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ABSTRACT OF THE DISSERTATION 

Causal Function and Bias Correlation of the Orbitofrontal Cortex in Economic Choices 

by 

Weikang Shi 

Doctor of Philosophy in Biology and Biomedical Sciences 
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Professor Camillo Padoa-Schioppa, Chair 

Economic choices entail two mental processes, value calculation and value comparison 

(Niehans, 1990). Studies in the last twenty years have shown that neurons in the orbitofrontal 

cortex (OFC) could support both processes. Namely, in the studies in which monkeys chose 

between two juice options with various amounts, three functional cell groups had been found in 

the OFC: offer value cells encode the value of individual juices, chosen juice cells encode the 

choice in a binary way and chosen value cells encode the value of the chosen juice (Padoa-

Schioppa and Assad, 2006). These results suggest a decision circuit within OFC with offer value 

cells encoding the input and chosen juice cells encoding the output (Padoa-Schioppa, 2011). 

However, this proposal remains tentative. If OFC is crucial to the economic choices, neural 

activities in the OFC should 1) causally relate to the decisions and 2) explain the behavioral 

variabilities. Therefore, in my dissertation studies, I aim to examine these two aspects. In the first 

study, we use electrical stimulation to establish the causal link between neuronal activity in the 

OFC and the economic choices. We find that low current micro-stimulation increases the 
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encoded values and facilitates the choices by inducing a range-dependent bias. On the other 

hand, high current micro-stimulation disrupts both the valuation and comparison stages, and 

affects the order bias under sequential offer and reduces the choice accuracy. In the second 

study, we focus on the neural correlates with behavioral biases under sequential offers. We train 

the monkeys to perform a task in which trials from simultaneous offers and sequential offers are 

randomly interleaved. We first confirm that the same neural circuit mechanism is adopted under 

simultaneous offers and sequential offers. This result provides the basis to examine the neural 

correlates using a unified decision model we proposed based on simultaneous offers. We then 

compare the behavioral patterns of simultaneous offers and sequential offers. We find that 

sequential offers show lower choice accuracy, bias in favor of the preferred juice (preference 

bias) and bias in favor of the second offer (order bias). Neural correlates of each of the biases 

reveal that low choice accuracy partly reflects the weaker value signals in sequential offers, order 

bias is correlated with comparison signals and preference bias emerges late in the comparison 

stage. Taken together, my dissertation studies fill in some important gaps between the neuronal 

activity of the OFC and the economic choices. 
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Chapter 1: Introduction 

1.1 Economic choices and the orbitofrontal cortex 

1.1.1 Economic choices 

Imagining you are in a restaurant and looking at the menu, you have many options, and you need 

to choose one of them for lunch. Neuroeconomics studies how the brain makes the economic 

choices in this case. Neuroeconomics is rooted in behavioral economics, which could date back 

to the eighteenth century. During this classical period, Daniel Bernoulli, Adam Smith and Jeremy 

Bentham hypothesized that for individuals, economic choices relied on computing and 

comparing subjective values of options (Kreps, 1990; Niehans, 1990). This proposal inspired 

many of the following economists. Since then, the concept of subjective values has developed 

into the idea of expected utilities and has been widely accepted in the field of economics (Kreps, 

1990). Expected utility theories with modifications were used to explain many different aspects 

in the human economic behaviors. With a great number of behavioral studies at hand, starting 

from late twentieth century, psychologists turned to focus on the cognitive mechanisms behind 

these behaviors (Kahneman et al., 1982; Kahneman and Tversky, 1979, 2000). Following this 

line, neuroeconomics was originated, and has been a lively field for decades (Camerer et al., 

2005). Over almost two hundred years, this field has experienced a prosperous growth with 

tremendous details being filled in, however, the core idea has not changed, that is, economic 

choices entail two mental stages, value computation and comparison. In the era of 

neuroeconomics, this field aims to understand how the brain processes these two mental stages. 

Studies have been done and continue to be done to understand which brain areas participate in 
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the mental stages, and how single neurons, neural populations and neural circuits play the role. 

With the development of the technology, neuroeconomics study has extended outside of human 

research. Monkey and rodent models have been well established and continued shedding light 

upon the field. 

Early efforts focused on value computation, and the first step was to define the values. 

According to the expected utility hypothesis (Kreps, 1990), values were the mathematical 

expectations of the utilities of options. Therefore, in a risky decision, such as gambling, the value 

of one option was the money one could gain or lose multiplied by the probability. However, such 

objective definition lost the subjectiveness of these values. To define the subjective value, people 

started to focus on the behavioral pattern. Economic choices were all about choosing among 

options, therefore, instead of calculating the absolute value of one option, it was possible to focus 

on the preferences revealed by the choices. Hypothetically, economic choices are guided by 

subjective values, and options with higher values are more likely to be chosen. Therefore, by 

looking at the choice pattern, one can derive the values that guide the behavior. In this favor, 

many studies have designed trade-off tasks between goods, and the trade-off pattern would 

demonstrate the relative subjective values between two goods. For example, one apple might be 

better than one orange, however, one apple and two oranges might be chosen equally often. It 

demonstrates that one apple has twice value of one orange. Although the pure value of an apple 

or an orange may never be identified, such analysis measures the subjective preference over the 

two options, and if one option is used as the value unit, subjective values can be therefore 

defined (e.g., the value of an apple is 2 in the unit of orange). However, the definition of relative 

values has the circularity problem: values are not defined independently from the behaviors. 

Identifying the physical entities could be a solution, and from the perspective of neuroscience, 
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the physical entities are neurons. Therefore, after well defining values, the next step in the field 

of neuroeconomics moves to pursue the value signals within the brain. Typically, multiple 

variables based on values are defined, such as values of one option or chosen options. These 

variables will then serve as regressors to correlate with neural activities. Conclusions can be 

drawn from significant correlations that these neurons encode the variables (Kable and Glimcher, 

2007, 2009; Padoa-Schioppa and Assad, 2006; Rangel et al., 2008; Wallis and Rich, 2011). 

Following this line of analysis, value signals have been found in many brain areas in both human 

and animal studies (Padoa-Schioppa and Cai, 2011; Padoa-Schioppa and Conen, 2017; Wallis, 

2007, 2012), such as orbitofrontal cortex (OFC) and ventromedial prefrontal cortex 

(vmPFC).These value representations across different brain areas support that neuronal activities 

are the physical entities of subjective values. After decades of substantial progress, now the field 

drastically moves to disentangle the mechanism behind value comparison. While solving this 

question, studies in neuroeconomics have been deeply influenced by related fields such as motor 

systems and perceptual decisions. Hence, these fields provide different working hypotheses for 

economic choices, including distributed consensus(Cisek, 2012), attentional drift diffusion 

model(Krajbich et al., 2010; Krajbich et al., 2012; Krajbich and Rangel, 2011) and accept/reject 

model (Hayden, 2018). 

1.1.2 The orbitofrontal cortex 

The focus of OFC in economic choices started from the patient Phineas Gage back in the 

nineteenth century (Damasio et al., 1994). After recovering from the damage of his left frontal 

lobe, his behaviors had changed dramatically including complex decision makings (Damasio et 

al., 1994). Since then, an extensive literature of human patient studies found that damages of 

OFC are associated with violations in economic choices (Camille et al., 2011; Cavedini et al., 
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2006; Fellows, 2011; Fellows and Farah, 2007; Rahman et al., 2001; Rahman et al., 1999; 

Strauss et al., 2014; Volkow and Li, 2004). In animal studies, results showed that lesions of 

homologous OFC area in non-human primates and rodents impair goal-directed behaviors 

(Gallagher et al., 1999; Gardner et al., 2017; Gardner et al., 2020; Gremel and Costa, 2013; 

Izquierdo and Murray, 2004; Izquierdo et al., 2004; West et al., 2011). Goal-directed behaviors 

are defined based on reinforcer devaluation (Balleine and Dickinson, 1998; Colwill and 

Rescorla, 1985; Daw et al., 2005). In these experiments, subjects have first learned the rewards 

(values) of the options through the mechanism of reinforcement learning. Then before the choice 

task, subjects are divided into two groups. The experiment groups undergo a devaluation 

procedure of one of the options, such as selective satiation or association with bitter taste. As the 

result of devaluation, during the choice task, compared with control groups, the experimental 

subjects choose significantly less of the devalued options. These results are interpreted as that 

devaluation has reduced the subjective value of one option. In the OFC lesion studies in animal 

models, the evidence of impairment in goal-directed behaviors was that subjects were less 

sensitive to the reinforcer devaluation (Pickens et al., 2003; Rhodes and Murray, 2013; Rudebeck 

and Murray, 2008, 2011; West et al., 2011). Taken together, these studies showed that OFC 

played a crucial role in economic choices. 

In all these different studies, the definitions and locations of the OFC are slightly different. 

Commonly, the OFC refers to brain area located at the orbital gyrus, including Brodmann area 

11l and 13m/l (Carmichael et al., 1994; Carmichael and Price, 1994; Ongur and Price, 2000). 

Non-human primates have homologous OFC defined in the same way; in rodents, the homologue 

is lateral orbital (LO) area (Ongur and Price, 2000). It is the center of the orbital network, which 

is a heavily interconnected network across many sensory related brain areas (Ongur et al., 1998; 
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Ongur and Price, 2000; Price, 2007; Way et al., 2007). Anatomically, OFC receives input from 

sensory areas such as visual, somatosensory, olfactory, gustatory, and insular cortex, as well as 

areas with higher cognitive functions, such as memory hub hippocampus and emotion center 

amygdala. These afferent connections make OFC the potential brain area that integrates both 

external and internal information and then forms the subjective values. Concurrently, OFC sends 

output to the lateral prefrontal cortex (Petrides and Pandya, 2006; Saleem et al., 2013), which 

then projects widely to motor and premotor areas (Takahara et al., 2012). Such connection 

indicates that OFC might finalize the decision and project the output to the downstream to transit 

into a motor action. From the connectivity pattern, several other brain areas appear seemingly to 

play the similar function as OFC. First candidate is anterior cingulate cortex (ACC). ACC has 

little interconnection with OFC (Ongur and Price, 2000); however, its connection pattern is 

similar with OFC (Ongur et al., 2003; Paus, 2001), putting it at the similar position as a brain 

area integrating signals from different sources. However, ACC lesions did not affect reinforcer 

devaluation indicating that ACC may not be the core brain area in economic choices (Kennerley 

et al., 2006; Rudebeck et al., 2008; Rushworth et al., 2007). Another brain area is ventromedial 

prefrontal cortex (vmPFC, area 14). Due to its adjacent location to OFC (Ongur and Price, 2000), 

early lesion studies focused on vmPFC may accidentally damage OFC and misled the 

researchers to conclude its function in economic choices. Recent studies with more precise 

lesions and neural activity recordings indicated that vmPFC may not involve in economic 

choices (Rudebeck and Murray, 2011). What is more, despite its close location to OFC, vmPFC 

has distinct connection pattern, and OFC and vmPFC have sparse interconnection (Ongur et al., 

2003; Ongur and Price, 2000). It is more likely that vmPFC has different functions. Except for 

OFC, basolateral amygdala (BLA) is another brain area that affects reinforcer devaluation after 
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lesions (Baxter et al., 2000; Ostlund and Balleine, 2008; Pickens et al., 2003; Rhodes and 

Murray, 2013; Wellman et al., 2005). BLA and OFC also show strong interconnections (Ongur 

and Price, 2000). Further work is required to distinguish the function of BLA and OFC in 

economic choices. 

1.2  Value signals in the OFC 

Many studies have found that OFC encodes value-related signals. Early work found that neurons 

in OFC responded to juice quantities modulated by motivational level of the animals and external 

context such as temporal delay (Roesch and Olson, 2005; Roesch et al., 2006), and responded to 

potential aspects related to juice values, including juice types (Wallis and Miller, 2003) and 

delivery probabilities (Raghuraman and Padoa-Schioppa, 2014). The first clearest results came 

from a task in which monkeys chose between two different juices offered in variable amounts 

(Padoa-Schioppa and Assad, 2006). The task paradigm provided a quantity/quality trade-off 

between the two options, and the indifference point of the choice pattern measured the relative 

value. In this study, three types of neurons have been identified based on their encoding 

properties: offer value cells encode the value associated with one juice type; chosen juice cells 

encode the juice type of the chosen option; chosen value cells encode the value of the chosen 

option regardless of juice type. These results are significant in three ways: First, as mentioned, 

relative value is a subjective measure, this study confirms the neural correlates of subjective 

values, indicating that neurons might be the physical entities for the values (Kreps, 1990; Padoa-

Schioppa, 2007; Padoa-Schioppa and Cai, 2011). Second, they show that neural representation of 

values is “good-based”, which means that OFC neurons are associated with one juice option 

(Padoa-Schioppa, 2011). Third, the properties of the cell types imply a decision network, in 
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which offer value cells encode the input information and chosen juice cells encode the output of 

choice and may project the decision to the downstream brain area. Therefore, these results lead 

to a proposal that decisions might be processed within the OFC, both valuation and comparison 

(Padoa-Schioppa and Conen, 2017). Many subsequent works have shown converging evidence 

that “good-based” representation of subjective values appear in OFC under variant conditions. In 

a recent study with juice bundle task (Pastor-Bernier et al., 2019), in which two juice types 

bundled together to form options, the researchers found that some OFC neurons encoded the 

integrated value of one bundle and that some neurons encoded the value associated with one 

juice. In another study (Ballesta and Padoa-Schioppa, 2019), researchers used a similar juice 

quantity/quality trade-off task but presented the two options sequentially. In this sequential offer 

task, researchers successfully replicated the finding of three neuron types in the OFC. These 

results indicated that “good-based” value encoding might be a universal mechanism and 

invariant in different types of economic choices.  

The variance of economic choices is more than different types of task structures (Padoa-

Schioppa, 2013). Even in the simplest task, choosing between two options at the same time, the 

context may change and lead to different behavioral consequences. If OFC is the neural 

mechanism behind economic choices, it should be able to adapt to these different behavioral 

contexts.  The first study is about menu invariance (Padoa-Schioppa and Assad, 2008). It is the 

property that the identities or the values of the other options do not affect the neuronal encoding 

of the value associated with one particular good, that is, value encoding is invariant to the menu. 

It was observed in a study (Padoa-Schioppa and Assad, 2008) in which monkeys chose between 

three juices (A, B and C) offered pairwise, and trials of each pairs (A:B, B:C and C:A) were 

interleaved. In this task, OFC neurons encoded the values and identities of each juice option 
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through offer value cells and chosen juice cells, and these encodings did not depend on the other 

juice offered concurrently, for example, B associated neurons (i.e. offer value B cells and chosen 

juice B cells) stayed stable in both A:B and B:C conditions. 

The second study is about range adaptation. Neuronal adaptation exists ubiquitously in sensory, 

cognitive, and motor systems. In neuroeconomics and OFC, range adaptation is a property of 

value encoding neurons, including offer value cells and chosen value cells. For these neurons, 

their gains are inversely correlated with the value ranges contextually available (Conen and 

Padoa-Schioppa, 2019; Cox and Kable, 2014; Kobayashi et al., 2010; Padoa-Schioppa, 2009; 

Saez et al., 2017). For example, range adaptation was found in the study (Padoa-Schioppa, 

2009), in which the value offered for each juice varied from trial to trial within a fixed range, and 

value ranges varied across sessions. The tuning of offer value and chosen value cells was always 

linear, but their tuning slopes were inversely proportional to the range of values available in any 

given session. Thus, the same range of firing rates represented different value ranges in different 

sessions. This range adaptation result shows how value representation can flexibly adapt to 

changing context (Conen and Padoa-Schioppa, 2019; Rustichini et al., 2017).  

The third study is about remapping (Xie and Padoa-Schioppa, 2016). Completely different sets 

of goods can be provided in different decision contexts, and remapping is the property about how 

the neuronal representation in OFC adjusts to this aspect of context variability. The major results 

came from the study where monkeys chose between different pairs of juices in two blocks of 

trials (A:B and C:D). Different types of neurons (i.e. offer value cells, chosen juice cells and 

chosen value cells) were identified separately in each trial block. Neurons encoding the identity 

or the subjective value of particular goods in a given context ‘‘remapped’’ and became 
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associated with different goods when the context changed. For example, neurons associated with 

juice A became associated with juice C. Concurrently, the functional role of individual cells and 

the overall organization of the decision circuit remained stable across contexts. For example, 

offer value cells remained offer value cells. Therefore, neuronal remapping indicates both the 

stability (stable circuit) and the flexibility (adaptive remapping) of value representation of OFC 

neurons. Overall, OFC encodes values in a stable but flexible way, making it very suitable as the 

neural mechanism behind economic choices.   

However, it should be noted that, finding and confirming the value signals in the OFC still 

cannot guarantee the sufficiency and necessity of the brain area in economics choices. There are 

several reasons. First, even though these tasks were well designed, the definition of values may 

still be confused by other factors, such as motivation (Tremblay and Schultz, 1999). Second, the 

claim that economic decisions are made “as if” subjective values are generated and compared is 

still a hypothesis. The value signals detected in these experiments may lead to other behaviors 

rather than economic choices (Wallis and Rich, 2011). Hence, value signals do not imply that 

these neurons participate in the choice per se. Third, brain is a network, and OFC keeps 

communicating with other brain areas (Ongur and Price, 2000). Value signals found in the OFC 

may be generated somewhere else and projected to the OFC. These questions all point to the 

issue of building the causal relationship between value encoding of OFC and economic choices 

(Wolff and Olveczky, 2018). The first study presented in this dissertation aims to build such 

causal relationship, and the details will be discussed in Chapter 2. 
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1.3  Decision mechanism of the OFC 

In the recent study in which monkeys chose between two juice options with variant 

amount(Padoa-Schioppa and Assad, 2006), the researchers found three types of cells encoding 

offer value associated with one juice type, the type of chosen juice, and the chosen value. These 

cell groups include both the input (offer value) and output (chosen juice), proposing that 

decisions might be formed within this area through a local neural circuit. Two lines of evidence 

support this proposal: first one is the computational modeling; second one is the experimental 

results linking the neuronal fluctuations with decision variabilities.  

Many different computational models support the concept that good-based decisions are 

generated within the OFC. First, in one study (Rustichini and Padoa-Schioppa, 2015), 

researchers built a biophysically realistic neural network directly comprised of the three groups 

of cells identified in OFC (Padoa-Schioppa and Assad, 2006). This model was adapted from a 

neural network designed for perceptual decisions (Wang, 2002; Wong and Wang, 2006), which 

obtained biophysically realistic parameters derived from experimental results (Brunel and Wang, 

2001). The model successfully generated the binary economic choices. Second, other modelling 

studies without restricts about the three cell groups still suggest that these cell groups are 

important and necessary for making value-based choice. For example, in one study (Song et al., 

2017), researchers trained a recurrent neural network (RNN) with a variety of decision-making 

tasks. The network was not specific to any particular tasks and not restricted to have any types of 

structures. When the researchers trained the RNN with a value-based binary choice task, similar 

with the task used for monkeys (Padoa-Schioppa and Assad, 2006), they found that after the 

training, the units in the RNN recapitulated the three types of cells identified from the 
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experiments, that is units encoding offer value, chosen value and chosen juice. Similar results 

were also found in other types of neural network (Zhang et al., 2018). These models were based 

on more liberal assumptions, however, they ultimately converged to the same results, suggesting 

that the three groups of neurons identified in OFC might be necessary to generate good-based 

economic decisions. 

For experimental evidence, the most important ones come from the analysis between neural 

activity in the OFC and choice variability. In the context of economic choices, choice variability 

appears when decisions are split when facing the same options (hard trials), for example animal 

may sometimes choose 1A or 2B, when the options are 2B:1A. Several results found that the 

trial-by-trial fluctuations in the activity of different groups of cells in OFC can explain these 

choice variabilities.  

The first study is to analyze the choice probability (CP). CP has been frequently studied for the 

perceptual decisions (Britten et al., 1992). It is a property of individual neuron. It measures the 

probability that an imaginary ideal observer would successfully infer the outcome when looking 

at the activity of this neuron. In perceptual decisions, CP analysis of the sensory input neurons is 

extremely useful, because it can test whether the brain uses this sensory information to guide the 

decisions. Therefore, for economic decisions, there were studies focusing on offer value cells, 

the input units of the OFC decision network (Conen and Padoa-Schioppa, 2015; Padoa-Schioppa, 

2013). If CPs of offer value cells are higher than chance level, we could say economic decisions 

may be guided by the input value information calculated by offer value cells. In the experiments, 

although the authors found that although the CPs of offer value cells were lower compared than 

the typical CPs found in the sensory neurons in perceptual decisions (Britten et al., 1992; Britten 

et al., 1996; Cohen and Newsome, 2009; Nienborg and Cumming, 2006, 2014; Romo et al., 
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2002), they were still significantly higher than chance level. Therefore, economic choices may be 

primarily based on the values encoded by offer value cells. 

The second analysis focused on the output units in the OFC decision network, chosen juice cells. 

Studies has found that the choice hysteresis is correlated with the activity of these output united 

in the time window before the offer presentation (‘‘predictive activity’’) (Padoa-Schioppa, 

2013). Predictive activity of chose juice cells sets the initial state of neural circuit before a new 

trial starts. When in the new trial, the decision is easy to make, one group of chosen value cells 

will have dominant activity and exceed the influence from the initial state. However, if the 

decision is hard, which means the values of the two options are similar, neither group of chosen 

value cells dominates the activity, in this case, the initial state becomes effective to influence the 

decisions. Therefore, another way to understand this predictive activity of chosen juice cells is 

that it is largely the tail activity from the previous trial. Choice hysteresis is a history bias: 

monkeys tend to choose on any given trial the same juice chosen in the previous trial, especially 

for the difficult trials (Padoa-Schioppa, 2013). Thus, the correlation between choice hysteresis 

and predictive activity indicated an underlying neural mechanism for this history bias. To be 

noted, these findings have been replicated in the modeling work as well (Bonaiuto et al., 2016; 

Rustichini and Padoa-Schioppa, 2015).  

These two sets of analyses showed that both the offer value cells and chosen juice cells are 

involved to generate economic decisions. The third analysis suggests that chosen value cells also 

contribute to the decisions. The phenomenon, termed as “activity overshooting”, describes that 

the activity of chosen value cells is also modulated by the value of the non-chosen option on top 

of the chosen value (Padoa-Schioppa, 2013): chosen value cells have higher activity when the 

non-chosen value makes the decision more difficult. In other words, firing rates of chosen value 
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cells present a transient overshooting reflecting the decision difficulty. This result indicates that 

activity overshooting may be accounted for if chosen value cells are within the decision circuit. 

The result is replicated by models as well (Rustichini and Padoa-Schioppa, 2015).  

Following the similar lines of analyses, in the Chapter 3 and Chapter 4 of my dissertation, we 

will explore how neural activity in OFC correlates with choice variability and choice bias under 

the condition of sequential offers. 

1.4 Summary 

In the modern era of neuroeconomics, the goal is to identify the neural entities of values and 

reveal the decision mechanisms in the brain at neuronal level. Values that guide economic 

choices are subjective and integrating both internal and external states. Neural entities of values 

should reflect these properties. Anatomical connection of OFC provides a premise that neural 

activity of the OFC functions as the physical entity of values. Lesion studies specified its 

uniqueness as one of the only two brain areas known so far to affect reinforcer devaluation which 

shares the spirit of economic choices. Results focused on neural activity showed that OFC 

encodes integrated subjective values. These value representations show a stable but flexible 

property, which suit well the traits of economic choices. What’s more, OFC has been found 

encoding both the input and output in economic choices, indicating that a decision circuit might 

be formed within this brain area. Such idea is further supported by computational modeling and 

experimental results linking neural activities and choice variability. Taken together, studies from 

the past decades demonstrate that OFC is the core brain area for both stages of the economic 

choices: valuation and comparison. 
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With all these previous understandings in hand, in my dissertation studies presented in the 

following chapters, we aimed to further explore the link between OFC and economic choices. 

We specially study the causal function of OFC in economic choices (Chapter 2) and the neural 

correlates of choice variability under the condition of sequential offers (Chapter 3 and Chapter 

4).  
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Chapter 2: Values encoded in orbitofrontal 

cortex are causally related to economic 

choices 

This chapter is adapted from the following publication with the permission from the co-authors: 

Ballesta*, S., Shi*, W., Conen, K. E., & Padoa-Schioppa, C. (2020). Values Encoded in 

Orbitofrontal Cortex are Causally Related to Economic Choices. Nature, 588(7838), 450-453. (* 

equal authorship) 

Abstract 

When agents make economic choices, neurons in the orbitofrontal cortex encode the subjective 

values of offered and chosen goods. Neuronal activity in this area suggests the formation of a 

decision, and neural signals capturing the binary choice outcome emerge gradually over time. 

