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ABSTRACT OF THE DISSERTATION 

Unraveling Population Heterogeneity using Single-Cell Analysis 

by 

Wenjun Kong 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2022 

Dr. Samantha A. Morris, Chair 

The human body contains approximately 100 trillion cells, encompassing distinct cell 

types that serve diverse functions. Understanding cell population heterogeneity is vital for 

uncovering different biological functions and mechanisms. In addition, cells at transition during 

continual processes, such as development, reprogramming, and disease, are essential for painting 

the entire blueprint and highlighting critical stages of the progression trajectory. For instance, 

cell fate engineering holds much promise for generating clinically valuable cell types from 

mature somatic cells. Nonetheless, current reprogramming protocols are inefficient, and charting 

the changes in cell identity during such processes can help design strategies to mitigate the off-

target and increase efficiency. RNA-sequencing allows us to study transcript abundance and 

dissect different genetic features. Prior to single-cell level sequencing, bulk-level transcriptomics 

have demonstrated power at a lower resolution to distinguish populations and identify 

differential gene markers. The advent of single-cell RNA-sequencing technologies has brought 

us a new era of exploring the small world inside individual cells via their transcriptome profiles. 

Single-cell RNA-sequencing takes a snapshot of individual cells, enabling the dissection of 

population composition and capture of cells at different states in complex biological systems. 
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Cell type annotation has been a long-standing interest in understanding cell identities from gene 

profiles. Yet, manual annotations require prior knowledge of cell-type-specific gene signatures 

and are labor-intensive and time-consuming. Automated annotation approaches are in demand 

for exponentially growing single-cell datasets. 

In response to such demand, many computational approaches have been developed. 

However, they classify cells in a discrete, categorical manner, limiting their application in 

continuous biological systems. Focusing on continual processes, we designed a computational 

tool, 'Capybara,' to measure cell identity as a continuum at a single-cell resolution. This approach 

enables the classification of discrete cell identities and recognizes cells harboring hybrid 

identities, supporting a quantitative cell-fate transition metric. After benchmarking against other 

classifiers and validation with "ground-truth" lineage data, we apply Capybara to a diverse range 

of cellular programming and reprogramming protocols: The application to direct cardiac 

reprogramming uncovers a patterning bias and a hybrid state between atrial and ventricular 

cardiomyocytes; Capybara reveals previously uncharacterized patterning deficiencies in motor 

neuron programming, instructing a new approach to alleviate the lack of proper patterning; 

Further, we apply Capybara to our in-house system, direct reprogramming of fibroblast to 

induced endoderm progenitors, and find a putative in vivo correlate for this engineered cell type 

that has, to date, remained poorly defined. These findings highlight the utility of Capybara to 

dissect cell identity and fate transitions in development, reprogramming, and disease. Finally, we 

further explore the direct cardiac reprogramming system using the comprehensive set of tools 

developed in the lab. We resolve lineage relationships in this system using CellTagging, find key 

regulatory transcription factors using CellOracle, and evaluate small molecules' effect on the 

patterning bias using Capybara.  
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In summary, I have developed a tool to highlight cell fate transitions and reveal insight 

into cellular heterogeneity in different continuous biological processes. Further investigation in 

the transition states by integration with other data modalities and experimental approaches may 

help pinpoint key checkpoints for successful reprogramming, allowing future interventions to 

improve the efficiency and fidelity of cell fate engineering.
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Chapter 1: Introduction 
1.1 Background and Motivation 

Complex biological systems are composed of many different cell types. These diverse 

cellular compositions govern specific functions and mechanisms of these biological systems 

(Altschuler and Wu, 2010, Paszek et al., 2010). Understanding such heterogeneity is key to 

uncover hidden mechanisms and allow future advancements in medicine and biology, such as 

improvement in efficiency of cell regeneration (Takahashi and Yamanaka, 2006, Guo and 

Morris, 2017), insight into cell fate decisions (Stegle et al., 2015), and target identification in 

tumors (McGranahan and Swaton, 2017). As disparate cell types transcribe unique combinations 

of genes, heterogeneity can be analyzed using transcriptome-based approaches (Wit, 2017). The 

development of transcriptome profiling technologies has enabled the capture and quantification 

of complete sets of transcripts in cells (Wang et al., 2009). 

Bulk RNA-sequencing, at the population level, has enabled insights in comparisons 

between different tissues, treatments, or cell populations. Yet, concerns, such as loss of cell-to-

cell variation and the stochastic nature of the single-cell transcriptome (Elowitz et al., 2002), 

have emerged with growing demands of decoding cellular heterogeneity at a higher resolution. In 

the past decade, single-cell RNA-sequencing (scRNA-seq) techniques have been flourishing, 

enabling the field to explore the world inside of an individual cell, increasing the resolution of 

sequencing to a new standard (Sandberg, 2014). Starting with techniques that sequence the 

transcriptome following the manual isolation of one cell (Tang et al., 2009), researchers have 

developed highly parallel scRNA-seq techniques to profile individual cells in a larger population 
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simultaneously (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017). This rapidly 

evolving technique has brought broad opportunities to assess cell composition and dynamics in 

complex systems at an individual-cell resolution. A demand that naturally arises with the broad 

adoption of these relatively nascent technologies is to catalog cell identities. Recent endeavors to 

create cell atlases across a range of organisms have brought interest in systematic cell type 

classification (Han et al., 2018, Regev et al., 2017; Tabula Muris Consortium et al., 2018). With 

these atlases primarily focused on defining discrete cell types of tissues under homeostasis, 

classifying cell identities in dynamic contexts, such as development, disease, and 

reprogramming, poses a challenge as cell types and states are in continual transition (Cahan et 

al., 2014). 

