓ=1(1 + ζ i

3x + ζ2i
3 y)) is a Néron 3-gon with

three nodes pi. But since ε0(c) will pass through each pi the same number k0 of times, and

ωc must have the same residue at each, (4.2.4) holds (taking say pc = p1 := (1, 1)) provided

we interpret k as 3k0. For the residue of

2πiωc = ResCc

dx ∧ dy

fc

= dx

∂yfc

= dx

x− y2 (4.2.7)

2Otherwise, Bm has a smaller exponential growth-rate and RHS(4.2.4) is zero, which confirms the Lemma
when C0 = 0 as well.
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at p1, we can restrict to the component Xc := Z(1 + ζ3x+ ζ2
3y):

Resp1ωc = 1
2πi

Res(1,1)

(
dx

x− y2

∣∣∣∣∣
Xc

)
= 1

2πi
Resy=1

(
ζ3dy

y2 + ζ3y + ζ2
3

)

= 1
2πi

ζ3

1 − ζ2
3

= 1
2π

√
3
. (4.2.8)

Since bm = (3m)!
m!3 we get

k = lim
m→∞

1
33m

·m · (3m)!
m!3 · 2π

√
3 = 3, (4.2.9)

which means that ε0(c) winds once around the Néron 3-gon.

For the proof of Proposition 4.1.4, we need to compute the Picard-Lefschetz matrix κ,

whose entries κij tell how many times the specialization γi(â) passes through p̂j. In order

to invoke Lemma 4.2.1 for this purpose, we should reinterpret these numbers as (roughly

speaking) conifold multiples for 1-parameter subfamilies of Ca acquiring a single node. The

idea is that â is a normal-crossing point of the discriminant locus, whose g local-analytic

irreducible components each parametrize fibers carrying a single node pj. These are labeled

in such a way that the jth component can be followed out to where it meets the aj-axis at

aj = åj. Call this fiber C åj
g,g, and p̊j = (̊xj, x̊j) for the limit of the node to it.

From Appendix A we have the 1-forms

ϖj = 1
2πi∇δaj

R{x, y} = −aj

2πi
ResCg,g

(
dx ∧ dy

xjyjFg,g(x, y)

)
(4.2.10)

and 1-cycles γj (j = 1, . . . , g). The computation that follows will consider periods Πjj =
´

γj
ϖj on the 1-parameter families over the aj-axes (acquiring a single node at aj = åj),

which will suffice to determine the diagonal terms κjj. That the remaining, off-diagonal

terms are actually zero follows from the fact (cf. Appendix A) that each γj is well-defined
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on a tubular neighborhood of the hyperplane in (compactified) moduli defined by zj = 0,

which is cut by the conifold components carrying pi for every i ̸= j.

Now C åj
g,g is defined by

f (j)
g,g := F

åj
g,g(x, y) = x+ y + ånx

1−jy1−j + x−gy−g, (4.2.11)

and to find the node p̊j we solve

x̊2g
j f

(j)
g,g

∣∣∣∣∣
x=y=x̊j

= 2x̊2g+1
j + 1 + åjx̊

2g−2j+2
j = 0, (4.2.12)

x̊2g+1
j ∂xf

(j)
g,g

∣∣∣∣∣
x=y=x̊j

= x̊2g+1
j − g − (j − 1)̊ajx̊

2g−2j+2
j = 0. (4.2.13)

to obtain

x̊j = 2g+1

√
g − j + 1

2j − 1 , (4.2.14)

åj = −2g + 1
2j − 1

(
2g + 1
g − j + 1

)2(g−j+1)
2g+1

. (4.2.15)

In particular, we have the relation

åjx̊
2(g−j+1)
j = −2g + 1

2j − 1 . (4.2.16)

In order to calculate the residue of ϖj at p̊j, recall that for any f(x, y) = Ax2 +Bxy+Cy2 +

higher order terms ∈ C[x, y], we have

Res2
0
dx ∧ dy

f
:= Res0

(
ResZ(f)

dx ∧ dy

f

)
= 1√

B2 − 4AC
. (4.2.17)
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Changing variables to X := x− x̊j, Y := y − x̊j in f (j)
g,g (x, y) leads to the equation

xgygf (j)
g,g = x̊2g−1

j (2g2+2g+1−(g−j+1)(2g+1))
2 X2 + x̊2g−1

j (2g2+2g−(g−j+1)(2g+1))XY

+ x̊2g−1
j (2g2+2g+1−(g−j+1)(2g+1))

2 Y 2 + higher order terms. (4.2.18)

Therefore

Res2
p̊j

dx ∧ dy

xgygf
(j)
g,g

= 1
x̊2g−1

j

√
(2g2+2g−(g−j+1)(2g+1))2−(2g2+2g+1−(g−j+1)(2g+1))2

= 1
x̊2g−1

j

√
(2g−2g−1)(4g2+4g+1−2(g−j+1)(2g+1))

= 1
x̊2g−1

j

√
−(2g+1)(2g+1−2g+2j−2)

(4.2.19)

= i
x̊2g−1

j

√
(2g+1)(2j−1)

.

Consequently the residue of ϖj may now be found:

Resp̊j
ϖj = −åj

2πi
Res2

p̊j

dx ∧ dy

xjyjf
(j)
g,g

= −åj

2πi
· x̊2(g−j)

j · Res2
p̊j

dx ∧ dy

xgygf
(j)
g,g

= −1
2π · (̊ajx̊

2(g−j+1)
j ) · 1

x̊2g+1
j

√
(2g + 1)(2j − 1)

(4.2.20)

=
√

2g + 1
2π(g − j + 1)

√
(2j − 1)

.

For the periods of ϖj, we start as in Appendix A with those of the regulator class.
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Writing φj := xj−1yj−1F a
g,g(x, y)−aj, (A.0.3) (with the sign flip from our choice of γj) yields

1
2πi

Rγj
(a) ≡

Q(1)
log(aj) −

∑
m>0

(−aj)−m

m
[φm

j ]0

= log(aj) −
∑
m>0

(−aj)−m

m
× (4.2.21)

[(xjyj−1︸ ︷︷ ︸
=:Aj

+xj−1yj︸ ︷︷ ︸
=:Bj

+∑g
k=1
k ̸=j

ak x
j−kyj−k︸ ︷︷ ︸

=:Ck
j

+xj−g−1yj−g−1︸ ︷︷ ︸
=:Dj

)m]0

where [L]0 stands for the constant term (in x, y) appearing in the Laurent polynomial L.