However, it is unclear whether these neural processes are causally related to choices. More 

generally, the evidence linking economic choices to value signals in the brain remains 

correlational. We address this fundamental issue using electrical stimulation in rhesus monkeys. 

We show that suitable currents bias choices by increasing the value of individual offers. 

Furthermore, high-current stimulation disrupts both the computation and the comparison of 

subjective values. These results validate a centuries-old hypothesis and provide new foundation 

for research in neuroeconomics. 
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2.1 Introduction 

In the 18th century, Daniel Bernoulli, Adam Smith and Jeremy Bentham proposed that economic 

choices rely on the computation and comparison of subjective values (Niehans, 1990). This 

hypothesis continues to inform modern economic theory (Kreps, 1990) and research in 

behavioral economics (Kahneman and Tversky, 2000), but behavioral measures are ultimately 

not sufficient to prove the proposal (Camerer et al., 2005). Consistent with the hypothesis, when 

agents make choices, neurons in the orbitofrontal cortex (OFC) encode the subjective value of 

offered and chosen goods (Padoa-Schioppa and Assad, 2006). Value encoding cells integrate 

multiple dimensions (Hare et al., 2008; Kennerley et al., 2009; Pastor-Bernier et al., 2019; 

Roesch and Olson, 2005). Furthermore, variability in the activity of each cell group correlates 

with variability in choices (Conen and Padoa-Schioppa, 2015; Padoa-Schioppa, 2013), and the 

population dynamics suggests the formation of a decision (Eldridge et al., 2016). However, it is 

unclear whether these neural processes are causally related to choices. More generally, the 

evidence linking economic choices to value signals in the brain (Bartra et al., 2013; Roesch and 

Olson, 2007; Schultz, 2015) remains correlational (Stalnaker et al., 2015). Here we show that 

neuronal activity in OFC is causal to economic choices. We conducted two experiments using 

electrical stimulation in rhesus monkeys. Low-current stimulation increased the subjective value 

of individual offers and thus predictably biased choices. Conversely, high-current stimulation 

disrupted both the computation and the comparison of subjective values, and thus increased 

choice variability. These results demonstrate a causal chain linking subjective values encoded in 

OFC to valuation and choice. 
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2.2 Results 

In principle, causal links between a neuronal population and a decision process are demonstrated 

if one can predictably bias choices using electrical stimulation (Cohen and Newsome, 2004; 

Clark et al., 2011). Thus classic work established the causal role of the middle temporal (MT) 

area in motion perception by showing that low-current stimulation biases (Salzman et al., 1990) 

while high-current stimulation disrupts (Murasugi et al., 1993) perceptual decisions. One 

challenge in using this approach for economic choices is the lack of columnar organization in 

OFC. Since neurons associated with different goods available for choice are physically 

intermixed (Conen and Padoa-Schioppa, 2015), one cannot selectively activate neurons 

associated with one particular good using electrical stimulation. We developed two experimental 

paradigms to circumvent this challenge.  

2.2.1 Experiment 1: high-current stimulation 

Exp.1 examined whether perturbing OFC disrupts choices. Monkeys chose between two juices 

labeled A and B (with A preferred) offered in variable amounts. The two offers were presented 

sequentially in the center of a computer monitor (Fig.2.1A). Trials in which juice A was offered 

first and trials in which juice B was offered first were referred to as "AB trials" and "BA trials", 

respectively. The terms "offer1" and "offer2" referred to the first and second offer, independent 

of the juice type and amount. For each pair of juice quantities, the sequential order of the two 

offers varied pseudo-randomly. On roughly half of the trials, high-current stimulation (≥100 μA) 

was delivered in OFC during offer1 or during offer2 presentation (in separate sessions). In each 

session, trials with and without stimulation were pseudo-randomly interleaved (see Methods). 
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Figure 2.1. High-current stimulation of OFC disrupts valuation. A. Experiment 1, design. Offers, 

represented by sets of squares, appeared centrally and sequentially. In this trial, the animal chose between 

2 drops of grape juice and 6 drops of peppermint tea. B. Example session 1. In half of the trials, we 

delivered 125 μA current during offer1. The panel illustrates the choice pattern for AB trials (red) and BA 

trials (blue), separately for stimOFF trials (light) and stimON trials (dark). Data points are behavioral 

measures and lines are from probit regressions (Eq.1). In each condition (stimOFF, stimON), the order 

bias (ε) quantified the distance between the two flex points. In stimOFF trials, a small order bias favored 

offer2 (εstimOFF =0.02). In stimON trials, the order bias increased (εstimON =0.07). Hence, stimulation biased 

choices in favor of offer2. CDE. Population results for stimulation during offer1 (N=29 sessions, ≥100 

μA). Stimulation did not affect relative values (C); it did not consistently affect the sigmoid steepness (D); 

and it biased choices in favor of offer2 (E). F. Example session 2. Here 125 μA current was delivered 

during offer2. Stimulation induced a bias in favor of offer1 (εstimON<εstimOFF) and increased choice 
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variability (shallower sigmoids in stimON trials; ηstimON<ηstimOFF). GHI. Population results for stimulation 

during offer2 (N=25 sessions, ≥100 μA). Stimulation did not affect relative values (G); it reduced the 

sigmoid steepness (H); and it biased choices in favor of offer1 (I). In panels CDEGHI, green symbols are 

from sessions shown in B and F; ellipses indicate 90% confidence intervals. All p values are from two-

tailed Wilcoxon tests, and very similar results were obtained using t tests. 
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For each group of trials (stimON, stimOFF), choice patterns were analyzed with a probit 

regression: 

 choice B = Φ(X) (2.1) 

 X = a0 + a1 log(qB/qA) + a2 (δorder,AB – δorder,BA)  

where choice B = 1 if the animal chose juice B and 0 otherwise, Φ was the cumulative function 

of the standard normal distribution, qA and qB were the quantities of juices A and B offered, 

δorder,AB = 1 in AB trials and 0 in BA trials, and δorder,BA = 1–δorder,AB. From the fitted parameters, 

we derived measures for the relative value ρ=exp(–a0/a1), the sigmoid steepness η=a1, and the 

order bias ε=a2. Intuitively, ρ was the quantity that made the animal indifferent between 1A and 

ρB, η was inversely related to choice variability, and ε was a bias favoring the first or second 

offer. Specifically, ε<0 (ε>0) indicated a bias in favor of offer1 (offer2). 

In one representative session, electric current was delivered during offer1. The stimulation 

induced a choice bias in favor of offer2 (Fig.2.1B). This effect was consistent across N=29 

sessions: high-current stimulation during offer1 did not systematically alter the relative value or 

the sigmoid steepness, but it induced a systematic bias in favor of offer2 (Fig.2.1CDE). In a 

different set of N=25 sessions, we delivered ≥100 μA during offer2. In this case, stimulation 

induced a systematic bias in favor of offer1 (Fig.2.1FI). These complementary effects are 

interpreted as high-current stimulation interfering with or disrupting the ongoing computation of 

the offer value, resulting in a choice bias for the other offer (see Methods). In addition, 

stimulation during offer2, but not during offer1, significantly increased choice variability 

(Fig.2.1FH). This effect may be interpreted as high-current stimulation disrupting value 

comparison (i.e., the decision), which took place upon presentation of offer2. A similar effect 

was observed in mice when OFC was inactivated using optogenetics (Kuwabara et al., 2020). 
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Figure 2.2. Effects of electrical stimulation at different current levels. The whole data set includes 

N=29/22/29 sessions in which 25/50/≥100 μA were delivered during offer1, N=17/22/25 sessions in 

which 25/50/≥100 μA were delivered during offer2, and N=50 control sessions (0 μA; 194 sessions total). 

A. Relative value. B. Sigmoid steepness. C. Order bias. In each panel, blue and yellow refer to stimulation 

during offer1 and offer2, respectively. Data points are averages across sessions and error bars indicate 

SEM. Asterisks highlight measures that differed significantly from zero (all p<0.005, two-tailed Wilcoxon 

test). All other measures were statistically indistinguishable from zero (all p>0.05, two-tailed Wilcoxon 

test). Table 2.S1 provides the exact p values. Statistical analyses based on t tests provided very similar 

results. 
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We also examined the effects of stimulation at lower currents. In essence, the effects observed at 

≥100 μA diminished and gradually vanished when the electric current was reduced to 50 μA and 

25 μA (Fig.2.2). In summary, high-current stimulation of OFC disrupted the neural processes 

underlying economic choice, namely value computation during offer1, and value computation 

and value comparison during offer2. 

2.2.2 Experiment 2: low-current stimulation 

The results described so far showed that OFC perturbation can disrupt valuation and choice. We 

next examined whether subjective values may be increased through physiological facilitation 

(Wolff and Olveczky, 2018). In Exp.2, we took advantage of the fact that neurons in OFC 

undergo range adaptation (Kobayashi et al., 2010; Padoa-Schioppa, 2009). Fig.2.3 illustrates our 

rationale. In this experiment, monkeys chose between two juices offered simultaneously 

(Fig.2.3A). In these conditions, two groups of cells in OFC encode the offer values of juices A 

and B (Padoa-Schioppa, 2013; Padoa-Schioppa and Assad, 2006). Importantly, their tuning 

curves are quasi-linear and the gain is inversely proportional to the value range (range 

adaptation) (Padoa-Schioppa, 2009; Rustichini et al., 2017). Moreover, cells in each group adapt 

to their own value range. The effect of low-current stimulation is to increase the firing rate of 

neurons in proximity of the electrode (Histed et al., 2009; Salzman et al., 1990). In turn, this 

increase in firing rate is equivalent to a small increase in the offer values. By virtue of range 

adaptation, for a given current, the increase in value is proportional to the value range 

(Fig.2.3BC). If an equal number of offer value A cells and offer value B cells are close to the 

electrode tip, then the effect of the electric current is equivalent to increasing both offer values. 

Crucially, if the two value ranges are unequal, the increases in offer value are also unequal. More 
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specifically, the offer value of the juice with the larger range increases more. Hence, the net 

effect on choices is expected as follows: Low-current electrical stimulation should bias choices 

in favor of the juice offered with the larger value range (Fig.2.3D; Methods). 

We tested this prediction in two animals. In each session, we selected juice types and quantity 

ranges such that value ranges (ΔVA, ΔVB) would differ. Electrical stimulation (50 μA) was 

delivered in OFC for 1 s during offer presentation. Trials with and without stimulation were 

pseudo-randomly interleaved. In each session, choice patterns were analyzed with a probit 

regression: 

 choice B = Φ(X) (2.2) 

 X = a0 + a1 log(qB/qA) + a2 (δstim,ON – δstim,OFF)  

where δstim,ON = 1 in stimulation trials and 0 otherwise, and δstim,OFF = 1 – δstim,ON. We computed 

the relative value for each group of trials and we defined the change in relative value induced by 

the stimulation as δρ = ρstimON – ρstimOFF. 

In one representative session, value ranges were such that ΔVA<ΔVB. Consistent with our 

prediction, electrical stimulation induced a bias in favor of juice B (δρ<0, Fig.2.4A). In another 

session, where ΔVA>ΔVB, we measured δρ>0 (Fig.2.4B). A population analysis found that the 

choice bias δρ and the difference in value range ΔVA–ΔVB were strongly correlated across 

sessions. This result held true in each monkey (Fig.2.4CD). Control analyses confirmed that 

range-dependent biases did not reflect simple heuristics (Fig.2.S1) and were not dictated by the 

juice types or the electrode position (Fig.2.S2). 
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Figure 2.3. Prediction of range-dependent choice bias induced by electrical stimulation (facilitation). A. 

Experiment 2, design. Two offers are presented simultaneously. After a brief delay, the animal indicates 

its choice with a saccade. Electrical stimulation (50 μA) is delivered throughout offer presentation. BCD. 

Predictions for one example session. In OFC, the encoding of offer values is predominantly positive 

(higher activity for higher values). Panels B and C represent the (mean) tuning curves for pools of offer 

value A cells and offer value B cells under adapted conditions. Firing rates (y-axis) are plotted as a 

function of the offer values (x-axis) expressed in units of juice B (uB). Red horizontal lines represent the 

two value ranges, with ΔVA>ΔVB. The same firing rate interval δr corresponds to different value intervals, 

with δVA>δVB. Panel D represents choice patterns. Electrical stimulation increases both offer values, but 

the net effect is a choice bias in favor of juice A (δρ>0). Conversely, in sessions where ΔVA<ΔVB, δr 

induces δVA<δVB, and electrical stimulation biases choices in favor of juice B (δρ<0, not shown). See 

Methods. 
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Figure 2.4. Range-dependent choice bias induced by neuronal facilitation of OFC. A. Example session 1. 

In this session, we set ΔVA<ΔVB. Consistent with the prediction, electrical stimulation biased choices in 

favor of juice B (δρ<0). B. Example session 2. In this case, we set ΔVA>ΔVB. Electrical stimulation 

biased choices in favor of juice A (δρ>0). CD. Population analysis. The two panels refer to the two 

animals. In each panel, the choice bias (δρ, y-axis) is plotted against the difference in value range (ΔVA–

ΔVB, x-axis). Each data point represents one session, and the gray line is from a linear regression. Value 

ranges are expressed in units of juice B (uB). The two measures are significantly correlated in both 

monkey D (r=0.53, p=0.001, Pearson correlation test; r=0.49, p=0.003, Spearman correlation test) and 

monkey G (r=0.29, p=0.024, Pearson correlation test; r=0.36, p=0.005, Spearman correlation test). Green 

data points are from sessions illustrated in panels A and B.
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The rationale of Exp.2 rests on the assumption that low-current stimulation increases the value of 

the two offers (Fig.2.3). An analysis of response times (RTs) supported this point. Under normal 

conditions (stimOFF), RTs decreased as a function of the chosen value. Electrical stimulation 

generally reduced RTs. Furthermore, linear regressions of RTs onto the chosen value showed 

that this reduction was driven by lower offsets as opposed to steeper slopes (Fig.2.S3). These 

changes in RTs are as predicted if stimulation increases the subjective value of the chosen goods. 

The results of Exp.2 were replicated in a secondary analysis of data from Exp.1. For this 

analysis, we pooled all trials (AB and BA) and all sessions (stimulation during offer1 or offer2), 

and we repeated the analysis conducted for Exp.2 (Eq.2.2). We found a significant correlation 

between the choice bias (δρ) and the difference in value range (ΔVA–ΔVB) when stimulation was 

delivered at 25 μA or 50 μA, but not when it was delivered at ≥100 μA (Fig.2.S4). The last 

observation indicated that the mechanism inducing the range-dependent bias (Fig.2.3) was 

fundamentally different from those inducing the order bias. Interestingly, stimulation at 50 μA 

induced both biases (see Methods). 

2.3 Discussion  

In the conditions examined here, different groups of neurons in OFC represent individual offer 

values, the binary choice outcome and the chosen value(Ballesta and Padoa-Schioppa, 2019; 

Padoa-Schioppa, 2013). Importantly, neurons encoding the binary choice outcome do not adapt 

to the value range, while chosen value cells adapt to the maximum range independent of the juice 

type(Conen and Padoa-Schioppa, 2019). Hence, physiological facilitation of these two cell 

groups should not induce any range-dependent choice bias. Thus range-dependent biases induced 

by stimulation are mediated by offer value cells (Fig.2.3). The order bias observed in Exp.1 is 
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also understood as an effect on offer value cells. Conversely, the increase in choice variability 

observed in Exp.1 upon stimulation during offer2 suggests that stimulation currents interfered 

with value comparison. More work is necessary to ascertain the organization of the decision 

circuit, including the role of different brain regions(Cisek, 2012; Padoa-Schioppa and Conen, 

2017). If values are compared within OFC, the increase in choice variability could be due to the 

effects of stimulation on the other cell groups. For example, in a neural network 

model(Rustichini and Padoa-Schioppa, 2015), increasing reverberation increases choice 

variability(Wong and Wang, 2006). 

In conclusion, we have shown that offer values encoded in OFC are causal to economic choices. 

This result demonstrates a long-held hypothesis and opens new avenues to investigate disorders 

affecting choices. 

2.4 Methods 

All experimental procedures conformed to the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Washington University.  

The study was conducted on three male rhesus monkeys (Macaca mulatta): G (age 8, 9.1 kg), J 

(age 7, 10.0 kg), and D (age 8, 11.5 kg). Before training, we implanted in each monkey a head-

restraining device and an oval recording chamber under general anesthesia. The chamber (main 

axes, 50×30 mm) was centered on stereotaxic coordinates (AP 30, ML 0), with the longer axis 

parallel to a coronal plane. During the experiments, the animals sat in an electrically insulated 

enclosure with their head restrained. A computer monitor was placed 57 cm in front the animal. 

Behavioral tasks were controlled through custom-written software 



28 

(http://www.monkeylogic.net/). The gaze direction was monitored by an infrared video camera 

(Eyelink; SR Research) at 1 kHz. 

2.4.1 Choice tasks 

In Experiment 1 (Exp.1; monkeys G and J), animals chose between two juices labeled A and B, 

(with A preferred) offered in variable amounts. The two offers were presented sequentially in the 

center of a computer monitor (Fig.2.1A). Each trial began with the animal fixating a dot (0.35° 

of visual angle) in the center of the monitor. After 0.5 s, two offers appeared in sequence. Each 

offer was represented by a set of colored squares (side = 1° of visual angle), where the color 

indicated the juice type and the number of squares indicated the juice amount. Along with the 

offer, a small colored circle (0.75° of visual angle) appeared around the fixation dot. The circle 

indicated to the animal the juice identity in the case of null offer (0 drops; forced choices). The 

animal maintained center fixation throughout the initial fixation (0.5 s), offer1 time (0.5 s), inter- 

offer time (0.5 s), offer2 time (0.5 s), wait time (0.5 s), and delay time (0.5-1 s). At the end of the 

delay, the fixation point was extinguished and the animal indicated its choice with a saccade. It 

then maintained peripheral fixation for 0.6 s before juice delivery. Center fixation was imposed 

within 3°. Trials in which juice A was offered first and trials in which juice B was offered first 

were referred to as "AB trials" and "BA trials", respectively. The terms "offer1" and "offer2" 

referred to the first and second offer, independent of the juice type and amount. For each pair of 

juice quantities, the presentation order (AB, BA) and the spatial location of the saccade targets 

varied pseudo-randomly and were counterbalanced across trials. We designed offer types such 

that for most values of offer1 the animal split choices between the two offers (Ballesta and 

Padoa-Schioppa, 2019). Thus the monkey was discouraged from making a decision before 
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offer2. Sessions typically included ~400 trials and offered quantities varied from trial to trial 

pseudo-randomly. An "offer type" was defined by two juice quantities in given order (e.g., 

[1A:3B] or [3B:1A]). Stimulation was delivered in half of non-forced choice trials, pseudo-

randomly selected. 

In Experiment 2 (Exp.2; monkeys D and G), animals performed a similar task, except that the 

two juices were offered simultaneously (Fig.2.3A). After initial fixation (0.5 s), two offers 

appeared on the two sides of the fixation point. Offers remained on the monitor for 1 s and then 

disappeared. After a brief delay (0-0.5 s), the fixation point was extinguished and the animal 

indicated its choice with a saccade. The chosen juice was delivered after 0.75 s of peripheral 

fixation. Sessions typically included ~500 trials. Offered quantities and the spatial disposition 

varied from trial to trial pseudo-randomly. Previous work showed that in very similar conditions 

offer value cells in OFC undergo range adaptation (Padoa-Schioppa, 2009). Stimulation was 

delivered in roughly half of the trials, pseudo-randomly selected. We always tried to set the 

quantity ranges for the two juices such that the two value ranges would differ appreciably. 

However, we could not fully control the difference in value ranges, because the relative value of 

the two juices (ρ) ultimately depended on the animal’s choices. In some instances, we ran two 

paired sessions back-to-back. In these cases, we left the stimulating electrode in place and we 

used the same two juices in both sessions, but we varied the quantity ranges such that the 

difference in value range ΔVA – ΔVB would be >0 in one session and <0 in the other session. 

The quantity of juice associated with each square (quantum) was set equal to 70-100 μl in Exp.1, 

and to 75 μl in Exp.2 (the quantum always remained constant within a session). Across sessions, 

we used a variety of different juices associated with different colors, including lemon Kool-Aid 

(bright yellow), grape (bright green), cherry (red), peach (rose), fruit punch (magenta), apple 
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(dark green), cranberry (pink), peppermint tea (bright blue), kiwi punch (dark blue), watermelon 

(lime) and 0.65 g/L salted water (light gray). This resulted in a large number of juice pairs. 

2.4.2 Electrical stimulation 

The chamber provided bilateral access to OFC. Structural MRIs (1 mm sections) performed 

before and after surgery were used to guide electrode penetrations. Prior to the electrical 

stimulation experiments, we performed extensive neuronal recordings in each monkey using 

standard procedures (Ballesta and Padoa-Schioppa, 2019). Recordings and stimulation focused 

on the central orbital gyrus, in a region corresponding to area 13/11. The analysis of neuronal 

data confirmed that stimulation experiments focused on the same region examined in previous 

studies (Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa and Assad, 2006). 

During stimulation sessions, low-impedance (100-500 kΩ) tungsten electrodes (100 µm shank 

diameter; FHC) were advanced using a custom-built motorized micro-drive (step size 2.5 µm) 

driven remotely. Stimulation trains were generated by a programmable analog output (Power 

1401, Cambridge Electronic Design) and triggered through a TTL by the computer running the 

behavioral task. Monopolar electric currents were generated by an analog stimulus isolator 

(Model 2200, A-M Systems). The parameters used for electrical stimulation were as follows. 

In Exp.1, electric current was delivered during offer1 or during offer2 (in separate sessions). 

Stimulation started 0-100 ms after offer onset and lasted 300-600 ms. The stimulation train was 

constituted of biphasic pulses (200 μs each pulse, 100 μs separation between pulses) delivered at 

100-333 Hz frequency19,20,33,34. Variability in these parameters was mostly from early 

sessions in monkey 1, when we were experimenting with different stimulation protocols. 

Parameters were not titrated within any session. In different sessions, current amplitudes varied 
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between 25 and 150 µA (in 1 session, 200 µA). Stimulation was performed in both hemispheres 

of monkey G (left: AP 31:36, ML –7:–12; right: AP 31:36, ML 4:9) and in both hemispheres of 

monkey J (left: AP 31:35, ML –8:–10; right AP 31:35, ML 6:10). Our data set included a total 

144 stimulation sessions and 50 control sessions (see Table 2.S2). Electric current was delivered 

either unilaterally or bilaterally, in separate sessions. For each current level, the two groups of 

sessions were combined in the analysis. Analysis of the condition for which we had two sizeable 

data sets (namely, offer1 stimulation) indicated that unilateral and bilateral stimulation had 

similar effects on choices. 

In Exp.2, the stimulation train (biphasic pulses, 200 Hz frequency) was delivered throughout 

offer presentation, for 1 s. Stimulation was always unilateral, and current amplitude was always 

set at 50 µA. Stimulation was performed in the left hemisphere of monkey D (AP 31:36, ML -6:–

10) and in the left hemisphere of monkey G (AP 31:36, ML –7:–11). Trials with stimulation 

(stimON) and without stimulation (stimOFF) were pseudo-randomly interleaved. Our data set 

included 97 sessions. 

Electrical stimulation did not systematically alter error rates in either experiment. Errors were 

always defined as fixation breaks occurring any time prior to trial completion. In Exp.1, error 

rates were not affected by stimulation in any of the experimental conditions (25 μA, offer1, p = 

0.10; 25 μA, offer2, p = 0.68; 50 μA, offer1, p = 0.15; 50 μA, offer2, p = 0.88; ≥100 μA, offer1, 

p = 0.20; ≥100 μA, offer2, p = 0.46; Wilcoxon test, two animals combined). Similarly, 

stimulation did not alter error rates in Exp.2 (p = 0.87; Wilcoxon test, two animals combined). 
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2.4.3 Data analysis 

All analyses were conducted in Matlab (MathWorks Inc). For the primary analysis of data from 

Exp.1, choice patterns were analyzed with probit regressions, separately for stimOFF trials and 

stimON trials (Eq.2.1). For each group of trials, we derived measures for the relative value of the 

juices (ρ), the sigmoid steepness (η) and the order bias (ε). The effects of electrical stimulation 

on each parameter were assessed using Wilcoxon signed-rank tests and paired t tests (Fig.2.1, 

Fig.2.2). Very similar results were obtained using alternative definitions of the order bias 

(referring to Eq.2.1, we tested ε = a2/a1 and ε = 2 ρ a2/a1). 