Inspired by this challenge, this dissertation will focus on dissecting cellular heterogeneity 

via application and analysis of scRNA-seq data in complex, continuous biological systems, 

particularly development and reprogramming. Specifically, we will develop computational tools 

and apply our in-house technologies to understand heterogeneity of in vitro systems, and further 

feed into potential improvements of in vitro models.  

The following subsections (1.1.1-1.1.4) will include a literature review, focusing on four 

major topics: 1) single-cell RNA-sequencing technologies, 2) cell type classification algorithms, 

3) cellular reprogramming, with a subsection focusing on direct cardiac reprogramming, and 4) 

transition cells in continuous processes. 

1.1.1 From Bulk to Single Cell, One Cell to Cell Atlases 

As the genetic material being determined in the mid-20th century, efforts have been made 

to develop technologies to decipher DNA sequences. Starting with the genome of bacteriophage 
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(Sanger et al., 1982) to the Human Genome Project (Abdellah et al., 2004; Lander et al., 2001), 

the fidelity and efficiency of DNA sequencing have been brought to the next scale level. Such 

sequencing techniques have enabled the genome assembly of multiple organisms, identification 

of genetic variations to benefit different clinical applications, and the initiation of using 

sequencers to quantify molecules (Shendure et al., 2017). At the same time as the technology 

evolves, the definition of “gene” has grown to be more complex over the years – from the unit of 

heredity to the Central Dogma. The ENCODE project, seeking to interpret the human DNA 

sequence, revealed that protein-encoding genes occupy 1% of the entire genome while over 80% 

were responsible for gene activity regulation (Birney et al., 2007). In addition, quantification of 

RNA molecules has expanded the vision of RNA beyond single protein-coding transcripts to 

include multiple isoforms from one gene and non-coding RNAs, such as miRNAs, snoRNAs, 

etc. (Gerstein et al., 2007).  

Early years of transcriptomic studies have largely relied on probe-based microarray 

approaches, where cDNA was hybridized to custom-made oligo probes and expression was 

measured via scanning of the fluorescent signal. The probes can be designed to hybrid at splicing 

junctions, allowing detailed mapping of transcript isoforms (Z. Wang et al., 2009). Yet, the 

hybridization probes rely on prior knowledge regarding the genome sequence, limiting its ability 

to capture the full range of transcripts. In addition, quantification of hybridization-based 

fluorescence can be obscured by high-background cross-hybridization (F Ozsolak, 2011; Wang 

et al., 2009). In 2008, RNA-sequencing (RNA-seq) was introduced via shortgun sequencing of 

the cDNA using next-generation DNA sequencing (NGS). The introduction of this approach 

allows massive scale-up in RNA molecules at test and detection of nascent transcripts without 
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prior knowledge to the genomic regions, offering a comprehensive view of gene expression for 

various cell types (F Ozsolak, 2011; Shendure et al., 2017; Z. Wang et al., 2009). 

The development of RNA-seq warrants new applications in understanding cellular 

functions and molecular mechanisms via the lens of gene expression, such as cell growth and 

differentiation and regulation under different stimuli. Further, it introduced potential clinical 

application, such as biomarker detection or gene fusion for disease diagnosis and treatment 

improvements (X. Li & Wang, 2021). Studies of RNA-seq at the population level provides the 

opportunity to study expression patterns across different populations or species and adds 

information in genetic modification at the transcription layer. Yet, as bulk RNA-seq takes the 

average expression across the population, cell types in heterogeneous environment can be 

challenging to distinguish and rare cell populations can be masked (Elowitz et al., 2002; X. Li & 

Wang, 2021). Such concerns sparked the initiation of the new era to profile individual cells.  