Now, given l1, l2, · · · , lg ∈ Z, we define

lj := 1
2j − 1

(
(2g + 1)lj +

g∑
k=1
k ̸=j

(2k − 1)lk
)

(4.2.22)

l′j := 1
2j − 1

(
(g − j + 1)lj +

g∑
k=1
k ̸=j

(k − j)lk
)
, and put (4.2.23)

Lj := {(l1, l2, · · · , lg) ∈ Zg
≥0 | l′j ∈ Z≥0} \ {(0, · · · , 0)} (4.2.24)

Note that l′j ∈ Z≥0 =⇒ lj ∈ Z≥0. The upshot of this construction is if Lj, L
′
j ∈ Z≥0 are

such that

A
Lj

j B
L′

j

j

g−1∏
k=1
k ̸=j

(Ck
j )lkD

lj
j = 1 and (4.2.25)

Lj + L′
j +

g∑
k=1

lk = m (4.2.26)

then Lj = L′
j = l′j (by symmetry) and m = lj. Thus the lattice Lj ⊂ Zg encodes all possible

constant terms appearing in (4.2.21), giving

1
2πi

Rγj
(a) ≡

Q(1)
log(aj) −

∑
Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−aj)−lj

lj

g∏
k=1
k ̸=j

alk
k . (4.2.27)
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For the classical periods Πjℓ =
´

γj
ϖℓ = 1

2πiδaℓ
Rγj

, it is clear from (4.2.27) that Πjℓ vanishes

on the aj-axis for ℓ ̸= j. Focusing then on

Πjj(a) =
ˆ

γj

ϖj = 1 +
∑
Lj

Γ(1 + lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−aj)−lj
g∏

k=1
k ̸=j

alk
k , (4.2.28)

we set ai = 0 for i ̸= j to obtain

S := 1 +
∑

g−j+1
2j−1 lj∈Z>0

Γ(1 + 2g+1
2j−1 lj)

Γ2(1 + g−j+1
2j−1 lj)Γ(1 + lj)

(−aj)
− 2g+1

2j−1 lj . (4.2.29)

Recall that κj := gcd(2j − 1, 2g + 1), and set

nj : = 2j − 1
κj

, mj := 2g + 1
κj

= (2g + 1)nj

2j − 1 ,

rj : = lj
nj

, and sj := a
−mj

j .

(4.2.30)

Clearly nj,mj, rj ∈ Z>0. Now we have a power series of the form

S = 1 +
∑

rj∈N

(−1)mjrj Γ(1 +mjrj)
Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
s

rj

j =:
∑
rj

brj
s

rj

j . (4.2.31)

Let s̊j := å
−mj

j . Applying Lemma 4.1.5,

Γ(1 +mjrj)
Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
≈

(−1)mjrj 2√
mj

2πrj(mj − nj)
√
nj

s̊
rj

j (4.2.32)

from which we may conclude that

lim
rj→∞

brj
· rj · s̊rj

j =
2√

mj

2π(mj − nj)
√
nj

. (4.2.33)
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Observing that

Resp̊j
ϖj =

√
2g + 1

2π(g − j + 1)
√

(2j − 1)
=

√
nj

2πnj(g − j + 1) ·
√

(2g + 1)nj

2j − 1

=
2√

mjnj

2π(mj − nj)(2j − 1) . (4.2.34)

we apply (4.2.4) to obtain

κjj =
lim

rj→∞
brj

· rj · s̊rj

j

Resp̊j
ϖj

= 2j − 1
nj

= κj. (4.2.35)

This concludes the proof of Theorem 4.1.4.

Remark 4.2.4. Notice that κ1 = κg = 1. We document κ := (κ1, . . . , κn) for g = 1, . . . , 10 in

Table 4.1. The lack of symmetry for g ≥ 4 should not be surprising given the shape of the

Newton polygon.

g κ
1 1
2 (1,1)
3 (1,1,1)
4 (1,3,1,1)
5 (1,1,1,1,1)
6 (1,1,1,1,1,1)
7 (1,3,5,1,3,1,1)
8 (1,1,1,1,1,1,1,1)
9 (1,1,1,1,1,1,1,1,1)
10 (1,3,1,7,3,1,1,3,1,1)

Table 4.1: Conifold multiples for small genera

52



4.3 Normalization of the conifold fibers

For the family F a
m,n := Fm,n(a) the maximal conifold point â ∈ Cg+r−3 is defined to be the

unique point (if it exists) on the boundary of the region of convergence of the series (4.2.27)

where F a
m,n acquires g nodes (labeled by p̂j := (x̂j, ŷj)).

Remark 4.3.1. Strictly speaking, it is only ẑ which is unique, with finitely many preimages in

a, one of which has real coordinates; it is this one which we call â. Given existence, we refer

to [Tyomkin, Prop. 7] for an argument proving uniqueness of ẑ - essentially, the variety V

parameterizing all irreducible nodal rational curves of the (untempered) family Ĉ â
m,n is either

empty or irreducible, and is isomorphic to a subgroup of (C∗)2 × (P1)3
/

PGL2(C). Hence

V is of dimension 2. However by passing from a to z parameters we cut down two degrees

of freedom via toric automorphisms (namely (C∗)2), and as such the projection of V , being

0-dimensional and irreducible, is a single point.

Remark 4.3.2. The convergence issues can be taken care of by transforming the series (4.2.27)

into one in terms of the GKZ variables z. We claim that R̃(a) = (2πi)−1Rγ1(a) + log(a1) has

no monodromy for z = z(t) := (tm, t, . . . , t) if m ≫ 0 and |t| < 1. It is enough to check that

there is no monodromy on z1 = 0 (obvious, as the power series is identically zero there) or

when |z1| < 1 and zi = ẑi(i ≥ 2). For the latter, note that the discriminant of (4.3.3) is a

power of z1 − 1.

So B(t) := R̃(a(z(t))) is represented by a power series ∑m Bmt
m on the unit disk, is

bounded on {|t| < 1 + ϵ} \ [1, 1 + ϵ) (as the K2 symbol is nonsingular at t = 1), and has

monodromy about t = 1 (T1 − I)B ∼ cst. × (t − 1) (since (T1 − I)γ1 is a vanishing cycle

with trivial regulator). We are now in the situation of [Ke2, Lemma 6.4] with w = 2, so that

Bm ∼ cst. ×m− 2. The power series thus converges at t = 1, and must evaluate to B(1) by

Tauber’s theorem.
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The standard way to find â is via the discriminant locus: we look for transverse intersections

amongst its local analytic branches. This is a viable strategy in particular cases; however,

it requires careful analysis even in genus 2.

Example 4.3.3. The case C2,2 giving rise to a resolved C3/Z5 orbifold was extensively

studied in [CGM, §4.1]. The discriminant locus is described by the equation (using zi’s),

3125z2
1z

3
2 + 500z1z

2
2 + 16z2

2 − 225z1z2 − 8z2 + 27z1 + 1 = 0 (4.3.1)

where

z1 = a2

a3
1
, z2 = a1

a2
2
. (4.3.2)

Figure 4.3.1 illustrates the intersection that gives rise to the maximal conifold point ẑ =

(− 1
25 ,

1
5), which lifts to â = (5,−5).

Figure 4.3.1: Discriminant locus of resolved C3/Z5, axes are zi’s.

It is clear that for the family Cg,g, the discriminant locus is described by a degree 2g + 1

polynomial in g variables; so that approach quickly becomes untenable. However, a close

study of the g = 1 and g = 2 cases suggested a “constructive” approach to producing g-nodal

fibers, which generalized well and leads to the following:
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Proposition 4.3.4. Let Tm denote the mth Chebyshev Polynomial of the first kind; this is

a degree-m polynomial characterized by Tm(cos θ) = cosmθ. Then we have

F â
g,g(x, x) = 2x(T2g+1( 1

2x
) + 1). (4.3.3)

It follows that

âj = (−1)g−j+1 2g + 1
2j − 1

(
g + j − 1
g − j + 1

)
and (4.3.4)

x̂j = ŷj = −1
2 sec

(
2πj

2g + 1

)
(4.3.5)

for j = 1, . . . , g. In particular, â ∈ Zg.

Proof. That x̂j ∈ Z(RHS(4.3.3)) is immediate from the defining property of T2g+1, and the x̂j

are distinct and different from −1
2 . Moreover, writing Um for the mth Chebyshev polynomial

of the second kind, the relation (T2g+1(w) − 1)(T2g+1(w) + 1) = (w2 − 1)U2g(w) guarantees

that all roots other than −1
2 of (T2g+1( 1

2x
) + 1) have even multiplicity. So they all have

multiplicity 2 and are precisely the {x̂j}.

