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This dissertation explores a 2015 conjecture of Codesido-Grassi-Marino in topological
string theory that relates the enumerative invariants of toric CY 3-folds to the spectra of
operators attached to their mirror curves. In the maximally supersymmetric case, our first
theorem relates zeroes of the higher normal function associated to an integral Ks-class on the
mirror curve to the spectra of the operators for curves of genus one, and suggests a new link
between analysis and arithmetic geometry. On the other hand in the 't Hooft limit, [KM,
MZ] deduced from the [CGM] conjecture that the limiting values of the local mirror map at
the maximal conifold point are given by values of the Bloch-Wigner dilogarithm at algebraic
arguments. Our second theorem establishes these assertions by calculating regulator periods
on the mirror curves attached to 3-term operators coming from triangles. As a consequence

numerous series identities involving the Bloch-Wigner dilogarithm are demonstrated.
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Chapter 1

Introduction

The simplest Calabi-Yau threefolds are the noncompact toric CYs X determined by a convex
lattice polygon A (or more precisely by the fan on a triangulation of {1} x A in R?). Each
such CY has a family of mirror curves C C C* x C*, of genus g equal to the number of interior
integer points of A, given by the Laurent polynomials F'(z1,x2) with Newton polygon A.
Recently a fundamental and novel relationship between (i) the enumerative geometry of X
and (ii) the spectral theory of certain operators Fon L*(R) attached to C, has been proposed
by M. Marino and his school, in the context of non-perturbative topological string theory
[GHM, Ma, CGM]. The goal of this paper is to lay out some mathematical consequences of
this meta-conjecture, and provide evidence for it by proving them.

A Laurent polynomial F' = 3>, cAqz2 amz™ is promoted to an operator a (or “quantum
curve”) by a process called Weyl quantization, which depends on a real constant h. Writing
r for the coordinate on R, let X denote multiplication by r, and y := ihd,, so that [X,y] = ih.
Taking F':= 3" a9 [CGM] define a generalized spectral determinant Z¢(a; h) whose
zero-locus describes those curve moduli a for which ker(F) # {0}. They conjecture that
under a “quantum mirror map” a + t"(a), Z¢ is proportional to a quantum theta function
O©x(t; h) derived from the all-genus enumerative invariants of X; see Conjecture 2.2.1. In
particular, the zeroes of ©x should recover the spectrum of any fixed quantum curve F.

In the formulation of [BKV], local mirror symmetry relates the “maximally supersymmetric”
case (h = 2m) of (i) to (iii) the Hodge-theoretic invariants (or “regulators”) of algebraic K-
classes on C. This allows us to reformulate this case of the conjecture of Codesido-Grassi-

Marifio [CGM] in §2.3 as a putative relationship between quantum curves and regulators



(i.e. between (ii) and (iii)). We do this under the assumption that F' ranges only over the
integrally tempered Laurent polynomials, so that the symbol {—z1, —z5} € K5(C(C)) extends
to motivic cohomology classes on the compactifications C, C Pa. This smaller moduli space
M has dimension g, and the resulting regulator classes ;5 R(a) € H'(C,, C/Z) may be
projected modulo H 1’0(@) to yield a section v of the Jacobian bundle J — M of the
family C — M, called the higher normal function. We deduce from the conjecture of
[CGM] that the locus in M where v meets a specific torsion shift of the theta divisor in
J should match the zero-locus of = after tweaking the signs of the moduli; this is made
precise in Conjecture 2.3.2.

We may further refine this prediction in the genus-1 case, where A is now reflexive and
the Laurent polynomial F(z) = ¢(z) + a now has only one parameter a. In §3.1, we use
integral mirror symmetry to compute the torsion shifts, and show that (after a miraculous

cancellation) they simply translate the theta divisor to the origin! The prediction is now

that the spectrum of the quantum curve is given by!
o(@)={acM|v(a)=0 € J(C,)}. (1.0.1)
Keeping in mind that ¢ = 1 (A reflexive), ¢ is tempered, and h = 27, our first main

unconditional result is then the following

Theorem A (Theorems 3.2.2 and 3.3.1). Assume A C R x [=1,1]. Then the “O” direction

of (1.0.1) holds, and the “C” direction holds for “almost all” eigenvalues.

We prove the “O” statement in §3.2 by explicitly constructing square-integrable eigenfunctions
of ¢ with eigenvalue a, using vanishing of v(a) to show well-definedness. The result (in §3.3)

on the “C” inclusion is obtained by using the coherent state representation of ¢ to bound

'Note the implicit sign flip on a: we are saying that ker(¢ — a) # {0} when the regulator associated to
{—z1,—z2} on p(z) + a = 0 dies in the Jacobian. The notation for the normal function changes from v to
v as it no longer has multiple components.



the accumulation of eigenvalues in a manner that matches growth (~ const. x log®(a)) of
v as a — 00. One perspective on Theorem A is that we may view v(a) as a multivalued
function solving an inhomogeneous Picard-Fuchs equation, and in effect (1.0.1) states that
the eigenvalues of ¢ are simply the points where v(a) € Z (see Remark 3.1.5(i)). The latter
condition is a statement about a period of a mixed motive, and combining this with a variant
of Grothendieck’s period conjecture allows one to show conditionally that the eigenvalues of
¢ are transcendental numbers (Prop. 3.3.4).

The conjecture of [CGM] yields a different prediction in the 't Hooft limit A — oo,
which is not empty for ¢ = 1 but much more interesting for ¢ > 1. Results of Kashaev,
Marino and Zakany [KM, MZ] on the limits of spectral traces of three-term operators can be
viewed as providing a general formula for the limiting value of a particular regulator period
R.(a) = fw R{—x1, —2}|c, at the maximal conifold point @, in terms of special values of the
Bloch-Wigner (“real single-valued dilogarithm”) function. Here “maximal conifold” means a
particular point in moduli at which C acquires g nodes while remaining irreducible; that is,
the normalization @; is a P'. By applying a method from [DK, §6] for computing regulator
periods on singular curves of geometric genus zero, we are able to verify this in two infinite

families of cases, corresponding to

a — ~9.,.79 g I=j,.1=j
Fe(z) = a1+ 2o+ 27907 + 37 aja 7oy and

2g+1 1-j

- -1
F%,Ll(g) = o + X9 + Ty xQ + Z?:l a’jml

The g = 1 case was already verified in [DK, §6.3], while the g = 2 identities were partially
verified in [7TK, §6].
To give a more explicit statement of this result, write F¢ := F% — g, in either case, and

[-]o for the operator taking the constant term (in z,z5) in a Laurent polynomial. Then we

have:



Theorem B (Theorem 4.1.1). The requlator periods at the mazximal conifold point satisfy

-1 k(g+1) 27mig

log(29 + 1) — YXkso (]g(g)gW[(Fgg)k]Q = i-R%’g(@) = %DQO + e271)

2mi

and

27mi s

P _2mi
log(2g + 1) — Xp=0 m[(pgg_l,l)k]g = 5= R207 11 (a) = QoY Do (1 + e3ot1).

In fact, the two families are isomorphic under the moduli-map sending a; — a4—;11, and
the cycles just two amongst ¢ (named 74, ...,7,) for which we can compute the regulator
period at a, obtaining ¢ different identities. Part of the proof involves using a method from
[Ke2] to determine (from the series expansions of their periods) how many times the “limits”
of the {~,} at @ pass through each of the g nodes, cf. Prop. 4.1.4; this method may be of
independent interest in the study of monodromy. Incidentally, the identities we prove should
have implications for the asymptotic behavior of genus-zero Gromov-Witten numbers of the

corresponding CY X, but we do not pursue this direction here.



Chapter 2

A conjecture in topological string theory and

its consequences

2.1 Quantum curves.

Let A C R? be a polygon with vertices in Z? whose interior contains the origin 0. Write

F(21,22) = Yneanze Gma™ (2.1.1)

for a general Laurent polynomial with Newton polygon A. The affine curve C := {z € (C*)? |
F(z) = 0} is then smooth of genus g := |int(A) N Z?|. It admits a smooth compactification
C in PA, which denotes a minimal toric desingularization of the toric surface constructed
from the normal fan of A. For instance, if A is reflexive with polar polygon A°, then g =1
and P is constructed from the fan with rays passing through each of the nonzero points of
A°NZ2

Taking a maximal integral triangulation tr(A), consider the fan 3 on {1} x tr(A) C R3.
The resulting toric variety

X :=Ps (2.1.2)

is called a local C'Y 3-fold since Kx = Ox.! This will be our “A-model”, on which we do

enumerative geometry and run the Kéahler moduli. Such noncompact CY 3-folds often arise

ITo see this, note that —c;(Kx) = c1(X) is the sum of the irreducible divisors corresponding to the
elements of A N Z2, which is the divisor of the first toric coordinate wy on X hence rationally equivalent to
Zero.



from the crepant resolution of a finite quotient of C3. For instance, if 1 € Zgj,1 acts on C?
by diag{Cor+1, Ches1s Chiin }o the resolution X is obtained by taking A to be the convex hull
of (1,0), (0,1), and (—k,—k) (with ¢ = k). Another set of examples (with g = 1) arises
when A is reflexive: in this case, X is just the total space of Kp,,. There is some overlap
with the quotient construction: for instance, Kp2 [resp. Kp,, def] arises from a quotient
of C? by Zj3 [resp. Zs, Zg).

Local mirror symmetry connects the genus-zero enumerative invariants of X to periods

of the “B-model”

Y = {(z,u,v) € (C*)* x C* | F(xy,x5) +uv = 0}, (2.1.3)

an open CY 3-fold with Ky trivialized by the form

1 Resy (dxl/xl Adxs/xe A du A dv

1= G T ) e Q¥(Y). (2.1.4)

We shall will say more about this in due course. It has been proposed by Marino and
collaborators [GHM, Ma, CGM] that one can capture the higher-genus enumerative invariants
of X as well by quantizing the curve C — that is, turning the Laurent polynomial F' into

an operator and considering its spectral theory. The idea is to write x; = €~

, Ty = €,
and promote x,y to noncommuting operators X,y on L*(R) with [X,y] = i (h € R). More
explictly, writing r for the coordinate on R, we take X = p, (multiplication by r) and
§ = —ihd,; and then we set £; = €%, 25 = €. Notice that if f € L?(R) is the restriction of
an entire function, then 2, is a shift operator, viz. (e %9 f)(r) = f(r — ih).

The promotion of F to F is highly nonunique: for instance, e*e¥ and e**¥ [resp. e¥e*] differ

by a multiplicative factor of /2 [resp. €] by the Campbell-Baker-Hausdorff formula. The

ZWe shall use the notation dPg to refer to the generalized del Pezzo of degree 6 defined by the self-dual
polygon with vertices (1,0), (0,1), and (—3,—2). (This is called the “Es del Pezzo” in [GKMR].



standard way to fix this (before [CGM]) was to employ a perturbative approach called WKB
approximation, which works modulo successive powers of A. In this context a connection
between quantization and K,(C(C)) was pointed out in [GS].

So suppose that we want a function ¢ on C (rather than R) and a choice of F' given
by Fy = F(21,%82) == F(jig,, e "=1) mod O(h), for which Fy = 0. (In this case, we will
say C is quantizable.) Begin with formal asymptotic expansions P = >oi>0 K E;, and Y =
e 220 S5 Choosing a base point py € Cp with z;(py) = 1, we take Sy(p) = fp’; log(xg)%l
(integral on C), which locally satisfies d,, Sy = log(x,) hence (E)(p) = [F(x1(p), 22(p)) +
O(M))(p) = O(R)(p). Of course, e only gives a well-defined function on C if the integral
is path-independent mod 27whAZ. When this happens, one then solves for the higher-order
corrections 5;, by postulating their form in terms of “topological recursion”, and finally solves
for the F}. We remark that for i = 27, the well-definedness condition on S is precisely the
statement that the regulator class R{zi,zo} € H'(C,C/Z(2)) of the coordinate symbol
{z1, 22} € K3(C(C)) is trivial. More generally, if the regulator class is torsion (which is the
quantizability criterion proposed by [GS]), then the well-definedness condition is satisfied for
h = QM” for some M € Z. This is a very different condition on the regulator class than the
one appearing in RHS(2.3.13) below, even in the g = 1 case.

For the rest of this paper we consider only the non-perturbative (exact) approach pioneered

in [GHM]. Namely, we fix the single choice
F =3 canz ame™ ™ (2.1.5)

and try to describe its spectrum as an operator on L*(R). A little more precisely, if int(A)N

72 = {m(j)}j=1,...,gv then writing a; := a,,u», P; = gﬂm, Fj(o) = Pj_1F|a1:m:ag:0 and Fj =

_ . . .. . ) ~ A
P; 1F]a]:0, we are interested in determining the eigenvalues {eE" (al""’aﬂ""’ag)}neN of F} for



j=1,...,9.> We should note here that as long as the {a,,} are all real, the Fj, Z%j(o) are

obviously Hermitian; even better, their inverses p;, p('o)

; are expected to be bounded self-

adjoint and of trace class, with a discrete positive spectrum. These properties, which justify

indexing the eigenvalues by N and make the Fredholm determinants
det(1 + a;;) = [zo(1 + aje 5 (@1t (2.1.6)

well-defined, are proved in [KM] and [LST] for all the specific operators we will discuss below.

Definition 2.1.1 ([CGM]). The generalized spectral determinant is
= (a: ) = 9 o, P20 ps
Ec(a; h) ==det(1+ X7 a;P; *p; ' P?). (2.1.7)

This function contains all the information we are after. For any fixed {ay};z;, we may
recover (2.1.6) as Zc(a; h)/(Zc(a; h)|a;—0), since their zeroes (in a;) are the same and both
sides are 1 at a; = 0 [CGM, (2.74)]. So the spectra of Fl, e ,Fg are simply slices of the
zero-locus of (2.1.7), a union of hypersurfaces in R? indexed by N. Note that in the genus

one case, (2.1.7) is just det(1 4 aip).

2.2 Local mirror symmetry and Marino’s conjecture

Let r := |0A NZ?|, so that |A NZ?| = g + r; and denote by . C Z97" the rank-(g + r — 3)
lattice of relations vectors {€m }meanzz with 32, €m(1,m) = 0. Each m € ANZ corresponds
to a toric divisor D,, C X, amongst which we have the g compact D; := D,,». If C C X
is any compact toric curve (corresponding to any edge of tr(A)), its intersection numbers

with the divisors of the toric coordinates wy, wy,ws are zero, leading to a relations vector

3For the time being, one should think of the non-interior parameters a,, as being fixed. For the assertion
that the spectrum is positive and discrete, further restrictions (such as those we impose for temperedness
later) should be made.



ly, = (C - Dy,)x. Such relations integrally span L, although the (Mori) cone generated by
effective curves may not be smooth or even simplicial. We will ignore such “finite data”
issues here, as we will eventually pass to a slice of the complex-structure moduli space where
this is not an issue.

So write {C;}i=1,. g+r—3 for independent generators of this cone (i.e. Hy(X,Z)eq), with
corresponding relations £, and define complex structure parameters

o)

zi = zi(a) = [Lneanze Gm (2.2.1)

for C and Y. It is convenient at this stage to fix three vertices of A and set the corresponding
ay’s equal to 1. We shall mainly work in a neighborhood of the large complex structure limst
(LCSL) point z = 0, though at times will also be concerned with the mazimal conifold point
2 — the unique point (if it exists) on the “boundary” of that neighborhood* where C develops
g nodes (while remaining irreducible) hence has geometric genus zero.

What are the periods parametrized by (2.2.1)? We summarize some results from [BKV].?