Single-cell RNA-sequencing (scRNA-seq) started with the capture of the entire 

transcriptome of a single mouse blastomere cell manually isolated from 4-cell stage. The 

transcriptome was reverse-transcribed and double-stranded cDNA was synthesized, amplified, 

sheared, and ligated with an adaptor to be sequenced on a NGS system. Using this approach, 

transcripts of more genes and nascent splicing junctions were detected compared to previous 

microarray attempts, demonstrating promising results in analyzing complex profiles of individual 

cells (Tang et al., 2009). In the last decade, highly parallel scRNA-seq techniques have been 

developed to profile individual cells in a large population simultaneously. These techniques can 

be broadly categorized based on isolation methods employed. Droplet-based microfluidic 

techniques use individual droplets as reaction chambers, where a cell is encapsulated in an oil 

droplet together with lysis buffer and a bead. The bead is primed with oligos including PCR 
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primer, cell barcode, unique molecular identifier, and poly-T capture sequence. As the individual 

cell lyse, it releases its mRNA within the droplet, hybridizing to the oligos on the bead. The 

samples are further collected, washed, and processed to produce the final libraries (X. Zhang, Li, 

et al., 2019). Three representative droplet-based systems include Drop-seq (Macosko et al., 

2015), inDrop (Klein et al., 2015), and 10X Genomics Chromium (Zheng et al., 2017). All three 

strategies share similar designs to incorporate microfluidics but differ in their design of beads 

and primed oligos leading to different experimental processing of the library. For instance, Drop-

seq uses small, inflexible beads, while inDrop and 10X use hydrogel beads, enabling higher 

pairing between the cells and the beads, allowing higher capture efficiency. With detachable 

priming oligos, 10X and inDrop enable higher capture efficiency of mRNA molecules (X. 

Zhang, Li, et al., 2019).  

Another major type of scRNA-seq technology uses wells as reaction chambers for 

individual cells, such as CytoSeq (Fan et al., 2015), Microwell (J. Yuan & Sims, 2016), and Seq-

Well (Gierahn et al., 2017). The wells are first loaded with a cell suspension, during which cells 

settle into individual wells by gravity. The barcoded and primed beads are then loaded by a 

similar mechanism. Microfluid and semi-permeable membranes have been used in combination 

with the wells to avoid cross-contamination between wells and loss of transcripts in individual 

wells (Gierahn et al., 2017). To further improve the throughput, split-pool combinatorial 

barcoding strategies have been developed, such as SPLiT-seq (Rosenberg et al., 2018) and sci-

RNA-seq (Cao et al., 2017). Using the split-pool approach, cells are not required to be 

encapsulated in their own reaction chamber, but multiple cells are allowed in each well of 96- or 

384-well plates. In brief, with each well labelled with a unique barcode, cells are fixed and first 

randomly split into wells and labelled with first set of barcoded primers. The cells are then 
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pooled and re-distributed into another well-plate to be labelled with a second set of primers. With 

repeating rounds of split-pool, cells are uniquely labelled with combinations of barcodes. In 

SPLiT-seq, four rounds of spilt and pool were performed, producing over 21 million barcode 

combinations, enabling the profiles of over 100,000 single cells to be captured (Rosenberg et al., 

2018). While in sci-RNA-seq, the re-distribution of cells is performed with fluorescence 

activated cell sorting (FACS) on DAPI, ensuring 10 to 100 cells per well, before further barcode 

indexing (Cao et al., 2017). 

Technology development and advancement lays the foundation of scientific discoveries. 

The rapidly improving scRNA-seq technologies enable researchers to further address the long-

standing interest of understanding biology from the cells. As the basic building blocks of life, 

cells of different types play unique and pivotal roles in the overall function of each organ to 

further support essential functions of life. Leveraging scRNA-seq technologies, comprehensive 

sequencing of cells from different organs at homeostatic conditions in Mus Musculus has been 

flourishing since 2018, empowering the identification of cell types and subtypes and global 

analysis of same cell types across tissues (X. Han et al., 2018; Schaum et al., 2018). In addition 

to the adult mouse map, continuous effort has been made to chart transcriptomic changes 

sampling at multiple time points during gastrulation and organogenesis, mapping out major 

developmental trajectories (Cao et al., 2019; Pijuan-Sala et al., 2019). Beyond mouse, the 

Human Cell Atlas (HCA) was first proposed in 2017 (Regev et al., 2017). Since then, 

collaborative efforts have been made to sequence different cells in various human systems, such 

as lung (Schupp et al., 2021), heart (Litviňuková et al., 2020), intestine (Elmentaite et al., 2021), 

pancreas (Tosti et al., 2021), immune system (Suo et al., 2022) etc. In light of the COVID-19 

pandemic, the meta-analysis of these single-cell data has shed light in understanding the 
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pathology, venue and target of infection, and immune responses (Loske et al., 2021; Melms et 

al., 2021; Stephenson et al., 2021). In addition to adult cells, the HCA was further expanded to 

the Human Development Cell Atlas (HDCA), empowering the molecular basis for human 

organogenesis and development (Cao et al., 2020; Haniffa et al., 2021). 

Accompanying the advancement in technologies and exploration of many systems using 

single-cell sequencing (scRNA-seq), the volume of data generated has escalated exponentially. 