The polynomial F̂ (x, y) := x+y+∑g
j=1 âjx

1−jy1−j +x−gy−g, with âj as in (4.3.4), satisfies

F̂ (x, x) = RHS(4.3.3) by standard results on coefficients of Tm. Clearly F̂ (p̂j) = 0, and the

{p̂j} are in fact singularities of Z(F̂ ) since ∂F̂
∂x

(x, x) = 1
2

d
dx

(F̂ (x, x)) and they are double roots

of F̂ (x, x). Therefore, by Proposition 4.1.6, they are all nodes. Since one can also check that

(4.2.27) converges at p̂j, Z(F̂ ) is the maximal conifold curve.

Remark 4.3.5. Of course, Proposition 4.3.4 recovers the known maximal conifold points for

the families C1,1, C2,2 (â1 = −3 for g = 1 and â1 = 5, â2 = −5 for g = 2). Table 5.2 gathers

T2g+1 and â for a few low genus cases.

Being of geometric genus zero, the maximal conifold fiber Ĉg,g admits uniformizations by
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g T2g+1(x) â
1 4x3 − 3x -3
2 16x5 − 20x3 + 5x (5,-5)
3 64x7 − 112x5 + 56x3 − 7x (-7,14,-7)
4 256x9 − 576x7 + 432x5 − 120x3 + 9x (9,-30,27,-9)
5 1024x11 − 2916x9 + 2816x7 − 1232x5 + 220x3 − 11x (-11, 55, -77, 44, -11)

Table 4.2: Maximal conifold points for low genera.

P1. In particular, we have the g distinct parametrizations z 7→ (X̂j(z), Ŷj(z)), with

X̂j(z) =
x̂j

(
1 − 1

z

)g+1

(
1 − ζg−j+1

2g+1
z

)(
1 − ζ

2(g−j+1)
2g+1

z

)g and (4.3.6)

Ŷj(z) =
ŷj

(
1 − z

ζ
2(g−j+1)
2g+1

)g+1

(
1 − z

ζg−j+1
2g+1

)
(1 − z)g

, (4.3.7)

having the property that z = 0,∞ are mapped to p̂j. Hence the image of the path from

z = 0 to z = ∞ on P1 is sent (by the jth map) to γ̂j. As dictated by [DK, §6.2], we assign

a formal divisor N̂j on P1 \ {0,∞} to each uniformization: for X(z) = c1
∏

j(1 − αj

z
)dj and

Y (z) = c2
∏

k(1 − z
βk

)ek , this divisor is N := ∑
j,k djek[αj

βk
]. According to [loc. cit.], the

imaginary part of
´∞

0 R{X(z), Y (z)} is then given by D2(N ) := ∑
j,k djekD2(αj

βk
).

In present case,

N̂j = g2[ζ2(g−j+1)
2g+1 ] + 2g[ζg−j+1

2g+1 ] − (2g2 + 2g − 1)[1]

− 2(g + 1)[ζ−(g−j+1)
2g+1 ] + (g + 1)2[ζ−2(g−j+1)

2g+1 ]

= 2(2g + 1)[ζg−j+1
2g+1 ] − (2g + 1)[ζ2(g−j+1)

2g+1 ] (4.3.8)

= 2(2g + 1)[1 + ζg−j+1
2g+1 ],
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where we are working modulo the scissors congruence relations

[ξ] + [1
ξ
] = 0, [ξ] + [ξ] = 0, [ξ] + [1 − ξ] = 0 and (4.3.9)

[ξ1] + [ξ2] + [ 1−ξ1
1−ξ1ξ2

] + [ 1−ξ2
1−ξ1ξ2

] + [1 − ξ1ξ2] = 0 (4.3.10)

of the Bloch Group B2(C). Consequently we have the identity

D2(N̂j) = 2(2g + 1)D2(1 + ζg−j+1
2g+1 ), (4.3.11)

of which two particular cases are of note: we claim that

D2(N̂1) = −2πDg,g and (4.3.12)

D2(N̂g) = −2πD2g−1,1. (4.3.13)

(See §2.4 for notation.) In fact, we can say something even more general. Given m ∈ Z>0,

we have

−zm+1wm,1 = −zm+1 z
m
m,1 − z−m

m,1

zm,1 − z−1
m,1

= −ζm+1
2(m+2)

m−1∑
k=0

ζk
2(m+2)ζ

−(m−1−k)
2(m+2)

= −
ζm+1

2(m+2)

ζm−1
2(m+2)

m−1∑
k=0

ζ2k
2(m+2) = −ζ2

2(m+2)

m−1∑
k=0

ζk
m+2 (4.3.14)

= ζm+2

(
ζm

m+2 + ζm+1
m+2

)
= 1 + ζm+1

m+2 .

Therefore, taking conjugates,

2(m+ 2)D2(1 + ζm+2) = −2(m+ 2)D2(1 + ζm+1
m+2 )

= −2πDm,1 (4.3.15)
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which implies (4.3.13) upon setting m = 2g − 1. Similarly one can see that

wg,g = ζ1−g
2(2g+1)

∑g−1
k=0 ζ

k
2g+1 (4.3.16)

and thus

2(2g + 1)D2(1 + ζg
2g+1) = −2(2g + 1)D2

(
−∑g

k=1 ζ
k
2g+1

)
= −2(2g + 1)D2

(
−ζ2

2(2g+1)
∑g−1

k=0 ζ
k
2g+1

)
(4.3.17)

= −2πDg,g,

as was to be shown.

We are now ready to prove Theorem 4.1.1. By the previously mentioned result of [DK,

§6.2], we know that ℑ(Rγ̂j
) = D2(N̂j) or

ℜ( 1
2πiRγ̂j

) = 1
2π
D2(N̂j). (4.3.18)

Next, Proposition 4.1.4 tells us that Rγj
(â) = κjRγ̂j

, while (4.3.4) and (4.2.27) ensure that

(mod Q(1)) 1
2πiRγj

(â) hence 1
2πiRγ̂j

is real. Combining this with (4.3.11) gives

1
2πi

Rγj
(â) = 1

2πi
κjRγ̂j

≡
Q(1)

(2g + 1)κj

π
D2(1 + ζg−j+1

2g+1 ), (4.3.19)

whence (4.1.1) [resp. (4.1.2)] follows from (4.3.12) [resp. (4.3.15)] by setting j = 1 [resp.

j = g] in (4.3.19).
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4.4 Explicit series identities

Spelling out (4.3.19) in light of (4.2.27) kills any torsion modulo Q(1) as both sides are real,3

and yields the relationship

(2g + 1) · gcd(2j − 1, 2g + 1)
π

D2(1 + ζg−j+1
2g+1 ) = log(|âj|)−∑

Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−âj)−lj
g∑

k=1
k ̸=j

âlk
k (4.4.1)

valid for j = 1, . . . , g. The LHS can be shifted to a different avatar via the formula

D2(1 + ζg−j
2g+1) = D2

(
2 cos( π

2g+1)eπi(g−j)/(2g+1)
)
. (4.4.2)

Let us consider some applications of (4.4.1). For the family C2,2 Table 4.1 and Table 4.2 say

that κ = (1, 1) and â = (5,−5). Recalling that w := 1+
√

5
2 = 2 cos(π/5) and plugging in

j = 1 in (4.4.1) gives

5
π
D2(we2πi/5) = log 5 −

∑
l1,l2∈Z≥0

′ Γ(5l1 + 3l2)(−5)−5l1−3l25l2

Γ2(1 + 2l1 + l2)Γ(1 + l1)Γ(1 + l2)

= log 5 −
∑

m,r∈Z≥0

′ (−1)mΓ(5m+ 3r)5−5m−2r

Γ2(1 + 2m+ r)Γ(1 +m)Γ(1 + r) .