For data from Exp.2, we first ran two independent probit regressions for stimON trials and 

stimOFF trials. We found that electrical stimulation did not systematically alter the sigmoid 

steepness (Fig.2.S5). Thus we ran a probit regression assuming equal steepness for the two 

groups of trials (Eq.2.2). Except for Fig.2.S5, all the results presented here were obtained from 

the latter fit. Referring to Eq.2.2, we defined ρstimON = exp(–(a0+a2)/a1) and ρstimOFF = 

exp(–(a0–a2)/a1). 

At the time of Exp.1, we had not planned to examine range-dependent biases. To examine these 

effects, we pooled sessions in which stimulation was delivered during offer1 or offer2, and we 

re-analyzed data using the same procedures used for Exp.2. 

In all the analyses, we identified as outliers data points that differed from the mean by >3 STD 

on either axis, and we removed them from the data set. In the primary analyses of Exp.1, there 

were no outliers. In the analyses of range-dependent biases, the criterion excluded 1/97 session 
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from Exp.2 and 6/144 sessions from Exp.1. Including these sessions in the analyses did not 

substantially alter the results. 

2.4.4 Predicting the range-dependent bias 

Here we formalize the prediction illustrated in Fig.2.3. As a premise, previous work found that 

the tuning curves of offer value cells in OFC are quasi-linear (Rustichini et al., 2017) and the 

proportion of neurons presenting positive versus negative encoding is roughly 3:1 (Ballesta and 

Padoa-Schioppa, 2019; Padoa-Schioppa, 2013). Importantly, cells in each group adapt to their 

own range, not to the maximum range (Conen and Padoa-Schioppa, 2019). Neurons associated 

with the two juices (A and B) are physically intermixed (Conen and Padoa-Schioppa, 2015). 

For given offers qA and qB, rA and rB indicate the average firing rates for the two pools of offer 

value cells. The effect of stimulation (facilitation) is a small increase in these firing rates, such 

that rA → rA + δrA and rB → rB + δrB. Since the two neuronal populations are physically 

intermixed, electrical stimulation affects both of them equally. In other words, δrA = δrB = δr. 

For each population, and for each juice type, a small increase in firing rate (δr) is equivalent to a 

small increase of offered value (δVA, δVB). Since offer value cells undergo range adaptation, 

 δVA = (δr/Δr) ΔVA (2.3) 

 δVB = (δr/Δr) ΔVB  

where Δr is the range of firing rates (which is the same for both juices), and ΔVA and ΔVB are 

the ranges of offered values (Padoa-Schioppa, 2009). 
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We aim to understand how electrical stimulation will affect choices – that is, how the relative 

value ρ will change under electrical stimulation. To do so, we write the conditions of choice 

indifference. We assume linear indifference curves and we indicate with V(J) = uJ the value of 

one unit (one quantum) of juice J. In the absence of stimulation: 

 V(A)  = V(ρstimOFF B) (2.4) 

 = ρstimOFF V(B)  

In the presence of stimulation: 

 V(A) + δVA = V(ρstimON B) + δVB (2.5) 

 = ρstimON V(B) + δVB (2.6) 

 = (ρstimOFF + δρ) V(B) + δVB (2.7) 

In the last passage, we defined δρ = ρstimON – ρstimOFF. Now we substitute Eq.2.4 in Eq7 and we 

re-arrange: 

 δVA = δρ uB + δVB (2.8) 

 δρ = (δVA – δVB)/uB (2.9) 

Finally, we substitute Eq.2.3 in Eq.2.9: 

 δρ = δr/Δr (ΔVA – ΔVB)/uB (2.10) 

Eq.2.10 captures the key prediction: If decisions are primarily based on the activity of offer value 

cells, the net effect of electrical stimulation is to change the relative value of the juices by a 

quantity proportional to the difference in value ranges. Notably, by pooling sessions in Fig.2.4 



35 

we effectively assumed that δr/Δr and uB remain constant across sessions. In practice, this might 

not be true because of variability in stimulation efficacy and because the subjective value of juice 

B might vary from session to session. These sources of variability effectively add noise to our 

measurements. However, the prediction that δρ and (ΔVA – ΔVB) should have the same sign is 

not affected by these factors. 

2.4.5 Interpretation of the order bias 

Here we discuss how high-current stimulation in Exp.1 might induce the order bias. We 

generally assume that electrical stimulation increases neuronal spiking. In Exp.1, currents varied 

between 25 μA and 150 μA. Previous studies indicate that when currents increase in this range, 

the effects of stimulation change in several ways. First, for any given cell and for equal number 

of pulses, the number of emitted spikes increases with the current(Hussin et al., 2015; Lee et al., 

2013). Second, as the current increases, the stimulation affects a larger number of cells(Histed et 

al., 2009; Stoney et al., 1968; Tolias et al., 2005). Third, a regime transition takes place around 

50 μA. At lower currents, electrical stimulation induces spiking only through synaptic 

transmission; at higher currents, stimulation also induces spiking directly through depolarization 

of the membrane(Hussin et al., 2015). In Exp.1, the animal is presented offers sequentially. 

Under normal conditions (stimOFF), only one juice is offered in each time window. However, 

the effect of stimulation is equivalent to presenting offers for both juices in one time window 

(because cells associated with the two juices are physically intermixed). We assume that for each 

juice (A and B) the values presented in the two time windows (1 and 2) are added. The order bias 

is a bias favoring the juice not present on the monitor during the stimulation. With these 

premises, high currents may induce the order bias for two reasons. 
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First, decelerating response functions. During electrical stimulation, the total synaptic current 

entering an offer value cell (i.e., the cell’s input) has two components – the current induced by 

the offer on the monitor (IO) and the current induced by the electrical stimulation (IS). For 

neurons in cortex, we can assume that the number of spikes emitted in a given time window 

increases with the total synaptic current entering the cell, and that the response function relating 

these quantities is decelerating (Fig.2.S6A) (Arsiero et al., 2007; La Camera et al., 2008). If so, 

the increase in firing rate due to IS decreases as a function of IO. In other words, other things 

equal, if the cell’s firing rate is already high, the stimulation is less effective. Now consider the 

two groups of cells associated with the two juices. The effect of stimulation is equivalent to 

adding value to both juices. However, if tuning curves are linear, the stimulation adds more value 

to the juice that is not currently offered on the monitor, because IO for cells associated with this 

juice is lower. Hence, the stimulation induces an order bias, and this effect is stronger at higher 

currents. 

Second, neural hijacking. Experiments in motor cortex suggest that electrical stimulation at low 

versus high currents has qualitatively different effects on the neuronal output. At low currents, 

simultaneous stimulation of two cortical locations has additive effects on the EMG 

activity(Ethier et al., 2006). In contrast, high-current stimulation cancels and replaces the normal 

EMG activity – a phenomenon termed neural hijacking(Griffin et al., 2011; Van Acker et al., 

2013). This effect is understood based on the idea that high current stimulation induces both 

orthodromic and antidromic spikes, and that antidromic spikes collide with and cancel natural 

spikes(Griffin et al., 2011). Other work suggests that neural hijacking reflects a regime transition 

taking place around 50 μA, with higher current stimulating cells directly through the 

membrane(Hussin et al., 2015). In Exp.1, offer value cells subject to neural hijacking would have 
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the same output independent of the juice they encode (A or B) and independent of the offer 

present on the monitor. It is not clear how hijacked neurons are read out by the decision circuit, 

but we can assume that the read-out value is equivalent for cells in the two groups. 

To illustrate why this phenomenon induces an order bias, we consider the case in which 

stimulation is delivered (or not delivered) when juice A is offered on the monitor. We examine 

trials in which the two offer values are VA and VB. We indicate with ξ the fraction of offer value 

cells hijacked by the stimulation (same for the two groups), and VH is the corresponding read-out 

value. If the total value of each juice is the sum of the values offered in the two time windows, 

we can compute the total offer values in each condition: 

 stimOFF: VA vs. VB  

 stimON: VA (1- ξ) + ξ VH vs. VB + ξ VH  

Under stimON, values induced by the stimulation cancel each other, and a bias favoring juice B 

ensues. 

Decelerating response functions and neural hijacking interfere with the computation of value. Of 

note, these phenomena differ from that underlying the disruption of motion perception upon 

high-current stimulation of area MT, which presumably was due the stimulation activating cells 

in other mini-columns and opposite preferred direction (Murasugi et al., 1993). 

Interestingly, 50 μA stimulation in Exp.1 induced both the order bias (Fig.2.2) and the range-

dependent bias (Fig.2.S4). The concurrent presence of these effects is consistent with either 

mechanism discussed above. For example, the order bias induced by decelerating response 

functions would be independent of the value ranges, and thus take place in addition to the range-
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dependent bias. Also, 50 μA currents might hijack only a subset of cells, and simply increase the 

firing rate of other cells. That said, one might wonder how stimulation in any given session can 

induce both the order bias and the range-dependent bias. In fact, the two biases affect choices in 

very different ways (Fig.2.S6B). The range-dependent bias shifts the total sigmoid (obtained by 

pooling AB and BA trials) in the direction of the larger value range. Conversely, the order bias 

separates the two sigmoids for AB trials and BA trials in the positive or negative direction 

depending on whether the current is delivered during offer1 or offer2. Referring to Eq.2.1, the 

range-dependent bias is an effect on ρ; the order bias is an effect on ε. 

Notably, 50 μA stimulation in Exp.1 induced range-dependent biases, but it did not alter relative 

values on average across the population (Fig.2.2). This is because sessions with ΔVA>ΔVB and 

sessions with ΔVA<ΔVB were pooled in Fig.2.2, and changes in relative value averaged out. 

In Exp.1, ≥100 μA stimulation during offer2 also increased choice variability. In principle, high-

current stimulation may increase variability in two ways: it may add noise to valuation, or it may 

add noise to the decision. The fact that choice variability increased only when stimulation was 

delivered during offer2 (and not during offer1) argued against the former and for the latter. Thus 

we interpret the effect shown in Fig.2.1H as electrical stimulation affecting value comparison. 

The fact that we measured the order bias upon stimulation during offer2 (and not only during 

offer1) might seem in contrast with the hypothesis that values are compared within OFC. If so, 

the increase in choice variability could be mediated by downstream areas. However, neuronal 

recordings (Ballesta and Padoa-Schioppa, 2019) revealed that when offers are presented 

sequentially, working memory of the first offer value is not instantiated by sustained activity in 

offer value cells, and might rely on synaptic mechanisms or other brain regions. At the same 



39 

time, the first offer value affects the baseline activity of chosen juice cells upon presentation of 

offer2, as if setting the initial conditions of the decision circuit (Ballesta and Padoa-Schioppa, 

2019). Thus stimulation during offer2 may not affect the two offer values equally. Hence, the 

order bias is consistent with decisions taking place in OFC. 

2.4.6 Data and code availability 

The complete data set and the Matlab code used for the analysis are available at: 

https://github.com/PadoaSchioppaLab/2020_Ballesta_etal_Nature 

2.5 Supplementary figures  
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Figure 2.S1. Exp.2, control for choice frequency. We noticed that across sessions the difference in value 

range (ΔVA–ΔVB) was correlated with the fraction of trials in which the animal chose juice A (% A 

choice) and with the relative value (ρ). In principle, these correlations could represent confounding 

factors. Indeed, 50 μA stimulation could partly disrupt the valuation process. As a result, the animal might 

respond by defaulting to the juice type most frequently chosen in that session, or to the preferred juice 

type. If so, the range-dependent bias would be akin to the order bias (Exp.1), in the sense that it would 

result from functional disruption as opposed to facilitation. To address this concern, we identified a subset 

of sessions for which choices between the two juices were split almost evenly. In this subset of sessions, 

the difference in value range and the fraction of A choices were not correlated. We reasoned that if the 

range- dependent bias observed for the whole data set was driven by a default to the most frequently 

chosen option, the bias should disappear when the analysis was restricted to this subset of sessions. 

However, this was not the case. In fact, the range-dependent bias measured for the selected subset was 

larger than that measured for the entire population. We concluded that range-dependent biases did not 

reflect simple heuristics. A. Correlation between the difference in value range and the fraction of A 

choices. Each data point represents one session. Considering the entire data set (black data points, N=96 

sessions), the two measures were significantly correlated (r ≥ 0.71, p<10-15, Pearson and Spearman 

correlation tests). We defined a small ellipse centered on coordinates [0, 50] (axes = [9, 14]). The ellipse 
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identified a subset of data (pink data points, N=31 sessions) for which the difference in value range and 

the fraction of A choices were not correlated (p ≥ 0.69, Pearson and Spearman correlation tests). B. 

Correlation between the difference in value range and the relative value. Considering the entire data set, 

the two measures were significantly correlated (r ≥ 0.33, p ≤ 0.001, Pearson and Spearman correlation 

tests). However, when the analysis was restricted to the subset of sessions identified in panel A (pink data 

points), the correlation changed sign. C. Range-dependent bias, same data as in Fig.4CD. Considering the 

entire data set, the change in relative value was significantly correlated with the difference in value range 

(r ≥ 0.34, p≤0.0007, Pearson and Spearman correlation tests). The correlation did not dissipate when the 

analysis was restricted to the subset of sessions identified in panel A (pink data points; r ≥ 0.45, p≤0.01, 

Pearson and Spearman correlation tests). In this figure, data from the two animals are combined. Black 

and pink lines in the three panels were obtained from Deming regressions. 
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Figure 2.S2. Exp.2, results obtained in paired sessions. In N=33 instances, we ran two back-to-back 

sessions offering the same two juices and leaving the electrode in place, but changing the quantity ranges 

such that ΔVA–ΔVB would differ. A. Example of paired sessions. B. Population analysis. Each pair of 

sessions in the scatter plot is connected by a line, of which we computed the slope. Data points filled in 

green correspond to sessions in panel A. Data from the two monkeys are pooled. Across the population, 

slopes were typically >0 (p = 0.007, two-tailed Wilcoxon signed-rank test). Hence, range-dependent 

biases were not dictated by the juice pair or by the location of the electrode within OFC. 
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Figure 2.S3. Exp.2, analysis of response times (RTs). A. Example session 1. Each data point represents 

one trial type and the two lines were obtained from linear regressions. Under normal conditions 

(stimOFF, black), RTs decreased as a function of the chosen value (x-axis). Electrical stimulation 

(stimON, red) generally reduced RTs. Linear fits reveal that lower RTs were due to a lower intercept, as 

opposed to a steeper (i.e., more negative) slope. BC. Population analysis, monkey D (N=35). For each 

session, we regressed RTs onto the chosen value, separately for stimOFF and stimON trials. We then 

compared the intercepts and the slopes at the population level. The picture emerging from panel A was 

confirmed for the population. In panel B (intercept), each data point represents one session. The 

population is significantly displaced below the identity line (p=0.018, two-tailed Wilcoxon test). In panel 

C (slope), it can be noticed that the slope under stimulation was shallower (less negative), probably due to 

a floor effect. Filled data points correspond to the session shown in panel A. D. Example session 2. Same 
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format as in panel A. EF. Population analysis, monkey G (N=61). Same format as in panels BC. 

Electrical stimulation significantly lowered the intercept but did not significantly alter the slope. Filled 

data points correspond to the session shown in panel D. In panels BCEF, values indicated in the insert 

refer to the difference between the stimON measure and the stimOFF measure, averaged across the 

population. All p values are from two-tailed Wilcoxon tests, and t tests provided very similar results. 
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Figure 2.S4. Exp.1, range-dependent choice biases. ABC. Results obtained when electric current was 

delivered at 25 μA, 50 μA and ≥100 μA. In each panel, x- and y-axes represent the difference in value 

range (in uB) and the difference in relative value, respectively. Each data point represents one session. 

Sessions from the two animals and with different stimulation times (offer1 or offer2) were pooled. Gray 

lines were obtained from linear regressions. Each panel indicates the p values obtained from Pearson and 

Spearman correlation tests. In essence, the choice bias imposed by the stimulation (δρ) was correlated 

with the difference in value ranges (ΔVA–ΔVB) at low current (25 μA; weakly) and intermediate current 

(50 μA), but not at high current (≥100 μA). 
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Figure 2.S5. Stimulation in Exp.2 did not systematically alter the sigmoid steepness. For this analysis, the 

two groups of trials (stimOFF, stimON) were examined separately (see Methods). The two axes represent 

the sigmoid steepness in the two conditions. Sessions from the two animals were pooled (N=95, 2 outliers 

removed), and each data point represents one session. The gray ellipse represents the 90% confidence 

interval. The p value is from a Wilcoxon test and similar results were obtained with a t test. 
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Figure 2.S6. Exp.1, interpretation of the order bias. A. Decelerating response function. The black line 

represents an ideal response function, which relates the number of spikes emitted by a cell in a given time 

window (y-axis) to the synaptic current entering the cell (x-axis). In the condition highlighted in yellow, 

IO is the synaptic current due to the offer on the monitor, r is the corresponding response, IS is the synaptic 

current due to the stimulation, and δr is the corresponding increase in the number of spikes. The condition 

highlighted in blue is similar, except that IO is larger (IO,blue > IO,yellow). Because the response function is 

decelerating, δr in the blue condition is smaller (δrblue < δryellow). In Exp.1, only one good was presented at 

the time. Neurons associated with that good were naturally more active (higher IO) than neurons 

associated with the other good. Thus deceleration in the response function induced a bias favoring the 

good not offered during the stimulation (order bias). For given IO,yellow and IO,blue, the difference δryellow – 

δrblue increases with IS. Hence, higher stimulation currents induced larger order biases. B. Concurrent 

presence of order bias and range-dependent bias. The cartoon illustrates an ideal session in Exp.1. We 

assume that under normal conditions there is no order bias (stimOFF, continuous lines). Thus the two 

sigmoids for AB trials and BA trials coincide. We also assume that stimulation is delivered during offer1, 

and that ΔVA–ΔVB > 0. The order bias separates the two sigmoids such that under stimulation the sigmoid 

for AB trials is on the left of that for BA trials (stimON, dashed lines). The range-dependent bias imposes 

a shift on the total sigmoid, including both AB and BA trials (not shown), which moves to the right 

compared to normal conditions. The two choice biases are complementary and independent.
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Parameter Stimulation 

interval 

Current 

level 

P value P<.005 

 control 0 μA 0.61  

 
Relative value 

 

offer 1 
25 μA 

50 μA 
≥100 μA 

0.20 

0.37 
0.48 

 

  

offer 2 
25 μA 

50 μA 

0.83 

0.34 

 

  ≥100 μA 0.16 
 control 0 μA 0.43  

 
Steepness 

 

offer 1 
25 μA 

50 μA 
≥100 μA 

0.47 

0.20 
0.84 

 

  

offer 2 
25 μA 

50 μA 

0.27 

0.10 

 

  ≥100 μA 0.0025 * 
 control 0 μA 0.39  

 
Order bias 

 

offer 1 
25 μA 

50 μA 
≥100 μA 

0.46 

5.5 10-4 
8.8 10-6 

 

* 
* 

  

offer 2 
25 μA 

50 μA 

0.69 

0.0041 
 
* 

  ≥100 μA 3.0 10-4 * 

Table 2.S1. Exact p values for the statistical tests ran for Fig.2.2. All p values are from two-tailed 

Wilcoxon tests. 
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Stimulation 
interval 

Current 
level 

Mode Number of sessions 

monkey G monkey J total 

 
 

offer 1 

≥100 μA uni 
bi 

5 
15 

8 
1 

29 

50 μA uni 
bi 

9 
4 

7 
2 

22 

25 μA uni 

bi 

11 

14 

4 

0 

29 

 
 

offer 2 

≥100 μA uni 
bi 

14 
3 

6 
2 

25 

50 μA uni 

bi 

11 

0 

11 

0 

22 

25 μA uni 
bi 

9 
2 

6 
0 

17 

control 0 μA -- 30 20 50 

Total -- -- 127 67 194 

Table 2.S2. Data set for Exp.1. Labels uni/bi indicate unilateral/bilateral stimulation. For the 54 sessions 

labeled as ≥100 μA, the current was typically set at 125 μA (47/54 = 87% sessions). In the remaining 

cases, the current was set at 100 μA (2/54 = 4%), 150 μA (4/54 = 7%) and 200 μA (1/54 = 2%). 

Removing from the data set sessions at 100, 150 and 200 μA did not substantially alter the results of this 

study. 
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Chapter 3: Economic choices under 

simultaneous or sequential offers rely on the 

same neural circuit 

This chapter is adapted from the following publication with the permission from the co-authors: 

Shi, W., Ballesta, S., & Padoa-Schioppa, C. (2021). Economic Choices under Simultaneous or 

Sequential Offers Rely on the Same Neural Circuit. J Neurosci: in press. 

Abstract 

A series of studies in which monkeys chose between two juices offered in variable amounts 

identified in the orbitofrontal cortex (OFC) different groups of neurons encoding the value of 

individual options (offer value), the binary choice outcome (chosen juice) and the chosen value. 

These variables capture both the input and the output of the choice process, suggesting that the 

cell groups identified in OFC constitute the building blocks of a decision circuit. Several lines of 

evidence support this hypothesis. However, in previous experiments offers were presented 

simultaneously, raising the question of whether current notions generalize to when goods are 

presented or are examined in sequence. Recently, Ballesta and Padoa-Schioppa (2019) examined 

OFC activity under sequential offers. An analysis of neuronal responses across time windows 

revealed that a small number of cell groups encoded specific sequences of variables. These 

sequences appeared analogous to the variables identified under simultaneous offers, but the 

correspondence remained tentative. Thus in the present study we examined the relation between 

cell groups found under sequential versus simultaneous offers. We recorded from the OFC while 

monkeys chose between different juices. Trials with simultaneous and sequential offers were 
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randomly interleaved in each session. We classified cells in each choice modality and we 

examined the relation between the two classifications. We found a strong correspondence – in 

other words, the cell groups measured under simultaneous offers and under sequential offers 

were one and the same. This result indicates that economic choices under simultaneous or 

sequential offers rely on the same neural circuit. 
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3.1 Introduction 

Neurophysiology experiments where monkeys chose between different juice types identified in 

the OFC different groups of cells encoding individual offer values, the binary choice outcome 

(chosen juice) and the chosen value (Padoa-Schioppa and Assad, 2006). Similar results were 

obtained in monkeys choosing between juice bundles (Pastor-Bernier et al., 2019), in mice 

(Kuwabara et al., 2020), and in humans using fMRI (Hare et al., 2008; Howard et al., 2015). The 

variables encoded in OFC capture both the input and the output of the choice process, and the 

corresponding cell groups are computationally sufficient to generate binary decisions (Rustichini 

and Padoa-Schioppa, 2015; Song et al., 2017; Zhang et al., 2018). In monkeys, mild electrical 

stimulation of this area biases choices in predictable ways (Ballesta et al., 2020). Furthermore, 

lesions in humans (Camille et al., 2011; Yu et al., 2018), high current stimulation in monkeys 

(Ballesta et al., 2020) or optogenetic inactivation in mice (Gore et al., 2019; Kuwabara et al., 

2020) dramatically increases choice variability. The circuit dynamics is consistent with a 

decision process (Rich and Wallis, 2016), and trial-by-trial fluctuation in the activity of each cell 

group correlates with choice variability (Padoa-Schioppa, 2013). Taken together, these results 

suggest that the cell groups identified in OFC constitute the building blocks of a neural circuit in 

which economic decisions are formed. One caveat is that current notions on this circuit emerge 

mostly from studies in which two options were presented simultaneously. Yet, in most daily 

situations, options available for choice appear or are examined in sequence. Moreover, some 

scholars have argued that choices under sequential or simultaneous offers rely on qualitatively 

different mechanisms (Hayden and Moreno-Bote, 2018; Hunt et al., 2013; Kacelnik et al., 2011).  



53 

To shed light on the mechanisms underlying choices under sequential offers, we recently 

recorded from the OFC of monkeys choosing between different juices offered sequentially 

(Ballesta and Padoa-Schioppa, 2019). Consistent with previous observations (Hunt et al., 2018; 

McGinty et al., 2016), neuronal responses in any time window depended on the presentation 

order (i.e., on what juice the animal was offered at that time). However, an analysis of neuronal 

responses across time windows revealed that different groups of cells encoded different patterns 

of variables, referred to as “sequences”. Across a large population of neurons, we identified 8 

such sequences. We also noted that these sequences presented analogies with the cell groups 

previously identified under simultaneous offers. For example, some sequences represented the 

value of specific juices, while other sequences presented binary responses. These observations 

suggested that the two sets of cell groups recorded under sequential and under simultaneous 

offers might in fact be one and the same. If this hypothesis was confirmed, notions on the 

decision mechanisms acquired under simultaneous offers would apply to a much broader domain 

of choices than previously recognized.  