Compared to gene expression profile in bulk, transcriptomes within individual cells posed new 

challenges in analysis. Due to the low number of starting transcripts, scRNA-seq data is usually 

noisy and shallow (Cao et al., 2019; X. Han et al., 2018). To allow detection of low 

transcriptome levels, the mRNA is reversed transcribed, and the cDNA is amplified for them to 

be detected, leading to potential distortions and bias (Sandberg, 2014). In addition, low-

abundance transcripts, such as those encoded by transcription factors and regulatory genes, fail 

to be detected in scRNA-seq dataset, presenting large proportion of zero values and sparse 

matrices. These unique features of single-cell data posed a demand in development of statistical 

and computational frameworks (Andrews et al., 2021). 

To tackle potential quantitative bias introduced during cDNA synthesis and 

amplification, unique molecular identifiers (UMIs) were introduced to become a direct and more 

accurate measurement of gene expression compared to RNA reads. The usage and incorporation 

of UMI barcodes in the bead-primed oligos assists the quality of downstream analysis (Andrews 

et al., 2021; Islam et al., 2014). After the libraries are sequenced, the data was processed to 

produce the cell-barcode matrices, which is analyzed to further uncover the biological relevance. 

While multiple frameworks have been developed over the years, this work mainly used the 10x 

Genomics Cell Ranger pipeline to process the raw sequencing data (Zheng et al., 2017). In 
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general, data is filtered for correct cell barcodes, aligned to transcriptome using STAR aligner, 

further filtered to include unique-hit genes and correct UMI sequences, and counted to create the 

final UMI count matrices (Zheng et al., 2017). The matrices generated are next preprocessed to 

reduce noise and support further biological interpretation of the data. 

Single-cell RNA-seq matrices are analyzed via the general five steps, including quality 

control (QC), normalization, feature selection, dimensional reduction, and clustering. Quality 

control steps involves addition selection of the genes as well as cells. Genes and cells are 

selected based on the thresholds of minimum number of cells expressing the gene and minimum 

number of genes detect per cell, respectively (Andrews et al., 2021). Further, mitochondria gene 

percentage is used to remove potential damaged or dying cells.  

A critical next step in analyzing RNA-seq data is normalization. RNA-seq data needs to 

be normalized and scaled against different factors, such as library size and depth of reads, prior 

to further analysis. As a result of the intrinsic stochasticity of single-cell gene expression 

(Elowitz et al., 2002), single-cell datasets show high cell-to-cell variability, making 

normalization a particularly important step in analysis. Bulk transcriptome data is usually 

normalized to a size factor, determined based on the sequencing depth of each sample. Though a 

similar approach may apply to single cells, single cell data is more prone to variation due to 

multiple factors, such as diverse gene expression levels in different cell types, uneven 

sequencing depths among cells, cell cycle stages, and high sparsity, etc. One approach to 

normalization is to robustly estimate the size factor by pooling across cells (Lun et al., 2016). An 

alternative involves the usage of synthetic spike-in RNAs, External RNA Control Consortium 

(ERCC) (Jiang et al., 2011), or expression of housekeeping genes (Anders & Huber, 2010; 

Robinson & Oshlack, 2010). Yet, to have known and controlled concentration, synthetic spike-in 
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RNAs are mostly amenable to well-based single-cell technologies while hard to adapt for 

droplet-based approaches. In addition to normalizing across the entire dataset, other approaches, 

such as scTransform (Hafemeister & Satija, 2019), account for the expression of each gene to 

take in the differences between highly and lowly expressed genes (Andrews et al., 2021).  

Single-cell matrices demonstrate the feature of high dimensionality, represented by the 

inclusion of ~20,000 genes. Yet, a lot of genes are not expressed or captured in an experiment 

depending on different cell types, protocols, or technologies. Such highly sparse datasets make 

downstream analysis challenging, such as inaccurate distance metrics and uncomfortable matrix 

calculations. To alleviate such challenges, feature selection is a key step to select genes of strong 

biological relevance to reduce noise and simplify further analysis (Andrews et al., 2021). The 

common approach used in the field is to choose highly variable genes based on cell-to-cell 

variations. However, focusing solely on the variance of expression profile could overlook the 

technical noise and dependence between the variance and mean of the data. Thus, methods, such 

as Seurat, fit a mean-variance relationship in the data to compute expected variances, which is 

then used as the metric for gene selection (Stuart et al., 2019). With such feature selection, the 

data is then scaled to the standard normal and processed for the proceeding dimensional 

reduction step. 

With the initial dimensional reduction using feature selection, additional dimensional 

reduction steps are performed to further remove the challenges posed by high dimensionality. 

The feature-selected dataset first undergoes principal component analysis (PCA) and components 

that explain significant fractions of variance are chosen for the next step (Peres-Neto et al., 2005; 

S. Sun et al., 2019). Further dimensional reduction approaches, such as Uniform Manifold 

Approximation and Projection (UMAP; McInnes et al., 2018) and t-distributed Stochastic 
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Neighbor Embedding (t-SNE; van der Maaten & Hinton, 2008), are applied for visualization in 

two-dimensions. UMAP first constructs a manifold, a particular weighted k-neighbor graph, 

where the data is approximately uniformly distributed. The graph is then simplified and projected 

on the lower dimensional space. As the goal of UMAP algorithm is to preserve the structure of 

the manifold, UMAP performs better at maintaining the connected global structure of the data 

compared to t-SNE (McInnes et al., 2018), whose focus is to capture the local structure and 

separate clusters in the global space (van der Maaten & Hinton, 2008). The application of either 

UMAP or t-SNE can be dependent on the emphasis of the analysis. Yet, as neither preserve the 

cell-to-cell distances, the projection results should be used with caution in downstream analysis, 

such as clustering (Andrews et al., 2021). 