On the other hand for j = 2,

5
π
D2(weπi/5) = log 5 −

∑
l1,l2∈Z≥0

′ Γ(5l2+l1
3 )5− 5l2+l1

3 5l1

Γ2(1 + l2−l1
3 )Γ(1 + l1)Γ(1 + l2)

. (4.4.3)

3after changing log(âj) to log(|âj |)
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Defining r := l1,m := (l2 − l1)/3,

5
π

D2(weπi/5) = log 5 −
∑

m,r∈Z≥0

′ Γ(5m + 2r)5−5m−r

Γ2(1 + m)Γ(1 + r)Γ(1 + 3m + r) . (4.4.4)

These identities, conjectured in [CGM, A.10], match the identities [7K, (6.13)-(6.14)].4 Likewise,

for C3,3 we have â = (−7, 14, −7) and k = (1, 1, 1), and thus

7
π

D2(1 + ζ3
7 ) = log 7 −

∑
m,r,p∈Z≥0

′ (−1)m+pΓ(7m + 5r + 3p)7−7m−4r−p2a2

Γ2(1 + 3m + 2r + p)Γ(1 + m)Γ(1 + r)Γ(1 + p) (4.4.5)

7
π

D2(1 + ζ2
7 ) = log 7 −

∑
m,r,p∈Z≥0

′ (−1)rΓ(7m + 5r + p)7−4m−5r+2p2−7m−5r−p

Γ2(1 + 2m + r − p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p) (4.4.6)

7
π

D2(1 + ζ7) = log 7 −
∑

m,r,p∈Z≥0

′ (−1)mΓ(7m + 3r + p)7−7m+2p23r

Γ2(1 + m − r − 2p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p) . (4.4.7)

More generally, for the family Cg,g, L1 becomes the lattice Zg
≥0 \ {0, . . . , 0} and we end up

with a tidy expression,

(2g + 1)
π

D2(1 + ζg
2g+1) = log(|â1|)−

∑
lk∈Z≥0
1≤k≤g

′ (−1)
g∑

k=1
lk Γ

(
(2g+1)l1+

g∑
k=1

(2k−1)lk

)
Γ2

(
1+gl1+

g∑
k=2

(k−1)lk

)
g∏

k=1
Γ(1+lk)

â
−(2g+1)l1−

g∑
k=1

(2k−1)lk

1

g∏
k=1

âlk
k ,

(4.4.8)

where ∑
lk

′ means that we omit the term corresponding to {0, . . . , 0}.

4The proof there was incomplete as it did not address κ.
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Chapter 5

Recent advances in the (2g, 1) case

In this section we prove Conjecture 2.4.2 in the cases (m,n) = (2g, 1), for every g ≥ 1. Much

of the analysis from §4 goes through verbatim; however presence of the mass parameter

significantly alters asymptotics of the regulator periods as well as the ansatz developed in

§4.3.

5.1 The main result and some preliminaries

Consider the families of genus-g curves cut out of (C∗)2 by the (integrally tempered) polynomial

F2g,1(x, y) from (2.4.8). As before C2g,1 will denote its compactifications in P∆. In this case

there is precisely one mass parameter, namely ag+1 placed at the point (−g, 0), so r = 4 and

the equations take the simpler form (2.4.7). Moreover, temperedness fixes ag+1 = 2.

Theorem 5.1.1. Conjecture 2.4.2 holds for the family C2g,1; that is,

1
2πiRγ1(â) ≡

Q(1)
D2g,1 (5.1.1)

Remark 5.1.2. Note that the Milnor symbol {x, y} on the curve defined by substituting

−x,−y for x, y resp. then multiplying the equation by −1, being a pullback, is integrally

tempered with the same integral regulator as {−x,−y}. The new equation replaces ag+1 by

−ag+1, and also changes the sign of a1, a3, a5, . . . ; it is this new equation which we will use

going forward. Note also that (2.4.10) is stated in terms of the regulator period asymptotic

to −2πi log(an); it is convenient in this section to drop the negative sign and work with one
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asymptotic to 2πi log(an). Thus from now on

Rγn ∼ 2πi log(an).

We will borrow some notations from §4.1 - let us rename F2g,1 to F a
2g,1. Denote by Ĉ2g,1

the fiber of the family over the maximal conifold point â. It has g nodes {p̂j}, and the cycles

{γ̂j}g
j=1 passing through each node generate H1(Ĉg,g); we set Rγ̂j

:=
´

γ̂i
R{x, y}. Writing

κ = γ̂[Id]γ(â) for the change-of-basis matrix, we have

Proposition 5.1.3. Let κj := gcd(j, g + 1). Then

κ = diag(κ1, . . . , κg). (5.1.2)

It then follows from temperedness that

1
2πiRγj

(â) ≡
Q(1)

κj

2πiRγ̂j
. (5.1.3)

To prove 5.1.1 we will proceed in the same vein as described in §4.1, beginning with a few

preliminary results. The first two help us to control certain power series asymptotics, while

the third gives us information on nodal fibers of C2g,1.

Lemma 5.1.4. The following identity holds,

m/2∑
k=0

2−2k

Γ(1 + k)2Γ(1 +m− 2k) =
Γ
(

1 + 2m
2

)

Γ(1 +m)Γ
(

2 +m

2

)
Γ
(

1 +m

2

) . (5.1.4)

Proof. We reduce the given series into a hypergeometric series, and apply Gauss’ summation

theorem as follows,
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m/2∑
k=0

2−2k

Γ(1 + k)2Γ(1 +m− 2k) = 1
m! 2F1

[ 1 −m

2 ,−m

2
1

; 1
]

=
Γ
(

1 + 2m
2

)

Γ(1 +m)Γ
(

2 +m

2

)
Γ
(

1 +m

2

) . (5.1.5)

Lemma 5.1.5. If a, b, c ∈ R>>>0 are such that a = b+ c, then

2cΓ(1 + a)Γ
(

1 + 2c
2

)

Γ(1 + b)Γ(1 + c)Γ
(

1 + c

2

)
Γ
(

2 + c

2

)
︸ ︷︷ ︸

=:Aa,b,c

≈ 1√
2πc

√
a

b

a
b

(
4b
c

)c/a
a

. (5.1.6)

Proof. Using Duplication formula,

1

Γ
(

1 + c

2

)
Γ
(

2 + c

2

) = 2c

√
πΓ(1 + c) (5.1.7)

Thus

Γ
(

1 + 2c
2

)

Γ
(

1 + c

2

)
Γ
(

2 + c

2

) =
2cΓ

(
c+ 1

2

)
Γ(c+ 1) ≈ 2c

√
1
c
. (5.1.8)

wherein we have used a modified Sterling’s approximation which says that for large

x ∈ R≥0 and α, β ∈ R>0,

Γ(x+ α)
Γ(x+ β) ≈ xα−β. (5.1.9)
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It follows that

Aa,b,c ≈ 4cΓ(1 + a)√
πΓ(1 + b)Γ(1 + c)

√
c

≈ 1√
2πc

√
a

b

4caa

bbcc
e−a+b+c

= 1√
2πc

√
a

b

4caa

ba−ccc
(5.1.10)

= 1√
2πc

√
a

b

a
b

(
4b
c

)c/a
a

as was to be shown.

Lemma 5.1.6. Suppose that the fiber over ã = (ã1, . . . , ãg+1) has g-many singularities, say

p̃j := (x̃j, ỹj), n = 1, . . . , g. Then for each j, p̃j is a node.