One may construct 3-cycles T, Ay, ..., Agy,—3 on Y such that near the LCSL

/7]:27ri, —t; ::/ n ~ log(z). (2.2.2)
T A;

The mirror map z — et, which we usually express as £(z) (or t(a) := t(z(a))) then induces a

biholomorphism between neighborhoods of the LCSL and the large volume point (in Kéhler

4i.e., the region of convergence for certain power series representing the periods of C; see §4.

While stated there for g = 1, the proof — by “limiting” results of [Ir] for compact
CY 3-folds to the local setting — works for any A that makes the BKV polytope =
{the convex hull of (—1,1,0,0), (2,—1,0,0), and (=1, —1) x A in R*} reflexive. (For instance, take A to
be the convex hull of (1,0), (0,1), and (—g,—g) [resp. (—n,—1)] for g | 6 [resp. n | 12]). We also expect
these results to hold more generally. A minor difference in formulation here is that instead of applying the
BKYV limit to derivatives of the prepotential ® of a compact CY, we can directly take derivatives of Fj.



moduli space® of X). Next write

Folt) == éZ@ Civigistisbiglis + D de Ho (X 2)on No ge ¢t (2.2.3)

for the genus-zero free energy of X, in which the ¢; € Q are certain triple intersection
numbers’ and the Ny 4 € Q are genus-zero local Gromov-Witten numbers. The basic Hodge-
theoretic assertion of local mirror symmetry is that there are 3-cycles Bi,..., B, on Y for
which®

fB = 3x Zg+r ’ C'Uatz‘/—-b( ) ) Zngr ’ Aljti + 27Ti7} (224)

under the mirror map, where —Cj; = (6 5 =) Ci-Dj, AZ] = the coefficient of C; in D2 and
T; € Q.

The 3-cycles are constructed by describing ¥ — (C*)? as a conic bundle, with fibers
isomorphic to C* over (C*)?\ C, and to C Uy C (pair of complex lines crossing once) over C.

This yields (cf. [DK, §5.1]) an exact sequence of MHS
0— Q(3) & Hs(Y) S ker{H,(C) = H,((C)?*)}(1) =0 (2.2.5)

in which im(A) = (7) and the right-hand term has basis (27 times) as, . .., agyr—3, 51, . . ., By
On the level of Q-vector spaces, B has a section M sending this basis to the A; = M(«;)
and B; = M(;). It is constructed by sending ¢ € ker{ H;(C,Q) — H;((C*)?, Q)} first to its
bounding Q-chain I'y, in (C*)? (with ', = ), over which M(¢y) is a 3-cycle with S* fibers
(shrinking to points over o). Writing R{f, g} := log(f)— — 2rilog(g)dr, for the standard

regulator current for Milnor Ks-symbols (T := f~*(R<o) the cut in branch of log), we have

SIf {7;} C H*(X) is a basis dual to {C;}, then the Kihler parameter is Y, 75.7;

"by interpreting X as a (decompactifying) limit of a compact CY and computmg mtersections —Tiy Tin Tis
there.

8The 2nd and 3rd terms are required in order for integrality of the periods, and arise from applying the
procedure described in [BKV]; the second term arises from the fact that ch(Op,) = [D;] — 5[D3] mod Q[p],
where [p] is the class of a point.

10



on (C*)? the relation d[R{—z, —y}] = £ A % — (271)?0(.,)2. This leads at once to

27Ti/ n :/
M(y) r

which is to say that R,, = —2mit; and Rp, = 3=, Cy;0;, Fo — mi X, Ayjts mod Q(2).

dep\dy — /R{—x, —y} =: Ry, (2.2.6)
©

©

In the physics literature, the nontrivial a,, on the boundary are called mass parameters;

if we write these as af,...,al_s, then our complex structure parameters take the form z; =

Y a;Cij x 1523 a},%*. Taking the a; > 0 large but keeping the @}, bounded, so that
t; ~ >9_, Cijlog(ay), the subleading terms (constant in a) can be shown? to be Q-linear
combinations of logarithms of the negative roots {q }x—1,. , of the edge polynomials of F.
(The latter are defined as follows: if e is an edge of A, with vertex v, and m® € 77 is
a primitive lattice vector along e, then put Po(w) = Y ,cenzz amw ™ 2/™°) The key
observation is that each ¢ is the Tame symbol of {—xz,—y} € K5(C) at a point p, €
C N (Pa\ (C*)?), so that a loop &, C C around pj, has J., B{—z,—y} = 2rilog(q).

The physicists have a grand potential function Jx (t; h) which says “everything they know
how to say” about enumerative geometry of X, and includes (refinements of) higher-genus
GW-invariants. We refer the reader to [CGM] for details, as we shall only discuss two special

cases in which those invariants (mostly) drop out. First, in the mazimally supersymmetric

case h = 2m, we have!?

JX (L 27T) :# {Zh,iz 5ti1 5t¢2 -3 Zz 6tz' + 2} ﬁo@)

+ Fit) + F5(t) + A(g, 2m),

(2.2.7)

9Done from a physics perspective in [GKMR], and from a regulator perspective in Appendix A. Here
“negative roots” means the roots of Po(—w). In particular, if edge polynomials are powers of (1 + w), the
qr are all 1.

0Remark that ¢ is an abuse of notation since the g are B-model coordinates; one would ideally replace
them by monomials in the e which equal g; under the mirror map. (Similar remarks apply to m in (2.2.8).)
But we don’t need to be more precise here as these terms quickly become irrelevant.

11



where ﬁo,ﬁl,ﬁﬁs are free energies in which the instanton part is twisted by a “B-field”

B e Zo+r—3.11

o Folt) = § Sy citiliytiy + g Noge 8,
o Fi(t) =X, bit; + Fi™t(t — miB); and

o FI(t) = 5005t + IS (¢ — wiB).

In the 't Hooft limit, where h — oo (and a; — 0o) while my := e_%log(qk‘), ¢ = %, and

_ 2ty
~h

T remain finite, one finds that

h2Jx(th) = {se=s Fo(T) + 125 2 057 + Ao(m)} + O(h™2). (2.2.8)

=:J5 (¢m)

We may disregard the unknown functions Ag(m), A(q, 27) of the mass parameters.
To state the main physics conjecture, we need two more ingredients. First is the quantum

theta function

Ox(t; h) := Y pezs exp {Jx (t + 2mi[Cn; h) — Jx (t; h)}, (2.2.9)

where [C] is the matrix Cy; (and so [C]n is a (g + r — 3)-vector with entries Y>7_; Cyn;).
Terms in Jx which are 2mi-periodic in the {t;}, including all but >°;(b; +b}°)¢; in the second
line of (2.2.7), drop out. The second is a “quantum deformation” t"(z) = t(z) + O(h) of the
mirror map. (We shall also write t"(a) := t"(z(a)) where convenient.) Again, we describe

this where we need it: at h = 27 it is given by

ti(2) == £7(2) = t;((—1)B2) + 7iB; (2.2.10)

HTn the g = 1 case, B, is just Cj1; see §2.3 below and [SWH] for g > 1.
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like ¢;(2), this is asymptotic to — log(z;), but the signs are (in general) different in the power-
series part. In the ‘t Hooft limit, the previous asymptotic relation ¢; ~ 3, Cy;log(a;) +

>k Dir. log(qx) becomes exact in the sense that

Conjecture 2.2.1 (|[GHM],[CGM]). Under the quantum mirror map, the generalized spectral
determinant of C is given (up to a nonvanishing factor) by the quantum theta function of its

mirror:

Ze(a; h) = X @M (¢ (a); h). (2.2.12)

This postulates a fundamental and very general relation between spectral theory (of the
B-model) and enumerative geometry (of the A-model). Since local mirror symmetry relates
the latter to Hodge theory of the B-model, it should imply relationships between Hodge/ K-
theory and spectral theory of our curves with no reference to mirror symmetry. We now
derive these in our two special cases, under the assumption that F' is integrally tempered: all
qx = 1 = my; equivalently, all edge polynomials of F' are powers of w + 1. Accordingly, by a
(resp. z(a)) we henceforth shall mean just (a4, ..., a,), with the remaining {a,,} determined

uniquely by this constraint.

2.3 Consequences in the “maximal SUSY” case

Of course, the last paragraph was a bit glib, since the classical and quantum mirror maps are
not the same. One should rather expect a relation between Hodge theory of C, and spectral
theory of a “partner” C, given by z = t~1(t"(2/)) or some variant thereof. (In fact this is
still too vague, since the spectral theory and the regulator class really depend on a.) We

now work this out at A = 27.

13



First we address the nature and significance of B. Because the monomials z™ in F were
quantized as em™%Hm — ggmamagmgme ot B — 21 we have F = S (=1)™M"m2a,2". The
B-field is determined mod 2 by the effect on the signs of the z; were we to replace a,, by

(—1)™m2q,,: namely, B; = melmgﬁ(mi). Under the assumption that
OAN (2Z x 2Z) = 0, (2.3.1)

this is compatible with taking B to be in the Z-span of the columns of [C], which we write
B; = >9_, A;C;;."? Notice that then t((—1)2a) = (—1)24(a), so that by (2.2.10) we have
£27((—1)2a) = t(a) + 7iB and the conjectured equality (2.2.12) becomes

Ze((—1)2q; 2rr) = /X UDHME2MQ  (1(a) + 7iB; 271). (2.3.2)

That is, after absorbing the “+7iB” twist into © x and Jx, our Hodge/ spectral “partners” are
related by at most a change of sign in the complex structure parameters. The main question
is what the quantization condition looks like: which values of a make ©x(t(a) + 7iB; 27),
hence the spectral determinant, zero?

This is where the local mirror symmetry enters. Under our assumption (2.3.1), its
previous incarnation in (2.2.4) can (by a tedious intersection theory argument) be expressed

aSlS

Rg,(a) = ¥, 0, Fo (Ha) + miB) + (2mi)?BS  (BS € Q). (2.3.3)
g+r—3

Next, since our temperedness assumption has eliminated the Tame symbols, the {R,, }{]

are no longer independent (unless » = 3). More precisely, there are g cycles v; € H; (C,7Z)

2mod 2, A is just the characteristic function of A N (2Z x 27Z).

13 Although the regulator periods R, [resp. periods Q;,;, in (2.3.7) below] are infinitely multivalued, they
are periods of a class R [resp. classes {w;}] which are single-valued in a [resp. z]; so we shall loosely write
them as functions thereof.

14



with regulator periods R, ~ —2milog(a;) (cf. Appendix A), whence

Ro, =32 CyRy; (2.3.4)

and the A; can be chosen so that {v;, 3}, is a symplectic basis.!* The regulator class

R = R{—x1,—x5} € H'(C,C/Z(2)) then has a local lift'> to H'(C,C) given by

R =01 (R + Rs,57), (2.3.5)

whose Gauss-Manin derivatives
.y Ro=n~r 439 Oy g 2.3.6
Wy - 9/0Ry; Y + 21 OR,, B ( -9- )

are classes of holomorphic 1-forms by Griffiths transversality. Evidently these are normalized

so that the symmetric g x g matrix

Qy2(2) © = =55 Zir iy Cinjy Ciojo O, Oryy Fo(t(2) + miB)
R,
= _% Eil C'Z'ljl atil RBjQ = Zil Ciljlﬁ (237)
ORs,,

pu— w .
6R7j1 ‘/:le J2

is the standard period matrix of C.
We have already observed that the isomorphism class of C depends only on z, which
parametrizes the standard coarse moduli space for toric hypersurfaces; and we are restricting

to a “tempered slice” of this space. However, R only becomes single-valued in a, forcing

"This is again by local mirror symmetry: the R, [resp. R,] are the A-model periods of flat sections
arising from curves dual to the Dj [resp. J;]; while the Rg, are those arising from ch(Op, (- Ej;)) U ['(X) for
suitable curves Ej.

5For our purposes, this can be regarded as living on an open neighborhood (in z-space C9) of (0,¢)9 for
some € > 0.
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us to work on the finite cover M := {a € (C*)9 | C.( is smooth} of this slice. Let
C = M be the universal (compactified) curve, and set # := R'm,C ® Opq, H := R'7,7Z,
and # = H/{H + F'H}. Then £ is the sheaf of sections of the Jacobian bundle
J % M, and A /H is the sheaf of sections of the C/Z cohomology bundle Hg 2 — M,
which factors through the obvious C?-torsor ’H(lc /z X J. By temperedness, the symbol
{—x1, —22} € K5(C(C)) lifts to a motivic cohomology class Z € H3,(C,Z(2)), and we make

the key

Definition 2.3.1. By the higher normal function associated to Z, we shall mean the well-

_1

defined section e

R of ’Hé/z, or its projection v := 'w((zﬂ%i)2 R) to a section of J. The

latter is computed by evaluating R as a functional on holomorphic 1-forms (modulo periods),

i.e. by the column vector

Vi = mp(Rw) (=1....9)
- % Z§:1<Rvﬂz§k + Rﬂeﬁzv ’Yj + Zgr nglﬁ}” (238)

= gz (Z01 Ry — Rg))
modulo the Z-span of columns of (I, | ).

To use mirror symmetry to compute v, put jo := Rg, — (27i)T;, and observe that by

(2.3.3) thru (2.3.7) (together with ;; = Q1)

(@) = g X Cui(Sa b, — 12, Foltla) + wiB)

= (55 i CieR, 0, Ra, — Rg,)

2ri

(2.3.9)
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Returning to the quantization condition, the exponent in (2.2.9) is

Jx(t + 27i[Cln; 27) — Jx (¢;27)

= 7i'n[Qn + 27in - £ — e ij Ci 15, Cijni,, (2.3.10)

where

¢ lejz = Zil,iz Ci1j10i2jzati1 ati2f0<£) and

D
o &= Y Ciy(E, 0, — 10, Fo(t) + X Ciy(bi + 0Y5)

by a straightforward computation, cf. [CGM, (3.28)]. Substituting in ¢t = t(a) + 7iB, the

first two terms of (2.3.10) become

Ti'n[Q(a)n + 27in - (v(a) + B + 5[Q(a)]A) (2.3.11)

(for B € Q) by (2.3.7)-(2.3.9). By an intersection theory argument and the identity n® =

N2

n, the cubic third term becomes —%i > nng’ mod Z(1), which may be absorbed into B.

Therefore, writing A := %A and 0 for the usual Jacobi theta function,

Ox (t(a) + miB; 27) = 0(v(a) + B+ [2(a)]A, [2(a)]). (2.3.12)

We have thus deduced from Conjecture 2.2.1 a striking relationship between the quantization
condition and the higher normal function. Let Dy C J be the theta divisor and Dylg] its

translate by (minus) the torsion section B + [Q2]A.

Conjecture 2.3.2. For A satisfying (2.3.1) and F integrally tempered, the zero-locus of the

twisted spectral determinant Z¢((—1)2a;27) is ezactly the locus where the normal function
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meets this torsion shift of the theta divisor: as subsets of M, we have
ZL (Zc((—1)%a; 27m)) = p (v(M) N Dyf3]) - (2.3.13)

In genus g = 1, there are 15 reflexive polygons (up to unimodular transformation) which can
be presented inside R x [—1, 1]. After making the torsion shifts completely explicit in §3.1,

we prove the “O” direction of (2.3.13) for these cases in §3.2.