Clustering is an essential step in analyzing scRNA-seq data to group and distinguish cells 

based on the similarity in expression profiles. Cells can be separated into different clusters driven 

by various reasons, such as similar cell types or cell cycle states. Starting with the k-means 

clustering algorithm (SC3; Kiselev et al., 2017), the single-cell field has moved to adopt graph-

based clustering algorithms, such as Louvain (Blondel et al., 2008) and Leiden algorithms (Traag 

et al., 2019). This category of algorithms constructs a graph network among the cells and based 

on connectivity, identify distinct cell-modules in the graph. Identified cell groups can be 

projected on the two-dimensional space for visualization and a preliminary interpretation. 

Downstream analyses post clustering includes three major categories: 1) differential gene 

expression analysis, 2) pseudotime analysis or trajectory inferences, and 3) cell type annotation. 

Differential expression (DE) analysis is an essential analysis to distinguish the genes that 

separate different cell groups. Yet, traditional methods comparing averaged populational 

expressions in bulk RNA-seq are challenging as single-cells represent gene expression across 
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cells as a distribution. From the non-parametric Wilcoxon rank sum test to scRNA-seq specific 

method (e.g., MAST; Finak et al., 2015), different statistical tests have been proposed and 

evaluated to identify significant expression differences in distributions between populations. 

Another approach is to average the gene expression across cell populations such that the 

averaged profiles can be compared, similarly to bulk RNA-seq data (Baran et al., 2019). As 

diverse methods emerge, DE analysis enables further biological interpretation of the data, such 

as identification of potential markers or perturbation targets to specific populations.  

During a continuous biological process, it is potentially inappropriate to place cells into 

distinct buckets of cell types as they follow a continual trajectory. Pseudotime analysis concerns 

cells collected from such biological processes, such as development and reprogramming. A 

common approach used in trajectory inference methods includes two steps: 1) construction of a 

manifold of the data in a lower dimensional space, and 2) identify a graph that best capture the 

topology of the manifold (Andrews et al., 2021; Saelens et al., 2019). For instance, Monocle 

reduces the data to lower dimensionality, build a minimum-spanning tree (MST), and orders the 

cells following the MST (Trapnell et al., 2014). Over the years, trajectory inference methods 

have been flourishing to produce better representations of continuous biological processes (e.g., 

PAGA, Wolf et al., 2019; Slingshot, Street et al., 2018; etc.). Evaluation of these methods has 

offered comprehensive criteria based on the data to choose the appropriate algorithm for optimal 

inference (Saelens et al., 2019). 

A natural question that follows the clustering step is to ask “What are these cells? What 

are their in vivo correlates?” Starting from manual annotation focusing on marker expression, 

many automated cell-type classification algorithms have emerged over the past years. In the next 

section, I will review the current existing algorithms and the challenges to be tackled. 
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1.1.2 Classification Algorithms 

Before annotating cell identity, a key question needs to be discussed: what is the 

definition of cell type or cell identity? It has been a long-lasting interest to break down and 

decipher the cells that constitute living organisms. Starting from histological approaches, the idea 

of cell identity has been constantly growing with the advancement of technologies to include 

multiple facets that define cell type. The identity of a cell has been expanded and proposed in 

recent years to include its phenotype and function, lineage, and present states. Phenotype and 

function widely include different aspects of a cell, such as molecular composition, morphology, 

spatial context in vivo, functionality, differentiation potential, and so on. The lineage aspect 

reveals where the cell starts, its potential destination, and its timestamp in a continuous 

biological process, such as development. The present cell state describes the response of a cell to 

its environmental stimuli, such as if it is perturbed or in homeostasis (Morris, 2019; Savulescu et 

al., 2020). With a complex definition of cell identity, it is worth noting that single-cell RNA-

sequencing enables us to decode cell identity from the molecular angle of RNA. Yet, it might not 

exactly correlate to the interpretation of cellular function (Morris, 2019; Pasquini et al., 2021; 

Savulescu et al., 2020). Future consideration to incorporate multi-omics data could lead us to a 

more comprehensive blueprint of a cell’s identity.  