To test this hypothesis, we recorded the activity of neurons in OFC while monkeys chose 

between different juices. In each session, choices under simultaneous offers and choices under 

sequential offers were pseudo-randomly interleaved. In the analysis, we first separated trials with 

the two choice tasks (modalities) and classified each cell in each choice task. We then considered 

the whole population and compared the results of the classification obtained for the two choice 

tasks. We envisioned three possible scenarios: (1) the two choice tasks could engage different 

neuronal assemblies (different populations); (2) the two tasks might engage the same neuronal 

population but individual neurons might have different roles in the two tasks (independent 

classification); or (3) the same groups of neurons might support decisions in the two choice tasks 
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(corresponding classifications). Statistical analyses provided strong evidence for the last 

hypothesis. Thus our results indicate that choices under sequential offers and choices under 

simultaneous offers rely on the same decision circuit. 

3.2 Results 

Two monkeys chose between different juices offered in variable amounts. Offers were 

represented by sets of colored squares displayed on a computer monitor, and animals indicated 

their choice with an eye movement. In each session, trials with two choice modalities were 

randomly interleaved. In one modality (Task 1), two offers were presented simultaneously 

(Fig.3.1A); in the other modality (Task 2), two offers were presented in sequence (Fig.3.1B). A 

cue presented at the beginning of the trial indicated to the animal the choice modality for that 

trial. The two juices used in each session were labeled A and B, with A preferred, and we 

indicated the quantities offered in any given trial with qA and qB. For Task 2, trials in which juice 

A was offered first and trials in which juice B was offered first were referred to as AB trials and 

BA trials, respectively. The first and second offers were referred to as offer1 and offer2, 

respectively. 

3.2.1 Comparing choices across tasks 

Our data set included 306 sessions from two monkeys (115 from J, 191 from G). Sessions 

included 216-880 trials (mean ± std = 590 ± 160). For each session, we analyzed trials with the 

two choice tasks separately using probit regressions (see Methods). For Task 1 (simultaneous 

offers), the probit fit provided measures for the relative value ρTask1 and the sigmoid steepness 

ηTask1. For Task 2 (sequential offers), the probit fit provided measures for the relative value ρTask2, 
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the sigmoid steepness ηTask2 and the order bias ε (Fig.3.1C-F). Intuitively, the relative value was 

the quantity ratio qB/qA that made the animal indifferent between the two juices, the sigmoid 

steepness was inversely related to choice variability, and the order bias (measured in Task 2) was 

a bias favoring the first or the second offer. Specifically, ε<0 indicated a bias favoring offer1 and 

ε>0 indicated a bias favoring offer2. 

The experimental design gave us the opportunity to compare choices across tasks. Our analyses 

revealed several phenomena. First, the relative values measured in the two tasks were very 

similar and highly correlated across sessions (r>0.90; Fig.3.1D). At the same time, ρTask1 and 

ρTask2 presented some differences. Specifically, relative values in Task 2 were generally higher 

than in Task 1 (p<10-10, t test), and this effect increased with the relative value. Second, sigmoids 

measured in Task 2 were significantly shallower compared to Task 1 (p<10-25, t test; Fig.3.1E). 

In other words, presenting offers in sequence substantially increased choice variability. Third, in 

Task 2, animals showed an order bias favoring offer2 (Fig.3.1F). This effect was highly 

significant (p<10-25, t test) but quantitatively modest (mean(ε) = 0.26 uB) compared to relative 

values, which typically ranged between 1 and 4 uB (mean(ρ) = 2.26 uB).  

These three behavioral phenomena – larger choice variability, preference bias and order bias – 

were likely due to the higher cognitive demands imposed by Task 2 (see Discussion). 

Importantly, these effects were relatively small and essentially orthogonal to the main question 

addressed in this study, concerning the relation between cell groups recorded in the two choice 

tasks. Thus for the analyses of neuronal activity presented in the rest of this study, we examined 

responses of each neuron in each task in relation to variables defined based on the relative value 

measured in the same task, ignoring the order bias (see Table 3.2).  
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Figure 3.1. Experimental design and behavioral performance. AB. Experimental design. In each session, 

a monkey chose between two juices labeled A and B (A preferred). Trials with two choice modalities, 

referred to as Task 1 and Task 2, were randomly interleaved. At the beginning of each trial, the animal 

fixated a large dot in the center of the monitor. After 0.5 s, the fixation point changed to either a small dot 

or a cross; this cue indicated to the animal the task used in that trial. In Task 1 (simultaneous offers), two 

offers appeared on the left and right sides of the fixation point. The animal maintained fixation for a 

randomly variable delay, at the end of which the fixation point was extinguished and two saccade target 

appeared by the offers (go signal). The animal indicated its choice with a saccade and maintained 

peripheral fixation until juice delivery. In Task 2 (sequential offers), the two offers were presented in 

sequence and spaced by an inter-offer delay. Two saccade targets matching the colors of the two offers 

appeared on the two sides of the fixation point. After a variable delay, the fixation point was extinguished 

(go signal). The animal indicated its choice with a saccade and maintained peripheral fixation until juice 

delivery. For each offer, the color indicated the juice type and the number of squares indicated the juice 
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amounts. Thus in the trials shown here, the animal chose between 1 drop of juice A and 3 drops of juice 

B. The left/right configuration in Task 1, the presentation order in Task 2 and the left/right position of the 

saccade targets in Task 2 varied randomly from trial to trial. In both tasks, fixation breaks prior to the go 

signal lead to trial abortion. The same offer types were used for both tasks. C. Example sessions. The 

percent of B choices (y-axis) is plotted against the log quantity ratio (x-axis). Each panel includes data 

points for Task 1 (gray circles) and for Task 2 (red and blue triangles for AB trials and BA trials, 

respectively). Sigmoids were obtained from probit regressions (Eq.3.1 and Eq.3.2). The panel indicates 

the relative value (ρ) and sigmoid steepness (η) measured in each task, and the order bias (ε) measured in 

Task 2. A choice bias favoring offer2 (ε>0) corresponds to the blue sigmoid displaced to the right of the 

red sigmoid. D. Comparing the relative value (ρ) across choice tasks. Relative values measured in Task 1 

(x-axis) are plotted against those measured in Task 2 (y-axis). Each data point represents one session. 

Gray ellipses indicate 90% confidence intervals. The two measures were highly correlated. However, 

relative values were generally higher in Task 2 than in Task 1, and this effect increased with ρ (the main 

axis of the ellipse is rotated counterclockwise compared to the identity line). E. Comparing the sigmoid 

steepness (η) across choice tasks. Sigmoids in Task 2 were consistently shallower (lower η; higher choice 

variability) compared to Task 1. F. Distribution of order bias measured across sessions. A small triangle 

indicates the mean. Animals presented a consistent bias favoring offer2. In panels DEF, results from both 

monkeys were pooled (N = 241 sessions; 65 outliers removed, see Methods). Statistical tests and p values 

are indicated in each panel. The sessions shown in panel C is highlighted in cyan in panels DE. 
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Task 1 

  Variable Definition 

1 offer value A ρ qA 

2 offer value B qB 

3 chosen value value of chosen offer 

4 chosen juice binary; 1 if A chosen; 0 if B chosen 

Task 2 

 Variable Definition 

1 AB | BA binary; 1 in AB trials; 0 in BA trials 

2 offer value A | AB ρ qA in AB trials, 0 in BA trials 

3 offer value A | BA ρ qA in BA trials, 0 in AB trials 

4 offer value B | AB qB in AB trials, 0 in BA trials 

5 offer value B | BA qB in BA trials, 0 in AB trials 

6 offer value 1 value of offer1 

7 offer value 2 value of offer2 

8 chosen value value of chosen offer 

9 chosen value A chosen value if A chosen, 0 otherwise 

10 chosen value B chosen value if B chosen, 0 otherwise 

11 chosen juice A binary; 1 if A chosen; 0 if B chosen 

12 chosen juice B binary; 0 if A chosen; 1 if B chosen 

Table 3.1. Definition of variables in Task 1 and Task 2. Values were always defined in units of juice B 

(uB) based on relative values derived from the probit regressions (Eqs.3.1-3.2). Thus, the value of qB 

drops of juice B was equal to qB; the value of qA drops of juice A was equal to ρ qA. Each variable could 

be encoded with a positive or negative sign. For Task 2, variables chosen juice A and chosen juice B 

coincided except for the sign (we use this notation for clarity). 
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Seq # 
Time windows 

post-offer1 post-offer2 post-juice 

#1 offer value A | AB + offer value A | BA + chosen value A + 

#2 offer value A | AB - offer value A | BA - chosen value A - 

#3 offer value B | BA + offer value B | AB + chosen value B + 

#4 offer value B | BA - offer value B | AB - chosen value B - 

#5 AB | BA + AB | BA - chosen juice A 

#6 AB | BA - AB | BA + chosen juice B 

#7 offer value1 + offer value2 + chosen value + 

#8 offer value1 - offer value2 - chosen value - 

Table 3.2. Neuronal classification in Task 2. Ballesta and Padoa-Schioppa (2019) found that under 

sequential offers neurons in OFC encoded different variables in different time windows. However, 

focusing on three primary time windows, the vast majority of neurons presented one of 8 specific patterns 

of variables, referred to as variable “sequences”. The 8 sequences identified in that study are defined in 

this table, where + and - indicate the sign of the encoding. These sequences seem roughly analogous to 

the variables identified under simultaneous offers. For example, seq #1 encodes the value of juice A when 

the animal is offered that juice (post-offer1 in AB trials; post-offer2 in BA trials). Upon juice delivery, 

seq #1 encodes the value of juice A conditioned on juice A being chosen. Thus neurons classified as seq 

#1 seem analogous to offer value A+ neurons found under simultaneous offers. Similarly, cells classified 

as seq #2, seq #3 and seq #4 seem analogous to offer value A–, offer value B+ and offer value B– cells 

found under simultaneous offers, respectively. Cells classified as seq #5 or seq #6 encode in a binary way 

the identity of the juice (A or B) offered to the animal or chosen by the animal. These neurons appear 

tentatively analogous to chosen juice cells identified under simultaneous offers. Finally, cells classified as 

seq #7 or seq #8 encode the value of either juice, provided that the animal focuses on it. They appear 

tentatively analogous to chosen value+ and chosen value- cells identified under simultaneous offers, with 

the understanding that the value encoded by these neurons is that upon which the animal places its mental 

focus and not necessarily the chosen one.  
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3.2.2 Neuronal classification in each choice task 

Previous studies of choices under simultaneous offers identified in OFC different groups of cells 

encoding individual offer values, the binary choice outcome and the chosen value (Padoa-

Schioppa and Assad, 2006). Similarly, recent work on choices under sequential offers identified 

different groups of cells encoding different decision variables (Ballesta and Padoa-Schioppa, 

2019). Our goal was to ascertain whether the two sets of cell groups correspond to each other. To 

do so, we recorded and analyzed the activity of 1,526 cells (672 cells from monkey J and 854 

cells from monkey G). In the analysis, our general strategy was to classify cells separately in 

each task according to the same criteria used in previous work, and to then compare the results of 

the two classifications at the population level. Thus we divided trials with Task 1 and Task 2 and 

proceeded in steps. 

For Task 1 trials, we defined four 500 ms time windows aligned with the offer presentation 

(post-offer, late-delay) and the juice delivery (pre-juice and post-juice). A “trial type” was 

defined by two offers and a choice. For Task 2 trials, we defined three 500 ms time windows 

aligned with the two offers (post-offer1, post-offer2) and with the juice delivery (post-juice). A 

“trial type” was defined as two offers in a particular order and a choice. For each task, each trial 

type and each time window, we averaged spike counts across trials. In each task, a neuronal 

response was defined as the firing rate of one cell in one time window as a function of the trial 

type. Neuronal responses were submitted to an ANOVA (factor: trial type). Neurons presenting a 

significant modulation (p<0.01) in at least one task and at least one time window were identified 

as task-related and included in subsequent analyses. In total, 645/1,526 (42%) cells met this 

criterion. Further analyses were restricted to this population. 
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While inspecting individual responses, we made three observations. First, replicating several 

previous studies, responses in Task 1 appeared to encode one of the variables offer value, chosen 

juice or chosen value (Fig.3.2). Second, confirming the results of our recent study on sequential 

offers, neurons in Task 2 appeared to encode different variables in different time windows. 

Across time windows, particular sequences of variables were most frequent. For example, in the 

three time windows under consideration, the neuron in Fig.3.2C encoded variables offer value B 

| BA, offer value B | AB and chosen value B. These variables define sequence #3 in Table 3.2. In 

the same time windows, the cell in Fig.3.2F encoded variables –AB|BA, AB|BA and chosen 

juice B. These variables define sequence #5. Similarly, the cell in Fig.3.2I encoded variables 

offer value 1, offer value 2 and chosen value, which define sequence #7. Third and most 

important, there appeared to be a reliable correspondence between neuronal responses recorded 

in the two tasks. In principle, neurons tuned in one task could be untuned in the other task. That 

is, different cell assemblies in OFC could support choices in the two tasks. In contrast, neurons 

were typically tuned in both tasks or not at all. Furthermore, the variable encoded in Task 1 

corresponded to specific sequences encoded in Task 2. For example, neurons encoding offer 

value A in Task 1 typically encoded sequence #1 in Task 2; neurons encoding offer value B in 

Task 1 typically encoded sequence #3 in Task 2; neurons encoding chosen juice A in Task 1 

typically encoded sequence #5 in Task 2; etc. The three example cells in Fig.3.2 illustrate this 

point. 

For a statistical analysis, we classified neurons in Task 1 and Task 2 following the same 

procedures of previous studies (Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa, 2013). For 

Task 1, we regressed each response against each variable. Each regression provided a slope and 

the R2. If the slope differed significantly from zero (p<0.05) the variable was said to explain the  
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Figure 3.2. Three example neurons. A-C. Example 1, offer value B + (seq #3) cell. Panel A illustrates the 

choice pattern. Panel B illustrates the neuronal response measured in Task 1 (time window: post-offer). 

Each data point represents one trial type, and the firing rate (y-axis) is plotted against variable offer value 

B. The gray line is from a linear regression. In C, the three panels illustrate the neuronal responses 

measured in Task 2 (time windows: post-offer1, post-offer2, post-juice). Each data point represents one 

trial type, red and blue colors are for AB and BA trials, and gray lines are from linear regressions. In the 

three time windows, this cell seemed to encode variables offer value B | BA, offer value B | AB, and 

chosen value B, respectively, all with a positive slope. This pattern of responses corresponds to seq #3 

(see Table 3.2). D-F. Example 2, chosen juice B (seq #6) cell. Same conventions as in example 1. In 

panel E (Task 1, post-juice time window), firing rates are plotted against the variable chosen juice. In the 
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three time windows defined for Task 2, the cell seemed to encode variables AB | BA, – AB | BA and 

chosen juice B, respectively. This pattern of responses corresponds to seq #6 (see Table 3.2). G-I. 

Example 3, chosen value + (seq #7) cell. Same conventions as in example 1. In panel H (Task 1, post-

offer time window), firing rates are plotted against the variable chosen value. In the three time windows 

defined for Task 2, the cell seemed to encode variables offer value 1, offer value 2 and chosen value. This 

pattern of responses corresponds to seq #7 (see Table 3.2). 
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Figure 3.3. Comparing classification across tasks, possible results. In this cartoon, rows and columns 

represent different cell groups defined for Task 1 and Task 2, respectively. For each entry, the gray shade 

indicates the number of cells classified according to the corresponding groups in the two tasks (or the 

corresponding odds ratio). The three panels illustrate three possible scenarios. A. Separate populations. 

Task 1 and Task 2 might recruit different groups of neurons. B. Independent classification. The two tasks 

might recruit the same neurons but the role of any cell in one task might me unrelated to that in the other 

task. C. Consistent classification. Task 1 and Task 2 might recruit the same neurons and each cell might 

have the same functional role in the two tasks. 
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response. If the slope was statistically indistinguishable from zero, we set R2=0. We considered 

the signed sR2, where the sign was obtained from the regression slope, summed it over time 

windows, took the absolute value, and assigned each neuron to the variable providing the 

maximum |sum(sR2)| (see Methods). Task-related cells not explained by any variable in any 

time window were labeled “untuned”. For Task 2, we used a very similar procedure, except that, 

for any of the 8 sequences, different variables were examined in different time windows (Table 

3.2). Again, each neuron was assigned to the sequence providing the maximum |sum(sR2)|, 

where sR2 is the signed R2 and the sum is across time windows. 

3.2.3 Matching classifications across choice tasks 

To compare the results across tasks, we constructed a contingency table where rows represented 

classes in Task 1, columns represented classes in Task 2, and in each entry quantified the cell 

count. We envisioned three possible scenarios illustrated in Fig.3.3. (1) The table might be 

concentrated on the first row and first column (Fig.3.3A), indicating that the two tasks engage 

different neuronal populations; (2) the table might present a uniform distribution (Fig.3.3B), 

indicating that the two tasks engage the same neuronal population but the role of individual 

neurons differs across task; or (3) the contingency table might be concentrated on the diagonal 

(Fig.3.3C), indicating that individual neurons have the same role in the two choice tasks.  

Fig.3.4A illustrates the cell counts actually measured in the experiments. The vast majority of 

neurons were either non-task related (881/1,526 = 58%), or tuned in both tasks (490/1,526 = 

32%). Importantly, different groups of cells accounted for different numbers of neurons. Thus to 

compare each cell count to chance level, we computed for each entry the odds ratio (OR; see 

Methods). We thus obtained a table of ORs (Fig.3.4B). For each entry, OR=1 was chance level; 
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conversely, OR>1 or OR<1 indicated that the cell count was above or below that expected by 

chance, respectively. For each entry, a Fisher’s exact test (p<0.01) assessed whether departure 

from chance was statistically significant (Fig.3.4C). Inspection of Fig.3.4B reveals that cell 

counts were significantly above chance for all entries on the diagonal. Conversely, the vast 

majority of off-diagonal entries (69/72) was at or below chance level. In conclusion there was a 

strong correspondence between the class identified for any given cell in Task 1 and that 

identified for the same cell in Task 2.  

We noted that a few off-diagonal entries in Fig.3.4B were significantly above chance. We 

conducted two analyses to assess the significance of this observation. First, we examined this 

finding could be explained by the correlation between different variables defined in Table 3.1. 

This correlation and the intrinsic variability of neuronal firing rates likely induced some mis-

classification. We thus expected that instances for which ORi,j was significantly >1 would occur 

only when the variables indexed by i and j were highly correlated with each other. To test our 

hypothesis, we generated the correlation matrix C, separately for each task. For Task 1, entry C-

m,n in this matrix was simply the correlation between variables m and n, which did not depend on 

the time window. For Task 2, since each sequence included different variables in different time 

windows, we computed the correlation matrix separately in each time window using the relevant 

variables. We then calculated the mean correlation matrix across time windows. The correlation 

matrices obtained for the two tasks were similar, and we averaged them to obtain the average 

correlation matrix, referred to as table Z. Of note, table Z was symmetric by construction 

(Fig.3.5A). Inspection of it reveals that correlations between specific pairs of variables were 

particularly high. For example, variables offer value A+ and chosen value A were highly 

correlated (r = 0.69). Similarly, variables offer value B+ and chosen value B were highly  
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Figure 3.4. Neuronal classification is consistent across choice tasks. A. Contingency table (N = 645 

cells). Numbers and gray scale indicate cell counts. B. Table of odds ratios. For each entry in panel A we 

computed the odds ratio (OR; see Methods, Eq.3.4). ORs are indicated here by numbers and gray scale 

colors. Chance level corresponds to OR = 1; conversely, OR>1 (OR<1) indicate that the cell count was 

higher (lower) than expected by chance. Red asterisks (*) indicate that the ORs was significantly >1 

(p<0.01, Fisher’s exact test). For all entries on the main diagonal, OR was significantly >1, indicating that 

the two choice tasks yielded the same classification results. Of note, cell counts on the first column 

(untuned in Task 1) and cell counts on the first row (untuned in Task 2) were all at chance level. C. 

Fisher’s exact test, p values. Red/blue asterisks (*) indicate that the OR was significantly higher/lower 

than 1 (p<0.01). 
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correlated (r = 0.63). To assess the relation between OR table and Z table, we plotted them 

against each other entry by entry (excluding the diagonals; Fig.3.5B). The two tables were highly 

correlated (Pearson: r = 0.75, p = 4 10-11). Furthermore, significant departure from chance level 

in the OR table (ORi,j>1) occurred only when the variable correlation was particularly high 

(Zi,j>0.5). 

Second, to compare the results in Fig.3.4B to some benchmark, we generated equivalent OR 

tables separately for each choice task. For Task 1, we divided trials randomly in two sets (set 1 

and set 2; see Methods). We analyzed the two sets of trials separately and thus obtained two 

independent classifications. We repeated this operation for each cell in the population, and 

generated a contingency table (not shown) and a table of ORs (Fig.3.6A) where rows and 

columns corresponded to set 1 trials and set 2 trials, respectively. We repeated this analysis for 

data from Task 2 and obtained an equivalent OR table (Fig.3.6B). Since the two sets of trials 

were interleaved and the criterion used to separate them was arbitrary, we expected the OR tables 

to concentrate on the diagonal. Conversely, non-zero off-diagonal entries should capture noise in 

the classification procedures due to the correlation between encoded variables (Fig.3.5A) and to 

trial-to-trial variability in spike counts. To assess whether the table in Fig.3.4B (across tasks) 

differed significantly from the tables in Fig.3.6AB (within task) we used a Breslow-Day test (see 

Methods). Fig.3.6C illustrates the results of this analysis. In essence, classifications across tasks 

were as consistent as classifications within tasks (all p≥0.01).  

In all previous analyses, neurons were classified based on the activity recorded in multiple time 

windows. For a control, we repeated the analysis of Fig.3.4 using only one time window for each 

task. We then matched time windows across tasks. Indicating with [x, y] the pair formed by time  
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Figure 3.5. Significant departures from chance level in OR table reflect correlations between the encoded 

variables. A. Correlation matrix between encoded variables (Z table). Correlations between the encoded 

variables were first calculated separately for both Task 1 and Task 2. The results were then averaged 

across tasks and shown here. Green circles highlight entries where correlation was >0.5. B. Correlation 

between OR table and Z table. Corresponding entries were plotted against each other. The gray line is 

from a linear regression, and p values are indicated in the panel. Red data points highlight entries in the 

OR table that were significantly >1. The large correlation measured here (r = 0.75) indicates that 

significant departures from chance in the OR table were likely due to mis-classifications induced by the 

correlation between encoded variables. 
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Figure 3.6. Comparing neuronal classification within and across choice tasks. A. Odds ratios obtained for 

Task 1. For each neuron, we divided trials randomly in two sets (set 1 and set 2; see Methods). We 

analyzed the two sets of trials separately and thus obtained two independent classifications. We repeated 

this operation for each cell in the population, and generated a contingency table (not shown) and a table of 

ORs, shown here, where rows and columns corresponded to set 1 trials and set 2 trials, respectively. 

Conventions here are as for Fig.3.4B. Since the two sets of trials were interleaved and the criterion used 

to separate them was arbitrary, the tables of ORs were expected to be concentrated on the diagonal. 

Indeed, all diagonal entries were significantly above chance (p<0.01, Fisher’s exact test). Conversely, off-

diagonal entries captured the noise in classification procedures. B. Odds ratios obtained for Task 2. We 

repeated this analysis for Task 2 trials and obtained an equivalent table of ORs. Again, all diagonal entries 

were significantly above chance (p<0.01, Fisher’s exact test). C. Comparing the classification consistency 

obtained within and across tasks. Each entry in this panel indicates the p value obtained from a Breslow-

Day test, and p<0.01 would indicate significant differences across OR tables. In practice, we obtained 

p>0.01 for all 81 entries. In other words, the neuronal classification was as consistent across tasks as it 

was within tasks. 
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windows x (Task 1) and y (Task 2), we examined the three pairs [post-offer, post-offer1], [post-

offer, post-offer2] and [post-juice, post-juice]. In general, the results based on a single time 

window were similar to those based on multiple windows, albeit noisier. For example, 

considering the time window pair [post-offer, post-offer1], all the diagonal entries in the OR 

table were significantly above chance (along with a few off-diagonal entries). The two other 

pairs of time windows provide similar pictures. These findings confirmed that there was a strong 

correspondence between the cell classification in the two choice tasks. 

Taken together, our results indicated that the cells groups identified under sequential offers are 

equivalent to those identified under simultaneous offers. Building on this finding, we proceeded 

with a comprehensive classification based on both choice tasks, by summing the R2 across all 

seven time windows (see Methods). Henceforth, we may refer to the different groups of cells 

using the standard nomenclature – offer value, chosen juice and chosen value – independently of 

the choice task. In total, the final classification resulted in 235 offer value cells, 168 chosen juice 

cells and 233 chosen value cells. 