2.4 Consequences in the ’t Hooft limit.

The spectral determinant Z¢ has fermionic spectral traces which generalize, from the (g = 1)

case of a single operator, the traces of pP"" acting on A" L?(R), cf. [CGM, §2.3]. Defined by

N, 50 Ze(N, h)a (2.4.1)

-----

these can clearly also be expressed in terms of loop integrals about 0:

da1 dag
N +1 TN TN
1 a/g g

Ze(N

(2.4.2)

Applying Conjecture 2.2.1 replaces Z¢(a; k) by ¥ ,ez0 €% ((@+2mi(Cluh) - where the 27i[Cln
simply accounts for the change in t"(a) as the a; go n; times around 0 — or equivalently, as

pj :=log(a;) increases by 27in; (for each j). Accordingly, (2.4.2) becomes

(271i)9 fi‘jooo ... fi‘jooo eJx(tﬁ(g);h)*ZJg:l Nj#jdlul A Adpg, (2.4.3)

Recall from §2.2 that the ‘t Hooft limit takes 7 — oo while essentially fixing ¢; = £2 and

T = 2’? which we will also impose on A L] As temperedness makes the g, = 1 hence

mi = 1, we write J3* (¢) := Jg (¢, 1), and note that (2.2.11) reduces to 7; = 2w Y, Cj;¢;-

18



Remark 2.4.1. In fact, even if we don’t assume temperedness, but fix the edge polynomials

2m

hence the {q}, the effect is the same since my(= e~ 7 1°8(%)) = 1 in the limit.

Now by (2.2.8), for A > 0 (2.4.3) becomes

o piee . pleo IO, NGO ge AL A dy, (2.4.4)

(27i)9 J —ioco —ioo

and we write é (A) for the stationary point of (the leading part of) the exponential, where
0 = 0, (J5 (¢) — X5 Aj¢;), or equivalently A; = 9, Jg* (¢), for each j. By the saddle-point
method, we can write (2.4.4) as exp(R*{J({(N)) — X5 A;¢(A) + O(F2)}), which is to say
that

lim (9,12 log Ze(hA, h))|a=0 = —;(0). (2.4.5)

h—00

Moreover, according to [CGM, §2.3], 7;(A) = 273, C;;¢;(A) is nothing but the classical
mirror map in the “conifold frame”, with A\ a parameter which vanishes at the maximal
conifold point 2.1 In other words, if & is any preimage of 2 in M, then we have R, (a) =
—27i7;(0) and

R, (a) = —47%(;(0) mod Q(2). (2.4.6)

On the other hand, if we set N; = 0 for j > 1, then the asymptotic expansion of
Ze(N1, 0.0, 0;h) = trpm 2y ((p§°>)®N1) can be computed via operator theory and asymptotic
properties of the quantum dilogarithm. This is worked out in [KM, MZ] for the three-term

operators (p§°))—1 = e+ ey + e ™ corresponding to the Laurent polynomials

() )

Fy o (x) =21+ mo oy "y A+ X0 ajry g (2.4.7)

16We are not aware of a proof of this statement, but there is strong computational evidence; it is also
consistent with the observation, in view of (2.3.3), that the vanishing of 0, Jg* (¢) at ¢(0) is equivalent to

that of a Q(2)-translate of Rg, (a) at a € t~'(£(0) — wiB). This is exactly what should happen at a g-nodal
fiber.
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(Here we recall that the {m} index the interior integral points of A; for instance, if
m = n = g, then m¥ = (1 — 4,1 —j).) Note that by Remark 2.4.1, #(\) will actually
compute the mirror map/regulator periods in the conifold frame for the families defined by

the integrally tempered polynomials'”

(J) (J)
Fon(z) =21 + 2o+ 27 "2y " 4+ 292 | 4y iy
(2.4.8)

+ Zgl 1 ( ) 1_5% _ZE + 292 1 ( ) 1[;%1:;_@7%1
where g; := ged(m + 1,n) and go = ged(m,n + 1). Anyway, the result of [op. cit.] (see also
[Ma, §4.3]) is that

hlim (8>\1 h_2 log ZC(h)‘lu O) ) 07 h))|>\1:0

= mintl P, (— m+1mm,n), (2.4.9)

272 3m n

. . . _omi m.o_sm .
where Dy is the Bloch-Wigner function, 3, = em#+#1 and w,,, = dmnTdmn - GQipce

dm,n"3m,n

LHS(2.4.9) must agree with LHS(2.4.5) (with j = 1), in view of (2.4.6) we arrive at
Conjecture 2.4.2. For the families C,,, arising from (2.4.8), the regulator period R.,

asymptotic to —2milog(ay) at the origin has value

=Ry (a) = ™ML Dy (=5t ,0) =t Dy mod Q(1) (2.4.10)

27mi 5m n

at the maximal conifold point.

Example 2.4.3. A toric coordinate change brings F» 5 into the form F3 4, but with a; and as
swapped. So Conjecture 2.4.2 actually yields predictions for both nontrivial regulator periods

at a = (5, —5), namely ﬁR%(@) =D,y = %Dg(e?m) and ﬁRW(Q) =D;; = %DQ(G?W)

170f course, there is no distinction between (2.4.7) and (2.4.8) if g1 = 1 = g».
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mod Q(1), where w := 1+—2‘/‘F’ This assertion was checked in [7K] by a computation we will

generalize (and make more rigorous) in §4.
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Chapter 3

From higher normal functions to

eigenfunctions

In this section we state and prove a precise version of Conjecture 2.3.2 in the genus 1 case.

3.1 Integral mirror symmetry and quantization conditions

The condition g = 1 is equivalent to reflexivity of A, whereupon X becomes simply the total
space of Kp,,. There is a unique compact toric divisor D = D; = Px. C X, corresponding
to the ray through (1,0,0), which amounts to the zero-section of p: X — D. Denoting by
E° C D a general anticanonical (elliptic) curve, we remark that D?* = —FE° in H*(X).

Let ¢ be the unique integrally tempered Laurent polynomial with Newton polygon A
and coefficients 1 at the vertices, and (writing a = a;) take F' = a + ¢. After compactifying
fibers in P and birationally modifying the total space, this produces a relatively minimal
elliptic fibration & — P! with rational total space, fibers E,, and discriminant locus X U{co}.
Writing r := |0ANZ?| and r° := |0A°NZ?|, E4 has type Lo, and ¥ is cut out by a polynomial
P, of degree 12 — r° = r.!

A section of the relative dualizing sheaf for our family is given by

w(a) := g Resp, (Hfahtaliz) (3.1.1)

IFor a generic choice of ¢, the remaining singular fibers of £ are I;’s. Since € is rational (as a blowup of
PA), the degree of the relative dualizing sheaf must be 1; and as each I;, contributes % to this degree, there
must be 12 — r° I’s. Each of these contributes 1 to deg(Ps), and this degree is invariant as we specialize .
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with period?

wy(a) = [ w(a) =1+ Xyso(—1)*[¢"]pa™ (3.1.2)

in a neighborhood of the large complex structure point oo. More precisely, this series
converges on D* := {a | |a| > |a|} € U = P'\ (Z U {oo}), where the conifold point a
can be described by —a := min(p(R, x Ry )) since the coefficients of ¢ are all positive [Ga].
By assumption, all the tame symbols of {—xy, —xo} are trivial, and so the R,, (i =
1,...,7—2) must be integer multiples of R, ~ —27ilog(a). More precisely, we have TmR

t; = Cyt = —(C; - D)t = d;t, where d; € [0,4] N Z is the lattice-length of the edge of OA

corresponding to C;. From Appendix A, we have on the cut disk D™ :=D*\ (D*NR_)

= t(a) == 75 R, (a) = log(a) + Do “H " [PHoa™, (3.1.3)

which gives w = 5=V, R hence (in the notation of §2.3) w; = w/w, globally on U. We

2
t -1

also see that e™* ~ a~' makes sense as a coordinate on D = D* U {oo}. The local mirror
symmetry results in [BKV] can be made very explicit:?
Lemma 3.1.1. On D™ we have the following identifications:

(a) Rg(a) = Zt(a)? + mirt(a) + (2mi)%(3 + ) — Yoo kMpe @),

(b) Qa) (= 2249y = () — 2 — Ly 0 k2Mye ™M@ and

(c) v(a) = gt(a)® + (3 + 55) + 12z Lrso k(1 + kt(a))Mpe 4,

where Ny, is the local GW-invariant for D counting rational curves whose classes C € Hy(D)

satisfy (C- E°)p =

Proof. X is described in [BKV, §6] as the large-fiber-volume limit of an elliptically-fibered

compact CY 3-fold W — Pa. with section D. Let Cy, .. ., C, be the components of Pa.\ (C*)?

2[]o takes the constant term; v is 71 from §2.3.
3Here as above 8 = 81, Q= Qy1, v = 1.
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(and their images in X), D! := p~1(C;), and Cy := p~!(pt). Then {Cy,C4,...,C,._5} span
HY(W,Q), {D,Dj,...,D._,} span H*(W,Q), and we can write —D? = E° = !, C; =
22;12 e;C; for unique e; € Q, whereupon D3 = 227:_12 die; = r°. Let Jy,...,J._o denote a
basis of H*(W,Q) dual to Cy,...,C,—5, and define 7y, ..., J,—2 by J; := J; — %Jy. Then
the ¢; in (2.2.3) are given by ¢; iis = —Tiy Jin Tis-*

The integral periods of the A-model VHS given by [BKV, (6.13-15)] lead (in the LMHS
as to — 0) to the following periods for our A-model VMHS. First, the limit of the Gamma
class for W yields ['(X) := 1— 1D? 4 (U4 = 143172 6,05+ (L + 21°)Cy € H* (X, Q).
Next, for integral periods we need to compose ch(-) UD(X): K§™™(X) — H*(X,Q) with

1t_71R

2mi (2mi)2 " i )

the following assignment of periods to cohomology classes: pt +— 1; C; —

and D — (27:1)2 SI=2d;0,, Fo(t). Applying this to Op, we have ch(Op) = D — %Dz + %D?’,
whence ch(Op)UT(X) = D +15 60+ (3+5), and finally (after multiplying the resulting

integral period by (27i)?)
Ry = X, did, Fo(t) + i s ety + (2mi)2 (% + ). (3.14)

We also recall from (2.3.7) that the period ratio is given by = 2’711 > d;0y, R, and the
normal function by v = ;5 (R,Q — Rp).

The last step is to substitute ¢; = d;t, which gives
Fo(t) = —(X; Titi)® + ¢ Noce CFI0E = 2243 4 57, o Mype™™ (3.1.5)

since Zz Zdz = Zz dsz — Zz eﬁfi JO = (JO — D) — JO =-D [BKV, (65)] USiIlg dﬁtl = 8t in

(3.1.4)ff now gives (a)-(c). O

4The results of [loc. cit.] are stated in terms of derivatives of the prepotential ®(tg,t) of W in the limit as
to — oo. One can obtain the free energy Folt ) for X by substltutmg to =30 2 £i¢; into ®° and taking
to — oo in @Y we then have s0p® = (27” s(—00+ >, di0;)® (27” 7z 2 di 8 ;. Fo, hence the version of
the A-model periods given here.

(27r1
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Remark 3.1.2. We point out two immediate consequences of Lemma 3.1.1. First, along with

(3.1.3), (c) makes it clear that v(a) as well as

V(a) := wy(a)v(a) = ;2 (Ryws — Raw,) (3.1.6)
are real-valued on D* N R,. Second, notice that 82R5 = 0% Ry = (937 5 R = Og, Zi =

w(g,), where the Yukawa coupling Y(a) = w,6,ws — cu,géaw7 blows up at a. Differentiating (a)
3

twice expresses this as a power series in e™!, from which one deduces that

lim supy_, o /|9%| = exp(R(t(a))). (3.1.7)

as in [DK, §5.4] (though this result in now unconditional).

We may now identify all of the torsion constants in §§2.2-2.3:

Lemma 3.1.3. In Q/Z the following equalities hold:

() b= Y dib =5 — L and BN = ¥, dbNS = 22 — L.

(i) T=14% and B° =

—_

(iii) A =1 =B, where B is as in (2.3.12)-(2.3.13).°

Proof. (i) These are the coefficients of ¢ in F; and F'° (after substituting t; = d;t), which
can be derived from [GKMR, (4.18) and (4.21)].7 Namely, we have b; = 5-c2(X)-J; [GKMR,
(4.18)] and co(X) = (11r° + 7r)Co + 12Y; ¢,C; = (10r° + 12)Cy — 12D? [BKV, §6.2] hence
b= i@(X)'ZidiJi = —iCQ(X)-D = —0ro4l12 4 1207 2

24 24 12

According to [GKMR,

N

(4.21)], we have F1° ~ —5-log(Ps(a)) ~ deg(PE) log(a) ~ —2t ~ (5 — $)t. (So of course,

(i) holds in Q, but we’ll only need it mod Z.)

5Again, for simplicity writing T = T;, B® =B}, B=Bj, and A = A;.
6and not as in (2.3.11), where B does not yet incorporate the correction from the cubic term.
"We should point out here that our “r” is not the “r” in [GKMR], where it means ged{d;}. (Moreover,
their “t” is rgxmr times our ¢.)
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(ii) The value of T is immediate from Lemma 3.1.1(a). To compute B° = v(a) —£(a), we
need to revisit £ from (2.3.9). The B-field is given by B; = d; (cf. §2.3 above or [GKMR,
§3.2]), and A = A; = 1, which means that replacing ¢ by ¢t + 7iB is equivalent to replacing ¢
by t + wi. Together with Y=, d,, =t Y, d;0;, = t0; = 6, and (3.1.5), this gives

£(a) = 125 (0 — 1)0,Fo(t(a) + i)

(3.1.8)
= 5t(a)? + 5 4 25 Tiso k(1 + kt(a))Mye k@
and, together with Lemma 3.1.1(c), the claimed value of B°.
(iii) We already have A = A = 1. For B, we compute
E(t(a) + i) = g5 ((t + 71)0, — 1) O Fo(t(a) + i) + (b + ONS)
= &(a) + {2 Fy(t(a) + i) + (b + bYS) (3.1.9)
= v(a) + 39Qa) + (b+ VN5 —B°)
and note that the cubic term in (2.3.10) becomes — 2 D3n? = —Zwin® = — = 271in mod Z(1).
Together with (i)-(ii), this results in the apparently miraculous cancellation
NS o r° —
B=b+b" B - =-3=1 (3.1.10)
modulo Z. [

Finally, we turn to the quantization conditions, i.e. to the spectrum (as an operator on

L2(R)) of®

= Zme@Amzz (_1)m1m2 Cbmi’rlnl 5"
(3.1.11)

= Y meonnze(—1)™ M2 g, BT ET? = —p(—3y, —22)

8Remark that ¢ = Fy and p = p; in the notation of §2.1. We have myms = my + my + 1 because (2.3.1)
(2)

always holds for reflexive polygons.
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or p:= ¢~ '. Writing o(+) for spectrum and A(a) := Z(w,(a),ws(a)) for the period lattice,

we have the

Proposition 3.1.4. In the genus-1 case, Conjecture 2.3.2 is equivalent to

o(@) = {a € U| V(a) € Ala)}. (3.1.12)

Proof. Noting that M = U, in the LHS of (2.3.13) we are taking the zero-locus of =(—a; 27) =

det(1—ap), which is precisely the spectrum of ¢. The RHS of (2.3.13) is the locus in U where

v(a) meets the theta divisor (which is %@ mod Z(1,€(a))) shifted by AQ(a) +B = 1+§22(a)’
which is to say where v(a) is zero mod Z(1,Q(a)). Outside of D™, this condition is only
well-defined in the sense of analytic continuation; to fix this, we multiply by w, to get the

form displayed in RHS(3.1.12). O

Remark 3.1.5. (i) The condition V' (a) € A(a), which is well-defined on U, reduces to v(a) €
Z(1,9Q(a)) for a € D~. Moreover, the argument in [LST, §3.1] using the coherent state
representation obviously shows more generally (for any ¢ considered here) that o(¢$) belongs
to R, and is countable with eigenvalues A; limiting to oo (so that p is bounded). In fact,
we expect that o(@) C (|a,00), as is clear for ¢ = ) + o7 + 29 + 25" or 21 + 7" + 29 +
3+ 2125t + 27wy and experimentally observed in other cases. This would mean that the

quantization condition “V" € A” reduces not just to v € Z(1,Q), but to
v(a) € Z, (3.1.13)

as v is real by Remark 3.1.2. We’ll have more to say about this in §3.2.
(ii) The most crucial “torsion” invariant in Lemma 3.1.3, leading to the cancellation in
(3.1.10) and the simple form of (3.1.12), is surely the constant term T of the regulator period

Rp. As an independent check, one can directly compute this constant term without using
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mirror symmetry and the Gamma class; see Appendix A for examples. Another check on
our quantization condition is that it should coincide with that in [GKMR, §3.3.2] when all

o

Qm, =1 (= Dy(m) = 0 and B(m,2r) = b+ b"° = = —1). Since voly(E) in [GKMR,
(3.24)] is just Ry, we may also identify “C” there as %-. Taking E = log(a) and Ees = t(a),
[GKMR, (3.105)] collapses to £(a) — 5 € Z + 1, hence to v(a) € Z.