Proof. Due to Prop. 4.1.6 the result becomes immediate modulo the hessian calculation,

which in this case boils down to the following - we begin by defining

P̃ (x) := g + 1 +∑g
j=1(g + 1 − j)ãjx

−j, (5.1.11)

and observing that

P̃ (p̃j) = g
x̃j
F

ã
2g,1(p̃j) + ∂xF

ã
2g,1(p̃j) = 0. (5.1.12)

Thus Z(P̃ ) = {p̃1, . . . , p̃g}, i.e., P̃ has no repeated roots; that is, P̃ ′(p̃j) ̸= 0 (∀j). To compute
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the Hessians, write

∂xxF
ã
2g,1(p̃j) = ∑g+1

ℓ=1 ℓ(ℓ− 1)ãℓx̃
−ℓ−1
j + 2g(2g + 1)x̃−2g−2

j ỹ−1
j

= ∑g+1
ℓ=1 ℓ(ℓ− 1)ãℓx̃

−ℓ−1
j + 2g(2g+1)ỹj

x̃2
j

, (5.1.13)

∂xyF
ã
2g,1(p̃j) = 2gx̃−2g−1

j ỹ−2
j = 2g

ỹj
, and (5.1.14)

∂yyF
ã
2g,1(p̃j) = 2x̃2g

j ỹ
−3
j = 2

ỹj
. (5.1.15)

It can be shown that

∂xxF
ã
2g,1(p̃j) = 2g2ỹj

2x̃2
j

+ P̃ ′(x̃j)
2 , (5.1.16)

therefore,

H
F

ã
2g,1

(p̃j) =
(
∂xyF

ã
2g,1(p̃j)

)2
− ∂xxF

ã
2g,1(p̃j)∂yyF

ã
2g,1(p̃j)

= 4g2

x̃2
j

− 4g2

x̃2
j

− P̃ ′(x̃j)
ỹj

= − P̃ ′(x̃j)
ỹj

̸= 0

as was to be shown.

5.2 Monodromy calculations via power series

The essence of the monodromy calculation was already captured in Lemma 4.2.1. In this

case we have the 1-forms

ϖj = 1
2πi∇δaj

R{x, y} = −aj

2πi
ResC2g,1

(
dx ∧ dy

x2jyF2g,1(x, y)

)
. (5.2.1)

C åj

2g,1 is defined by

f
(j)
2g,1 := F

åj

2g,1(x, y) = x+ y + åjx
1−j + ag+1x

−g + x−2gy−1, (5.2.2)
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and to find the node we set f (j)
2g,1(̊xj, ẙj) = x̊j∂xf

(j)
2g,1(̊xj, ẙj) which gives rise to equations of

the form,

2ẙj + x̊j + åjx̊j
1−j + ag+1x̊

−g
j = 0, (5.2.3)

x̊j + (1 − j)̊x−j
j − g̊ajx̊

−g−1
j − 2gx̊−2g−1

j ẙ−1
j = 0. (5.2.4)

This yields

x̊j = g+1

√
4(g − j + 1)

j
, (5.2.5)

åj = − g + 1
g − j + 1

(
4(g − j + 1)

j

) j
g+1

. (5.2.6)

In particular, we have the relation

åjx̊
g−j+1
j = −4(g + 1)

j
. (5.2.7)

Changing variables to X := x− x̊j, Y := y − x̊j in f
(j)
2g,1(x, y) leads to the equation

x2gyf
(j)
2g,1 = (6g2−4(j+1)−4g(j−1)

x̊j
2 X2 − 2gx̊g−1

j XY + x̊2g
j Y 2

+ higher order terms. (5.2.8)

Therefore

Res2
p̊j

dx ∧ dy

x2gyf
(j)
2g,1

= 1

x̊g−1
j

√
4g2−2

(
6g2−4(j+1)−4g(j−1)

)2

= (−1)g+1

i̊xg−1
j

√
8(g−j+1)(g+1)

(5.2.9)
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Consequently the residue of ϖj may now be found:

Resp̊j
ϖj = −åj

2πi
Res2

p̊j

dx ∧ dy

x2jyf
(j)
2g,1

= −åj

2πi
· x̊2g−j

j · Res2
p̊j

dx ∧ dy

x2gyf
(j)
2g,1

= −1
2π · (̊ajx̊

2(g−j+1)
j ) · 1

i̊xg−1
j

√
8(g − j + 1)(g + 1)

(5.2.10)

=
√
g + 1

πj
√

2(g − j + 1)
.

Writing φj := xj−1F
a
2g,1(x, y)−aj, (A.0.3) (with the sign flip from our choice of γj) yields

1
2πi

Rγj
(a) ≡

Q(1)
log(aj) −

∑
m>0

(−aj)−m

m
[φm

j ]0

= log(aj) −
∑
m>0

(−aj)−m

m
× (5.2.11)

[( xj︸︷︷︸
=:Aj

+xj−1y︸ ︷︷ ︸
=:Bj

+∑g+1
k=1
k ̸=j

ak x
j−k︸ ︷︷ ︸

=:Ck
j

+xj−2g−1y−1︸ ︷︷ ︸
=:Dj

)m]0

where [L]0 stands for the constant term (in x, y) appearing in the Laurent polynomial L.

Now, given l1, l2, · · · , lg ∈ Z, we define

lj := 1
j

(
(g + 1)(2lj + lg+1) +

g∑
k=1
k ̸=j

klk

)
(5.2.12)

l′j := 1
j

(
(g − j + 1)(2lj + lg+1) +

g∑
k=1
k ̸=j

(k − j)lk
)
, and put (5.2.13)

Lj := {(l1, l2, · · · , lg) ∈ Zg
≥0 | l′j ∈ Z≥0} \ {(0, · · · , 0)} (5.2.14)

Note that l′j ∈ Z≥0 =⇒ lj ∈ Z≥0. The upshot of this construction is if Lj, L
′
j ∈ Z≥0 are
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such that

A
Lj

j B
L′

j

j

g+1∏
k=1
k ̸=j

(Ck
j )lkD

lj
j = 1 and (5.2.15)

Lj + L′
j +

g∑
k=1

lk = m (5.2.16)

then Lj = L′
j = l′j (by symmetry) and m = lj. Thus the lattice Lj ⊂ Zg encodes all possible

constant terms appearing in (5.2.11), giving

1
2πi

Rγj
(a) ≡

Q(1)
log(aj) −

∑
Lj

Γ(lj)

Γ(1 + l′j)Γ2(1 + lj)
g+1∏
k=1
k ̸=j

Γ(1 + lk)
(−aj)−lj

g+1∏
k=1
k ̸=j

alk
k . (5.2.17)

For the classical periods Πjℓ =
´

γj
ϖℓ = 1

2πiδaℓ
Rγj

, it is clear from (5.2.17) that Πjℓ vanishes

on the aj-axis for ℓ ̸= j. Focusing then on

Πjj(a) =
ˆ

γj

ϖj = 1 +
∑
Lj

Γ(1 + lj)

Γ(1 + l′j)Γ2(1 + lj)
g+1∏
k=1
k ̸=j

Γ(1 + lk)
(−aj)−lj

g+1∏
k=1
k ̸=j

alk
k , (5.2.18)

we set ai = 0 for i ̸= j, g + 1 to obtain

S := 1 +
∑

lj ,lg+1∈Z>0

Γ(1 + g+1
j
lj)

Γ(1 + g+1
j
lj)Γ2(1 + lj)Γ(1 + lg+1)

(−aj)
− g+1

j
lja

lg+1
g+1 . (5.2.19)

Recall that κj := gcd(j, g + 1). Let us shift indices by renaming ln → lg+1 + 2ln and define,

nj : = j

κj

, mj := g + 1
κj

= (g + 1)nj

j
,

rj : = lj
nj

, and sj := a
−mj

j .