3.2.4 Matching maximum selectivity windows across choice tasks 

To complement the results described above, we examined whether there was some 

correspondence between the time windows in which any given neuron was most selective in 

Task 1 and in Task 2. To address this issue, we defined for each cell, each task and each time 

window the selective activity range (SAR), which captured the strength of the encoding (see 

Methods). For each cell and each task, the maximum selectivity window (MSW) may be defined 

as the time window for which SAR was maximal. Because neurons often responded similarly in 
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different time windows (e.g., post-offer1 and post-offer2 in Task 2), we used a soft definition 

and identified as MSW any time window such that SAR / max(SAR) > 0.6.  

To compare the MSWs identified for each cell in the two tasks across the population, we 

generated a contingency table where rows and columns represented time windows in the two 

tasks and each entry indicated the number of cells with corresponding MSWs (Fig.3.7A). We 

also computed the corresponding table of odds ratios (Fig.3.7B), and the p values obtained from 

Fisher’s exact tests (Fig.3.7C). The results indicated that time windows for which neurons were 

maximally selective in the two tasks were systematically related across the population. 

Specifically, cells for which MSW = post-offer in Task 1 typically had MSW = post-offer1 

and/or MSW = post-offer2 in Task 2. Similarly, cells for which MSW = post-juice in Task 1 

typically had MSW = post-juice in Task 2. This finding supports the understanding that 

individual neurons have similar functions in the two choice tasks.  

3.3 Discussion 

The past 20 years witnessed enormous progress in the understanding of the cognitive and neural 

underpinnings of economic choices. An extensive body of work demonstrates beyond reasonable 

doubt that subjective values are explicitly represented at the neuronal level (Kable and Glimcher, 

2009; O'Doherty, 2014; Padoa-Schioppa, 2007; Perkins and Rich, 2021). Furthermore, 

substantial evidence links economic decisions to neuronal activity in the OFC. Neurons in this 

area represent different decision variables in a categorical way (Hirokawa et al., 2019; Onken et 

al., 2019). In particular, when monkeys (or mice) choose between juices, different groups of cells 

encode individual offer values, the binary choice outcome and the chosen value (Kuwabara et al., 
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2020; Padoa-Schioppa and Assad, 2006). These variables capture both the input and the output 

of the choice process, suggesting that the cell groups identified in OFC might constitute the 

building blocks of e decision circuit. The population dynamics (Rich and Wallis, 2016), 

correlations between neuronal and behavioral variability (Padoa-Schioppa, 2013), the effects of 

lesion (Camille et al., 2011; Yu et al., 2018) or inactivation (Gore et al., 2019; Kuwabara et al., 

2020), and computational modeling (Rustichini and Padoa-Schioppa, 2015; Song et al., 2017; 

Zhang et al., 2018) support this proposal. These and corroborating results set the stage for a 

detailed understanding of the decision mechanisms. One important caveat is that current notions 

came primarily from studies in which two offers were presented simultaneously. Yet, in many 

daily choices, offers appear or are examined sequentially, and some authors suggested that 

choices under sequential offers may rely on fundamentally different mechanisms (Hayden and 

Moreno-Bote, 2018; Hunt et al., 2013; Kacelnik et al., 2011). Thus the purpose of this study was 

to assess whether choices under sequential and simultaneous offers engage the same neural 

circuit. In a previous study, we recorded from the OFC under sequential offers. Through an 

analysis of neuronal responses across time windows, we identified different groups of neurons 

encoding different sequences of decision variables (Ballesta and Padoa-Schioppa, 2019). 

Importantly, since any choice task engages only a subset of neurons, it remained unclear whether 

choices under sequential or simultaneous offers rely on the same neuronal population, or whether 

the functional role of any given cell would be preserved across choice modalities. In the present 

study, we alternated two choice tasks on a trial-by-trial basis. In a nutshell, we found a strong 

correspondence between the cell groups previously identified in the two conditions. In other 

words, choices under sequential or simultaneous offers appear to rely on the same neural circuit. 
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Figure 3.7. Maximum selectivity windows (MSWs) are matched across choice tasks. A. Contingency 

table of MSWs (N = 776 pairs of time windows from 645 cells). Rows and columns indicate time 

windows in Task1 and Task2, respectively. Numbers and gray scale indicate cell counts. Cells for which 

SAR=0 were classified as “no MSW”. B. Table of odds ratios (ORs). Magenta asterisks (*) indicate that 

OR was significantly >1 (p<0.05, Fisher’s exact test). C. Fisher’s exact test, exact p values. Magenta/blue 

asterisks (*) indicate that OR was significantly higher/lower than 1 (p<0.05).
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This result indicates that notions emerging from studies of choices under simultaneous offers 

generalize to a much broader domain of choices than previously recognized. 

An interesting question is whether the neuronal populations described here might also subserve 

foraging choices such as those made by an animal that could continue to exploit the current food 

patch or leave it in search of better but riskier opportunities. Such choices are sometimes 

construed as “yes-or-no” and distinguished from binary choices of the sort examined in our 

experiments (Hayden and Moreno-Bote, 2018; Kolling et al., 2012). However, what appears as a 

yes-or-no choice could also be construed as a binary choice between two offers – one 

unambiguous (the current patch) and one more ambiguous (a probability distribution over other 

possible patches and times necessary to reach them). In economics, the value of the latter offer is 

often referred to as an opportunity cost. The question of how the brain treats patch-leaving 

choices – as yes-or-no or binary – remains open. If patch-leaving choices are treated as binary, it 

seem reasonable to assume that the neuronal populations identified in our studies play the same 

role when choices are about leaving a food patch. Conversely, if the brain treats patch-leaving 

choices as qualitatively different, such choices might rely on different neuronal mechanisms. 

These intriguing questions remain open for future research. 

Alternating the two tasks within each session gave us the opportunity to compare choices in a 

controlled way. We thus discovered three interesting phenomena. Under sequential offers, (a) 

choices were more variable, (b) relative values were higher (preference bias), and (c) choices 

were biased in favor of the second offer (order bias). The last observation confirms previous 

reports (Ballesta and Padoa-Schioppa, 2019; Krajbich et al., 2010; Rustichini et al., 2021). At the 

cognitive level, these phenomena may be understood as follows. The difference in choice 
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variability (a) may be interpreted noting that choices under sequential offers were cognitively 

more demanding because they required holding in working memory the value of offer1, 

comparing the values of two goods when only offer2 was visible, remembering the chosen juice 

for an additional delay, and mapping that choice onto the appropriate saccade target. Each of 

these mental operations could contribute choice variability. Along similar lines, the preference 

bias (b) may reflect the higher cognitive demands of Task 2. In particular, we note that when the 

two offer targets appear on the monitor, information about the two values is no longer on display 

on the monitor. If at that point the animal has not finalized its decision, or if it has failed to retain 

in working memory the decision outcome, it makes sense to choose the target associated with the 

more valuable juice (juice A), especially if the value difference between the two juices is large. 

Finally, the order bias (c) may be interpreted noting that decisions in Task 2 were made shortly 

after offer2 appeared on the monitor, when that offer was perceptually most salient. Thus a 

choice bias favoring offer2 is not surprising. The neuronal origins of choice biases including the 

phenomena documented here remain an important and open question for future work. 

3.4 Methods 

All the experimental procedures adhered to the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Washington University. 

3.4.1 Animal subjects and choice tasks 

Two adult male rhesus monkeys (Macaca mulatta; monkey J, 10.0 kg, 8 years old; monkey G, 

9.1 kg, 9 years old) participated in this study. Before training and under general anesthesia, we 
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implanted on each animal a head restraining device and an oval chamber (axes 50×30 mm). 

Chambers were centered on stereotaxic coordinates (A30, L0), with the longer axis parallel to 

coronal planes, allowing bilateral access to OFC with coronal electrode penetrations. Structural 

MRI scans (1 mm sections) obtained before and after surgery were used to locate OFC and guide 

neuronal recordings. During the experiments, monkeys sat in an electrically and acoustically 

insulated enclosure (Crist Instrument Co), with their head fixed and pink noise in the 

background. A computer monitor was placed in front of the animal at 57 cm distance. The gaze 

direction was monitored at 1 kHz using an infrared video camera (Eyelink, SR Research). The 

behavioral task was controlled using custom-written software 

(https://monkeylogic.nimh.nih.gov) (Hwang et al., 2019) based on Matlab (v2016a; MathWorks 

Inc).  

In each session, the animal chose between two juices labeled A and B (A preferred) offered in 

variable amounts. Each session included trials with two choice modalities, referred to as Task 1 

and Task 2 (Fig.3.1AB). The two tasks were nearly identical to those used in previous studies 

(Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa and Assad, 2006), and trials with the two 

tasks were pseudo-randomly interleaved. In both tasks, offers were represented by sets of colored 

squares displayed on the computer monitor. For each offer, the color indicated the juice type and 

the number of squares indicated the quantity. Each trial began with the animal fixating a large 

dot in the center of the monitor. After 0.5 s, the initial fixation point changed to a small dot or a 

small cross; the new fixation point cued the animal to the choice task used in that trial. In Task 1 

(Fig.3.1A), cue fixation (0.5 s) was followed by the simultaneous presentation of the two offers. 

After a randomly variable delay (1-1.5 s), the center fixation disappeared and two saccade targets 

appeared near the offers (go signal). The animal indicated its choice with an eye movement. It 
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maintained peripheral fixation for 0.75 s, after which the chosen juice was delivered. In Task 2 

(Fig.3.1B), cue fixation (0.5 s) was followed by the presentation of one offer (0.5 s), an inter-

offer delay (0.5 s), presentation of the other offer (0.5 s), and a wait period (0.5 s). Two colored 

saccade targets then appeared on the two sides of the fixation point. After a randomly variable 

delay (0.5-1 s), the center fixation disappeared (go signal). The animal indicated its choice with a 

saccade, maintained peripheral fixation for 0.75 s, after which the chosen juice was delivered. 

Central and peripheral fixation were imposed within 4-6 and 5-7 degrees of visual angle, 

respectively.  

For any given trial, qA and qB indicate the quantities of juices A and B offered to the animal, 

respectively. An “offer type” was defined by two quantities [qA, qB]. On any given session, we 

used the same juices and the same sets of offer types for the two tasks. For Task 1, the spatial 

configuration of the offers (left/right) varied randomly from trial to trial. For Task 2, trials in 

which juice A was offered first and trials in which juice B was offered first were referred as “AB 

trials” and “BA trials”, respectively. The terms “offer1” and “offer2” indicated, respectively, the 

first and second offer, independently of the juice type and amount. In Task 2, the presentation 

order varied pseudo-randomly and was counterbalanced across trials for any offer type. The 

spatial location (left/right) of saccade targets varied randomly and independently of the 

presentation order. The juice volume corresponding to one square (quantum) was set equal for 

the two tasks and remained constant within each session. It varied across sessions (70-100 μl) for 

both monkeys. The association between the initial cue (small dot, small cross) and the choice 

modality (Task 1, Task 2) varied across sessions, in blocks. 
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In Task 2, AB trials and BA trials were analyzed separately (see below). A power analysis 

indicated that comparing neuronal responses across tasks would be most effective if the number 

of trials for Task 2 was √2 times that for Task 1. Thus in most sessions we set the number of 

trials for Task 2 equal to 1.5 times that for Task 1.  

Prior to this study, monkey J had participated in experiments using Task 2 and had no exposure 

to Task 1. For the current study, the animal was first trained with Task 1 alone and then with the 

two tasks randomly interleaved. Monkey G had participated in different experiments using 

simultaneous offers (Task 1) or sequential offers (Task 2). For the current study, the animal was 

trained to perform the two choice tasks randomly interleaved.  

Across sessions, we used the following juices (colors): lemon Kool-Aid (bright yellow), grape 

juice (bright green), cherry juice (diluted to 3/4 with water or no dilution, red), peach juice 

(diluted to 3/4 with water, rose), fruit punch (diluted to 1/3 with water, magenta), apple juice 

(diluted to 1/2 with water, dark green), cranberry juice (diluted to 1/3 with water, pink), 

peppermint tea (bright blue), kiwi punch (dark blue), watermelon Kool-Aid (lime) and slightly 

salted water (0.65 g/l concentration, light gray). 

3.4.2 Behavioral analysis 

Choices in the two tasks were analyzed separately with probit regressions. For Task 1, we used 

the following model: 

 choice B = Φ(X) (3.1) 

 X = a0 + a1 log(qB/qA)  
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where choice B = 1 if the animal chose juice B and 0 otherwise, Φ was the cumulative function 

of the standard normal distribution, and qA and qB were the quantities of juices A and B offered. 

From the fitted parameters, we derived measures for the relative value of the juices ρTask1 = exp(–

a0/a1) and the sigmoid steepness ηTask1 = a1.  

For Task 2, we used the following probit model: 

 choice B = Φ(X) (3.2) 

 X = a2 + a3 log(qB/qA) + a4 (δorder,AB – δorder,BA)  

where δorder,AB = 1 for AB trials and 0 otherwise, and δorder,BA = 1 – δorder,AB. Thus AB trials and 

BA trials were analyzed separately but assuming that the two sigmoids had the same steepness. 

From the fitted parameters, we derived measures for the relative value ρTask2 = exp(–a2/a3), the 

sigmoid steepness ηTask2 = a3, and the order bias ε = 2 ρTask2 a4/a3. The order bias was defined 

such that ε<0 (ε>0) indicated a bias in favor of offer1 (offer2). We also defined the relative 

values specific to AB trials and BA trials as ρAB = exp(–(a2+a4)/a3) and ρBA = exp(–(a2-a4)/a3). Of 

note, the order bias was defined such that ε ≈ ρBA – ρAB.  

In some cases, one or both choice patterns presented complete or quasi-complete separation (i.e., 

the animal split choices for ≤1 offer types). In these cases, the fitted steepness (η) was high and 

unstable. We identified outlier sessions using an interquartile criterion. Defining IQR as the 

interquartile range, values below the first quartile minus 1.5*IQR or above the third quartile plus 

1.5*IQR were identified as outliers and removed from the behavioral analysis (Fig.3.1D-F). This 

criterion excluded 14/115 sessions for monkey J and 51/191 sessions for monkey G. Including 
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all sessions in the analysis did not substantially change the results. Importantly, data from all 

sessions were included in the neuronal analyses.  

3.4.3 Neuronal recordings 

Neural recordings focused on area 13m in the central orbital gyrus (Ongur and Price, 2000). We 

recorded from both hemispheres of monkey J (left: AP 31:35, ML –8:–10; right: AP 31:35, ML 

6:10) and both hemispheres of monkey G (left: AP 31:36, ML –7:–12; right: AP 31:36, ML 4:9). 

Tungsten single electrodes (100 µm shank diameter; FHC) were advanced remotely using a 

custom-built motorized micro-drive (step size 2.5 µm). Typically, one motor advanced two 

electrodes placed 1 mm apart, and 1-2 such pairs of electrodes were advanced unilaterally or 

bilaterally in each session. Each electrode would usually record the activity of 1-2 cells (average 

1.25 cells/electrode). Amplified signals (gain: 10,000) were filtered (high-pass cutoff: 300 Hz; 

low-pass cutoff: 6 kHz; Lynx 8, Neuralynx), digitized (frequency: 40 kHz) and saved to disk 

(Power 1401, Cambridge Electronic Design). Spike sorting was performed off-line (Spike 2 v6, 

Cambridge Electronic Design). Only cells that appeared well isolated and stable throughout the 

session were included in the analysis.  

3.4.4 Neuronal classification within task modality 

For each neuron, trials from Task 1 and Task 2 were first analyzed separately using the 

procedures developed in previous studies (Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa 

and Assad, 2006). For Task 1, we defined four time windows: post-offer (0.5 s after offer onset), 

late-delay (0.5-1 s after offer onset), pre-juice (0.5 s before juice onset) and post-juice (0.5 s after 

juice onset). A “trial type” was defined by two offered quantities and a choice. For Task 2, we 
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defined three time windows: post-offer1 (0.5 s after offer1 onset), post-offer2 (0.5 s after offer2 

onset) and post-juice (0.5 s after juice onset). A “trial type” was defined by two offered 

quantities, their order and a choice. For each task, each trial type and each time window, we 

averaged spike counts across trials. A “neuronal response” was defined as the firing rate of one 

cell in one time window as a function of the trial type. Neuronal responses in each task were 

submitted to an ANOVA (factor: trial type). Neurons passing the p<0.01 criterion in at least one 

time window in either task were identified as “task-related” and included in subsequent analyses.  

Following previous work (Padoa-Schioppa, 2013; Padoa-Schioppa and Assad, 2006), neurons in 

Task 1 were classified in one of four groups offer value A, offer value B, chosen juice or chosen 

value. Each variable could be encoded with positive or negative sign, leading to a total of 8 cell 

groups. For the classification, we proceeded as follows. Each neuronal response was regressed 

against each of the four variables defined in Table 3.1. If the regression slope b1 differed 

significantly from zero (p<0.05), the variable was said to "explain" the response. In this case, we 

set the signed R2 as sR2 = sign(b1) R
2; if the variable did not explain the response, we set sR2 = 0. 

After repeating the operation for each time window, we computed for each cell the sum(sR2) 

across time windows. Neurons explained by at least one variable in one time window, such that 

sum(sR2) ≠ 0, were said to be tuned; other neurons were labeled “untuned”. Tuned cells were 

assigned to the variable and sign providing the maximum |sum(sR2)|, where |·| indicates the 

absolute value. Indicating with “+” and “–” the sign of the encoding, each neuron was thus 

classified in one of 9 groups: offer value A+, offer value A–, offer value B+, offer value B–, 

chosen juice A, chosen juice B, chosen value+, chosen value– and untuned.  
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Neuronal classification in Task 2 followed the procedures described by Ballesta and Padoa-

Schioppa (2019). Under sequential offers, neuronal responses in OFC were found to encode 

different variables defined in relation to the presentation order (AB or BA). Specifically, the vast 

majority of responses were explained by one of 11 variables defined in Table 3.1. These 

included one binary variable capturing the order (AB | BA), six variables representing individual 

offer values (offer value A | AB, offer value A | BA, offer value B | AB, offer value B | BA, offer 

value 1, and offer value 2), three variables capturing variants of the chosen value (chosen value, 

chosen value A, chosen value B) and a binary variable representing the binary choice outcome 

(chosen juice). Each of these variables could be encoded with a positive or negative sign. Most 

neurons appeared to encode different variables in different time windows. In principle, 

considering 11 variables, 2 signs of the encoding and 3 time windows, neurons might present a 

very large number of variable patterns across time windows. Remarkably, however, the vast 

majority of OFC neurons presented one of 8 patterns. These patterns are referred to as sequences 

and defined in Table 3.2. Thus we classified each cell as encoding one of these 8 sequences. For 

each cell and each time window, we regressed the neuronal response against each of the 

variables predicted by each sequence. If the regression slope b1 differed significantly from zero 

(p<0.05), the variable was said to explain the response and we set the signed R2 as sR2 = sign(b1) 

R2; if the variable did not explain the response, we set sR2 = 0. After repeating the operation for 

each time window, we computed for each cell the sum(sR2) across time windows for each of the 

8 sequences. Neurons such that sum(sR2) ≠ 0 for at least one sequence were said to be tuned; 

other neurons were untuned. Tuned cells were assigned to the sequence that provided the 

maximum |sum(sR2)|. As a result, each neuron was classified in one of 9 groups: seq #1, seq #2, 

seq #3, seq #4, seq #5, seq #6, seq #7, seq #8 and untuned.  



84 

3.4.5 Comparing classification across choice task 

We aimed to ascertain the relation between the classifications obtained for Task 1 and Task 2. To 

do so, we used statistical analyses for categorical data (Agresti, 2019). First, we constructed a 

9x9 contingency table in which rows and columns represented, respectively, the cell classes 

defined in Task 1 and Task 2, and each entry indicated the number of neurons with the 

corresponding classifications. Second, to estimate whether the cell count obtained for any 

particular pair of classes departed from chance level, we computed a table of odds ratios. For 

each location (i, j) in the contingency table, Xi,j indicated the number of cells classified as class i 

in Task 1 and as class j in Task 2. We defined: 

 
 

(3.3) 

 

 

 

 

 

 

   

The corresponding odd ratio (OR) was defined as: 

  (3.4) 

The OR was calculated for each entry of the contingency table. We thus obtained a 9x9 table. 

For each entry (i, j), ORi,j = 1 was the chance level. Conversely, ORi,j > 1 (ORi,j < 1) indicated 

that the number of neurons classified as (i, j) was higher (lower) than expected by chance based 



85 

on the number of cells in class i and the number of cells in class j. To assess whether departures 

from chance level were statistically significant, we used the two-tailed Fisher’s exact test, 

separately for each entry. 

To compare the across-tasks table to some benchmark, we created two within-task tables. For 

each choice task and each trial type, we randomly divided trials in two sets (1 and 2). Pooling 

trial types, we obtained two complete sets of trials (set 1 and set 2). This procedure ensured that 

each set had the same number of trial types. For Task 1 data, we repeated the cell classification 

procedure described above separately for each trial set. We thus generated the within-task 

contingency table and the table of ORs comparing the results obtained for sets 1 and 2. We 

repeated these operations for Task 2 data. To assess whether the two within-task tables of ORs 

and the across-tasks table of ORs differed significantly from each other, we used the Breslow-

Day test (Breslow and Day, 1980). In essence, this test examines the homogeneity of ORs, with 

the null hypothesis that different strata are statistically identical. In our case, the null hypothesis 

was that for each location in the OR table, the three measures (two within-task and one across-

task) were statistically identical. The Breslow-Day test is ultimately a Chi-squared test. Its 

statistic has an asymptotic Chi-squared distribution with k–1 degrees of freedom. Here the test 

was conducted entry by entry, with d.f. = 2, and p<0.01 identified statistical significance.  

Following the results presented in this study, we proceeded with a comprehensive (‘final’) 

classification based on the activity recorded in both tasks. For each task-related cell, we 

calculated the sum(sR2) for the eight variables in Task 1 (sum(sR2)Task1) and eight sequences in 

Task 2 (sum(sR2)Task2) as described above. We then added the corresponding sum(sR2)Task1 and 

sum(sR2)Task2 to obtain the sum(sR2)final. Neurons such that sum(sR2)final ≠ 0 for at least one class 



86 

were said to be tuned; other neurons were untuned. Tuned cells were assigned to the cell class 

that provided the maximum |sum(sR2)final|.  

3.4.6 Selective activity range 

In each task, neurons respond to the encoded variables in multiple time windows. The strength of 

the encoding, referred to as selectivity, varies across windows and from cell to cell. Thus for 

each cell and for each task, one might identify the time window with maximum selectivity. We 

examined whether there was a systematic relationship between the maximum selectivity window 

measured for any given cell im the two tasks. To do so, we first defined the activity range (AR). 

For each cell and each time window, we performed the linear regression 

 fr = b0 + b1 EV (3.5) 

where fr was the firing rate, EV was the encoded variable and b0 and b1 were the fitted 

parameters. Indicating the minimum and maximum of EV respectively as EVmin and EVmax, we 

computed ΔEV = EVmax – EVmin. The activity range was defined as AR = |b1 ΔEV|, where |·| 

indicates the absolute value. We also defined the selective activity range as:  

 SAR = P × N × AR (3.6) 

where P = 1 if the response passed the ANOVA criterion and 0 otherwise and N = 1 if the slope 

of the encoded variable differed significantly from zero and 0 otherwise. 
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Chapter 4: Neuronal origins of biases in 

economic choices under sequential offers 

This chapter is adapted from the following publication with the permission from the co-authors: 

Shi, W., Ballesta, S., & Padoa-Schioppa, C. (2021). Neuronal Origins of Biases in Economic 

Choices under Sequential Offers. bioRxiv. 

Abstract 

Economic choices are characterized by a variety of biases. Understanding their origins is a long-

term goal for neuroeconomics, but progress on this front has been modest. Here we examined 

choice biases observed when two goods are offered sequentially. In the experiments, monkeys 

chose between different juices offered simultaneously or in sequence. Choices under sequential 

offers were less accurate (higher variability). They were also biased in favor of the second offer 

(order bias) and in favor of the preferred juice (preference bias). Analysis of neuronal activity in 

orbitofrontal cortex revealed that these phenomena emerged at different computational stages. 

Specifically, the lower choice accuracy reflected weaker offer value signals (valuation stage); the 

order bias emerged during value comparison (decision stage); the preference bias emerged late in 

the trial (post-comparison). The approach developed here, taking advantage of recent discoveries 

on the decision circuit, may shed light on other aspects of economic behavior. 
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4.1 Introduction 

Some of the most mysterious aspects of economic behavior are choice biases documented in 

behavioral economics. Standard economic theory fails to account for these effects, and one of the 

long-term goals of neuroeconomics is to shed light on their origins (Camerer et al., 2005; 

Glimcher and Rustichini, 2004). Progress on this front has been relatively modest, largely 

because the neural underpinnings of (even simple) economic choices remained poorly 

understood until recently. However, the last 15 years have witnessed substantial advances. An 

important turning point for the field was the development of experimental protocols in which 

subjects choose between different goods and relative subjective values are inferred from choices. 