(iii) There is an interesting sign discrepancy in (3.1.12): quantizability of ¢ — a is being
linked to a regulator class on the curve E, C PA compactifying solutions to ¢(z) + a = 0.

Blame it on the B-field! Or better yet, proceed to the next section for a more basic reason

why it has to be this way.

3.2 Construction of eigenfunctions for difference operators

In this section we assume that A is a reflexive polygon satisfying
ACRx[-1,1], (3.2.1)
and ¢ is as in §3.1, so that
p(z) = o (21 + 1) ™ xs + o) + 27 (21 + 1) %y (3.2.2)

Remark 3.2.1. Regarding unimodular change of coordinates (1, zy — 238, x$zs with ad —
bc = 1) as an equivalence relation on reflexive polygons, there are 16 equivalence classes.

All but one® of these has representatives satisfying (3.2.1).

For each a € U, E, C Pa denotes as before the Zariski closure of Ef := {z € (C*)? |

o(z)+a = 0}. Forgetting xo produces a 2 : 1 map 7: F, — P! with corresponding involution

9represented by A = convex hull of {(—1,—1), (2,-1), (=1,2)}, with Po = P2
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t: B, — E, and discriminant
(o(z1) +a)? — 4P (zy 4+ 1) = P(ay). (3.2.3)

The latter is a Laurent polynomial (in z;) with “Newton polytope” an interval [—c_, c,]
containing [—1,1] (and contained in [—2,2]), whose length is the number of ramification
points of 771(C*) =: E L C*; denote the set of these by B C E, and let py € B be one

of them. The holomorphic function

3(p) = 21 (p)™ (21(p) + 1)™(wa(p) — 22(u(p))), (3.2.4)

on EX satisfies 02 = (7%)* 2, thereby providing a well-defined lift of V7 to EX.

Writing EX for the fiber product of 7% and (—exp): C — C* yields a diagram

E, EX <P EX 5 3 (3.2.5)
N
P! C——0—C > =

with vertical maps of degree 2, and points in EX [resp. C] denoted by % [resp. z = II(%)].
We also write P(2) =: (21(2), 22(%)), where x1(2) = x1(2) = —e*, and %, € E for the point
with P (%) = po and J(z) € (—m,7]. For later reference put £ := P~1(E?), which is either
all of EX or the complement of TI!(%(1)).1°

Now suppose V(a) € A(a). If a € D7, then v, 5,w,,wg, 2, R,, Rg, and v are well-
defined; if not, we take them to be analytic continuations (along the same path) to a of those

objects from D~. (We will not write w(a) etc., just w, since a is fixed and understood.) Then

9There are 4 equivalence classes of ploygons for which E¥ = EJ, corresponding to X = P2, P! x P!, Fy,
and Fo. Otherwise, for Z € EX \ EZ, in view of (3.2.2) we have —1 = z1(2) = 21(2) = —¢* = z € Z(1).
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we have

for some ny,ny € Z. Notice that the regulator class R is only well-defined in H'(E,, C/Z(2)),

so its value on 7 is still represented by R, := R, — 47?n,. This replaces (3.2.6) by
Rs — R, 2 = —An’n; € L(2), (3.2.7)

and we claim this allows us to define a holomorphic function on E* by

X(2) := exp (;ﬂ {fgzgo zcif((;)) — f—j »: P*w}) : (3.2.8)

where w is as in (3.1.1), and &% is any path from Z, to Z.
The issue here is well-definedness, since nothing in the braces blows up on E;. To check
this, we remind the reader that for a loop . on E! based at pg, the value of R on its

homology class is computed by!!

Ry = [, log(—xy)dlog(—x2) — log(—x2(po)) [, dlog(—x1), (3.2.9)

where log(—=1) is analytically continued along .Z [Kel]. If .2 lifts to a loop .2 on E¥, then

clearly [, dlog(z;) = 0, and (3.2.9) pulls back to [, zifg)). Now given two paths &, &’
from Z; to Z on EZ, take £ to be the loop obtained by composing & with the “reverse” of
P’ and write £ = kyy + ko5 in Hy(E,,Z). (By integral temperedness of {—xz1, —x2}, this

determines R¢ mod Z(2).) The difference between the braced expression in (3.2.8) for these

10Of course, dlog(—z) = dlog(z) = 2. Note that (3.2.9), which is due to Beilinson [Be] and Deligne
[unpublished], is different from the regulator formula using the current R{—x1, —z2} (in which the function
“log” is not analytically continued but has a branch cut), but is easily shown to give the same integral
regulator.
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two paths is then

P z‘f;z((;)) — ?j—: [7P*w = [, log(—x1)dlog(zs) — i—: f,w

Z%) k’lR,y + ]CQRB — f—:(k:lwv + ]{20}3)
(3.2.10)
= k1 (R, —R,) + ka (B — R, 0Q2)

= 47?2(k1n2 — kgnl) Z%) 0,

using (3.2.7). After multiplying by %, this discrepancy is killed by the exp and the claim is

verified.
In fact, x(%) extends to a meromorphic function on EX which is holomorphic at II='(0).
dao

Of course, w has no poles on F,, and so P*w has none on Eax; the potential culprit is o

when d,,, d; are not both zero. Writing 2z = 2min + w + O(w?), x5 = w? (for d = —d,, or dy),

dxo

we find fz% ~ 2midnlog(w) hence exp(5= fzg) ~ w™ "™ as desired.

Finally, writing 7: EaX — EaX for the involution over C, we put

= . (3.2.11)

The denominator has zeroes at P~!(28), which does not intersect any of the poles of the
numerator.'? Moreover, these are simple zeroes, and the numerator also has zeroes at these
points (which are just the fixed points of 7). So ¥ is holomorphic on EaX Notice also
that applying 7 to Z changes the sign in the numerator and denominator of (3.2.11) (since
P oi=10P). Conclude that there exists a meromorphic function ¥ on C, with (at worst)

poles on 27i(Z \ {0}), such that U = II*W; we write this loosely as

(3.2.12)

12The only way ¢ has a fixed point at x; = —1 is if d, = dy = 0.
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and denote its restriction to the real line by #(r). We are now ready to prove the

Theorem 3.2.2. For A satisfying (3.2.1), the “27 direction of (3.1.12) holds. That is, if
V(a) € Ala), then a € ().

A

Proof. First note that #; = multiplication by e” (not —e"), #5 = ¢ 2™ and p = —p(—21, —I2)
are unbounded operators on L?(R), whose domains are roughly the proper linear subspaces
on which each operator preserves square integrability. (See [LST] for details.) In particular,

1 and

it is possible in this sense to be in the domain of ¢ while failing to be in that of &
#3", which is just what happens for ¢(r). Indeed, assuming V(a) € A(a), we claim that
e L*(R)\ {0} and

o0 = ay, (3.2.13)

which will obviously prove the theorem.
As U is holomorphic on {z € C | —27i < §(2) < 27i}, with meromorphic extension to a

neighborhood of its closure, we have

ei27ria""¢(7‘) — ei%i@z\p(q«) = \IJ(T + 27Ti)

= U (re(r)) = (F0)(r) = (SLe)(r).

(3.2.14)

Furthermore, 7, has a unique lift 7 : Eax — Eax with the property that P o 7. = P; and so
the difference operator ., lifts to (Z.x)(Z) := x(7+(%)). By the independence of path in
(3.2.8), we can take our path from Z to 71.(Z) to be the composition of 74 (% ) with a fixed

path &5 from %, to 7+(%). That is, writing P(Z) =: %5, we have

~ (3)) — i dzo(2) R %
€2(2) = o0 (5 { oo 728 = 2 o s P}
— exp <2ﬂ { Jps (e 2mi) 2@ — 2 [, P*w}> (3.2.15)

X exp (i {f%i log(—xl)% — 9:—3 ffoi w}) .



Adding and subtracting — log(—z2(%)) [+ L (= F2milog(—x2(Z%))) in the last braced
0

1

expression, (3.2.15) becomes

N . AR -2y 4y .
X(g)e¥{10g(*$2(Z))*log(*xz(zo))} w 27 Ly ey ) JFlog(—w2(20) (3.2.16)

By the same calculation as in (3.2.10), we have R o~ f—:w v+ € Z(2), and so after cancelling

log(—x2(po))’s, we arrive at
(LX) (8) = —2(2)F - x(3). (3.2.17)

Since =21 = —pler = fier = [lg(r), P acts on ¥ as —@(fig, (), —-), which lifts to
— 0y (), —.7_) for functions on EX. Applying this to x(Z) gives —p(x1(2), 22(2)) - x(2) =
ax(Z), and applying it to x(2(2)) yields —p(z1(2), x2(2(2))) - x(2(2)) = ax(¢(2)). (Here we
are just using the equation of the curve, ¢(x1(2),z2(Z)) + a = 0; and we can ignore §(P(Z))
in the denominator of ¥ since .%, doesn’t affect it.) So the overall effect on ¥, hence P, is
multiplication by a. This proves (3.2.13).

We still need to check is that ¢ is indeed square-integrable. Clearly [P*w has a finite

limit as r — 400, so we consider the behavior of

JrE2D = [log(—1(r))dlog(—a(F)). (3.2.18)

~

Let ¢ € E, \ E, and set o; := ord,(z;); then (—1)* limp_,q% = 1 by integral

temperedness. Hence there is a local holomorphic coordinate on FE, vanishing at ¢, with
—z; = w® and —zo = w2 (1 + O(w)), and (3.2.18) = 22 log*w + O(wlogw) is just
0—217"2 (with o1 # 0) plus terms limiting to zero. Since this is multiplied by ;- before taking

20

exp, we conclude that x(Z) is bounded on IT7'(R). On the other hand, in the denominator
S(P(7) = /D (e") of ¥, D(e") = 5 . a;e’" (a_c_,a., # 0)is dominated by the e“+" term
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as r — +oo and the e™*" term as r — —oo. That is, [¢(r)| < Ce™"/?l for some constant
C, hence 1 belongs to L*(R).

Finally, we must show that ¢ is not identically zero. If it were, then by basic complex
analysis U would be zero; so it suffices to check that (say) ¥(zo + 27in) # 0 for some n € Z.
We may choose a local holomorphic coordinate u on EaX about Zy, such that (locally) 7 sends
ur— —uand z = 29+ u?. Clearly z2(2) = z2(po)(1 + ciu+ O(u?)) and P*w = (¢ + O(u))du
for constants c;,cy € C*. The expression in braces in (3.2.8) (integrating on a path from
Zp to Z(u)) takes the form (c1z9 — %cﬂu + O(u?), and we can ensure the coefficient of u is
nonzero by replacing zo by zo + 2win if necessary (since this affects nothing else). So the

cout+O(u?) _ e—cou+O(u2)

numerator of (3.2.11) becomes e ~ 2cou, and since the denominator

also has a simple zero at u = 0 we are done. O

Remark 3.2.3. Returning to the “sign flip” between curve and operator highlighted in Remark
3.1.5(iii), we remind the reader that it is {—zy, —x2}, not {1, 22}, which is integrally
tempered for the simplest choices of Laurent polynomial ¢.!3 So it is the regulator integral
for this symbol which produces a well-defined W(%). But the signs in the symbol force the shift
operator &, to act on x(2) through multiplication by —xz4(2) rather than x5(Z2), which in turn
forced us to use (—exp) (not exp) in (3.2.5) so that &; acts through multiplication by —z1(2),
resulting in the action of ¢ = —p(—2;, —23) through multiplication by —¢(x;(2),z2(2)). The
upshot is that the signs in the symbol'* are ultimately responsible for the presence of the
B-field.
Without stating any results formally, we want to briefly address the higher genus hyperelliptic

case, where F} = ¢ still takes the form in (3.2.1)-(3.2.2) but A is no longer reflexive. (Note

that oo will have ao,...,q, as coefficients.) One easily checks that the construction of 1

and the proof of Theorem 3.2.2 still go through after modifying x(Z), provided we impose

Be.g. 1 + a9 + acflx; !, and including the examples studied in [GKMR] with trivial mass invariants

Qm, = 1.
“along with those in (3.1.11) arising from Weyl quantization and the CBH formula.
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a stronger quantization condition than that in RHS(2.3.13). Namely, referring to (2.3.8),
suppose that

the normal function vector v(a) belongs to (L, | Q)Z9. (3.2.19)

Then replacing the expression in braces in (3.2.8) by

Sz 22l SRy, [ Prw (3.2.20)
20 BN

x2(2)

for appropriate determinations of %, the obvious generalization of (3.2.10) goes through,
ensuring that the generalized x(Z) is well-defined. Under an additional assumption like
(2.3.1), and changing the signs in ¢ of those a;’s attached to even powers of Z;, one finds as
before that P = aq9).

The criterion (3.2.19), which we expect corresponds to the exact NS quantization conditions
of [SWH], will only hold at countably many points in moduli. On the other hand, Conjecture
2.3.2 predicts the existence of eigenfunctions for @ in a codimension-1 subset of moduli. So it
stands to reason that there should be something special about the eigenfunctions v, which we
can only construct for @ in the smaller locus. In the genus-2 example worked out explicitly in
[Za, §4.3], whose “fully on-shell” quantization conditions (cf. [loc. cit., (4.45)]) should agree
with (3.2.19), Zakany highlights the enhanced decay of his explicit eigenfunctions. Indeed,
in our construction, for g > 1 the discriminant & will involve higher powers of both z; and
27" than for g = 1, which leads to decay better than e~I"/2l at infinity for ¢ (r); this perhaps

begins to explain the discrepancy.

3.3 Remarks on the spectrum of ¢

Notably absent from the last section is any discussion of the “converse question”, as to

whether every eigenfunction of ¢ arises from the construction described there. We will prove
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a fairly strong result in this direction, to the effect that “almost every” eigenvalue \ satisfies
V(\) € A(N). As already mentioned in Remark 3.1.5,'5 the spectrum o() is a countable
subset of [¢,00) for some ¢ > 0, whose elements can be arranged in an increasing sequence
{)\;};>1 with \; — 0. We may replace $ by its self-adjoint Friedrichs extension to L*(R)
without affecting these statements, cf. [LST].

Suppose P is a proposition (that can be true or false) about elements of o(p). Write

N(A) :=|{j e N|A; <A} and
Np(A) :=|{j € N| A; < X and P();) holds}|.