(5.2.20)
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Clearly nj,mj, rj ∈ Z>0. Now we have a power series of the form

S = 1 +
∑

rj∈N

(−1)mjrj Γ(1 +mjrj)anjrj−2lj
g+1

Γ2(1 + mj−nj

2 rj)Γ2(1 + lj)Γ(1 + njrj − 2lj)
s

rj

j =:
∑
rj

brj
s

rj

j . (5.2.21)

Let s̊j := å
−mj

j . Setting ag+1 = 2 and applying Lemma 4.1.5,

Γ(1 +mjrj)
Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
≈ (−1)mjrj

√2mj

2πrjnj
√
mj − nj

s̊
rj

j (5.2.22)

from which we may conclude that

lim
rj→∞

brj
· rj · s̊−rj

j =
√2mj

2πnj
√
mj − nj

. (5.2.23)

Observing that

Resp̊j
ϖj =

√
g + 1

πj
√

2(g − j + 1)
=

√2mj

2πj√mj − nj

, (5.2.24)

we apply (4.2.4) to obtain

κjj =
lim

rj→∞
brj

· rj · s̊rj

j

Resp̊j
ϖj

= j

nj

= κj. (5.2.25)

This concludes the proof of Proposition 5.1.3.

Remark 5.2.1. Notice that κ1 = κg = 1. We document κ := (κ1, . . . , κn) for g = 2, . . . , 10 in

Table 5.1.
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g κ
2 (1,1)
3 (1,2,1)
4 (1,1,1,1)
5 (1,2,3,2,1)
6 (1,1,1,1,1,1)
7 (1,2,1,4,1,2,1)
8 (1,1,3,1,1,3,1,1)
9 (1,2,1,2,5,2,1,2,1)
10 (1,1,1,1,1,1,1,1,1)

Table 5.1: Conifold multiples for small genera

5.3 Normalization of the conifold fibers

Recall that for the family Cm,n determined by the {F a
m,n}, the maximal conifold point â ∈

(C∗)g is defined to be the unique1 point (if it exists) on the boundary of the region of

convergence of the series (5.2.17) where Ĉ â
m,n (given by F â

m,n = 0) acquires g nodes (labeled

by p̂j := (x̂j, ŷj)).

We demonstrate an example that underlines difficulties in finding â in case of a mass

parameter being present.

Example 5.3.1. Consider the (untempered) family C4,1 corresponding to a local C3/Z6

geometry cut out by

F4,1(x, y) = x+ y + a1 + a2x
−1 + a3x

−2 + x−4y−1 = 0. (5.3.1)

a3 is a mass parameter, and

z1 = a1a3

a2
2
, z2 = a2

a2
1
, z3 = 1

a2
3
. (5.3.2)

1Strictly speaking, it is only ẑ which is unique, with finitely many preimages in a, one of which has real
coordinates; it is this one which we call â.
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Figure 5.3.1: Discriminant locus of resolved C3/Z6 with z3 = 1/4, axes are zi-s.

The discriminant locus is obtained by setting [CGM2, 4.1],

729z4
1(1 − 4z3)2z4

2 + 108z3
1(9z2 − 2)(4z3 − 1)z2

2 + (1 − 4z2)2

− 4z1(36z2
2 − 17z2 + 2) + 2z2

1(108(4z3 + 1)z3
2 − 27(28z3 − 5)z2

2) (5.3.3)

+ 72((4z3 − 1)z2 − 32z3 + 8) = 0.

This is significantly harder to analyze compared to the situation with C2,2, however much of

the complexity goes away when we enforce temperedness, which amounts to letting z3 = 1
4 ,

and the maximal conifold point

ẑ =
(

4
27 ,

1
4

)
(5.3.4)

can once again be recovered from transverse intersection.

The ansatz in present case takes the form of

Proposition 5.3.2. Let Tm denote the mth Chebyshev polynomial of the first kind; this is
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a degree-m polynomial characterized by Tm(cos θ) = cosmθ. Then we have

F
â
2g,1(x, (−1)jx−g) = 2

xg+1 (T2g+2(
√

x
2 ) + (−1)j). (5.3.5)

It follows that

âj = (−1)j (2g + 2)(2g − j + 1)!
j!(2g − 2j + 2)! and (5.3.6)

x̂j = (−1)j/gŷ
−1/g
j = (−1)j4 cos2

(
πj

2g + 2

)
(5.3.7)

for j = 1, . . . , g. In particular, â ∈ Zg.

Proof. That x̂j ∈ Z(RHS(5.3.5)) is immediate from the defining property of T2g+1, and the x̂j

are distinct and different from 4. Moreover, writing Um for the mth Chebyshev polynomial of

the second kind, the relation (T2g+2(w)−1)(T2g+2(w)+1) = (w2−1)U2g+1(w) guarantees that

all roots other than 4 of (T2g+2( 1
2x

) + 1) have even multiplicity. So they all have multiplicity

2 and are precisely the {x̂j}.

The polynomial F̂ (x, y) := x + y + ∑g
j=1 âjx

1−j + ag+1x
−g + x−2gy−1, with âj as in

(5.3.6), satisfies F̂ (x, (−1)jx−g) = RHS(5.3.5) by standard results on coefficients of Tm.

Clearly F̂ (p̂j) = 0, and the {p̂j} are in fact singularities of Z(F̂ ) since ∂F̂
∂x

(x, (−1)jx−g) =

2 d
dx

(F̂ (x, (−1)jx−g)) and they are double roots of F̂ (x, (−1)jx−g). Therefore, by Proposition

4.1.6, they are all nodes. Since one can also check that (5.2.17) converges at p̂j, Z(F̂ ) is the

maximal conifold curve.

Remark 5.3.3. Of course, Proposition 5.3.2 recovers the predicted maximal conifold point

for the g = 2 family C4,1, namely â1 = −6, â2 = 9. Table 5.2 gathers T2g+2 and â for a few

low genus cases.

Ĉ2g,1 admits uniformizations by P1 via the g distinct parametrizations z 7→ (X̂j(z), Ŷj(z)),
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g T2g+2(x) â
2 8x4 − 8x2+1 (-6,9)
3 32x6 − 48x4 + 18x2 − 1 (-8,20,-16)
4 128x8 − 256x6 + 160x4 − 32x2 + 1 (-10,35,-50,25)
5 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1 (-12,54,-112,105,-36)

Table 5.2: Maximal conifold points for low genera.

with

X̂j(z) =
x̂j

(
1 − ζj

2g+2
z

)2

(
1 − ζ2j

2g+2
z

) (
1 − 1

z

) and (5.3.8)

Ŷj(z) = ŷj (1 − z)2g+1(
1 − z

ζj
2g+2

)2g (
1 − z

ζ2j
2g+2

) , (5.3.9)

z = 0,∞ being mapped to p̂j, while the image of the path from z = 0 to z = ∞ on P1 is

sent (by the jth map) to γ̂j. As dictated by [DK, §6.2], we assign a formal divisor N̂j on

P1 \ {0,∞} to each uniformization: in this case,

N̂j = 2(2g + 2)[1 + ζj
2g+2],

where we are working modulo the. Hence we have the identity

D2(N̂j) = 2(2g + 2)D2(1 + ζj
2g+2), (5.3.10)

of which one particular case is of note: we claim that

D2(N̂g) = −2πD2g,1, (5.3.11)

(See §4.4 for notation.) a fact that follows from 4.3.15.