The exploration of cell identity based on RNA-seq data started in bulk. A few methods, 

such as over-representation analysis (ORA) and gene set enrichment analysis (GSEA), were 

developed to look for genotype-phenotype relations (Diaz-Mejia et al., 2019; Pasquini et al., 

2021). The unique features, such as high sparsity and noise, of single-cell dataset posed new 

challenges and demand for annotation algorithms. Current methodologies can be broadly 

categorized to two types: reference-based or reference-free classification. Reference-based 
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algorithms normally relies on a reference dataset, such as cell atlas and marker databases. These 

approaches further break down to four types based on the choice of their essential building 

blocks, including marker gene, statistical test, tree-like relationship, and machine learning 

(Pasquini et al., 2021; Y. Zhang et al., 2022). Reference-free classification does not rely on a 

reference but tries to group cells sharing similar transcriptional patterns. In the following 

subsections, a selection of reference-based methods will be discussed, followed by a brief 

discussion of reference-free methods. 

1.1.2.1  Reference-Based Methods 

Inspired by bulk analysis, initial approaches to annotate single-cell datasets is based on 

gene markers. As aforementioned, general analysis of single-cell RNA-sequencing (scRNA-seq) 

data involves preprocessing, dimensional reduction, and clustering. Differentially expressed 

genes (DEGs) for each cluster can be identified. One approach to categorize cells is to compare 

the DEGs for each cluster with known cell-type specific gene set in a marker gene dataset. As 

scRNA-seq datasets grow and become publicly available, the cell type markers used in manual 

annotation in each dataset have been analyzed and deposited into available databases, such as 

CellMarker (X. Zhang, Lan, et al., 2019), PanglaoDB (Franzén et al., 2019), and CancerSEA (H. 

Yuan et al., 2019). These databases are generally constructed from extensive mining of public 

resources, such as PubMed and Gene Expression Omnibus (GEO). For instance, CellMarker is 

curated based on extensive search on PubMed, cross-confirmation across literature, and further 

unification by comparison to public resources, such as UniProt (Bateman et al., 2021), Human 

Cell Atlas (Regev et al., 2017), etc. Via exhaustive search and careful construction, CellMarker 

contains 9,148 markers for 389 cell types of 81 tissues in mouse and 13,605 markers for 467 cell 

types from 158 tissues in human (X. Zhang, Lan, et al., 2019). These databases provide valuable 
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resources for manual comparison and annotation of single-cell datasets using gene signatures and 

lay the foundation for further development of automated classification tools. Yet, manual search 

and comparison for marker genes can be labor-intensive and time consuming, with limited 

reproducibility (Diaz-Mejia et al., 2019; Pasquini et al., 2021).  

Methods, such as scCATCH (Shao et al., 2020) and SCINA (Z. Zhang et al., 2019), that 

automate the usage of marker genes have been developed to alleviate the limitations of such 

manual annotation. ScCATCH gathers markers from different databases and unifies them to 

assemble a tissue specific cell type-marker database, CellMatch. Next, it identifies cluster-

specific marker genes of the single-cell dataset and uses evidence-based scoring with CellMatch 

to score each cluster for each cell type. The clusters are then annotated based on the scores (Shao 

et al., 2020). SCINA employs a probabilistic framework based on expectation-maximization 

algorithm. This approach performs clustering on the sample data and assign known cell types to 

clusters by fitting a bimodal distribution to the expression of known gene signatures in public 

marker databases. In addition to known cell types, SCINA defines and captures novel cell types 

for clusters without high expression of any known signatures (Z. Zhang et al., 2019).  

Moving away from prior knowledge of marker genes, other approaches have been 

developed to annotate clusters based on statistical metrics. The intuitive metric at choice is 

correlation assuming profile similarity between single-cell clusters and the reference. CIPR (Ekiz 

et al., 2020) and ClustifyR (R. Fu et al., 2020) calculate the centroids of the clusters and the 

average expression of each cluster as its pseudo-bulk expression. Clusters are then annotated 

based on correlation between the pseudo-bulk expression and the reference datasets (Ekiz et al., 

2020; R. Fu et al., 2020). These approaches improve the automation and enable more accurate 

classification. Nonetheless, they are bounded by the definition of the clusters, which can be 
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affected by user-defined resolutions that potentially create within cluster heterogeneity (Pasquini 

et al., 2021). 

Independent of clustering, methods are developed to evaluate cell identity using the 

transcriptome on a cell-by-cell basis. SingleR performs differential expression analysis in the 

bulk reference set and identifies the top variable genes. Correlation is then computed between 

each single-cell profile and each cell type in the bulk reference. Top correlated cell types are 

selected to iterate through the steps until only one top cell type remains to be the cell type of the 

cell (Aran et al., 2019). With cell atlases becoming publicly available, scmap leverages the high 

resolution of single-cell atlases, aiming to map individual cells to cells or clusters in the 

reference. Scmap first identifies biologically relevant features and using those features, computes 

similarity metrics, including cosine similarity, Pearson, and Spearman correlation. Scmap-cluster 

maps individual cells in the sample to centroids of clusters in the reference, while scmap-cell 

maps sample cells to cells in the reference. For a cell to be assigned a cell type, scmap-cell 

requires agreement in at least two of the similarity metrics, and such similarities hold for at least 

three nearest neighbors around the reference cell (Kiselev et al., 2018). Considering the 

correlation can be unreliable under the circumstance of high sparsity, more complex statistical 

metrics have been employed. For instance, SciBet selects features based on statistical entropy, 

where features are more cell-type specific with larger entropy. It then models the expression of 

each selected feature as well as expression across genes. Each sample cell profile is evaluated 

based on the likelihood over all models and cell type with maximum likelihood estimation is 

assigned to the test cell (C. Li et al., 2020). 