We will say that P holds asymptotically it

y Np(A)
Pl N(N)

=1. (3.3.1)

Theorem 3.3.1. In the setting of Theorem 3.2.2, the “C” direction of (3.1.12) holds asymptotically.

Proof. The statement P();) about eigenvalues here is, of course, that v()\;) € Z.'® From

Lemma 3.1.1(c), we know that v(a) = £ log” a + O(log a), whence

NO) = No(3) 2 [v() - v(]al)] = 2 log? A + Oflog A). (332)
Now given f,g € L*(R), write (f,g) == [ f( g(r)dr, and
Flyr,ye) 1= 275/4773/2 Iz e—ﬁ{(“yl)%r?iyﬂ}f(r) dr (3.3.3)

for the coherent state transform of f. Adapting the calculations of [LST, §3.1] to our setting

15The point is that the proof of [LST, Prop. 3.4] trivially generalizes to all ¢ we consider here, because A
always contains a reflexive triangle (or square). The proof of Theorem 3.3.1 involves, in contrast, a rather
nontrivial generalization of [op. cit., §3.2].

6We can always throw out a finite set of eigenvalues less than |a|, if they exist (cf. Remark 3.1.5).

36



gives

= [Jeo P(W1.y2) |/ (w1, y2) [Py dyo (3.3.4)
where
®(y1,1n) = Smeonnze ame 2 MM gmyitmaye, (3.3.5)

This implies, for instance, the semi-boundedness of @, as ® > ¢ := minyepz P(y) > 0 =
p>c-1d = o(p) Clc,00).
Let (+)4 be the function on R defined by (s); = s for s > 0 and (s); = 0 for s <0, and

note that

fo)\ N(s)ds =Y ;51(A = Aj)+. (3.3.6)

Reasoning with Jensen’s inequality as in [op. cit., §2.2], we have

Siot(A = A+ < g ffee (N — Dy, 12))+ dyr dye. (3.3.7)

Choose M > 0 so that Ma,, > a,, (Vm € 0ANZ?). Writing V; :=e% and I'y, := {Y € R? |
L > ¢(Y1,Y32)}, note that the boundary OT';, is the cycle § on E_j. Together with Lemma

3.1.1(a) and (2.2.6), this gives

RHS(3.3.7) < gy [Joe (MA = (Y1, ¥2)) S92

< 22 [l A = A Ry(—MN) (3.3.8)
= Z5Mlog” A+ O(log A).

87r2

Putting the last three equations together, we get

ez 10g” A+ O(log A) > N(N), (3.3.9)
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which combined with (3.3.2) gives the result. O

The constraints imposed on the zero locus of p o v by its interpretation as eigenvalues
of ¢ (Theorem 3.2.2), and vice versa (Theorem 3.3.1), seem worth exploring further. For
instance, per Remark 3.1.5, we expect (and know in some cases) that ¢ > |a|; together with
the following Lemma, this essentially rules out points a € U at which V(a) € A(a) (the
exact quantization condition) and R(a) is torsion (the perturbative quantization condition

proposed in [GS]).
Lemma 3.3.2. Fora € (|a], ), R(a) € Hi(E,,C/Z(2)) is a nontorsion class.

Proof. From the known integrality of local instanton numbers of toric CY 3-folds [Ko],
it follows that LHS(3.1.7) > 1, hence that R(¢(a)) > 0. From (3.1.3) (and positivity of
coefficients of ¢, and negativity of @), it is immediate that ¢(|a|) > R(t(a)), hence t(a) € Ry
for a € (]al, 00). But if R(a) is torsion, then R, (a) € Q(2) = t(a) € Q(1) C iR. O

More striking is a conditional transcendence result on the eigenvalues that arises from
their asymptotic Hodge-theoretic interpretation in Theorem 3.3.1. A mixed version of
the Grothendieck period conjecture (which we will simply call the GPC) says that the
transcendence degree of a period point arising from a motive defined over Q is equal to
the dimension of the minimal mixed Mumford-Tate domain containing it. The (mixed)
motive in question is the Ky-cycle {—z1, —x2} on E,, with MHS the extension of Z(0) by
H'(E,,Z(2)) given by ﬁR The possibillities for the M-T group are an extension of SLs
or a 1-torus (depending on whether E, is CM) by G? or {1} (depending on whether R is

torsion); the corresponding domain is §), a CM point in it, or the product of either one with

C2. The coordinates of the period point are (a) (in §) and (gjr(gg, gfr(i;) (in C?).17

1"We have to divide by (27i)2, of course, because a torsion class must have coordinates in Q, not
transcendental ones in Q(2).
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Conjecture 3.3.3 (GPC). Ifa € Q and R(a) is nontorsion, then the transcendence degree

of Q). G55 i)/ Q) s 2

Proposition 3.3.4. Assuming the GPC, asymptotically o(p) consists of transcendental

numbers.

Proof. Let A € o(¢) be an eigenvalue for which v(\) € Z. (We may assume A € (|al, 00).)

That is, we have an algebraic relation ;5 (R,(A)Q(\;) — Rg(X)) =n on gjr(i;g and g‘; (1;\2) over

Q(Q())). By the GPC, either A ¢ Q or R()) is torsion. But the latter possibility is ruled

out by Lemma 3.3.2, and so we are done by Theorem 3.3.1. O

We conclude with somthing of a curiosity: in case p = x; + 27" + 29 + x5 + z125 " +
27 25, our normal function is closely related to the Feynman integral Z associated to the
sunset graph with equal masses [BKV]. This is written in [op. cit.] as a function of
5 = ﬁ = the inverse norm of the external momentum, but written as a function of a we
have Z(a) = @V(a) (see [op. cit., (7.17)]). The condition that V(a) € A(a) means that
V', or equivalently Z, belongs to its own lattice of ambiguities under monodromy. As we have

seen, the values of a at which this happens correspond to eigenvalues of ¢. One wonders if

there is any deeper physical relation here between Feynman amplitudes and quantum curves.
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Chapter 4

Regulator periods at the maximal conifold

point.

In this section we prove Conjecture 2.4.2 in the cases (m,n) = (g,9) and (29 — 1,1), for
every g > 1.

Because we have to enumerate multiple nodes on the maximal conifold curve, it is better
in this section to replace (z1, x9) as toric coordinates by (z,y), which we do throughout. We

also denote the zero-locus of a polynomial by Z(-).

4.1 The main result and some preliminaries

Consider the families of genus-g curves cut out of (C*)? by the (integrally tempered) polynomials
F,4(z,y) and Fy,_11(z,y) from (2.4.8). In contrast to §2, C,, and Cyy_1,1 will denote their
compactifications in Po. There are no mass parameters in either case, so r = 3 and the
equations take the simpler form (2.4.7). Moreover, C,, is torically equivalent to Coy_1; via
the map v = 2~ 'y~ !, v = 29y9~!. The effect of this map is straightforward: forn =1,...,¢
it simply shifts n — g —n + 1 on the level of indices; that is, if F, (x,y) is written
with parameters a,, then the image (under the above map) is precisely Fh,_;4(u,v) with
parameters a,_n11. The upshot of this connection is that statements concerning regulator
periods of Cyy_1,1 can be pulled back to those corresponding to Cg 4, provided we choose the
correct cycles. For our purposes here, the important case is that the cycle vy_n41 of Cog_1,1
~ —2rilog(ay—n+1) pulls back to the cycle v, of C,, corresponding to

giving rise to R, .,
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R, ~ —2rilog(ay).

Theorem 4.1.1. Conjecture 2.4.2 holds for the families Cy 4 and Cog_11; that is,

=R, (a) Q(zl)ngg and (4.1.1)
R, (a) Q(zl)Dgg_Lg. (4.1.2)

Remark 4.1.2. The predictions of [CGM] aligning with Conjecture 2.4.2 are written in terms
of the complex structure parameters z; := z;(a). Translated into statements about the

corresponding regulator periods (cf. (2.3.4)), these essentially amount to'

Dy, (4.1.3)

ﬁ 9 1[C7M1jRa,(2)

Q1)

which of course is equivalent to (2.4.10). While z; and R,, are more natural from the
standpoint of GKZ systems, the {a;} and the corresponding regulator periods R, simplify
the statement of the result, and are more natural to compute directly (cf. Appendix A).
As we will see, the {~,} are also the cycles which limit to loops passing through individual

nodes at the maximal conifold point a.

Remark 4.1.3. As R{—z,—y} = R{x,y} mod Q(2) we may work with the latter. Note
also that (2.4.10) is stated in terms of the regulator period asymptotic to —2xilog(a,); it
is convenient in this section to drop the negative sign and work with one asymptotic to
2rtilog(a,). Thus from now on

R, ~ 2rilog(a,).

Furthermore, since we intend to investigate different components of the discriminant locus

throughout this section, it will be important to track the moduli; so henceforth we will

Here [C~1] is the inverse of the first g x g minor of the intersection matrix [C]. The R, “correspond”
to z; in the sense of being asymptotic to 2wilog(z;).

41



a a
rename Fy, and Fy, 15 to Ft) and Fo_ ;.

Let us outline a proof of Theorem 4.1.1. Denote by CAg,g the fiber of the family over the
mazimal conifold point a. It has g nodes {p;}, and the cycles {4;}7_, passing through each
node generate H,(C,,); we set Ry, = f&, R{z,y}. Writing k = 5[Id], @ for the change-of-

basis matrix, we have

Proposition 4.1.4. Let r; := ged(2j — 1,29+ 1). Then
Kk = diag(k1,. .., Kg). (4.1.4)
It then follows from temperedness that

1 A~ — n
i 0, (2) ¢ 2

R (4.1.5)

V5t
In §4.2 we detect monodromies via power series representing classical periods, verifying
Proposition 4.1.4 in the process. In §4.3 we use a key technique developed in [DK, §6] (cf.
Appendix B) that allows us to connect conifold limits of regulator periods to special values
of the Bloch-Wigner function; this method coupled with Proposition 4.1.4 settles Theorem
4.1.1. As a consequence g-many series identities are borne out in §4.4 — not just the two

required for the Theorem.

We conclude this subsection with two preliminary results. The first will help us to control

certain power series asymptotics, and the second gives us information on nodal fibers of C, 4.

Lemma 4.1.5. If a,b,c € Ry are such that a = 2b + ¢, then

a

I'(1+a) 1 jafafc\™"
T2(1+ b (1+c)  2rb c(c(b) ) ' (4.1.6)

42



Proof. Stirling’s approximation yields

I'(l1+a) 1 ja a® _, o 1 \/E a®
~ — e p— _
2(1+0)(1+4c¢) 2wV cb?ce 27b V¢ b?bea—2b
1 @at® 1 fafafe\"")
2 Voecee b2 2rbV e\ e\ b

for b,c — oo (and a = 2b + ¢). O

Lemma 4.1.6. Suppose that the fiber over @ = (@, ...,a,) has g-many singularities, say

p; = (Z;,9;),n=1,...,9. Then for each j, p; is a node, and &; = y;.

Proof. Since 20, F¢ (z,y) — yO,Fg, (v,y) = x — y, any singularity must have symmetric

co-ordinates; that is, ; = y;. By toric equivalence we may replace F’ gg (z,y) by
Fiy 1 o(u,0) = u+ v+ X7 du™ + w20+ (4.1.7)

(reversing the order of the {a,}); by abuse of notation we continue to label the singularities of

ng,l,l by p;, but with coordinates (@;, 0;) satisfying ﬂj_Qg = 17?. Since the edge polynomials
of (4.1.7) are all w + 1, the curve intersects each component of the toric boundary with
multiplicity 1, and so all p; € C* x C*. Moreover, (4.1.7) is irreducible since it is quadratic
in v, with discriminant Z(u) of odd degree. As a consequence, the vanishing cycle sequence

associated to the smoothing ng_m + s takes the form

0— HY(C5,11) — HL, — HL, — 0. (4.1.8)

lim van

Since rk(F'H}

lim

= g and the ¢ singularities each contribute nontrivially to rk(F*H? ), each
g g smg Y

van

contribution must be exactly 1. So the p; are either nodes or cusps, and to show they are

nodes it will suffice to show that the Hessians H o is non-degenerate at p;.
29—1,1
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To do this, define

P(u) =29+ 1+>9_,(29+1—2j)a;u, (4.1.9)
and observe that
P(ﬂy) = %Fgg—u(ﬁj) + 28UF2@g—171(ﬁj) =0. (4.1.10)

Thus Z(P) = {i,...,1,}. It follows that P has no repeated roots; that is, P’'(ii;) # 0 (V7).

To compute the Hessians, write

OunFag1.1(Pj) = Soy 000 = Vagii; ™" + 29(29 — V)i a,!

= Y0 00 = Vaga; ™ + Wiig”y (4.1.11)
OuFiy—11(B;) = (29 — V)i;5;% = %=1, and (4.1.12)
Ovo Fa 11 (By) = 2039072 = = (4.1.13)

At this point a few simplifications can be made. Differentiating the defining equation of P

and plugging in u = 4;, we obtain,
P'(ay) =250, 00 — Daga; ' — S0 (29 — 1)baga; " (4.1.14)
On the other hand @M(Fgg,l’l(u, v)/u) vanishes at p;, which yields

g pr ~—l—1 —9g—1.—1
— D1 Eaguj — 2gu; ;=0

— Y029 — Djagu; ' = -2t (4.1.15)

s
J
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Combining everything, we arrive at

a . —1)29; P! (i

OuuFag—1,1(Ps) = (29%1% i 4 P (4.1.16)

Therefore,
- a ~\\2 i - a -
HF?Eg*Ll (p]) = (aqufgfl,l(pj)) - auungfl,l(pj)avvagfl,lqgj)
_ (291;21)2 _ (291;21)2 _ 15’51_77) _ _P’éﬁj) £0
j 3 J j

as was to be shown. O

4.2 Monodromy calculations via power series

Consider a 1-parameter family of curves C — P! with coordinate ¢, endowed with a section w
of the relative dualizing sheaf; on smooth fibers C;, w; is a holomorphic 1-form. Assume that
C. has a single node p.. (i.e. is a “conifold fiber”), and let dy be the “conifold” vanishing cycle
pinched at p.. Writing ey for a cycle invariant about ¢ = 0, its monodromy about t = ¢ is a
multiple of dy, say kdy for some k € Z=q. We would like to compute this conifold multiple k.

Writing €o(t) = Y0 bnt™ = [ wi, we have
/ wi = (To — ey = 2miCo + O(t — ) (4.2.1)
kdo
for some Cj € C. Observe that
/ wczk/wc:k-27ri~f}7eswcz>C’Ozkf})eswc. (4.2.2)
k(S() c c
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On the other hand, [Ke2, Lemma 6.4] (with B(t) = €y(t), A = 27iCy, and w = 1) yields

C
by ~ ——2— (4.2.3)
cam-m
provided Cy # 0.2 Therefore we have proven
Lemma 4.2.1. The conifold multiple is computed by
lim b, - c™-m
k="m2 . (4.2.4)

Res,, w

Example 4.2.2. Consider the Legendre family, y?> = z(x — 1)(x — t). Setting ¢ = 1 gives

rise to a node at (1,0). Taking w; = df, we have

Res(1,0) we = Res;—; de __ 1, (4.2.5)

(z—1)z

S

m

Moreover b,, = 2w (71/2>2, hence (4.2.4) implies

k= lim 2rm (%) = 2. (4.2.6)

m—r o0

Example 4.2.3. Now consider the family C, defined by fi(z,y) = xy — t*/3(2® + 43 + 1).