Decision variables defined based on these values are then used to interpret neural activity (Kable 

and Glimcher, 2007; Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007). Numerous 

studies using this paradigm have shown that neurons in multiple brain regions explicitly 

represent the values of offered and chosen goods (Amemori and Graybiel, 2012; Cai et al., 2011; 

Cai and Padoa-Schioppa, 2012; Hosokawa et al., 2013; Jezzini and Padoa-Schioppa, 2020; Kim 

et al., 2008; Lak et al., 2014; Levy et al., 2010; Louie and Glimcher, 2010; Padoa-Schioppa and 

Assad, 2006; Pastor-Bernier et al., 2019; Shenhav and Greene, 2010). Furthermore, experiments 

using electrical stimulation showed that offer values encoded in the orbitofrontal cortex (OFC) 

are causally linked to choices (Ballesta et al., 2020). These results are of great significance for 

three reasons.  

First, the identification in OFC and other brain regions of distinct groups of neurons encoding 

different decision variables is essential to ultimately understand the neural circuit and the 

mechanisms through which economic decisions are formed.  
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Second, in a more conceptual sense, the results summarized above provide a long-sought 

validation for the construct of value. The proposal that choices entail computing and comparing 

subjective values was put forth by early economists such as Bernoulli and Bentham (Niehans, 

1990). Although this idea has remained influential, values defined at the behavioral level suffer 

from a fundamental problem of circularity. On the one hand, choices supposedly maximize 

values; on the other hand, values cannot be measured behaviorally independent of choices 

(Samuelson, 1938). Because of this problem, the construct of value gradually lost centrality in 

economic theory. Thus in the standard neoclassic formulation choices are “as if” driven by 

values, but there is no commitment to the idea that values are actually computed (Samuelson, 

1947). In this perspective, the fact that neuronal firing rates in any brain region are linearly 

related to values defined at the behavioral level constitutes powerful evidence that choices 

indeed entail the computation of values (Camerer, 2008).  

Third and less frequently discussed, the identification of neurons encoding offer values and other 

decision variables, together with some rudimentary understanding of the decision circuit, 

provides the opportunity to break the circularity problem described above. To appreciate this 

point, consider the fact that economic choices are often affected by seemingly idiosyncratic 

biases. For example, while choosing between two options offered sequentially, people and 

monkeys typically show a bias favoring the second option (Ballesta and Padoa-Schioppa, 2019; 

Krajbich et al., 2010; Rustichini et al., 2021). This order bias might occur for at least two 

reasons. (1) Subjects might assign a higher value to any given good if that good is offered 

second. (2) Alternatively, subjects might assign identical values independent of the presentation 

order, and the bias might emerge downstream of valuation, for example during value 

comparison. In the latter scenario, by introducing the order bias, the decision process would 
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actually fail to maximize the value obtained by the agent. Due to the circularity problem 

described above, these two hypotheses are ultimately not distinguishable based on behavior 

alone. However, access to a credible neural measure for the offer values makes it possible, at 

least in principle, to disambiguate between them. The results presented in this study build on this 

fundamental idea.  

In a recent experiment, monkeys chose between two juices offered in variable amounts. In each 

session, we randomly interleaved two types of trials referred to as two tasks. In Task 1, offers 

were presented simultaneously; in Task 2, offers were presented in sequence (Shi et al., 2021). 

Probit regressions provided behavioral measures for the relative values of the two juices. 

Comparing choices across tasks, we observed three interesting phenomena. (1) Monkeys were 

substantially less accurate (higher choice variability) in Task 2 (sequential offers) compared to 

Task 1 (simultaneous offers). (2) Choices in Task 2 were biased in favor of the second offer 

(order bias). (3) Choices in Task 2 were biased in favor of the preferred juice (preference bias). 

These phenomena are especially interesting because in most daily situations offers available for 

choice appear or are examined sequentially. In the present study, we investigated the neuronal 

origins of these phenomena, collectively referred to as choice biases.  

Neuronal recordings focused on the OFC. Earlier work on choices under simultaneous offers 

identified in this area different groups of cells encoding individual offer values, the binary choice 

outcome (chosen juice), and the chosen value (Padoa-Schioppa, 2013; Padoa-Schioppa and 

Assad, 2006). Furthermore, previous analyses of the present data set indicated that choices under 

sequential offers engage the same neuronal populations (Ballesta and Padoa-Schioppa, 2019; Shi 

et al., 2021). In other words, the cell groups labeled offer value, chosen juice and chosen value 
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can be identified in either choice task and appear to preserve their functional role. In first 

approximation, the variables encoded in OFC capture both the input (offer values) and the output 

(chosen juice, chosen value) of the choice process, suggesting that the cell groups identified in 

this area constitute the building blocks of a decision circuit (Padoa-Schioppa and Conen, 2017). 

A series of experimental (Ballesta et al., 2020; Camille et al., 2011; Rich and Wallis, 2016) and 

theoretical(Friedrich and Lengyel, 2016; Rustichini and Padoa-Schioppa, 2015; Solway and 

Botvinick, 2012; Song et al., 2017; Zhang et al., 2018) results support this view. In this study, we 

put forth a more articulated computational framework (Fig.4.1). In our account, different groups 

of OFC neurons participate in value computation and value comparison, and these processes are 

embedded in an ensemble of mental operations taking place before, during and after the decision 

itself. In this view, sensory information, memory traces and internal states are processed 

upstream of OFC and integrated in the activity of offer value cells. These neurons provide the 

primary input to a circuit formed by chosen juice cells and chosen value cells, where values are 

compared. The output of this circuit feeds brain regions involved in working memory and the 

construction of action plans.  

This framework guided a series of analyses relating the activity of each cell group to the 

behavioral phenomena described above. Our results revealed that different biases emerged at 

different computational stages. The lower choice accuracy observed under sequential offers 

reflected weaker offer value signals (valuation stage). Conversely, the order bias did not have 

neural correlates at the valuation stage, but rather emerged during value comparison (decision 

stage). Finally, the preference bias did not have neural correlates at the valuation stage or during 

value comparison; it emerged late in the trial, shortly before the motor response.  
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Figure 4.1. Computational framework. Information about sensory input, stored memory and the 

motivational state is integrated in the computation of offer values. In OFC, offer value cells provide the 

primary input to a decision circuit composed of chosen juice cells and chosen value cells. The detailed 

structure of the decision circuit is poorly understood, but previous work indicates that decisions under 

sequential offers rely on mechanisms of circuit inhibition. In essence, the value of good offered first 

(offer1) imposes a negative onset on the activity of chosen juice cells associated with the other offer 

(offer2). Notably this circuit might also subserve working memory. The decision output, captured by the 

activity of chosen juice cells, informs other brain regions that maintain it in working memory and 

transform it into a suitable action plan. Choice measured behaviorally is ultimately defined by the motor 

response. This framework highlights the fact that choice biases and/or noise might emerge at multiple 

computational stages. Of note, the arrows indicated here capture only the primary connections. 
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4.2 Results 

4.2.1 Choice biases under sequential offers 

Two monkeys participated in the experiments. In each session, they chose between two juices 

labeled A and B, with A preferred. Offers were represented by sets of colored squares on a 

monitor, and animals indicated their choice with a saccade. In each session, two choice tasks 

were randomly interleaved. In Task 1, offers were presented simultaneously (Fig.4.2A); in Task 

2, offers were presented in sequence (Fig.4.2B). A cue displayed at the beginning of the trial 

revealed to the animal the task for that trial. Offers varied from trial to trial, and we indicate the 

quantities offered in any given trial with qA and qB. An “offer type” was defined by two 

quantities [qA, qB], and the same set of offer types was used for the two tasks in each session. For 

Task 2, trials in which juice A was offered first and trials in which juice B was offered first are 

referred to as “AB trials” and “BA trials”, respectively. The first and second offers are referred to 

as “offer1” and “offer2”, respectively. 

The data set included 241 sessions (101 from monkey J, 140 from monkey G; see Methods). 

Sessions lasted for 217-880 trials (mean ± std = 589 ± 160). For each session, we analyzed 

choices in the two tasks separately using probit regressions. For Task 1 (simultaneous offers), we 

used the following model: 

 choice B = Φ(X) (4.1) 

 X = a0 + a1 log(qB/qA)  
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where choice B = 1 if the animal chose juice B and 0 otherwise, Φ was the cumulative function 

of the standard normal distribution, and qA and qB were the quantities of juices offered on any 

given trial. From the fitted parameters a0 and a1, we derived measures for the relative value of the 

two juices ρTask1 = exp(–a0/a1) and for the sigmoid steepness ηTask1 = a1. Intuitively, the relative 

value was the quantity ratio qB/qA that made the animal indifferent between the two juices, and 

the sigmoid steepness was inversely related to choice variability. 

For Task 2 (sequential offers), we used the following probit model: 

 choice B = Φ(X) (4.2) 

 X = a2 + a3 log(qB/qA) + a4 (δorder,AB – δorder,BA)  

where δorder,AB = 1 for AB trials and 0 otherwise, and δorder,BA = 1 – δorder,AB. In essence, AB trials 

and BA trials were analyzed separately but assuming that the two sigmoids had the same 

steepness. From the fitted parameters a2, a3 and a4, we derived measures for the relative value of 

the two juices ρTask2 = exp(–a2/a3), for the sigmoid steepness ηTask2 = a3, and for the order bias ε = 

2 ρTask2 a4/a3. Intuitively, the order bias was a bias favoring the first or the second offer. 

Specifically, ε<0 indicated a bias favoring offer1; ε>0 indicated a bias favoring offer2. We also 

defined relative values specific to AB trials and BA trials as ρAB = exp(–(a2+a4)/a3) and ρBA = 

exp(–(a2-a4)/a3). Of note, the order bias was defined such that  

 ε ≈ ρBA – ρAB (4.3) 

The experimental design gave us the opportunity to compare choices across tasks independently 

of factors such as satiation or changes in the internal state. The relative values measured in the 

two tasks were highly correlated (Fig.4.2EF). At the same time, our analyses revealed three 
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interesting phenomena. First, for both animals, sigmoids measured in Task 2 were significantly 

shallower compared to Task 1 (Fig.4.2GH). In other words, presenting offers in sequence 

substantially reduced choice accuracy. Second, in Task 2, both animals showed a consistent 

order bias favoring offer2 (Fig.4.2IJ). Third, in both animals, relative values in Task 2 were 

significantly higher than in Task 1 (ρTask2>ρTask1), and this effect increased with the relative value 

(Fig.4.2EF). In other words, the ellipse marking the 90% confidence interval for the joint 

distribution of relative values lay above the identity line and was rotated counterclockwise 

compared to the identity line. 

To further investigate the differences in relative values measured across tasks, we quantified 

them separately in AB trials and BA trials in each monkey. We thus examined the relation 

between ρTask1 and ρTask2,AB and, separately, that between ρTask1 and ρTask2,BA (Fig.4.3). In both 

animals and in both sets of trials, the ellipse marking the 90% confidence interval was rotated 

counterclockwise compared to the identity line. Furthermore, the ellipse measured for BA trials 

was higher than that for AB trials. We quantified these observations with an analysis of 

covariance (ANCOVA) using the presentation order (AB, BA) as a covariate and imposing 

parallel lines (Fig.4.3CF). In both animals, the two regression lines were significantly distinct 

(difference in intercept >0, p ≤ 0.002 in each animal). This result confirmed the presence of an 

order bias favoring offer2 in Task 2. Concurrently, in both animals the regression slope was 

significantly >1 (p ≤ 0.04 in each animal; ellipse rotation). This result indicated that the animal 

had an additional bias favoring juice A in Task 2, and that this bias increased as a function of the 

relative value ρ. We refer to this phenomenon as the preference bias.  
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Figure 4.2. Experimental design and choice biases. AB. Experimental design. Animals chose between 

two juices offered in variable amounts. Offers were represented by sets of color squares. For each offer, 

the color indicated the juice type and the number of squares indicated the juice amount. In each session, 

trials with Task 1 and Task 2 were randomly interleaved. In Task 1, two offers appeared simultaneously 

on the left and right sides of the fixation point. In Task 2, offers were presented sequentially, spaced by an 

inter-offer delay. After a wait period, two saccade targets matching the colors of the offers appeared on 

the two sides of the fixation point. The left/right configuration in Task 1, the presentation order in Task 2 

and the left/right position of the saccade targets in Task 2 varied randomly from trial to trial. In any 
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session, the same set of offer types was used for both tasks. C. Example session 1. The percent of B 

choices (y-axis) is plotted against the log quantity ratio (x-axis). Each data point indicates one offer type 

in Task 1 (gray circles) or Task 2 (red and blue triangles for AB trials and BA trials, respectively). 

Sigmoids were obtained from probit regressions. The relative value (ρ) and sigmoid steepness (η) 

measured in each task and the order bias (ε) measured in Task 2 are indicated. In this session, the animal 

presented all three biases. Compared to Task 1, choices in Task 2 were less accurate (ηTask2 < ηTask1) and 

biased in favor of juice A (ρTask2 > ρTask1; preference bias). Furthermore, choices in Task 2 were biased in 

favor of offer2 (ε > 0; order bias). D. Example session 2. Same format as panel C. EF. Comparing relative 

value across choice tasks. Each data point represents one session and gray ellipses indicate 90% 

confidence intervals. For both monkeys, relative values in Task 2 (y-axis) were significantly higher than 

in Task 1 (x-axis). Furthermore, the main axis of each ellipse was rotated counterclockwise compared to 

the identity line. GH. Comparing the sigmoid steepness across choice tasks. For both monkeys, sigmoids 

were consistently shallower (smaller η) in Task 2 compared to Task 1. IJ. Order bias, distribution across 

sessions. Both monkeys presented a consistent bias favoring offer2 (mean(ε)>0). Panels CEGI are from 

monkey J (N = 101 sessions); panels DFHJ are from monkey G (N = 140 sessions). Sessions shown in 

panels CD are highlighted in yellow in panels EFGH. Triangles in panels IJ indicate the mean. Statistical 

tests and exact p values are indicated in each panel. 
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Figure 4.3. Order bias and preference bias. ABC. Monkey J (N = 101 sessions). In panels A and B, 

ρTask2,AB and ρTask2,BA (y-axis) are plotted against ρTask1 (x-axis). Each data point represents one session and 

gray ellipses indicate 90% confidence intervals. The main axis of both ellipses is rotated 

counterclockwise compared to the identity line (preference bias). In addition, the ellipse in panel B is 

displaced upwards compared to that in panel A (order bias). In panel C, the same data are pooled and 

color coded. The two lines are from an ANCOVA (covariate: order; parallel lines). The regression slope 

is significantly >1 (preference bias) and the two intercepts differ significantly from each other (order 

bias). DEF. Monkey G (N = 140 sessions). Same format. The results closely resemble those for monkey J 

but the preference bias is weaker. 
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4.2.2 Origins of choice biases: Computational framework 

The following sections present a series of results on the neuronal origins of these biases. We 

begin by discussing the computational framework for these analyses.  

Economic choice is thought to entail two stages: values are assigned to the available offers and a 

decision is made by comparing values. Importantly, in our tasks and in most circumstances, 

choices elicit an ensemble of mental operations taking place before, during and after the 

computation and comparison of offer values. Upstream of valuation, choices examined here 

entail the sensory processing of visual stimuli and the retrieval from memory of relevant 

information (e.g., the association between color and juice type). Downstream of value 

comparison, the decision outcome must guide a suitable motor response. In addition, 

performance in Task 2 requires holding in working memory the value of offer1 until offer2, 

remembering the decision outcome for an additional delay, and mapping that outcome onto the 

appropriate saccade target (Fig.4.2B). In principle, choice biases could emerge at any of these 

computational stages. Likewise, each of these mental operations could be noisy and thus 

contribute to choice variability. 

Neuronal activity in OFC does not capture all of these processes. However, previous work 

indicates that neurons in this area participate both in value computation and value comparison. In 

the framework proposed here (Fig.4.1), sensory and limbic areas feed offer value cells, where 

values are integrated. In turn, offer value cells provide the primary input to a neural circuit 

constituted by chosen juice cells and chosen value cells, where decisions are formed. Finally, the 

decision circuit is connected with downstream areas, such as lateral prefrontal cortex, engaged in 

working memory and in transforming choice outcomes into suitable action plans. This scheme 
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reflects the anatomical connectivity of OFC and other prefrontal regions (Carmichael and Price, 

1995a, b; Petrides and Pandya, 2006; Saleem et al., 2013; Takahara et al., 2012); it is motivated 

by neurophysiology results from OFC (Ballesta et al., 2020; Rich and Wallis, 2016) and 

connected areas (Cai and Padoa-Schioppa, 2014; Sasikumar et al., 2018); and it is consistent 

with computational models of economic decisions (Friedrich and Lengyel, 2016; Rustichini and 

Padoa-Schioppa, 2015; Solway and Botvinick, 2012; Song et al., 2017; Yim et al., 2019; Zhang 

et al., 2018).  

Of note, both offer value and chosen value cells encode subjective values. However, in the 

framework of Fig.4.1, offer value cells express a pre-decision value, while chosen value cells 

express a value emerging during the decision process. Conversely, the activity of chosen juice 

cells captures the evolving commitment to a particular choice outcome. In this framework, 

suitable analyses of neuronal activity may reveal whether particular choice biases emerge at the 

valuation stage, at the decision stage, or in subsequent computational stages. 

4.2.3 Reduced accuracy under sequential offers emerged at the valuation 

stage 

Other things equal, choices under sequential offers (Task 2) were significantly less accurate than 

choices under simultaneous offers (Task 1; Fig.4.2). We first investigated the neural origins of 

this phenomenon.  

The primary data set examined in this study included 183 offer value cells, 160 chosen juice cells 

and 174 chosen value cells (see Methods). Comparing neuronal responses across tasks, we noted 

that offer value signals in Task 2 were significantly weaker than in Task 1. Fig.4.4AC illustrates 
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one example cell. In both tasks, this neuron encoded the offer value B. However, the activity 

range (see Methods) measured in Task 2 was smaller than that measured in Task 1. This effect 

was also observed at the population level. For this analysis, we pooled offer value cells 

associated with juices A and B, and with positive or negative encoding (see Methods). For Task 

1, we focused on the post-offer time window; for Task 2, we focused on post-offer1 and post-

offer2 time windows, pooling trial types from both windows. For each cell, we imposed that the 

response be significantly tuned in these time windows in each task, and we quantified the mean 

activity and the activity range (Δr, see Methods). At the population level, the mean activity did 

not differ significantly across tasks (p = 0.6, t test; p = 0.4, Wilcoxon test Fig.4.4D). In contrast, 

the activity range was significantly lower in Task 2 compared to Task 1 (ΔrTask2 < ΔrTask1; p = 

0.06, t test; p = 0.02, Wilcoxon test Fig.4.4E). In other words, offer value signals were weaker in 

Task 2 compared to Task 1. 

The activity of offer value cells is causally related to choices (Ballesta et al., 2020). Furthermore, 

for given value range and mean activity, the activity range determines the neuronal signal-to-

noise ratio. Indeed, we previously found that decreases in the encoding slope of offer value cells 

due to range adaptation reduce choice accuracy (Conen and Padoa-Schioppa, 2019; Rustichini et 

al., 2017). Along similar lines, we inquired whether the difference in choice accuracy measured 

across tasks (Fig.4.2GH) might be explained, at last partly, by differences in neuronal activity 

range (Fig.4.4E). We thus examined the relation between the difference in sigmoid steepness 

(Δη = ηTask2 – ηTask1) and the difference in activity range (ΔΔr = ΔrTask2 – ΔrTask1). The two 

measures were positively correlated (Spearman r = 0.2, p = 0.01; Pearson r = 0.3, p = 0.003; 

Fig.4.4F). In other words, the drop in choice accuracy observed in Task 2 compared to Task 1  
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Figure 4.4. Lower choice accuracy in Task 2 reflects weaker offer value signals. A-C. Weaker offer value 

signals in Task 2, example cell. Panel A illustrates the choice pattern. Panel B illustrates the neuronal 

response measured in Task 1 (post-offer time window). Each data point represents one trial type. In C, 

two panels illustrate the neuronal responses measured in Task 2 (post-offer1 and post-offer2 time 

windows). Each data point represents one trial type; red and blue colors are for AB and BA trials, 

respectively. In panels B and C, firing rates (y-axis) are plotted against variable offer value B and gray 

lines are from linear regressions. Notably, the cell has lower activity range in Task 2 than in Task 1. DE. 

Weaker offer value signals in Task 2, population analysis (N = 109 offer value cells). The two panels 

illustrate the results for the mean activity and the activity range, respectively. In each panel, x-axis and y-

axis represent measures obtained in Task 1 and Task 2, respectively. Each data point represents one cell. 

For each cell, we examined one time window (post-offer) in Task 1 and two time windows (post-offer1 

and post-offer2) in Task 2. Circles and diamonds refer to post-offer1 and post-offer2 time windows, 
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respectively. Measures of mean activity measured in the two tasks (panel D) were statistically 

indistinguishable. In contrast, activity ranges (panel E) were significantly reduced in Task 2 compared to 

Task 1. Statistical tests and exact p values are indicated in each panel. The example cell shown in panels 

A-C is highlighted in orange in panels DE. F. Offer value signals and choice accuracy (N = 109 cells). 

For each offer value cell, we computed the activity range Δr in each task (see Methods). Here the 

difference in activity range ΔΔr = ΔrTask2 – ΔrTask1 (y-axis) is plotted against the difference in sigmoid 

steepness Δη = ηTask2 – ηTask1 measured in the same session (x-axis). The two measures were significantly 

correlated across the population. The gray line in panel F is from a linear regression. This analysis was 

restricted to 53 cells significantly tuned in the post offer time window (Task 1) and post offer1 time 

window (Task 2), and 56 cells significantly tuned in the post offer time window (Task 1) and post offer2 

time window (Task 2). 
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correlated with weaker offer value signals. Of note, similar analyses on chosen value cells and 

chosen juice cells yielded negative results (Fig.4.S1).  

In conclusion, the lower choice accuracy measured in Task 2 compared to Task 1 correlated with 

weaker offer value signals in OFC. Thus this behavioral phenomenon emerged, at least partly, 

during valuation.  

4.2.4 The order bias emerged during value comparison (decision stage) 

The next series of analyses focused on the neural origins of the order bias. Since this 

phenomenon pertains only to choices under sequential offers, we included in the analyses an 

additional data set recorded in the same animals performing only Task 2 (see Methods). 

In the framework of Fig.4.1, we first inquired whether the order bias emerged during valuation. 

If this was the case, for any given good, offer value cells should encode a higher value when the 

good is presented as offer2. To test this hypothesis, we pooled offer value cells associated with 

the two juices. For each neuron, ‘E’ indicated the juice encoded by the cell and ‘O’ indicated the 

other juice. We thus refer to EO trials and OE trials. For any given cell, we compared the 

response recorded in EO trials (post-offer1 time window) with the response recorded in OE trials 

(post-offer2 time window). If the order bias emerged during valuation, the tuning intercept 

and/or the tuning slope should be higher for the latter (Fig.4.S2A). Contrary to this prediction, 

across a population of 128 cells, we did not find any systematic difference in intercept or slope 

(Fig.4.S2BC). Furthermore, the difference between the intercepts and slopes measured in OE 

and EO trials did not correlate with the order bias (Fig.4.S2D). In conclusion, assigned values 

did not depend on the presentation order.  
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We next examined whether the order bias emerged during value comparison. If so, the bias 

should be reflected in the activity of both chosen juice and chosen value cells (Fig.4.1). For 

chosen value cells, the hypothesis might be tested noting that in post-offer1 and post-offer2 time 

windows these neurons encoded the value currently offered independently of the juice type 

(Table 4.S1). Thus the activity measured in these time windows in AB and BA trials provided 

neuronal measures for the relative values of the two juices. More specifically, for each chosen 

value cell, we derived the two measures ρneuronal
AB and ρneuronal

BA for AB trials and BA trials, 

respectively (Fig.4.5A; see Methods). We also defined the difference Δρneuronal = ρneuronal
BA – 

ρneuronal
AB. We recall that the order bias was essentially equal to the difference between the 

relative values measured behaviorally in BA and AB trials (ε ≈ ρBA – ρAB; Eq.4.3). Thus 

assessing whether the activity of chosen value cells reflected the order bias amounts to testing 

the relation between Δρneuronal and ε.  