We are now ready to prove Theorem 5.1.1. By the previously mentioned result of [DK,
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§6.2], we know that ℑ(Rγ̂j
) = D2(N̂j) or

ℜ( 1
2πiRγ̂j

) = 1
2π
D2(N̂j). (5.3.12)

Next, Proposition 5.1.3 tells us that Rγj
(â) = κjRγ̂j

, while (5.3.6) and (5.2.17) ensure that

(mod Q(1)) 1
2πiRγj

(â) hence 1
2πiRγ̂j

is real. Combining this with (5.3.10) gives

1
2πi

Rγj
(â) = 1

2πi
κjRγ̂j

≡
Q(1)

(2g + 2)κj

π
D2(1 + ζj

2g+2), (5.3.13)

whence (5.1.1) follows from (5.3.11) by setting j = 1 in (5.3.13).

5.4 Explicit series identities

(5.3.13) combined with (5.2.17) gets rid of any torsion modulo Q(1) as both sides are real,2

and it follows that

(2g + 2) · gcd(j, g + 1)
π

D2(1 + ζj
2g+2) = log(|âj|)−

∑
Lj

Γ(lj)

Γ(1 + l′j)Γ2(1 + lj)
g+1∏
k=1
k ̸=j

Γ(1 + lk)
(−âj)−lj

g+1∑
k=1
k ̸=j

âlk
k (5.4.1)

valid for j = 1, . . . , g. As an application consider the case of C4,1. Table 5.1 and Table 5.2

say that κ = (1, 1) and â = (−6, 9). Plugging in j = 1 in (5.4.1) gives

6
π
D2(1 + eπi/3) = log 6 −

∑
l1,l2,l3∈Z≥0

′ Γ(6l1 + 3l3 + 2l2)(−6)−6l1−3l3−2l29l2(−2)l3

Γ(1 + 4l1 + 2l3 + l2)Γ2(1 + l1)Γ(1 + l2)Γ(1 + l3)

(5.4.2)

2after changing log(âj) to log(|âj |)
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On the other hand for j = 2,

6
π
D2(1 + e2πi/3) = log 9 −

∑
l1,l2,l3∈Z≥0

′ Γ(6l2+3l3+l1
2 )9− 6l2+3l3+l1

2 (−6)l1(−2)l3

Γ(1 + 2l2+l3−l1
2 )Γ2(1 + l2)Γ(1 + l1)Γ(1 + l3)

. (5.4.3)

These identities, although not explicitly derived, were conjectured and computationally

verified in [CGM2, 4.31]. We conclude by observing that for the family C2g,1, L1 = Zg
≥0 \

{0, . . . , 0} and we end up with

(2g + 2)
π

D2(1 + ζ2g+2) = log(|â1|)−

∑
lk∈Z≥0

1≤k≤g+1

′ (−1)
g∑

k=1
lk Γ

(
(g+1)(2l1+lg+1)+

g∑
k=2

klk

)
Γ
(

1+g(2l1+lg+1)+
g∑

k=2
(k−1)lk

)
Γ2(1+l1)

g+1∏
k=2

Γ(1+lk)
â

−(g+1)(2l1+lg+1)−
g∑

k=2
klk

1

g+1∏
k=2

âlk
k ,

(5.4.4)

where ∑
lk

′ means that we omit the term corresponding to {0, . . . , 0}.
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Appendix A

Some regulator calculations

Here we demonstrate the existence of integral 1-cycles {γj}g
j=1 on C with regulator periods

behaving as Rγj
∼ −2πi log(aj) for large aj, as claimed in §4.3. We refer the reader to [DK]

or [KLi] for background on regulator currents.

We start by defining the 1-cycles in distinct regions of moduli. We will need some

notation. Set T := {x ∈ (C∗)2
∣∣∣|x1| = 1 = |x2|} (with the standard orientation as a 2-cycle)

and let Γ ⊂ P∆ be a 3-chain bounding on T (but avoiding C̄ \ C). Write xe := xme for

the toric coordinate along the boundary component De ⊂ P∆ corresponding to an edge

e ⊂ ∂∆, and {qe,ℓ} for the roots of P (−xe) (amongst the {qk}), repeated with multiplicity;

we have Pe(xe) = ∏
ℓ(1 + xe

qe,ℓ
), with ∏ℓ qe,ℓ = 1. Also, loge(ξ) will mean log(ξ) for ξ enclosed

(counterclockwise on De) by Γ ∩ De and 0 otherwise.

Now, fixing j ∈ {1, . . . , g}, take iaj ∈ H and |aj| ≫ maxi ̸=j |ai|; and note that then

F (T) ∩ R− = ∅. In this region, define γj := Γ ∩ C, and use the current coboundary

1
2πid[R{F (x), -x1, -x2}] = ∑

e R{Pe(xe), -xe} · δDe −R{-x1, -x2} · δC̄ (A.0.1)

together with the Tame symbols of R{P (xe),−xe} (which are just the {q−1
e,ℓ }) and the Cauchy

76



integral formula to compute

Rγj
=
´

γj
R{-x1, -x2} =

´
Γ R{-x1, -x2} · δC̄

= −1
2πi
´
TR{F (x), -x1, -x2} +∑

e
´

Γ∩De
R{Pe(xe), -xe}

= −1
2πi
´
T log(aj(1 + a−1

j Fj(x)))dx1
x1

∧ dx2
x2

+∑
e
´

Γ∩De
R{Pe(xe), -xe}

= 2πi
(
− log(aj) +∑

k
(−1)k

k
[(Fj(x))k]0a−k

j −∑
e,ℓ loge(qe,ℓ)

)
.

(A.0.2)

In the tempered case, the {qk} are of course all 1, and the last term vanishes. We are then

left with1

1
2πiRγj

(a) = − log(aj) +∑
k>0

(−1)k

k
[F k

j ]0a−k
j , (A.0.3)

in which (by virtue of the GKZ theory) the sum can always be written as a power series in

z1, . . . , zg.2 This gives a common region of convergence for the series for all j (where the

z-coordinates are small), to which the γj admit well-defined continuation from the regions on

which they were originally defined: namely, they are the cycles with these regulator periods.

Moreover, they are clearly independent due to the asymptotic behaviors of these periods in

the {aj}.

In addition, (A.0.2)-(A.0.3) lead to formulas for periods of 1-forms. Noting that d[R{F (x),−x1,−x2}] =
dF
F

∧ dx1
x1

∧ dx2
x2

, one introduces

ϖℓ := 1
2πi∇δaℓ

R = −1
2πiResC

(
δaℓ

F

F
dx1
x1

∧ dx2
x2

)
(A.0.4)

and computes
1Note that the version of this formula in [KLi, Prop. 6.2] is missing a ±πi (“2-torsion”) term: the λj

parameter there is −aj , so the leading term should have read − log(−λj) or − log(λj) + πi.
2Essentially, this is just because in order to contribute to the constant term in (Fj(x))k, a product of

monomials must correspond to a sum of relations on points of ∆ ∩ Z2, and the relations are how we defined
the {zi}.
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−Πjℓ := −
ˆ

γj

ϖℓ = −1
2πiδaℓ

Rγj
= δℓj +∑

k>0(−1)k[F k
j ]0a−k

j , (A.0.5)

where δℓj is the Kronecker delta. This formula proves useful in §5.2 where we change the

sign of γj.