In this case ¢ = & and b, = &2 but C. = Z(IT2_,(1 + G + (3'y)) is a Néron 3-gon with

ml3

three nodes p;. But since g¢(c) will pass through each p; the same number ko of times, and
w, must have the same residue at each, (4.2.4) holds (taking say p. = p; := (1,1)) provided

we interpret k as 3kg. For the residue of

de Ndy  dxr  dw
fc 6yfc x—yQ

2Otherwise, B,, has a smaller exponential growth-rate and RHS(4.2.4) is zero, which confirms the Lemma
when Cy = 0 as well.

2miw. = Resg, (4.2.7)
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at p1, we can restrict to the component X. := Z(1 + {3z + (3y):
dx 1 R (3dy

T =y omi o T\ 2+ Gy + G

1 G 1

1
Resp, w. = TﬂReS(l’l) (

= — = . 4.2.8
omil— 273 (4.2.8)
Since b, = (f’ﬁ?' we get
1 (3m)!
k= Jim oo 23 = 3, (4.2.9)

which means that £(c) winds once around the Néron 3-gon.

For the proof of Proposition 4.1.4, we need to compute the Picard-Lefschetz matrix &,
whose entries k;; tell how many times the specialization 7;(a) passes through p;. In order
to invoke Lemma 4.2.1 for this purpose, we should reinterpret these numbers as (roughly
speaking) conifold multiples for 1-parameter subfamilies of C, acquiring a single node. The
idea is that a is a normal-crossing point of the discriminant locus, whose ¢ local-analytic
irreducible components each parametrize fibers carrying a single node p;. These are labeled
in such a way that the j* component can be followed out to where it meets the a;-axis at
a; = a;. Call this fiber Cgéfg, and p; = (2, ;) for the limit of the node to it.

From Appendix A we have the 1-forms

(4.2.10)

. dx N d
w; = %V(Sa]. R{l’, y} = TAReSCQ,g < : )

and 1-cycles v; (j = 1,...,g). The computation that follows will consider periods II,; =
f%_ w; on the l-parameter families over the aj-axes (acquiring a single node at a; = a,),
which will suffice to determine the diagonal terms k;;. That the remaining, off-diagonal

terms are actually zero follows from the fact (cf. Appendix A) that each ~; is well-defined
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on a tubular neighborhood of the hyperplane in (compactified) moduli defined by z; = 0,
which is cut by the conifold components carrying p; for every ¢ # j.

Now Cgfg is defined by

f9) = Fyj(a, y) = +y+ apxt Iyt a9y, (4.2.11)

and to find the node p; we solve

#29£0) = 252 1 4 G, =, (4.2.12)

r=y==;

=i —g— (j — DaaP T = 0. (4.2.13)

02g+1 )
L a’ffg,g

r=y==;

to obtain

. _ a9 —Jt+1 42.14

2(g—j+1)
2 1/ 2 1 29+1
o= -9+ g+ (4.2.15)
2j—1\g—7+1
In particular, we have the relation
29-j+1) _ _29+1
;] 21 (4.2.16)

In order to calculate the residue of @, at p;, recall that for any f(x,y) = Az*+ Bry+Cy*+

higher order terms € C[z, y|, we have

dx/\dy
S

dz N dy

Re2
f

1
= Resy <Resz(f) ) = T : (4.2.17)

—4AC
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Changing variables to X :=x — 2, Y :=y — &; in g(fg (x,y) leads to the equation

2971 (2g%+2g+1—(9—j+1)(29+1))

; T
1 18) -

#2971 (202 +2g+1—(9—j+1)(29+1))

_|_ J

5 X2 4 5&?971(292+2gf(gfj+1)(29+1))XY

Y2+ higher order terms. (4.2.18)

Therefore

5 dx N\dy

2

1

P goys £9)

@297 /(202429 (9—+1)(20+1))2— (202 +2g+1—(9—j+1)(29+1))?

1
#2971 /(2g—2g—1)(4g> T4g+1—2(g—j +1) (29 +1))

1
#3971/~ (29+1)(2g+1—29+2—2) (4.2.19)

#2971 /(2g+1) (2j-1)

Consequently the residue of w; may now be found:

Resp,w; =

For the periods of w;,

Com(g—j+ )2 —1)

we start as in Appendix A with those of the regulator class.

—aj o drAdy
2mi P iy £9)
Y Jg.9
— % 20970 | Reg? M
i R g
=1 . .2g—j+1) 1
— (a7 (4.2.20)
2 #2729+ 1)(25 - 1)

V29 +1
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Writing ¢; := 2/~ 'y/ 7 F& (x,y) — a;, (A.0.3) (with the sign flip from our choice of 7;) yields

@ 3 Tonle) = T
= log(a;) — > Wx (4.2.21)

(7~ a7y 0 g ad e g gimolygmaym]
——  — k;ﬁ] —_— —-—
=:A; =:B; :;C]’? =:D;

where [L]y stands for the constant term (in z,y) appearing in the Laurent polynomial L.

Now, given [, 1y, -+ ,l, € Z, we define
1 g
=1 (2 (2k — 1)l 4.2.22
= g (2 D1+ Yok - ) (4222
k#]
1 g9
lji=——((g—J7+ 1)+ > (k—j)l]), and put (4.2.23)
27 —1 bt
k#j
L=l 1) €2 | [ € Zxo} \{(0,---,0)} (4.2.24)

Note that I} € Z>y = [; € Z>o. The upshot of this construction is if L;, L € Z>, are

such that
A%B%TfuﬂWD@:1am1 (4.2.25)
J J J J e
K7
g
Li+L;+Y lk=m (4.2.26)
k=1

then L; = L) = I (by symmetry) and m = [;. Thus the lattice £; C Z9 encodes all possible

constant terms appearing in (4.2.21), giving

1 T(1

S Roy(a) = logla) = -
ot cjma+g)nra+@)

k=1

[' > Ha (4.2.27)

k#]
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For the classical periods II;, = fv- wy = (5(11,_}%7 , it is clear from (4.2.27) that IL,;, vanishes

27i

on the aj-axis for £ # j. Focusing then on

ra+y
Hjj a / w; = 1+ ( ;l_ J) H CL (4228)
i . 2 !
Vi c; T2(1+1) l;llr(l + lk) B
we set a; = 0 for 7 # j to obtain
D(1+ 22)) 2+1,
S=1+ X 271 (—a;) 217, (4.2.29)
J+1l ez F2(1 + ggj{tll])r(l + l]) ’
2] >0
Recall that k; := ged(2j — 1,29 + 1), and set
27 —1 20+1 (294 1)n;
AR Mmooy
7 J J (4.2.30)
S and si=a; "’
r. = — . 1= .
J nj, J J
Clearly n;, m;,r; € Z~o. Now we have a power series of the form
1)"‘]’”F(1 + m;r; ,
=1+ — i";) by, sy (4.2.31)
TZG:N P2(1 + ==y D1+ nJTJ) &l Z ’
Let §; := ;. Applying Lemma 4.1.5,
T myry) S L (4.2.32)
P2(1+ 2 ) D(L 4 nyry)  2mr(my — ”J)\/”_j i
from which we may conclude that
. 2./m;
lim b, -7 §7 = ! : (4.2.33)

Tj — 00
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Observing that

Resp w; = V29 +1 — Vake/ ) (29 + 1)n;
YT on(g—j+ 1) /(25—1) 2mni(g—j+1) 2j — 1
. 2 ijLj
2m(m; —ny)(25 — 1)
we apply (4.2.4) to obtain
A b 18 9
Kii = = = K.
7 Res;; @, n; !

This concludes the proof of Theorem 4.1.4.

Remark 4.2.4. Notice that k; = k, = 1. We document x := (kq, ...

(4.2.34)

(4.2.35)

kp) forg=1,...,10 in

Table 4.1. The lack of symmetry for ¢ > 4 should not be surprising given the shape of the

Newton polygon.

g K
1 1

2 (1,1)

3 (1,1,1)

1 (1,3,1,1)

5 (1,1,1,1,1)

6 (LI,1,1,1,1)

7 (1,3,5,1,3,1,1)

8 | (LLL,1,1,1,11)

9 | (LL,LI,L,1,1,1,1)
10 | (1,3,1,7,3,1,1,3,1,1)

Table 4.1: Conifold multiples for small genera
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4.3 Normalization of the conifold fibers

For the family Fg  := F,(a) the mazimal conifold point & € C9*"~? is defined to be the
unique point (if it exists) on the boundary of the region of convergence of the series (4.2.27)

where F%  acquires g nodes (labeled by p; := (25, ;)).

Remark 4.3.1. Strictly speaking, it is only Z which is unique, with finitely many preimages in
a, one of which has real coordinates; it is this one which we call a. Given existence, we refer
to [Tyomkin, Prop. 7] for an argument proving uniqueness of Z - essentially, the variety V'
parameterizing all irreducible nodal rational curves of the (untempered) family é%nn is either
empty or irreducible, and is isomorphic to a subgroup of (C*)* x (P')3 / PGL,(C). Hence
V' is of dimension 2. However by passing from a to z parameters we cut down two degrees
of freedom via toric automorphisms (namely (C*)?), and as such the projection of V', being

0-dimensional and irreducible, is a single point.

Remark 4.3.2. The convergence issues can be taken care of by transforming the series (4.2.27)
into one in terms of the GKZ variables z. We claim that R(a) = (27i)~'R,, (a) +log(a;) has
no monodromy for z = z(t) := (t™,¢,...,t) if m > 0 and [¢t| < 1. It is enough to check that
there is no monodromy on z; = 0 (obvious, as the power series is identically zero there) or
when |z1] < 1 and z; = 2;(i > 2). For the latter, note that the discriminant of (4.3.3) is a
power of z; — 1.

So B(t) := R(a(z(t))) is represented by a power series Y, B,t™ on the unit disk, is
bounded on {|t| < 1+ €} \ [1,1 + €) (as the K5 symbol is nonsingular at ¢ = 1), and has
monodromy about t = 1 (77 — I)B ~ cst. X (t — 1) (since (17 — I)7; is a vanishing cycle
with trivial regulator). We are now in the situation of [Ke2, Lemma 6.4] with w = 2, so that
By, ~ cst. x m — 2. The power series thus converges at ¢t = 1, and must evaluate to B(1) by

Tauber’s theorem.
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The standard way to find a is via the discriminant locus: we look for transverse intersections
amongst its local analytic branches. This is a viable strategy in particular cases; however,

it requires careful analysis even in genus 2.

Example 4.3.3. The case Cyo giving rise to a resolved C?/Zs orbifold was extensively

studied in [CGM, §4.1]. The discriminant locus is described by the equation (using z;’s),

31252228 + 5002122 + 1622 — 2252129 — 823 + 272 + 1 =0 (4.3.1)
where
a9 aq
21 = ;?, 29 = ;% (432)

Figure 4.3.1 illustrates the intersection that gives rise to the maximal conifold point Z =

(—%, 1), which lifts to & = (5, —5).

2575

2>

Il
~

|
[\
Cﬂ|)_\
Ut =
~

21
014 012 -01 -008 006 —0d4 —002 0 002 004 006

Figure 4.3.1: Discriminant locus of resolved C?/Zs, axes are z;’s.

It is clear that for the family C, 4, the discriminant locus is described by a degree 2g + 1
polynomial in ¢ variables; so that approach quickly becomes untenable. However, a close
study of the g = 1 and g = 2 cases suggested a “constructive” approach to producing g-nodal

fibers, which generalized well and leads to the following:
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Proposition 4.3.4. Let T, denote the m" Chebyshev Polynomial of the first kind; this is

a degree-m polynomial characterized by T,,(cos @) = cosmb. Then we have

Fe (2, 7) = 20(Togi1(55) + 1) (4.3.3)
It follows that
. 129+ 1(g+5—1
= (=) d 4.3.4
a; = (=1) 2j—1<g—j+1> an (4.3.4)
. N 1 217
&y =g = —sec <29 - 1) (4.3.5)

forj=1,...,9. In particular, a € Z9.

Proof. That z; € Z(RHS(4.3.3)) is immediate from the defining property of 75,11, and the Z;
are distinct and different from —%. Moreover, writing U, for the m'" Chebyshev polynomial
of the second kind, the relation (Tay41(w) — 1)(Tag1(w) + 1) = (w? — 1)Uy, (w) guarantees
that all roots other than —3 of (T441(5;) + 1) have even multiplicity. So they all have
multiplicity 2 and are precisely the {Z;}.

The polynomial F'(z,y) := r+y+39_ a;z' Ty I 479y 79, with a; as in (4.3.4), satisfies
F(z,x) = RHS(4.3.3) by standard results on coefficients of 7y,. Clearly F(p;) = 0, and the

{p;} are in fact singularities of Z(F') since g—f(x, x) = %%(ﬁ(m, x)) and they are double roots
of F (x,z). Therefore, by Proposition 4.1.6, they are all nodes. Since one can also check that

(4.2.27) converges at p;, Z(F) is the maximal conifold curve. O

Remark 4.3.5. Of course, Proposition 4.3.4 recovers the known maximal conifold points for
the families C;1,Ca9 (43 = —3 for g = 1 and a; = 5,4, = —5 for g = 2). Table 5.2 gathers

T2g+1 and a for a few low genus cases.

Being of geometric genus zero, the maximal conifold fiber (fg,g admits uniformizations by
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9 Tog+1(2) a

1 4o’ — 3w -3

2 162° — 2023 + 5z (5,-5)

3 6427 — 11225 + 5627 — T (-7,14,-7)

4 | 25627 — 576" + 4322° — 1202° + 9z (9,-30,27,-9)

) 10242t — 291629 + 281627 — 123225 + 2202% — 112 (—11, 55, —77, 44, -11)

Table 4.2: Maximal conifold points for low genera.

P!. In particular, we have the ¢ distinct parametrizations z ()2' i(2), f/](z)), with

(1 o 7>g+1
X](Z) - g J+1 42(9 J+1) and (436)
(1 29 > (1 29-0-21: )
A g+1
i (1- <§<i£*”)
g

(1 B %i#) (1=2)

having the property that z = 0,00 are mapped to p;. Hence the image of the path from

V() =

, (4.3.7)

z=0to z =00 on P! is sent (by the 5 map) to 4;. As dictated by [DK, §6.2], we assign
a formal divisor A/j on P!\ {0,000} to each uniformization: for X(z) = ¢, [1;(1 — %)% and
Y(2) = c2I1x(1 — 5-)%, this divisor is N = > djek[%]. According to [loc. cit.], the
imaginary part of [ R{X(2),Y(z)} is then given by Dy(N) := 32, djerDa(32).

In present case,

Ny = g2[GR970) 4 2gcd 7Y — (262 + 29 — D)[1]
—2(g + D)[G 7T + (g + DGt )
=2(29 + 1[G, 7] — (20 + 1[G (4.3.8)

=229+ D1+ &7,
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where we are working modulo the scissors congruence relations

€]+l =0, []+[e] =0, []+[1—¢ =0and (4.3.9)

6] + (o] + 225 + (B8] + 1 — &) = 0 (4.3.10)

of the Bloch Group By(C). Consequently we have the identity
Dy(Nj) = 2(2g + 1) Da(1+ (5,71, (4.3.11)

of which two particular cases are of note: we claim that

Dy(Ny) = —27D,, and (4.3.12)
Dy(N,) = —21Dyy 1. (4.3.13)

(See §2.4 for notation.) In fact, we can say something even more general. Given m € Z-,

we have

m=+1 m 15%,1_5;:} m—+1 (m—1—k)
—5" o = =" e 2(;+2 Z C2(m+2 Co(m+2)
dm,1 3m 1
m+1 _
2 m+2
Z C2 (m+2) — (m+2) Z <1]7€1+2 (4314>
2(m+2 k=0 k=0

Therefore, taking conjugates,

2(m + 2)Da(1 + Cuy2) = —2(m + 2)Do(1 + (1))

= 27Dy, (4.3.15)
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which implies (4.3.13) upon setting m = 2g — 1. Similarly one can see that

C2(29+1) Z;(l) C§g+1 (4.3.16)

and thus

2(29 + 1)Da(1+ ¢Gy1) = —2(29 + 1) D2 (— Ly ¢y i1
—2(29+1)D ( 52(29+1) Iy CQg—i—l) (4.3.17)

= —21D, 4,

as was to be shown.