Tree-based approaches concern the hierarchical relationships within the reference and 

cell types are assigned via searches traversing through the tree. These approaches share a similar 
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initial step to construct a hierarchical tree of the reference based on distance metrics, such as 

correlation or average linkage, across reference cell-type profiles (de Kanter et al., 2019; Lin et 

al., 2020; Pliner et al., 2019). Post tree construction, sample cells will travel from top to bottom 

through the tree and receive classifications. CHETAH finds the gene signatures for each cell type 

at evaluation in the tree, scores the input cell for each cell type, measures the confidence of the 

scores, and assigns a cell type (de Kanter et al., 2019). ScClassify takes a different approach of 

ensemble learning, taking advantages from different methods for each step. It takes an ensemble 

of gene selection approaches and similarity methods to establish a collection of classifiers, 

capturing different characteristics for a cell type. Using the bundle of classifiers collectively 

allows the algorithm to give accurate assignments to cells (Lin et al., 2020). Garnett requires user 

input that contains gene marker information. With the tree built, it employs an elastic net 

classifier to classify cells into different cell types. In addition to scRNA-seq data, Garnett can 

also classify single-cell ATAC dataset based on gene activity scores (Pliner et al., 2019). 

As machine learning methodologies prosper, it has been adapted and applied in analysis 

of single-cell datasets with their increasing dimensionality and complexity. Machine learning-

based classification tools are developed on a different basis, such as support vector machine 

(SVM), random forest, transfer learning, and so on (Pasquini et al., 2021). To avoid significant 

individual gene effect, 16cPred uses PCA-transformed gene expression matrices. It builds a 

SVM model on the training data and applies the model to the testing data, computing a 

conditional probability. Benchmarked by a threshold, the probabilities calculated allows the 

assignment of cell types or unknowns. The incorporation of SVM with radial kernels allows the 

capture of multi-collinearity and non-linear relationships in high-dimensional data (Alquicira-

Hernandez et al., 2019). SingleCellNet, like CellNet (Cahan et al., 2014; Morris, Cahan, Li, 
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Zhao, San Roman, et al., 2014), applies a random forest algorithm. It identifies features unique to 

each cell type and finds the most discriminating sets of gene pairs to binarize the data. A multi-

class random forest model is further trained on the binarized data for final classification. 

Uniquely, singleCellNet creates a randomly transformed single-cell profile that differs from any 

cell types in the reference, enabling the mapping of unknown cell types (Tan & Cahan, 2019). 

ScID utilizes Fisher’s linear discriminant analysis to compute discriminative weights in each cell 

for each cell-type specific genes identified from the reference.  The scores for gene markers are 

collectively evaluated to assign cells to reference clusters (Boufea et al., 2020). With the goal to 

achieve accuracy, efficiency, and consistency, CaSTLe implements transfer learning. It performs 

feature selection based on multiple filtering criteria internal to the tool and trains a XGBoost 

classification model on the selected features. The trained model is applied to sample scRNA-seq 

data for cell identity categorization (Lieberman et al., 2018). Finally, ACTINN is established on 

a three hidden-layer neural network, trained, and tested using Tabula Muris (Schaum et al., 

2018). It has been demonstrated to have high accuracy in cell subtypes and is robust against 

different single-cell profiling techniques (Ma & Pellegrini, 2020). 

1.1.2.2 Reference-Free Methods 

Compared to reference-based methods, reference-free approaches remove the 

dependencies on the previously established data and build solely on the test dataset to identify 

patterns of cells or features that separate different groups.  

Concerning the limited sequencing depth per cell in scRNA-seq and large proportion of 

unmapped reads, scSimClassify is a reference-free and alignment-free annotation tool. Instead of 

genes, features are defined as k-mers in the reads, which are further preprocessed and filtered to 

include only informative k-mers. The selected k-mers are then used to generate a n-bit fingerprint 
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and grouped into compressed k-mer groups (CKGs) based on similar abundances. Rather than 

cell-by-gene matrices, scSimClassify creates cell-by-CKG matrices that are further used to 

identify cell patterns and correlates to gene features (Q. Sun et al., 2021).  

ScCoGAPS considers cell identity as the result from collective effects of diverse 

processes, leading to various cell states that may not be found in publicly available references. 

Focusing on the decomposition of latent spaces and comparison across multiple datasets, 

scCoGAPS employs non-negative matrix factorization (NMF) algorithms and transfer learning to 

allow target cells to align with the same latent space learned in the source and learn differential 

features represented in identified patterns. Applications to developing retina dataset demonstrates 

its ability to capture cell patterns during continual process, aligning with temporal progress 

during development (Stein-O’Brien et al., 2019).  