A population analysis of 96 chosen value cells lead to three observations. First, confirming 

previous results (Padoa-Schioppa and Assad, 2006), neuronal and behavioral measures of 

relative value were highly correlated and statistically indistinguishable. Second, the two neuronal 

measures or relative value, ρneuronal
AB and ρneuronal

BA, did not differ significantly from each other 

(Fig.4.5B). Third, the difference Δρneuronal and the order bias ε were significantly correlated 

across the population (Spearman r = 0.3, p = 0.007; Pearson r = 0.2, p = 0.02; Fig.4.5C). In 

conclusion, session-to-session fluctuations in the activity of chosen value cells correlated with 

fluctuations in the order bias. 

Further insights on the order bias came from the analysis of chosen juice cells. Again, for each 

neuron, E and O indicated the juice encoded by the cell and the other juice, respectively. A  
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Figure 4.5. Fluctuations in order bias and fluctuations in the activity of chosen value cells. A. Neuronal 

measures of relative value. The two panels represent in cartoon format the response of a chosen value cell 

in the post-offer1 and post-offer2 time window (Task 2). In each of these time windows, chosen value 

cells encode the value of the offer on display. Here the two axes correspond to the firing rate (y-axis) and 

to the offered juice quantity (x-axis). The two colors correspond to the two orders (AB, BA). In each time 

window, two linear regressions provide two slopes, proportional to the value of the two juices. From the 

four measures θ1A (left panel, red), θ1B (left panel, blue), θ2A (right panel, blue) and θ2B (right panel, red), 

we derive four neuronal measures of relative value (Methods, Eqs.4.9-4.12). B. Neuronal measures of 

relative value in AB trials and BA trials (N = 96 cells). The x- and y-axis correspond to ρneuronal
AB and 

ρneuronal
BA, respectively. Each data point represents one cell. The two measures are strongly correlated. The 

gray line is from a Deming regression. C. Fluctuations of relative value and fluctuations in order bias (N 

= 96 cells). For each chosen value cell, we quantified the difference in the neuronal measure of relative 
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value Δρneuronal = ρneuronal
AB – ρneuronal

BA. Here, the x-axis is the order bias (ε), the y-axis is Δρneuronal, and 

each data point corresponds to one cell. Although Δρneuronal was on average close to 0 (panel B), 

fluctuations of Δρneuronal correlated with fluctuations of ε across the population. The gray line is from a 

linear regression. Statistical tests and exact p values are indicated in each panel. This analysis was 

restricted to 96 cells that had significant θ1A, θ1B, θ2A and θ2B. 
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previous study found that the baseline activity of chosen juice cells recorded in OE trials 

immediately before offer2 was negatively correlated with the value of offer1 (i.e., the value of 

the other juice) – a phenomenon termed circuit inhibition (Ballesta and Padoa-Schioppa, 2019). 

If the decision is conceptualized as the evolution of a dynamic system (Rustichini and Padoa-

Schioppa, 2015; Wang, 2002), circuit inhibition sets the system’s initial conditions and is thus 

integral to value comparison. In this account, the evolving decision is essentially captured by the 

activity of chosen juice cells in OE trials, which reflects a competition between the negative 

offset set by the value of offer1 (initial condition) and the incoming signal encoding the value of 

offer2. If so, the intensity of circuit inhibition should be negatively correlated with the order bias.  

We tested this prediction as follows. First, we replicated previous findings and confirmed the 

presence of circuit inhibition in our primary data set (Fig.4.6A). Second, we focused on a 300 ms 

time window starting 250 ms before offer2 onset. For each chosen juice cell, we regressed the 

firing rate against the normalized offer1 value (see Methods). Thus the regression slope c1 

quantified circuit inhibition for individual cells. Across a population of 295 chosen juice cells, 

mean(c1) was significantly <0 (p = 5 10-6, t test; p = 9 10-8, Wilcoxon test; Fig.4.6B). Third, we 

examined the relation between circuit inhibition (c1) and the order bias (ε). Confirming the 

prediction, the two measures were significantly correlated across the population (Spearman r = 

0.1, p = 0.02; Pearson r = 0.1, p = 0.02; Fig.4.6C). In other words, stronger circuit inhibition 

(more negative c1) corresponded to a weaker order bias (smaller ε). 

In conclusion, the order bias did not originate before or during valuation. Conversely, analysis of 

chosen juice cells and chosen value cells indicated that the order bias emerged during value 

comparison (decision stage). 
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Figure 4.6. Order bias and circuit inhibition. A. Circuit inhibition in chosen juice cells (primary data set, 

N = 160 cells). For each chosen juice cell E and O indicated the encoded juice and the other juice, 

respectively. We separated EO and OE trials, and divided each group of trials in tertiles based on the 

value of offer1. For EO trials, this corresponded to V(E); for OE trials, it corresponded to V(O). In this 

panel, Q1, Q2 and Q3 indicate low, medium and high values of offer1. In OE trials, shortly before offer2, 

the activity of chosen juice cells was negatively correlated with V(O) – a phenomenon termed circuit 

inhibition. For a quantitative analysis of circuit inhibition, we focused on 300 ms time window starting 

250 ms before offer2 onset (black line). B. Circuit inhibition for individual cells (N = 295 cells). For each 

chosen juice cell, we regressed the firing rate against the normalized V(O) (see Methods). The histogram 

illustrates the distribution of regression slopes (c1), which quantify circuit inhibition for individual cells. 
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The effect was statistically significant across the population (mean = -0.95). C. Correlation between order 

bias and circuit inhibition (N = 295 cells). Here the x-axis is the order bias (ε), the y-axis is circuit 

inhibition (regression slope c1) and each data point represents one cell. The two measures were 

significantly correlated across the population. Panel A includes only the primary data set; thus circuit 

inhibition shown here replicates previous findings (Ballesta and Padoa-Schioppa, 2019). Panels BC 

include both the primary and the additional data sets (see Methods). In panels BC, 47 cells were excluded 

from the analysis because measures of order bias (ε) or circuit inhibition (c1) were detected as outliers by 

the interquartile criterion. Including these cells in the analysis did not substantially alter the results. 

Statistical tests and exact p values are indicated in panels BC. 
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4.2.5 The preference bias emerged late in the trial (post-comparison) 

When offers were presented sequentially (Task 2), both monkeys showed an additional 

preference bias that favored juice A and was more pronounced when the relative value of the two 

juices was larger (Fig.4.3). Our last series of analyses focused on the origins of this bias.  

First, we inquired whether the preference bias emerged during valuation. If this was the case, one 

or both of the following should be true: (a) offer value A cells encoded higher values in Task 2 

than in Task 1 and/or (b) offer value B cells encoded lower values in Task 2 than in Task 1. 

Furthermore, these putative effects should increase as a function of the relative value. To test 

these predictions, we examined the tuning functions of offer value cells. For each cell group 

(offer value A, offer value B), we pooled neurons with positive and negative encoding. For Task 

1, we focused on the post-offer time window; for Task 2, we focused on post-offer1 and post-

offer2 time windows, pooling trial types from both windows. Indicating with b0 and b1 the tuning 

intercept and tuning slope (Eq.4.4), we computed the difference in intercept Δb0 = b0,Task2 – 

b0,Task1 and the difference in slope Δb1 = b1,Task2 – b1,Task1 for each cell. We then examined the 

relation between these measures and the relative value ρ across the population, separately for 

each cell group. Contrary to the prediction, we did not find any correlation between neuronal 

measures (Δb0, Δb1) and the behavioral measure (ρ) for either offer value A or offer value B cells 

(Fig.4.S3). Thus the preference bias did not seem to emerge at the valuation stage.  

We next examined chosen value cells. As discussed above, their activity provided a neuronal 

measure for the relative value (ρneuronal), which reflected the internal subjective values of the 

juices emerging during value comparison. In principle, ρneuronal might differ from the relative 

value derived from choices through the probit regression (ρbehavioral) because choices might be 
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affected by systematic biases originating downstream of value comparison (Fig.4.1). In the light 

of this consideration, we examined the relation between the neuronal measure of relative value in 

Task 2 (ρneuronal
Task2, see Methods) and the behavioral measures obtained in the two tasks 

(ρbehavioral
Task1, ρ

behavioral
Task2). We envisioned two possible scenarios (Fig.4.7A). In scenario 1, the 

preference bias reflected a difference in values across tasks. In other words, the subjective values 

of the juices in the two tasks were different and such that the relative value of juice A was higher 

in Task 2 than in Task 1. If so, ρneuronal
Task2 should be statistically indistinguishable from 

ρbehavioral
Task2 and systematically larger than ρbehavioral

Task1. In scenario 2, the subjective values of 

the juices were the same in both tasks and the preference bias reflected some neuronal process 

taking place downstream of value comparison. If so, ρneuronal
Task2 should be statistically 

indistinguishable from ρbehavioral
Task1 and systematically smaller than ρbehavioral

Task2.  

The results of our analysis clearly conformed to scenario 2 (Fig.4.7B). For each chosen value 

cell, we computed ρneuronal
Task1 in the post-offer time window and ρneuronal

Task2 in the post-offer2 

time window. Across the population, the two measures were statistically indistinguishable (p = 

0.3, t test; not shown). We then regressed ρneuronal
Task2 onto ρbehavioral

Task1. The linear relation 

between these measures was statistically indistinguishable from identity. Separately, we 

regressed ρneuronal
Task2 onto ρbehavioral

Task2. In this case, the regression slope was significantly <1 (p 

= 0.02). This result is quite remarkable. It shows that the chosen value represented in the brain in 

Task 2 was equal to that inferred from choices in Task 1, and significantly different from that 

inferred from choices in Task 2. This fact implies that the preference bias was costly for the 

monkey, as it reduced the value obtained on average at the end of each trial. 
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Figure 4.7. The preference bias does not reflect differences in the activity of chosen value cells. A. 

Hypothetical scenarios. The two panels represent in cartoon format two possible scenarios envisioned at 

the outset of this analysis. In both panels, the x-axis represents behavioral measures from either Task 1 

(green) or Task 2 (yellow); the y-axis represents the neuronal measure from Task 2. In scenario 1, the 

animal assigned higher relative value to juice A in Task 2. Thus, neuronal measures of relative value 

derived from the activity of chosen value cells in Task 2 (ρneuronal
Task2) would align with behavioral 

measures from the same task (ρbehavioral
Task2) and be systematically higher than behavioral measures from 

Task 1 (ρbehavioral
Task1). In scenario 2, the animal assigned the same relative values to the juices in both 

tasks. Thus, neuronal measures of relative value in Task 2 (ρneuronal
Task2) would be systematically lower 

than behavioral measures from the same task (ρbehavioral
Task2) and would align with behavioral measures 

from Task 1 (ρbehavioral
Task1). B. Empirical results (N = 52 cells). Neuronal measures derived from Task 2 

(ρneuronal
Task2) are plotted against behavioral measures obtained in Task 1 (ρbehavioral

Task1, green) or Task 2 

(ρbehavioral
Task2, yellow. Lines are from linear regressions. In essence, ρneuronal

Task2 was statistically 
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indistinguishable from ρbehavioral
Task1 and systematically lower than ρbehavioral

Task2. Details on the statistics 

and exact p values are indicated in the figure. The analysis was restricted to 52 cells that had significant 

θ1A, θ1B, θ2A and θ2B. For this analysis, ρneuronal
Task2 was taken as equal to ρneuronal

offer2 (Eq.4.10). Other 

definitions provided similar results (data not shown). 
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In summary, the preference bias did not reflect differences in the values assigned to individual 

offers (offer values). Furthermore, insofar as the activity of chosen value cells reflects the 

decision process (Fig.4.1), the preference bias did not seem to emerge during value comparison. 

So how can one make sense of this behavioral phenomenon? At the cognitive level, the 

preference bias might be interpreted as due to the higher demands of Task 2. When the two 

saccade targets appeared on the monitor, information about values was no longer on display 

(Fig.4.2B). If at that point the animal had not finalized its decision, or if it had failed to retain in 

working memory the decision outcome, the animal might have selected the target associated with 

the better juice (juice A). Such bias would have been especially strong when the value difference 

between the two juices was large. In this view, the preference bias would reflect a “second 

thought” occurring after value comparison, in some trials.  

To test this intuition, we turned to the activity of chosen juice cells. As noted above, in Task 2, 

the evolving decision was captured by the activity of these neurons recorded in OE trials 

immediately before and after offer2 onset (Fig.4.8A). More specifically, the state of the ongoing 

decision was captured by the distance between the two traces corresponding to the two possible 

choice outcomes (E chosen, O chosen). For any neuron, we quantified this distance with an ROC 

analysis, which provided a choice probability (CP). In essence, CP can be interpreted as the 

probability with which an ideal observed may guess the eventual choice outcome based on the 

activity of the cell. For each chosen juice cell, we computed the CP at different times in the trial. 

Across the population, mean(CP) exceeded chance level starting shortly before offer2, consistent 

with the above discussion on circuit inhibition. We then proceeded to investigate the origins of 

the preference bias. 
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We reasoned that, at the net of noise in measurements and cell-to-cell variability, CPs ultimately 

quantify the animal’s commitment to any choice outcome. If the preference bias emerged late in 

the trial – perhaps after target presentation, if animals had not previously finalized their decision 

– the intensity of the preference bias should be inversely related to the animals’ commitment to 

any choice outcome measured earlier in the trial. In other words, there should be a negative 

correlation between the preference bias and CPs computed at the time when decisions normally 

take place (shortly before or after offer2 onset). Our analyses supported this prediction. To 

quantify the preference bias intensity independent of the juice pair, we defined the preference 

bias index PBI = 2 (ρTask2 – ρTask1) / (ρTask2 + ρTask1). We then focused on four 250 ms time 

windows before offer1 (control window), before and after offer2 onset, and before juice delivery 

(Fig.4.8B-E). Confirming our predictions, CP and PBI were significantly anti-correlated 

immediately before and during offer2 presentation, but not in the control time window or late in 

the trial (Fig.4.8F-I). 

In conclusion, our results indicated that the preference bias did not emerge during valuation or 

during value comparison. Indeed, the preference bias effectively reduced the value monkeys 

obtained on average on any given trial. Furthermore, the analysis of chosen juice cells suggests 

that the preference bias emerged late in the trial, as a “second thought” process that guided 

choices when decisions were not finalized based on offer values alone. 
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Figure 4.8. Preference bias and choice probability in chosen juice cells. A. Profiles of activity and choice 

probability (N = 160 cells). On the top, separate traces are activity profiles for EO trials (dark colors) and 

OE trials (light colors), separately for E chosen (blue) and O chosen. On the bottom the trace is the 

mean(CP) computed for OE trials in 100 ms sliding time windows (25 ms steps). Red dots indicate that 
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mean(CP) was significantly >0.5 (p<0.001; t test). Value comparison typically takes place shortly after 

the onset of offer2. B-E. Distribution of CP in four 250 ms time windows. The time windows used for 

this analysis are indicated in panel A. F-I. Correlation between CP and preference bias index. Each panel 

corresponds to the histogram immediately above it. CPs are plotted against the preference bias index 

(PBI), which quantifies the preference bias independently of the juice types. Each symbol represents one 

cell and the line is from a linear regression. CP and PBI were negatively correlated immediately before 

and after offer2 onset, but not later in the trial. This pattern suggests that the preference bias emerged late 

in the trial, when decisions were not finalized shortly after offer2 presentation. In panel B-I, 6 cells were 

excluded because the Matlab function perfcurve.m failed to converge. 
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4.3 Discussion 

4.3.1 Behavioral values, neuronal values and the origins of choice biases 

Early economists proposed that choices between goods entail the computation and comparison of 

subjective values. However, the concept of value is somewhat slippery, because values relevant 

to choices cannot be measured behaviorally other than from choices themselves. This circularity 

problem hunted generations of scholars, dominating academic debates in the 19th and 20th 

century. In the end, neoclassic economic theory came to reject (cardinal) values and to rely only 

on (ordinal) preferences (Niehans, 1990; Samuelson, 1947). In other words, standard economics 

is agnostic as to whether subjective values are computed at all. The construction of standard 

economic theory was a historic success, but it came at a cost: the theory cannot explain a variety 

of biases observed in human choices. In this perspective, neuroscience results showing that 

neuronal activity in multiple brain regions is linearly related to values defined behaviorally 

(Bartra et al., 2013; Padoa-Schioppa, 2011; Schultz, 2015), constitute a significant breakthrough. 

They validate the concept of value and effectively break the circularity surrounding it. Indeed, a 

neuronal population whose activity is reliably correlated with values measured from choices 

(behavioral values) may be used to derive independent measures of subjective values (neuronal 

values). In most circumstances, neuronal values and behavioral values should be (and are) 

indistinguishable. However, in specific choice contexts, the two measures might differ 

somewhat. When observed, such discrepancies indicate that choices are partly determined by 

processes that escape the maximization of offer values. If so, suitable analyses of neuronal 

activity may be used to assess the origins of particular choice biases.  
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These considerations motivated the analyses conducted in this study. In our experiments, 

monkeys chose between two juices offered simultaneously or sequentially. Choices under 

sequential offers were less accurate, biased in favor of the second offer (order bias), and biased 

in favor of the preferred juice (preference bias) (Shi et al., 2021). Earlier work had identified in 

OFC three groups of neurons encoding individual offer values, the chosen juice and the chosen 

value. Furthermore, experimental findings and computational models suggested that these cell 

groups constitute the building blocks of a decision circuit (Padoa-Schioppa and Conen, 2017). In 

this view, offer value cells provide the primary input to a circuit formed by chosen juice cells and 

chosen value cells, where decisions are formed. Different cell groups in OFC may thus be 

associated with different computational stages: offer value cells instantiate the valuation stage; 

chosen value cells reflect values possibly modified by the decision process; and chosen juice 

cells capture the evolving commitment to a particular choice outcome. In this framework, we 

examined the activity of each cell group in relation to each behavioral phenomenon.  

Our results may be summarized as follows. (1) Other things equal, neuronal signals encoding the 

offer values were weaker (smaller activity range) under sequential offers than under 

simultaneous offers. The reason for this discrepancy is unclear, but this neuronal effect was 

correlated with the difference in choice accuracy measured at the behavioral level. In other 

words, the drop in choice accuracy observed under sequential offers originated, at least partly, at 

the valuation stage. (2) The order bias did not correlate with any measure in the activity of offer 

value cells. However, the order bias was negatively correlated with circuit inhibition in chosen 

juice cells – a phenomenon seen as key to value comparison (Ballesta and Padoa-Schioppa, 

2019). Furthermore, fluctuations in the order bias correlated with fluctuations in the neuronal 

measure of relative value derived from chosen value cells. These findings indicate that the order 
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bias emerged during value comparison. (3) The preference bias did not have any correlate in the 

activity of offer value cells or chosen value cells. Moreover, the preference bias was inversely 

related to a measure derived from chosen juice cells and quantifying the degree to which the 

decision was finalized in the “normal” decision window (i.e., following presentation of the 

second offer). These findings indicate that the preference bias emerged late in the trial, after 

value comparison.  

Two findings are particularly relevant to the distinction between behavioral values and neuronal 

values. (1) The activity of offer value cells did not present any difference associated with the 

presentation order or with the juice preference. (2) Relative value derived from chosen value 

cells under sequential offers differed significantly from behavioral measures obtained in the 

same task, and were indistinguishable from behavioral measures obtained in the other task 

(simultaneous offers). Thus the order bias and the preference bias highlighted significant 

differences between neuronal and behavioral measures of value. These observations imply that 

the order bias and the preference bias emerged downstream of valuation. Importantly, they also 

imply that the two choice biases imposed a cost to the animals, in the sense that they reduced the 

(neuronal) value obtained on average in any given trial. Notably, it would be impossible to draw 

such conclusion based on choices alone. 

While this is the first study to investigate the origins of choice biases building on the distinction 

between behavioral values and neuronal values, some of our results are not unprecedented. 

Earlier work showed that human and animal choices are affected by a bias favoring, on any 

given trial, the same good chosen in the previous trial (Alos-Ferrer et al., 2016; Goodwin, 1977; 

Padoa-Schioppa, 2013; Schoemann and Scherbaum, 2019; Senftleben et al., 2021). The origins 
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of this phenomenon, termed choice hysteresis, are hard to pinpoint based on behavioral evidence 

alone. However, previous analysis of neuronal activity in OFC revealed that choice hysteresis is 

not reflected in the encoding of offer values (Padoa-Schioppa, 2013). Conversely, choice 

hysteresis correlates with fluctuations in the baseline activity of chosen juice cells, which is 

partly influenced by the previous trial’s outcome. Thus, similar to the order bias, choice 

hysteresis appears to emerge at the decision stage. 

4.3.2 Conclusion 

The past two decades have witnessed a lively interest for the neural underpinnings of choice 

behavior. In this effort, a significant breakthrough came from the adoption of behavioral 

paradigms inspired by the economics literature, in which subjective values derived from choices 

are used to interpret neural activity (Padoa-Schioppa, 2011). Without renouncing this approach, 

here we took a further step, recognizing that the decision process might sometimes fall short of 

selecting the maximum offer value, and that choices might sometimes be affected by processes 

taking place downstream of value comparison. Equivalently, behavioral values and neuronal 

values might sometimes differ. These ideas may appear uncontroversial, but they have deep 

implications for economic theory and beyond. Looking forward, the framework developed here, 

in which the computation and comparison of offer values are central, but choices can also be 

affected by other processes accessible through neuronal measures, might help unravel other 

choice biases. 
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4.4 Methods 

All the experimental procedures adhered to the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at 

Washington University. 

4.4.1 Animal subjects, choice tasks and neuronal recordings 

This study presents new analyses of published data. Experimental procedures for surgery, 

behavioral control and neuronal recordings have been described in detail (Shi et al., 2021). 

Briefly, two male monkeys (Macaca mulatta; monkey J, 10.0 kg, 8 years old; monkey G, 9.1 kg, 

9 years old) participated in the study. Under general anesthesia, we implanted on each animal a 

head restraining device and an oval chamber (axes 50×30 mm) allowing bilateral access to OFC. 

During the experiments, monkeys sat in an electrically insulated environment with their head 

fixed and a computer monitor placed at 57 cm distance. The gaze direction was monitored at 1 

kHz using an infrared video camera (Eyelink, SR Research). Behavioral tasks were controlled 

through custom written software (https://monkeylogic.nimh.nih.gov) (Hwang et al., 2019) based 

on Matlab (v2016a; MathWorks Inc).  

In each session, the animal chose between two juices labeled A and B (A preferred) offered in 

variable amounts. Trials with two choice tasks, referred to as Task 1 and Task 2, were pseudo-

randomly interleaved. In both tasks, offers were represented by sets of colored squares displayed 

on the monitor. For each offer, the color indicated the juice type and the number of squares 

indicated the quantity. Each trial began with the animal fixating a large dot. After 0.5 s, the 

initial fixation point changed to a small dot or a small cross; the new fixation point cued the 
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animal to the choice task used in that trial. In Task 1 (Fig.4.2A), cue fixation (0.5 s) was 

followed by the simultaneous presentation of the two offers. After a randomly variable delay (1-

1.5 s), the center fixation point disappeared and two saccade targets appeared near the offers (go 

signal). The animal indicated its choice with an eye movement. It maintained peripheral fixation 

for 0.75 s, after which the chosen juice was delivered. In Task 2 (Fig.4.2B), cue fixation (0.5 s) 

was followed by the presentation of one offer (0.5 s), an inter-offer delay (0.5 s), presentation of 

the other offer (0.5 s), and a wait period (0.5 s). Two colored saccade targets then appeared on 

the two sides of the fixation point. After a randomly variable delay (0.5-1 s), the center fixation 

point disappeared (go signal). The animal indicated its choice with a saccade, maintained 

peripheral fixation for 0.75 s, after which the chosen juice was delivered. Central and peripheral 

fixation were imposed within 4-6 and 5-7 degrees of visual angle, respectively. Aside from the 

initial cue, the choice tasks were nearly identical to those used in previous studies (Ballesta and 

Padoa-Schioppa, 2019; Padoa-Schioppa and Assad, 2006). 

For any given trial, qA and qB indicate the quantities of juices A and B offered to the animal, 

respectively. An “offer type” was defined by two quantities [qA qB]. On any given session, we 

used the same juices and the same sets of offer types for the two tasks. For Task 1, the spatial 

configuration of the offers varied randomly from trial to trial. For Task 2, the presentation order 

varied pseudo-randomly and was counterbalanced across trials for any offer type. The terms 

“offer1” and “offer2” indicated, respectively, the first and second offer, independently of the 

juice type and amount. Trials in which juice A was offered first and trials in which juice B was 

offered first were referred as “AB trials” and “BA trials”, respectively. The spatial location 

(left/right) of saccade targets varied randomly. The juice volume corresponding to one square 

(quantum) was set equal for the two choice tasks and remained constant within each session. It 
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varied across sessions between 70 and 100 μl for both monkeys. The association between the 

initial cue (small dot, small cross) and the choice task varied across sessions in blocks. Across 

sessions, we used 12 different juices (and colors) and 45 different juice pairs. Based on a power 

analysis, in most sessions the number of trials for Task 2 was set equal to 1.5 times that for Task 

1. 