We are now ready to prove Theorem 4.1.1. By the previously mentioned result of [DK,

§6.2], we know that (Ry,) = D2(N;) or

R(ERs,) = o Dy(N)). (4.3.18)

2mi

Next, Proposition 4.1.4 tells us that R, (a) = x;Rs,, while (4.3.4) and (4.2.27) ensure that

(mod Q(1)) 5% R,,(a) hence 35 Rs, is real. Combining this with (4.3.11) gives

1 R 1 29+ 1)k, i
R, (@) = 5ok, = B Dp 0 i) (43.19)

i ori 7T gy

whence (4.1.1) [resp. (4.1.2)] follows from (4.3.12) [resp. (4.3.15)] by setting j = 1 [resp.

Jj =g in (4.3.19).
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4.4 Explicit series identities

Spelling out (4.3.19) in light of (4.2.27) kills any torsion modulo Q(1) as both sides are real,?

and yields the relationship

(29+1)-ged(2j — 1,29 + 1)

- Dy(1+ G5, 10) = log(|a;))—
IN(® g
<g”) (—a;)™" > ay (4.4.1)
c; T2(1+0) [T T+ 1) k=1
k=1 k#j

valid for 7 =1,...,¢9. The LHS can be shifted to a different avatar via the formula

Dy(1 + (§,71) = Dy (2cos(5 5 )e™ 0=/ Cot1)). (4.4.2)

Let us consider some applications of (4.4.1). For the family Cy 5 Table 4.1 and Table 4.2 say
that £ = (1,1) and @ = (5,—5). Recalling that to := 12—\/5 = 2cos(m/5) and plugging in

j=1in (4.4.1) gives

D(5l1 + 3lp)(—5) =325l
(1420 + )T (14 1)D(1 + 1)
_1\m —5m—2r
—log5— Y (=1)"I'(5m + 3r)5 ‘
214+ 2m+r)I'(1+m)I'(1+7r)

m,T’EZZO

5 .
Z Dy(r0e®™/%) = log 5 — Z/FQ

T 11,12€Z50

On the other hand for j = 2,

5la+11
5lo+11 - 15
P(Eth )55 5

T2(1+ 21+ )DL+ 1)

l17126Z20

(4.4.3)

EDz(t’oe”i/5) =logh— >’

™

3after changing log(a;) to log(|a;|)
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Defining r := 1y, m := (Iy — 11)/3,

L(5m + 2r)5=5m="

1+m)IT1+r)T(1+3m+r) (444)

5 .
°D Ti/5y — ] _ E ’
T 2(m€ ) Og5 F2

m,r€Z>

These identities, conjectured in [CGM, A.10], match the identities [TK, (6.13)-(6.14)].* Likewise,

for C3 3 we have a = (—7,14,—7) and k£ = (1,1, 1), and thus

m+p1"(7m+5r+3p)7 Tm—4r— —p9az

7

7o 1 4.4.
D2+ ) Og?mTpZEZIQ 1+3m+2r+p)F(1+m)F(1+T)F(1+P) )
. —1)"T(7m + 5r 4 p) 7~ im—5r+2pgTm-5r-p

7 a1 1 4.4.
s 2(1+7) = log 7m r%E:ZIQ L+2m+7r —p)I'(1+3m)I(1+ 3r)I(1+ 3p) (4
7 (=1)™T(Tm + 3r + p) 7~ Tm+2p23r

;Dg(l + C? log 7 — Z 1 +m—r— 2p)F(1 + 3m)F(1 + 37’)F(1 + 3p) ' (4.4'7)

m r,pEZ>0

More generally, for the family C,,, £1 becomes the lattice Z%, \ {0,...,0} and we end up

with a tidy expression,

(29 +1) X
= Dy(1 4 y11) = log(|a1])—
0 F<(2g+1)l1+i(2k—1)lk) gD - 3 2k Dl g (4.4.8)
> (=1 - 0y . I1 a
ILE€Z>0 r2 <1+gll+z (k—1)I ) H T(1+lg) k=1
1<k<g k=2

where " means that we omit the term corresponding to {0, ...,0}.
Ik

4The proof there was incomplete as it did not address k.
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Chapter 5

Recent advances in the (2g,1) case

In this section we prove Conjecture 2.4.2 in the cases (m,n) = (2g, 1), for every g > 1. Much
of the analysis from §4 goes through verbatim; however presence of the mass parameter
significantly alters asymptotics of the regulator periods as well as the ansatz developed in

§4.3.

5.1 The main result and some preliminaries

Consider the families of genus-g curves cut out of (C*)? by the (integrally tempered) polynomial
Fyg1(z,y) from (2.4.8). As before Cy, 1 will denote its compactifications in Pa. In this case
there is precisely one mass parameter, namely a,.; placed at the point (—g,0), so r = 4 and

the equations take the simpler form (2.4.7). Moreover, temperedness fixes az41 = 2.

Theorem 5.1.1. Conjecture 2.4.2 holds for the family Caq1; that is,

o o (2) oo Do (5.1.1)

Remark 5.1.2. Note that the Milnor symbol {z,y} on the curve defined by substituting
—x,—y for x,y resp. then multiplying the equation by —1, being a pullback, is integrally
tempered with the same integral regulator as {—z, —y}. The new equation replaces a,.1 by
—ag41, and also changes the sign of a;,as, as, ... ; it is this new equation which we will use
going forward. Note also that (2.4.10) is stated in terms of the regulator period asymptotic

to —2milog(ay,); it is convenient in this section to drop the negative sign and work with one
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asymptotic to 2wilog(a,). Thus from now on
R, ~ 2rilog(ay).

We will borrow some notations from §4.1 - let us rename Fj,; to Fggyl. Denote by (?2971
the fiber of the family over the mazimal conifold point a. It has g nodes {p;}, and the cycles
{4;}j=1 passing through each node generate Hl(CAM); we set Ry, = fﬁ_ R{z,y}. Writing

k = 3[ld], @) for the change-of-basis matrix, we have

Proposition 5.1.3. Let k; := gcd(j,g + 1). Then

Kk = diag(ky, ..., Ky). (5.1.2)
It then follows from temperedness that
=R, () = 7%R;,. (5.1.3)

To prove 5.1.1 we will proceed in the same vein as described in §4.1, beginning with a few
preliminary results. The first two help us to control certain power series asymptotics, while

the third gives us information on nodal fibers of Cyy ;.

Lemma 5.1.4. The following identity holds,

F(l + 2m>
m/2 —2k
3 2 - 2 | (5.1.4)
i T(1+k)2D(1 +m — 2k) NH_ﬂlenF1+m
" 2 2

Proof. We reduce the given series into a hypergeometric series, and apply Gauss’ summation

theorem as follows,

62



m/2 9—2k ] 1—-m m

— LR 2 7 21
gor(uk)?r(um—zk) m!Qll 1 ]

Lemma 5.1.5. Ifa,b,c € Ro~~¢ are such that a = b+ ¢, then

142
QCF(l—l—a)F( J; C)

2

(1 —i—b)F(1+c)F< 5

:5>Aa,b,c

Proof. Using Duplication formula,

1 2¢

F<1+C)F<2+C> NGYTET

2 2
Thus

14+ 2¢ 1
r 2T ¢+ =
2 2 .1
= 2% —.
c

F<1—2|—C>F<2—2}-C> - T(e+1)

1+c>r<2 + c) = \/§17rc\/§<z <4Cb>c/a>a.

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

wherein we have used a modified Sterling’s approximation which says that for large

T € RZO and Ol,ﬂ S R>07

(5.1.9)



It follows that

A, 4T(1+ a) ~ 1 \/a4caa .
G AL+ b)T(1+o)v/e  2meV b bbee
1 a 4
= — 5.1.10
\/§7TC b pa—cce ( )
o V@ a4\
CV2reVo\ b\ ¢
as was to be shown.
O
Lemma 5.1.6. Suppose that the fiber over a = (ay, ..., a4+1) has g-many singularities, say

p; = (Z4,9;),n=1,...,9. Then for each j, p; is a node.

Proof. Due to Prop. 4.1.6 the result becomes immediate modulo the hessian calculation,

which in this case boils down to the following - we begin by defining

P(x) =g+ 1+35_1(g+1—j)az, (5.1.11)

and observing that

P(;) = £-F3g1(5)) + 0u Fag () = 0. (5.1.12)

Thus Z(P) = {p1,...,Dg}, i€, P has no repeated roots; that is, f”(ﬁj) # 0 (Vj). To compute
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the Hessians, write

Opu a1 () = SS9 0(0 — D)agi; 1 + 2g(2g + )32 ;!

J

— I (0 — V)aga; " 4 2L (5.1.13)
J
Ouy Fog1 (D)) = 29727 ;% = 32, and (5.1.14)
Oy Fo 1 (B;) = 2239377 =2 (5.1.15)
It can be shown that
Opu a1 (B)) = 23;“ + 2 (5.1.16)
therefore,
- i ~\\2 a [~ .
Hps (B;) = (0uy F51 (7)) — OuaFy 1 () Dy Fig 1 ()
=T = P
J J J
as was to be shown. O]

5.2 Monodromy calculations via power series

The essence of the monodromy calculation was already captured in Lemma 4.2.1. In this

case we have the 1-forms

— dx N\ dy
L Vs R = 7R ; . 5.2.1
@i = g Vo, Ty} = "Caa. (xQJszg,l(x, y)) o2
(32@;71 is defined by
f =Bl (2,y) = o+ y + o'+ agaaI + a7y (5:22)
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and to find the node we set fég?l (T),7;) = ;0, fég?l (z;,7y;) which gives rise to equations of

the form,

o ° o ° 1—j o—g
2y + ;5 + a;x 7 + agax;” =0,

B+ (1= j)i;7 — gaa; 9 — 2922 gt = 0.
This yields
i = g+1 4(9_?""1)’
J
. J_
o 9+l [4lg—j+1)\oH!
Tog—j+1 j '

In particular, we have the relation

_ 4 1
&]‘%g ]—‘rl:_ (gj_ )

Changing variables to X :=2z —2,, Y :==y — 1, in fz(g?l(:v, y) leads to the equation

. TN o .
ngny(;?l _ (6g 4(32% 49(i=1) 2 _ 29$§ 1Xy_|_:,;§9y2

+ higher order terms.

Therefore

o dx Ndy 1

esﬁj 2g ) - 2
x yfzg,l 5&5‘1 4g272(69274(j+1)74g(j*1))

(-pott
1297 \/8(9—j+1)(g+1)
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(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)



Consequently the residue of w; may now be found:

Resﬁj w; =

Writing ¢, := a7

—a; 2 dx N dy

S5 ———
mi Y Izj?/fz(;)1

_ T a2 R dx N\ dy
2mi " 2oy f7),

(5.2.10)

w29 —j+ 1)

' Fyy 1 (w,y) —aj, (A.0.3) (with the sign flip from our choice of ;) yields

rif @ = Tox(e) = T
= log(a;) — > Wx (5.2.11)

where [L]y stands for the constant term (in z,y) appearing in the Laurent polynomial L.

Now, given [y, lo, - -

—_—

J

L;

Note that I} € Zxg

1y € Z, we define

= ;((94— )20 + ly41) +§:lklk> (5.2.12)
k#j
i ;((g )@ L) + kzg:l(k; - j)lk>, and put (5.2.13)
=2
= (k1) € T | € Zg} \ (0, 0)} (5.2.14)

= l; € Z>o. The upshot of this construction is if L;, L} € Z>, are
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such that

ass
AY B T[(CHDY =1 and (5.2.15)
(=
g
Li+Li+Y l=m (5.2.16)

k=1

then L; = L), = I (by symmetry) and m = [;. Thus the lattice £; C Z9 encodes all possible

constant terms appearing in (5.2.11), giving

1 _ F([j) —1; AR I
5 1t (@) o) log(a;) — pre) (—a;)™ [T (5.2.17)
L D(14+U)r2(1+ 1) 1l D(1+ 1) s
=1
k#j

For the classical periods IT;, = fv- wy = %5(114}%%., it is clear from (5.2.17) that II;, vanishes

2mi

on the aj-axis for £ # j. Focusing then on

T'(1+1) ENEAEI,
i@ = [ = =1+ (ca) v ILak,  (5:218)
Y L T(1+ )21+ 1) k];[l L(1+ 1) Z;}
KA
we set a;, = 0 for i # j, g+ 1 to obtain
(1 + 22 gt
Si=1+ u+eh) (—ay)” 7 Yalii. (5.2.19)

D(1+ S )21+ )0 (1 + g 11)

lj,lg+1€Z>0

Recall that x; := ged(j, g+ 1). Let us shift indices by renaming [,, — ;1 + 21, and define,

j g+1 _(9+1D)n,
n] L= ;, mJ = o = B 9

) i J (5.2.20)
ri= n—], and 8 1= a;m]
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Clearly n;, mj,r; € Z~o. Now we have a power series of the form

S (=1)™ (L + myry)ag Zb
o P21+ 25 ) D21+ )T (1 + nyry — zzj) iS5

Let §; := &]-_mj. Setting ay4+1 = 2 and applying Lemma 4.1.5,

L1+ myr;) SO G VACRVE I
P2(1+ P )D(L+nyry) - 2mryngy/my —ng

from which we may conclude that

lim by oryo5 = VA
rj—oo ' J 2mnj\/m; — n;
Observing that
Res;.w; = votl = il
;005 =

miy2(g—j+1) 2V

we apply (4.2.4) to obtain

oljg
lim b rj- 8y .
;=00 J ]
K = = X = K.
3J j
ReSﬁjo n;

This concludes the proof of Proposition 5.1.3.

Remark 5.2.1. Notice that k1 = kg = 1. We document s
Table 5.1.
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(5.2.21)

(5.2.22)

(5.2.23)

(5.2.24)

(5.2.25)
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g K
2 @1

3 (12,1

1 (1,1,1,1)

5 (1.2,3,2,1)

6 (1,1,1,1,1,1)

7 (12,14,12]1)

8 | (1,1,3,1,1,3,1,1)
9 | (1,21,25,2,1,2,1)
10 [ (L,1,1,1,1,1,1,1,1)

Table 5.1: Conifold multiples for small genera

5.3 Normalization of the conifold fibers

Recall that for the family C,,, determined by the {F}  }, the mazimal conifold point a €
(C*)9 is defined to be the unique' point (if it exists) on the boundary of the region of
convergence of the series (5.2.17) where CA%M (given by F2 = = 0) acquires g nodes (labeled
by p; = (25,9;))-

We demonstrate an example that underlines difficulties in finding & in case of a mass

parameter being present.

Example 5.3.1. Consider the (untempered) family Cy; corresponding to a local C*/Zg

geometry cut out by
Fui(r,y)=r+y+a +ar ' +azz™?+ y Tt =0. (5.3.1)

asz is a mass parameter, and

a1as a9 1
Hn=—s, 2=, 3= 3. (5.3.2)
asz ai as

1Strictly speaking, it is only 2 which is unique, with finitely many preimages in a, one of which has real
coordinates; it is this one which we call a.
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Figure 5.3.1: Discriminant locus of resolved C3/Zg with 23 = 1/4, axes are z;-s.