Turning to the g = 1 case and the computation of Rβ, it is more convenient to work with

u = −a ≫ 0. In this coordinate, (3.1.3) becomes t = log(u) −πi +O(u−1). Substituting this

in Lemma 3.1.1(a) and using 12 − r◦ = r yields

Rβ = r◦

2 log2 u− r
6π

2 +O(u−1 log u). (A.0.6)

Consider the Laurent polynomial φ = x1 +x−1
1 +x2 +x−1

2 , which corresponds to local (P∆◦ =

)P1 × P1. The discriminant (over the x1-axis) of the equation x2 + (x1 + x−1
1 − u) + x−1

2 = 0

has roots ξ1 ∼ 1
u+2 , ξ2 ∼ 1

u−2 , ξ3 ∼ u − 2, and ξ4 ∼ u + 2 (in increasing order). Introduce

2x2,±(x1) := u−x1 −x−1
1 ±

√
(x1 + x−1

1 − u)2 − 4 and w(x1) := 4
(u−x1−x−1

1 )2 . For x1 ∈ (ξ2, ξ3),

w lies in (0, 1), and we write log( 4
w

· 1−
√

1−w
1+

√
1−w

) =: ∑m≥1 θmw
m = 1

2w + 3
16w

2 + · · · . Now we

compute

Rβ = −
´

β
R{−x2,−x1} =

´ ξ3
ξ2

log(x2,+
x2,−

)dx1
x1

=
´ ξ3

ξ2
log(1+

√
1−w

1−
√

1−w
)dx1

x1

= −
´ ξ3

ξ2
log(w

4 )dx1
x1

−∑
m≥1 θm

´ ξ3
ξ2
wm dx1

x1

= 2 log(u)
´ ξ3

ξ2
dx1
x1

+ 2
´ ξ3

ξ2
log(1 − u−1(x1 + x−1

1 ))dx1
x1

+O(u−1 log u)

= 4 log2 u− 2∑k>0
u−k

k

´ ξ3
ξ2

(x1 + x−1
1 )k dx1

x1
+O(u−1 log u)

= 4 log2 u− 2π2

3 +O(u−1 log u),

(A.0.7)

at the end using the approximations
´ ξ3

ξ2
(x1 + x−1

1 )k dx1
x1

∼ 2ξk
3

k
∼ 2uk

k
to rewrite the sum as

−4∑ 1
k2 = −2

3π
2 up to O(u−1 log u). The point is that since r = 4, this agrees with the

result (A.0.6) from integral local mirror symmetry. A similar computation in [KLi, §6] for
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φ = x1 + x2 + x−1
1 x−1

2 (mirror to local P2) gives Rβ = 9
2 log2 u− π2

2 +O(u−1 log u), where the

−π2

2 arises as −2Li2(1
2) − 2Li2(1) − log2 2. Since r = 3, this agrees once more with (A.0.6)

(as it must).

The crucial constant term in Rβ has a nice interpretation via the LMHS at a = ∞

of the VMHS V attached to R ∈ H1(Ea,C/Z(2)), the regulator class of {−x1,−x2} ∈

H2
M(Ea,Z(2)). (Note that the LMHS depends on a choice of a local coordinate, which we

take to be a−1 or equivalently Q := e−t = a−1(1 +O(a−1)).) We can present V and its dual

as extensions

H1(E,Z(2)) → VZ → Z(0) and Z(0) → V∨
Z → H1(E,Z(−2)). (A.0.8)

On the left, a unique class R ∈ F 0VC maps to 1 ∈ Z(0); on the right, let τ ∈ V∨
Z be the

image of 1, and γ̃, β̃ ∈ V∨
Z classes mapping to 1

(2πi)2γ,
1

(2πi)2β. Writing ℓ(Q) := log(Q)
2πi , we have

R̃β := ⟨R, β̃⟩ = 1
(2πi)2Rβ = r◦

2 ℓ(Q)2 − r◦

2 ℓ(Q) + T +O(Q), (A.0.9)

where T = 1
2 + r◦

12 (cf. Lemma 3.1.1(a)), as well as R̃γ := ⟨R, γ̃⟩ = 1
(2πi)2Rγ = ℓ(Q) and

⟨R, τ⟩ = 1.

To obtain a period matrix for V , we compare Hodge and Betti bases as follows. Writing

∇ for ∇∂ℓ(Q) , the change-of-basis matrix from {R,∇R, 1
r◦ ∇2R} to {τ∨, γ̃∨, β̃∨} is

Ω :=
(

1
R̃γ 1
R̃β ∂ℓ(Q)R̃β 1

)
=
( 1

ℓ(Q) 1
r◦

2 ℓ(Q)2− r◦

2 ℓ(Q)+T r◦ℓ(Q)− r◦

2 1

)
+O(Q). (A.0.10)

From (A.0.10) one easily deduces the monodromies T ∈ Aut(V) and T∨ ∈ Aut(V∨) about

Q = 0:

[T∨]{β̃,γ̃,τ} =
( 1

r◦ 1
0 1 1

)
=⇒ T := [T ]{τ∨,γ̃∨,β̃∨} =

( 1
1 1
0 r◦1

)
. (A.0.11)
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Consequently the limiting period matrix is

Ωlim,Q := lim
Q→0

e−ℓ(Q) log(T )Ω =


1

0 1

T − r◦

2 1

 . (A.0.12)

The LMHS with respect to a−1, as mentioned above, gives the same result; but if we change

local coordinate to −Q or (equivalently) u−1, we get

Ωlim,−Q := lim
Q→0

e−ℓ(−Q) log(T )Ω =


1
1
2 1

B◦ 0 1

 , (A.0.13)

where B◦ = 1
2 − r◦

24 = T− r◦

8 . So we see that both of the constants appearing in Lemma 3.1.3(ii)

have a standard asymptotic Hodge-theoretic meaning, in terms of (torsion) extension classes

in the LMHS of V in the large complex structure limit.
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Appendix B

Degenerations and limiting regulator periods

In [7K] the concept of “going up in K-theory” is established in order to capture limits

of higher normal functions. Let X → S be a dominant morphism of smooth varieties

with generic fiber of genus g and a singular nodal fiber X0 embedded via i : X0X . Let

Ξ ∈ CHp(X , r) be a higher cycle, with fiberwise restrictions Ξs ∈ H2p−r
M (Xs,Z(p)); taking

fiberwise Abel-Jacobi (integral regulator) classes leads to a higher normal function

AJXs(Ξs) ∈ J(Hn(Xs)(p)) := Ext1
MHS(Z(0), Hp(Xs,Z(p))),

where n = 2p−r−1. From the Clemens-Schimd exact sequence one has a morphism of MHS

r∗ : Hn(X0) → Hn
lim(Xs), with induced morphism J(r∗) : J(Hn(X0)(p)) → J(Hn

lim(Xs)(p),

and according to [loc. cit.] we have

lim
s→0

AJXs(Ξs) = J(r∗)AJX0(i∗Ξ) (B.0.1)

in J(Hn
lim(Xs)(p)).

The upshot of this result is that the left-hand side of (B.0.1) are direct representatives of

the regulator periods Rγj
. On the other hand, the right-hand side can be worked out, using

techniques developed in [DK], from the g-many normalizations of X0 by P1: one assigns a

carefully constructed divisor Nj on Gm to each such normalization, and applies the Bloch-

Wigner function D2. In this way we arrive at

ImRγ̂j
:= Im⟨AJ2,2

X0(i∗Ξ), γ̂j⟩ = D2(Nj), (B.0.2)
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where γ̂j ∈ H1(X0,Z) is a cycle passing once through the jth node.
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