Neuronal recordings were guided by structural MRI scans (1 mm sections) obtained before and 

after surgery and targeted area 13m (Ongur and Price, 2000). We recorded from both 

hemispheres in both monkeys. Tungsten single electrodes (100 µm shank diameter; FHC) were 

advanced remotely using a custom-built motorized micro-drive. Typically, one motor advanced 

two electrodes placed 1 mm apart, and 1-2 such pairs of electrodes were advanced unilaterally or 

bilaterally in each session. Neural signals were amplified (gain: 10,000) band-pass filtered (300 

Hz - 6 kHz; Lynx 8, Neuralynx), digitized (frequency: 40 kHz) and saved to disk (Power 1401, 

Cambridge Electronic Design). Spike sorting was performed off-line (Spike2, v6, Cambridge 

Electronic Design). Only cells that appeared well isolated and stable throughout the session were 

included in the analysis. 

4.4.2 Preliminary analyses 

The present analyses build on the results of a previous study showing that both choice tasks 

engage the same groups of neurons in OFC (Shi et al., 2021). Here we briefly summarize those 

findings. 

The original data set included 1,526 neurons (672 from monkey J, 854 from monkey G) recorded 

in 306 sessions (115 from monkey J, 191 from monkey G). In each session, choice patterns were 
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analyzed using probit regressions as described in the main text (Eq.4.1 and Eq.4.2). For Task 1 

(simultaneous offers), the probit fit provided measures for the relative value ρTask1 and the 

sigmoid steepness ηTask1. For Task 2 (sequential offers), the probit fit provided measures for the 

relative value ρTask2, the sigmoid steepness ηTask2 and the order bias ε. For each neuron, trials 

from Task 1 and Task 2 were first analyzed separately using the procedures developed in 

previous studies (Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa and Assad, 2006). For 

Task 1, we defined four time windows: post-offer (0.5 s after offer onset), late-delay (0.5-1 s 

after offer onset), pre-juice (0.5 s before juice onset) and post-juice (0.5 s after juice onset). A 

“trial type” was defined by two offered quantities and a choice. For Task 2, we defined three 

time windows: post-offer1 (0.5 s after offer1 onset), post-offer2 (0.5 s after offer2 onset) and 

post-juice (0.5 s after juice onset). A “trial type” was defined by two offered quantities, their 

order and a choice. For each task, each trial type and each time window, we averaged spike 

counts across trials. A “neuronal response” was defined as the firing rate of one cell in one time 

window as a function of the trial type. Neuronal responses in each task were submitted to an 

ANOVA (factor: trial type). Neurons passing the p<0.01 criterion in ≥1 time window in either 

task were identified as “task-related” and included in subsequent analyses. 

Following earlier work (Padoa-Schioppa, 2013), neurons in Task 1 were classified in one of four 

groups offer value A, offer value B, chosen juice or chosen value. Each variable could be 

encoded with positive or negative sign, leading to a total of 8 cell groups. Each neuronal 

response was regressed against each of the four variables. If the regression slope b1 differed 

significantly from zero (p<0.05), the variable was said to "explain" the response. In this case, we 

set the signed R2 as sR2 = sign(b1) R
2; if the variable did not explain the response, we set sR2 = 0. 

After repeating the operation for each time window, we computed for each cell the sum(sR2) 
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across time windows. Neurons explained by at least one variable in one time window, such that 

sum(sR2) ≠ 0, were said to be tuned; other neurons were labeled “untuned”. Tuned cells were 

assigned to the variable and sign providing the maximum |sum(sR2)|, where |·| indicates the 

absolute value. Thus indicating with “+” and “–” the sign of the encoding, each neuron was 

classified in one of 9 groups: offer value A+, offer value A–, offer value B+, offer value B–, 

chosen juice A, chosen juice B, chosen value+, chosen value– and untuned.  

Neuronal classification in Task 2 followed the procedures described by Ballesta and Padoa-

Schioppa (2019). Under sequential offers, neuronal responses in OFC were found to encode 

different variables defined in relation to the presentation order (AB or BA). Specifically, the vast 

majority of responses were explained by one of 11 variables including one binary variable 

capturing the presentation order (AB | BA), six variables representing individual offer values 

(offer value A | AB, offer value A | BA, offer value B | AB, offer value B | BA, offer value 1, and 

offer value 2), three variables capturing variants of the chosen value (chosen value, chosen value 

A, chosen value B) and a binary variable representing the binary choice outcome (chosen juice). 

Each of these variables could be encoded with a positive or negative sign. Most neurons encoded 

different variables in different time windows. In principle, considering 11 variables, 2 signs of 

the encoding and 3 time windows, neurons might present a very large number of variable 

patterns across time windows. However, the vast majority of neurons presented one of 8 patterns 

referred to as “sequences”. Classification proceeded as follows. For each cell and each time 

window, we regressed the neuronal response against each of the variables predicted by each 

sequence. If the regression slope b1 differed significantly from zero (p<0.05), the variable was 

said to explain the response and we set the signed R2 as sR2 = sign(b1) R
2; if the variable did not 

explain the response, we set sR2 = 0. After repeating the operation for each time window, we 
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computed for each cell the sum(sR2) across time windows for each of the 8 sequences. Neurons 

such that sum(sR2) ≠ 0 for at least one sequence were said to be tuned; other neurons were 

untuned. Tuned cells were assigned to the sequence that provided the maximum |sum(sR2)|. As a 

result, each neuron was classified in one of 9 groups: seq #1, seq #2, seq #3, seq #4, seq #5, seq 

#6, seq #7, seq #8 and untuned (Table 4.S1). 

The results of the two classifications procedures were compared using analyses for categorical 

data. In essence, we found a strong correspondence between the cell classes identified in the two 

choice tasks (Shi et al., 2021). Hence, we may refer to the different groups of cells using the 

standard nomenclature – offer value, chosen juice and chosen value – independently of the 

choice task. Based on this result, we proceeded with a comprehensive classification based on the 

activity recorded in both choice tasks. For each task-related cell, we calculated the sum(sR2) for 

the eight variables in Task 1 (sum(sR2)Task1) and eight sequences in Task 2 (sum(sR2)Task2) as 

described above. We then added the corresponding sum(sR2)Task1 and sum(sR2)Task2 to obtain the 

final sum(sR2)final. Neurons such that sum(sR2)final ≠ 0 for at least one class were said to be tuned; 

other neurons were untuned. Tuned cells were assigned to the cell class that provided the 

maximum |sum(sR2)final|. 

4.4.3 Data sets 

In some sessions, one or both choice patterns presented complete or quasi-complete separation – 

i.e., the animal split choices for <2 offer types in Task 1 and/or in Task 2. In these cases, the 

probit regression did not converge, the resulting steepness η was high and unstable, and the 

relative value was (often) not well defined. This issue affected the classification analyses 

described above only marginally, but for the present study it was critical that behavioral 
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measures be accurate and precise. We thus restricted our analyses to stable sessions by imposing 

an interquartile criterion on the sigmoid steepness (Tukey, 1977). Defining IQR as the 

interquartile range, values below the first quartile minus 1.5*IQR or above the third quartile plus 

1.5*IQR were identified as outliers and excluded. Thus our entire data set included 1,204 

neurons (577 from monkey J, 627 from monkey G) recorded in 241 sessions (101 from monkey 

J, 140 from monkey G). In this population, the classification procedures identified 183 offer 

value cells, 160 chosen juice cells and 174 chosen value cells. These neurons constitute the 

primary data set for this study.  

Most of our analyses compared choices and neuronal activity across tasks and were restricted to 

the primary data set. However, some analyses included only trials from Task 2 and quantified the 

effects due to the presentation order (AB vs. BA). In these analyses we included an additional 

data set recorded previously from the same two animals performing only Task 2 (Ballesta and 

Padoa-Schioppa, 2019). All the procedures for behavioral control and neuronal recording were 

essentially identical to those described above. Furthermore, behavioral analyses and inclusion 

criteria were identical to those used for the primary data set. The resulting data set included 

1,205 neurons (414 from monkey J, 791 from monkey G) recorded in 196 sessions (51 from 

monkey J, 145 from monkey G). In this population, the classification procedures identified 243 

offer value cells, 182 chosen juice cells and 187 chosen value cells. We refer to these neurons as 

the additional data set. Importantly, the order bias was also observed in these sessions (Ballesta 

and Padoa-Schioppa, 2019). 
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The interquartile criterion was also used to identify outliers in all the analyses conducted 

throughout this study. In practice, this criterion became relevant only for the analyses shown in 

Fig.4.6 and Fig.4.S2, as indicated in the respective figure legends.  

4.4.4 Comparing tuning functions across choice tasks 

Several analyses compared the tuning functions recorded in the two tasks (Fig.4.4, Fig.4.S1-3). 

Tuning functions were defined by the linear regression of the firing rate r onto the encoded 

variable S: 

 r = b0 + b1 S (4.4) 

Regression coefficients b0 and b1 were referred to as tuning intercept and tuning slope, 

respectively. Positive and negative encoding corresponded to b1>0 and b1<0, respectively. We 

also defined the mean activity and the activity range as follows. Indicating with [Smin, Smax] the 

interval of variability for S, ΔS = Smax – Smin was the range of S. The mean activity was defined 

as rmean = b0 + b1 (Smax+Smin)/2. The activity range was defined as Δr = |b1 ΔS|, where |·| indicates 

the absolute value.  

For any neuronal response, the tuning was considered significant if b1 differed significantly from 

zero (p<0.05) and if the sign of the encoding was consistent with the cell class (e.g., b1>0 for 

offer value A + cells). All the analyses comparing tuning functions across tasks were restricted to 

neuronal responses with significant tuning. 
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4.4.5 Neuronal measures of relative value 

Several analyses relied on neuronal measures for the relative value of the juices (ρneuronal) derived 

from the activity of chosen value cells. In Task 1, these neurons encode the chosen value 

independently of the juice type. For each neuronal response, we performed a bilinear regression: 

 r = θ0 + θA qA δchoice,A + θB qB δchoice,B  (4.5) 

where θ0, θA and θB were the regression coefficients, δchoice,J = 1 if the animal chose juice J and 0 

otherwise, and J = A or B. If the response encodes the chosen value, θA should be proportional to 

the value of a quantum of juice A (uA), θB should be proportional to the value of a quantum of 

juice B (uB), and the ratio θA/θB should equal the value ratio – i.e., the relative value of the two 

juices. We thus defined 

 ρneuronal
 = θA / θB  (4.6) 

Previous studies showed that this measure is statistically indistinguishable from the behavioral 

measure ρbehavioral derived from the probit analysis of choice patterns (Padoa-Schioppa and Assad, 

2006).  

In Task 2, in the post-offer1 and post-offer2 time windows, chosen value cells encoded the value 

of the current offer, independent of the juice type (Table 4.S1). For each neuron, we thus 

performed a bi-linear regression for each of the two time windows: 

 r1 = θ10 + θ1A qA δorder,AB + θ1B qB δorder,BA (4.7) 

 r2 = θ20 + θ2A qA δorder,BA + θ2B qB δorder,AB (4.8) 
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where r1 and r2 were their responses recorded in the post-offer1 and post-offer2 time windows, 

respectively, and θ10, θ1A, θ1B, θ20, θ2A and θ2B were regression coefficients. These coefficients 

provided four neuronal measures of relative value: 

 ρneuronal
offer1 = θ1A / θ1B (4.9) 

 ρneuronal
offer2 = θ2A / θ2B (4.10) 

 ρneuronal
AB = θ1A / θ2B (4.11) 

 ρneuronal
BA = θ2A / θ1B (4.12) 

In essence, these four measures corresponded to the two time windows (post-offer1 and post-

offer2) and to the two presentation orders (AB and BA). Importantly, all these measures were 

computed conditioned on θ1A, θ1B, θ2A and θ2B differing significantly from zero (p<0.05). The 

analyses illustrated in Fig.4.5 and Fig.4.7 were restricted to neurons satisfying this criterion.  

In terms of notation, we often omit the superscript in ρbehavioral and we indicate behavioral 

measures simply as ρ (with the relevant subscripts). We use the superscript “behavioral” only 

when we explicitly compare behavioral and neuronal measures, for clarity. In contrast, for 

neuronal measures of relative value we always use the superscript “neuronal”.  

4.4.6 Activity profiles of chosen juice cells 

To conduct population analyses, we pooled all chosen juice cells. The juice eliciting higher firing 

rates was labeled “E” (encoded) and other juice was labeled “O”. In Task 2, we thus referred to 

EO trials and OE trials, depending on the presentation order.  
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To illustrate the activity profiles of chosen juice cells in Task 2, we aligned spike trains at offer1 

and, separately, at juice delivery. For each trial, the spike train was smoothed using a kernel that 

mimicked the post-synaptic potential by exerting influence only forward in time (decay time 

constant = 20 ms) (So and Stuphorn, 2010). In Fig.4.6A and Fig.4.8A we used moving averages 

of 100 ms with 25 ms steps for display purposes. 

Under sequential offers, chosen juice cells encode different variables in different time windows 

(see Table 4.S1). During offer1 and offer2 presentation, these cells encode in a binary way the 

juice type currently on display. Later, as the decision develops, these neurons gradually come to 

encode the binary choice outcome (i.e., the chosen juice). We previously showed that the activity 

of these neurons recorded in OE trials shortly before offer2 is inversely related to the value of 

offer1 (Ballesta and Padoa-Schioppa, 2019). This phenomenon, termed circuit inhibition, 

resembles the setting of a dynamic system’s initial conditions and is regarded as an integral part 

of the decision process (Ballesta and Padoa-Schioppa, 2019).  

For a quantitative analysis of circuit inhibition, we focused on a 300 ms time window starting 

250 ms before offer2 onset. We excluded forced choice trials, for which one of the two offers 

was null. For each neuron, we examined OE trials and we regressed the firing rates against the 

normalized value of offer1: 

 r = c0 + c1 V(O)/ΔVO (4.13) 

where ΔVO was the value range for juice O. The normalization allowed to pool neurons recorded 

with different value ranges. The regression slope c1 quantified circuit inhibition for individual 

cells, and we studied this parameter at the population level.  
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The activity of chosen juice cells in OE trials captures the momentary state of the decision and 

thus the evolving commitment to a particular choice outcome. To quantify the momentary 

decision state, we conducted a receiver operating characteristic (ROC) analysis (Green and 

Swets, 1966) on the activity recorded during OE trials. This analysis was conducted on raw spike 

counts, without kernel smoothing, time averaging or baseline correction. We restricted the 

analysis to offer types for which the animal split choices between the two juices and we excluded 

trial types with <2 trials. For each offer type, we divided trials depending on the chosen juice (E 

or O) and we compared the two distributions. The ROC analysis provided an area under the 

curve (AUC). For each neuron, we averaged the AUC across offer types to obtain the overall 

choice probability (CP) (Kang and Maunsell, 2012). The ROC analysis was performed in 100 ms 

time windows shifted by 25 ms. We also conducted the same analysis on four 250 ms time 

windows, namely pre-offer1 (–250 to 0 ms from offer1 onset), late offer2 (–250 to 0 ms from 

offer1 offset), early wait (0 ms to 250 ms after offer2 offset) and pre-juice (–250 to 0 ms before 

juice delivery) (Fig.4.8). 

4.5 Supplementary figures 
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Figure 4.S1. Comparing tuning functions across choice tasks. AB. Chosen juice cells (N = 58). Same 

format as in Fig.4.4AB. For each cell, we examined the same time window (post-juice) in both tasks. 

Both the mean activity and the activity range were statistically indistinguishable across choice tasks. CD. 

Chosen value cells (N = 104). For each cell, we examined one time window (post-offer) in Task 1 and 

two time windows (post-offer1 and post-offer2) in Task 2. Both the mean activity and the activity range 

were statistically indistinguishable across tasks. In panels B-G, legends report the results of statistical 

tests. For both cell groups, fluctuations in activity range were not correlated with fluctuations in choice 

variability across the population (in both analyses, |r| < 0.1, p > 0.4; not shown). Only cells presenting 

significant tuning in the relevant time windows were included in each panel (see Methods). 
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Figure 4.S2. The order bias does not reflect differences in the tuning of offer value cells. A. Rationale for 

the analysis. The two lines represent in cartoon format the hypothetical tuning functions of an offer value 

cell in the post-offer1 time window (EO trials) and in the post-offer2 time window (OE trials). The order 

bias would be explained if offer value cells encoded, other things equal, higher values in OE trials than in 

EO trials. This would be the case if the tuning intercept and/or the tuning slope were higher in OE trials, 

as depicted here. B. Comparison of tuning intercepts. X- and y- axes represent the tuning intercept 

measured in post-offer1 (EO trials) and post-offer2 (OE trials) time windows, respectively. Each data 

point represents one cell. The two measures were statistically indistinguishable across the population. C. 

Comparison of tuning slopes. Same format as panel B. The two measures were statistically 

indistinguishable across the population. D. Lack of correlation between differences in tuning slope and 

order bias. Across the population, we did not find any correlation between the difference in tuning slope 

(y-axis) and the order bias. Exact p values are indicated in each panel. For this figure, we pooled neurons 

associated with A and B, and neurons with positive and negative encoding (N = 128 cells total). This 

analysis was restricted to cells significantly tuned in post-offer1 and post-offer2 time windows (Task 2). 

An additional 11 cells were removed because measures of order bias were detected as outliers by the 

interquartile criterion (see Methods). Including these cells in the analysis did not substantially alter the 

results. A similar analysis conducted on chosen value cells yielded similar negative results (not shown). 
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Figure 4.S3. The preference bias does not reflect differences in the tuning of offer value cells. AB. Offer 

value A cells (N = 63 cells). CD. Offer value B cells (N = 51 cells). Panels A and C illustrate the relation 

between differences in tuning intercept (y-axis) and the relative value ρTask1 (x-axis); panels B and D 

illustrate the relation between differences in tuning slope (y-axis) and ρTask1 (x-axis). For each offer value 

cell, we examined one time window (post-offer) in Task 1 and two time windows (post-offer1 and post-

offer2) in Task 2. In each panel, circles and diamonds refer to post-offer1 and post-offer2 time windows, 

respectively. Only cells presenting significant tuning in the relevant time windows were included in the 

analysis (see Methods). Exact p values are indicated in each panel and gray lines are from linear 

regressions. These analyses did not reveal any significant correlation. 

 



138 

 

Task 1  Task 2 

  post-offer1 post-offer2 post-juice 

offer value A +  offer value A | AB + offer value A | BA + chosen value A + 

offer value A -  offer value A | AB - offer value A | BA - chosen value A - 

offer value B +  offer value B | BA + offer value B | AB + chosen value B + 

offer value B -  offer value B | BA - offer value B | AB - chosen value B - 

chosen juice A  AB | BA + AB | BA - chosen juice A 

chosen juice B  AB | BA - AB | BA + chosen juice B 

chosen value +  offer value1 + offer value2 + chosen value + 

chosen value -  offer value1 - offer value2 - chosen value - 

Table 4.S1. Neuronal encoding of decision variables in the two choice tasks. The table summarizes the 

results of a previous report (Shi et al., 2021). Under simultaneous offers, different groups of OFC neurons 

encode different decision variables, each with positive or negative sign (indicated here with + and -). In 

first approximation, each cell encodes the same variable across time windows. Under sequential offers, 

OFC neurons encode different variables in different time windows. However, the vast majority of them 

present one of 8 specific patterns of variables, referred to as variable “sequences” and detailed here. 

Furthermore, there is a clear correspondence between neurons encoding a particular variable in Task 1 

and neurons encoding a particular sequence in Task 2. Hence, we can refer to different cell groups in OFC 

using the standard nomenclature originally defined for Task 1. 
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Chapter 5: Conclusion 

My dissertation focused on two important questions linking the neural activity in the OFC and 

the economic choices.  In the first study, we used micro-stimulation to build the casual link 

between OFC and economic choices. Monkeys participated in the tasks in which two juice 

options, offer A and offer B, with various amounts were provided. In the first task paradigm, the 

two juices were presented sequentially as offer 1 first and then offer 2. High currents injected 

when offer 1 was presented disrupted the valuation of offer 1 and thus biased the choice in favor 

of offer 2. Opposite results were observed when stimulating during the offer 2 presentation. 

Additionally, only the high currents that were injected during the offer 2 presentation, in which 

comparison between the two juices could be finalized, decreased the choice accuracy (i.e., 

noisier decisions). These results indicated that high current micro-stimulation in the OFC could 

disrupt the valuation and potentially the comparison of economic choices and thus induced 

different behavioral consequences.  In the second task paradigm, the two juices were presented 

simultaneously, and low currents were injected during the presentation of offers. We took 

advantage of the phenomenon of range adaptation in offer value cells that adapt their linear 

tuning curves to the value range in one session (Conen and Padoa-Schioppa, 2018; Padoa-

Schioppa, 2009). Henceforth, if offer A had higher value range than offer B, neurons associated 

with offer A (offer value A cells) would have lower tuning slopes. Since low currents increased 

the firing rates and both A and B cells were affected similarly, lower tuning slopes would induce 

a higher increase in the value representation, and thus biased the choice in favor of offer A. 

Opposite results were observed when offer B had higher value range. These results indicated that 

low current micro-stimulation could facilitate the economic choices through valuation process. 
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In the second study, we studied the neural correlates of behavioral variabilities and biases under 

sequential offers. Monkeys participated in a task in which trials under simultaneous offers and 

sequential offers were randomly interleaved. We first confirmed that the three cell groups as 

described earlier existed in both task modalities and these cell groups were consistent across task 

modalities. The result demonstrated that there was only one and the same decision circuit in the 

OFC that supported both simultaneous offers and sequential offers. With this result in hand, we 

next examined the neural correlates of behavioral variabilities. Alternating the two modalities 

allowed us to use the behaviors in simultaneous offers as the baselines and to study the 

behavioral variabilities specific to sequential offers. We thus found sequential offers had 1) 

smaller steepness (noisier decisions/lower choice accuracy) compared with simultaneous offers, 

2) order bias in favor of offer 2, and 3) higher relative values and this difference increased with 

the increase of relative values (bias in favor of the preferred juice/preference bias). Each of these 

phenomena correlated with different neural activities. We found offer value cells had smaller 

tuning slopes under sequential offers and the difference correlated with steepness difference. 

This result indicated that weaker valuation under sequential offers correlated with the noisier 

decisions. On the other hand, both order bias and preference bias correlated with the activity of 

chosen juice cells in the late time windows, indicating that comparison process related to the two 

biases. Altogether, these results showed that valuation and comparison could contribute to the 

behavioral variabilities under sequential offers differently through different groups of cells. 

The results from my dissertation provide important and necessary evidence to support the good-

based decision model within OFC and its crucial and causal function in economic choices. The 

analyses discussed in this thesis also provide great insights and pave the way for future studies. 

First, results in Chapter 2 showed that high current stimulation in offer2 time window affected 
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both the order bias and steepness, and we interpreted as the disruption of both valuation and 

comparison stage. However, high current stimulation may also affect passing fibers adjacent to 

the OFC, therefore, we cannot rule out the possibility that the reduced steepness was due to the 

disruption of transmission between other brain areas (Jensen and Durand, 2009). Ideally, one 

would expect the situation in which stimulating OFC only affects comparison stage and 

decreases the steepness. In a recent unpublished study, we found that stimulation during offer2 

time window with very low current level only affects steepness, not the order bias. This result is 

evidential for the disruption at the comparison stage and the potential reason is that OFC neurons 

in each stage may have different physical identities and thus have different sensitivities to the 

electrical stimulation. Therefore, the second important future direction is to understand whether 

the cell groups identified from activity analysis have physical basis. For example, one can 

examine whether these groups belonged to different cell types, such as interneurons or pyramidal 

neurons, or whether they are in different cortical layers. In addition to OFC, BLA seems to have 

similar functions in the economic choices (Jezzini and Padoa-Schioppa, 2020), therefore, further 

work should also focus on whether other brain areas, especially BLA, causally contribute to 

economic choices as well. Our micro-stimulation study provides the paradigm to study other 

brain areas in a similar way. Besides, it is also important to examine how the connections 

between OFC and other brain areas relate to economic choices. For example, a recent study 

showed that communication between OFC and hippocampus was crucial in the value-based 

learning (Knudsen and Wallis, 2020). Finally, current understandings about economic choices 

are largely based on simultaneous juice choice tasks. In real life, economic choices could be very 

complex. Further work should adopt more complex task designs, which will cover more 

phenomena in the real-life decisions. 
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