The discriminant locus is obtained by setting [CGM2, 4.1],

72921 (1 — 4z3)%25 + 10823 (92y — 2) (423 — 1)22 + (1 — 4zy)?
— 42(3625 — 172 + 2) + 227(108(423 + 1) 25 — 27(2823 — 5)23) (5.3.3)

This is significantly harder to analyze compared to the situation with Cs o, however much of

1
the complexity goes away when we enforce temperedness, which amounts to letting z3 = 7

- (247 i) (5.3.4)

can once again be recovered from transverse intersection.

and the maximal conifold point

[

The ansatz in present case takes the form of

Proposition 5.3.2. Let T,, denote the m Chebyshev polynomial of the first kind; this is
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a degree-m polynomial characterized by T,,(cos @) = cosmf. Then we have
f324($7(—1Jj$_9)==5;**'7Eg+2(7§)-+’0—1)j) (5.3.5)

It follows that

;29 +2)(2g —j +1)!

G — (—1 3.
R 7 TR I 30
R Y . mj

T = (—l)j/gyj ! = (_1)J4COSZ (29 2) (5.3.7)

forj=1,...,9. In particular, a € Z9.

Proof. That z; € Z(RHS(5.3.5)) is immediate from the defining property of 75,11, and the z;
are distinct and different from 4. Moreover, writing U,, for the m*® Chebyshev polynomial of
the second kind, the relation (T5g42(w)—1)(Tzg42(w)+1) = (w?—1)Usys1(w) guarantees that
all roots other than 4 of (7§g+2(ﬁ) + 1) have even multiplicity. So they all have multiplicity
2 and are precisely the {Z,}.

The polynomial F(z,y) = = + y + Y9zt + agaaT? + 27y with a; as in
(5.3.6), satisfies F(z,(—1)z79) = RHS(5.3.5) by standard results on coefficients of T,.
Clearly F(p;) = 0, and the {p;} are in fact singularities of Z(F') since %(m, (—=1)z79) =

2%(15(@ (—=1)7279)) and they are double roots of F'(x, (—1)72~9). Therefore, by Proposition
4.1.6, they are all nodes. Since one can also check that (5.2.17) converges at p;, Z(F) is the

maximal conifold curve. O

Remark 5.3.3. Of course, Proposition 5.3.2 recovers the predicted maximal conifold point
for the g = 2 family C4 1, namely a; = —6,a, = 9. Table 5.2 gathers 73442 and a for a few

low genus cases.

Cag1 admits uniformizations by P! via the ¢ distinct parametrizations z — (X;(2), Y;(2)),
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Tag+2(7) a
821 — 812 +1 (-6,9)
3245 — 4827 + 1822 — 1 (-8,20,-16)

1282% — 2562° + 160z — 3222 + 1 (-10,35,-50,25)
512210 — 12802% + 112025 — 4002 + 5022 — 1 (—12,54,—112,105,—36)

O = W N

Table 5.2: Maximal conifold points for low genera.

with
j 2
. Zj (1 - CQQZ”)
Xi(z) = T and (5.3.8)
<1 _ C?g;+2> (1 _ %)
. A' 1_ 29—‘1—1
Yi(z) = 5 (1—2) (5.3.9)

29 )
-2 (1)
( (g Cogt

z = 0,00 being mapped to p;, while the image of the path from z = 0 to z = oo on P! is
sent (by the j™ map) to 4;. As dictated by [DK, §6.2], we assign a formal divisor ./\A/'J on

P!\ {0,000} to each uniformization: in this case,
-/\A/’j =229 +2)[1 + C§g+2],
where we are working modulo the. Hence we have the identity
D3(N;) = 2(29 + 2)Da(1 + Gy), (5.3.10)
of which one particular case is of note: we claim that
Dy(N,) = =21 Dy 1, (5.3.11)

(See §4.4 for notation.) a fact that follows from 4.3.15.

We are now ready to prove Theorem 5.1.1. By the previously mentioned result of [DK,
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§6.2], we know that I(Ry,) = Dy(N;) or
R(3LRs,) = o= Da(N)). (5.3.12)

Next, Proposition 5.1.3 tells us that R, (a) = x;Rs,, while (5.3.6) and (5.2.17) ensure that

(mod Q(1)) 55 R,, (@) hence 5= R;, is real. Combining this with (5.3.10) gives

2mi

1 AN 1 o (29 + 2>I{j j
%R’yj (Q) = %ﬂjRﬁj Q(Zl) TDQ(]. + C2g+2)7 (5313)

whence (5.1.1) follows from (5.3.11) by setting j = 1 in (5.3.13).

5.4 Explicit series identities

(5.3.13) combined with (5.2.17) gets rid of any torsion modulo Q(1) as both sides are real,?

and it follows that

(29 +2) - ged(j, 9+ 1)

Dy(1 + ng+2) = log(|a;|)—

T
(1) 0. S
; I\T2 g+l (=) l;lakk o4
i T(1+ )21+ 1) klle(l + k) i
k£

valid for j = 1,...,g9. As an application consider the case of Cs;. Table 5.1 and Table 5.2

say that Kk = (1,1) and a = (—6,9). Plugging in § = 1 in (5.4.1) gives
y (1, : gging in j g

9D (1 + e”i/3> — log6 . Z / F(6ll + 3l3 + 2[2)(—6)_611_313—212912(_2)13
™ T(1+ 4Ly + 215 + 1) T2(1 + )T (L + )T(1 + Is)

l1,l2,l3€Z >0

(5.4.2)

Zafter changing log(a;) to log(|a;|)
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On the other hand for j = 2,

6la+3l3+1
F(612+313+l1 )9* 2

§D (1 + 627ri/3) =log9 — Z / 2 (_6)11(_2)13
T I(1+ 22#=lOT2(1 4 )0 (1 + 1) (1 +13)

l1,l2,l3€Z 50

(5.4.3)

These identities, although not explicitly derived, were conjectured and computationally
verified in [CGM2, 4.31]. We conclude by observing that for the family Coy1, £1 = ZZ, \

{0,...,0} and we end up with

29+ 2 N
D D1t yn) = lollinl)-
i Ui F<(g+1)(2l1+lg+1)+i klk) *(g+l)(2l1+l9+1)7zg: kl g+1
Z /(—1)k:1 g k=2 — a, k=2 H &Zk’
1L,€Z>0 F<1+g(2l1+lg+1)+z(k—l)lk> 2(1+41) [] TA+k) k=2
1<k<g+1 k=2 k=2
(5.4.4)
where " means that we omit the term corresponding to {0,...,0}.

Ui
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Appendix A

Some regulator calculations

Here we demonstrate the existence of integral 1-cycles {v; }?:1 on C with regulator periods
behaving as R, ~ —2milog(a;) for large a;, as claimed in §4.3. We refer the reader to [DK]
or [KLi] for background on regulator currents.

We start by defining the 1-cycles in distinct regions of moduli. We will need some
notation. Set T := {z € (C*)2’|x1| = 1 = |25|} (with the standard orientation as a 2-cycle)
and let I' C Po be a 3-chain bounding on T (but avoiding C \ C). Write 2® := 2™° for
the toric coordinate along the boundary component DD C Pa corresponding to an edge
e C 0A, and {ge,} for the roots of P(—z.) (amongst the {gx}), repeated with multiplicity;
we have Po(ze) = [1,(1+ ;j), with [T, ges = 1. Also, log,(¢) will mean log(&) for £ enclosed
(counterclockwise on D) by I' N D, and 0 otherwise.

Now, fixing j € {1,...,¢}, take ia; € $ and |a;| > max;,; |a;]; and note that then

F(T)NR_ = 0. In this region, define ; := I' N C, and use the current coboundary
s=d[R{F(2),-21,-22}] = Yo R{Pe(®e),~Te} - Op, — R{-w1,-22} - 0¢ (A.0.1)

together with the Tame symbols of R{ P(z), —x} (which are just the {g_,;}) and the Cauchy
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integral formula to compute

R’yj = f’)/j R{—l’l,—l‘g} = fl" R{—l’l,—ZEQ} : 5C_
= 27r1 f’]l‘ R{F ) 'x17‘$2} + Ze frm]D)e R{Pe(xe), ‘ffe}
= o f’]l‘ log(a;(1+ a; S iz )))dx%l A %2 + e mee R{Pe(e),-Tc}

= 27i (— log(a;) =k [(Fj(2))"oa;* — Ses 10ge(Qe,£)) :

(A.0.2)

In the tempered case, the {gx} are of course all 1, and the last term vanishes. We are then

left with!

2R, (a) = —log(a;) + Tiso S [Foay (A.0.3)

27i

in which (by virtue of the GKZ theory) the sum can always be written as a power series in
21,...,24.2 This gives a common region of convergence for the series for all j (where the
z-coordinates are small), to which the ; admit well-defined continuation from the regions on
which they were originally defined: namely, they are the cycles with these regulator periods.

Moreover, they are clearly independent due to the asymptotic behaviors of these periods in

the {a;}.

In addition, (A.0.2)-(A.0.3) lead to formulas for periods of 1-forms. Noting that d[R{F(z), —x1, —x2}| =

dF /\ d{L’l /\ d.’EQ
x1

, one introduces

wy = 2mV5 R = ~Resc (%%F@/\dﬂ) (A.0.4)

27i x1 )

and computes

!Note that the version of this formula in [KLi, Prop. 6.2] is missing a £ni (“2-torsion”) term: the \;
parameter there is —a;, so the leading term should have read —log(—A\;) or —log(\;) + i.

2Essentially, this is just because in order to contribute to the constant term in (Fj(z))*, a product of
monomials must correspond to a sum of relations on points of A NZ2, and the relations are how we defined
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= - / B = 500 Ry = 815 + Yy~ )F[FHga: ™, (A.0.5)

where dy; is the Kronecker delta. This formula proves useful in §5.2 where we change the
sign of ;.

Turning to the g = 1 case and the computation of R, it is more convenient to work with
u = —a > 0. In this coordinate, (3.1.3) becomes t = log(u) — wi+ O(u~!). Substituting this

in Lemma 3.1.1(a) and using 12 — r° = r yields
R = Zlog’u—L7° + O(u 'logu). (A.0.6)

Consider the Laurent polynomial ¢ = z; + 27" + x5+ 5", which corresponds to local (Pae =
)P! x P'. The discriminant (over the z;-axis) of the equation z + (z; + 27" —u) + 25 =0

has roots & ~ %H, §2 ~ & ~u—2, and & ~ u+ 2 (in increasing order). Introduce

u— 2’
2091 (11) ;= u—x —27 ' & \/(azl + a7t —u)? — 4 and w(x,) = m. For 2y € (&,&3),
w lies in (0,1), and we write log(: - }jr =) = 3 s O™ = fw 4 Sw? 4 -+, Now we
compute

Ry = — fg R~y —11} = [ log(25) % = [P log(15=2) %
_ log( )da:l . Zm>1 0, f&s mdxl
= 2log(u f;“ 42 f log(1 —u™"(zy + 277)) % + O(u~" log u) (A.0.7)
= 4log®u — 240 % j::;(xl + a7 P+ O(u" log u)
= 4log® u — ? + O(u'logu),

1)kdﬂ L%
k

k .
o 2% to rewrite the sum as

at the end using the approximations ff;’ (x1 + 27
—43 k% = —§7T2 up to O(u~tlogu). The point is that since r = 4, this agrees with the

result (A.0.6) from integral local mirror symmetry. A similar computation in [KLi, §6] for
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¢ = a1+ 2+ 27 2y " (mirror to local P?) gives Ry = 2 log” u — %2 + O(utlogu), where the

2 . .
—T- arises as —2Liy(

5 ) — 2Liy(1) — log®2. Since r = 3, this agrees once more with (A.0.6)

L
(as it must).

The crucial constant term in Rg has a nice interpretation via the LMHS at a = oo
of the VMHS V attached to R € H'(E,,C/Z(2)), the regulator class of {—z;,—x,} €
HZ(E,,Z(2)). (Note that the LMHS depends on a choice of a local coordinate, which we
take to be a™! or equivalently @ :=e™* =a (1 + O(a™')).) We can present V and its dual

as extensions
HY(E,7Z(2)) = Vz — Z(0) and Z(0) — V) — H(E,Z(-2)). (A.0.8)

On the left, a unique class R € F%V¢ maps to 1 € Z(0); on the right, let 7 € V) be the

image of 1, and 7, 3 € V) classes mapping to ﬁ% ﬁﬁ Writing ¢(Q) := %, we have

Rﬂ = <%a ﬁ) = (2;i)2 Rs = %K(QV - %E(Q) +T+ O(Q)v (AOQ)

where T = 1 + 2 (cf. Lemma 3.1.1(a)), as well as R, :== (R,7) = iR, = ((Q) and
(R, 7) = 1.
To obtain a period matrix for ¥V, we compare Hodge and Betti bases as follows. Writing

V for Vj,,,, the change-of-basis matrix from {R, VR, LV2R} to {rV,7Y, 5"} is

) po

1 1
Q= (R 1 ) — <TOZ(Q)2€(?2£(Q Lo ) +0(Q). (A.0.10)
2 2

Rg 8yq)Rp 1 )T roUQ)-5 1

From (A.0.10) one easily deduces the monodromies 7" € Aut(V) and TV € Aut(V") about
Q=0:

MMam = (21,) = T=gapa=(11) (A.0.11)
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Consequently the limiting period matrix is

1
. — i —4Q)log(T) Oy —
th,Q : 22151?06 Q 0 1 . (AOlQ)
T -2 1

The LMHS with respect to a=!, as mentioned above, gives the same result; but if we change

local coordinate to —@Q or (equivalently) u™!, we get

1
th_Q = ggh o U(=Q)log(T) ) — % 1 , (A.O.lS)
B° 0 1
where B® = 1 -2 = T—"". So we see that both of the constants appearing in Lemma 3.1.3(ii)

have a standard asymptotic Hodge-theoretic meaning, in terms of (torsion) extension classes

in the LMHS of V in the large complex structure limit.
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Appendix B

Degenerations and limiting regulator periods

In [7K] the concept of “going up in K-theory” is established in order to capture limits
of higher normal functions. Let X — S be a dominant morphism of smooth varieties
with generic fiber of genus g and a singular nodal fiber Xy embedded via i : XoX. Let
= € CHP(X,r) be a higher cycle, with fiberwise restrictions =, € He"(X,,Z(p)); taking

fiberwise Abel-Jacobi (integral regulator) classes leads to a higher normal function
AJx,(E:) € J(H"(X,)(p)) := Bxtys (Z(0), H"(X,, Z(p))),

where n = 2p—r — 1. From the Clemens-Schimd exact sequence one has a morphism of MHS
v H'(Xy) — HJ},(Xs), with induced morphism J(t*): J(H"(Xo)(p)) — J(H.(Xs)(p),

and according to [loc. cit.] we have
liE)r%)AJXS(ES) = J(")AJx,(i"E) (B.0.1)

in J(Hp (X,)(9).

The upshot of this result is that the left-hand side of (B.0.1) are direct representatives of
the regulator periods R,,. On the other hand, the right-hand side can be worked out, using
techniques developed in [DK], from the g-many normalizations of Xy by P!: one assigns a
carefully constructed divisor ; on G,, to each such normalization, and applies the Bloch-

Wigner function Ds. In this way we arrive at

ImR’AYj = Im<AJ§£(Z*E)7§/]> = D2(M)7 (BOQ)
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where 9; € Hy(Xy,Z) is a cycle passing once through the j™ node.
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