Though not an exhaustive demonstration of all current available classifiers, the above 

discussion represents the major categories of classification algorithms. The rapid development of 

tools to annotate cells opens exciting opportunities for downstream analyses and generates 

hypotheses for experimental validations and discoveries.  

As most of the classifiers attempt to categorize cells in a discrete manner, limiting their 

application in continuous biological processes, such as development, reprogramming, and 

disease. In the next subsection, we will focus on the review of cellular reprogramming and lay 

the foundation for understanding heterogeneity in these processes. 

1.1.3 Cellular Reprogramming  
In 1957, Waddington proposed a landscape model to depict development from stem cells 

to defined terminal fates. In this landscape, differentiation from stem cells is portrayed as a ball 

rolling down from the top of a mountain toward different valleys, where the top defines the 
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pluripotent state, and the valleys describes diverse differentiated cell identities. This model 

explains embryonic development to be a unidirectional, progressive, and irreversible restriction 

of cell fate determination (Waddington, 1957). Yet, the breakthrough in pushing cells “back up 

the hill” to a more potent state or “crossing the valleys” to a different fate has expanded the 

landscape to be more flexible in directionality and reversibility (Ladewig et al., 2013; Morris, 

2019). 

The spark of rewiring the cell from a differentiated to a totipotent state was initiated in 

1958 by John Gurdon. Prior to this discovery, Robert Briggs and Thomas King have attempted 

and succeed in nuclear transfer experiments in single-celled organisms (R. Briggs & King, 

1952). Following such endeavor, via somatic cell nuclear transfer (SCNT) – transferring the 

nucleus of one cell into an enucleated oocyte, Gurdon and his colleague demonstrated that the 

recombinant egg was able to successfully develop into a viable animal. These experiments 

demonstrated the possibility of reprogramming the somatic epigenome to pluripotency under 

internal cues, challenging the unidirectional Waddington landscape, laying the foundation for 

cellular reprogramming (Gurdon et al., 1958; Morris, 2019). In addition to efforts to push 

differentiated cells toward to pluripotency, it was found that a differentiated cell can be 

reprogrammed to another differentiated fate with the guidance of ectopic expression of 

transcription factors. Pioneering the field of cell fate engineering between somatic cell types was 

the identification of a transcription factor, Myod1, in 1987. The gene was identified via a 

screening of a pool of cDNA probes and overexpression of the transcription factor was shown to 

fibroblasts to myoblasts (Davis et al., 1987). Since then, large efforts have been made to identify 

sets of factors that can induce pluripotency and conversion across somatic cell types (H. Wang et 

al., 2021). 
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In 2006, Kazutoshi Takahashi and Shinya Yamanaka identified that overexpression of 

four transcription factors, including Oct3/4, Sox2, c-Myc, and Klf4, can reprogram differentiated 

cells to an induced pluripotent state, where cells have the potential to differentiate to multiple 

cell types. Considering the potential of embryonic stem cells (ESC) in the treatment of diseases, 

this Nobel-prize winning discovery of induced pluripotent stem cells (iPSCs) shed light in 

regenerative medicine to circumvent the challenges of ESC isolations (Takahashi & Yamanaka, 

2006). Under proper exogenous cues with small molecules and growth factors, somatic cell-

derived iPSCs can be guided to desired cell types, such as spinal motor neurons (Dimos et al., 

2008) and cardiomyocytes (Lian et al., 2012). Yet, this approach is lengthy with potential 

tumorigenic risk with intermediate induced pluripotency. In addition, the engineered cells do not 

faithfully recapitulate the target cell identities (H. Wang et al., 2021).  

As the intermediate pluripotent state introduces uncertainty, the previous identification of 

MyoD inspired a series of discoveries to bypass intermediate states and induce direct conversion 

between somatic cell types. Compared to going through iPSCs, direct cell fate conversions are 

faster with higher fidelity and have unique niche of in vivo tissue repair (ref). Broadly, these 

reprogramming protocols can be divided into two categories, including conversions between cell 

types originated from different germ layers or from the same germ layers (Ladewig et al., 2013).  

In the Morris lab, a relevant process to cell fate reprogramming across germ layers 

involves the conversion form fibroblasts to the endoderm lineage, such as hepatocytes (Sekiya & 

Suzuki, 2011). Starting from mouse embryonic fibroblasts (MEFs), this protocol overexpresses 

two transcription factors, Hnf4 and Foxa1/2/3. The resulting cell type was first reported as an 

‘induced hepatocyte’ with the capacity to engraft damaged liver (Sekiya & Suzuki, 2011). 

Nonetheless, it was later found that these cells have broader potential to engraft damaged 
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intestine, leading to their new name, ‘induced endoderm progenitors’ (Guo et al., 2019; Morris, 

Cahan, Li, Zhao, San Roman, et al., 2014). Using lineage tracing and single-cell sequencing, 

recent work from the Morris lab has illuminated the bifurcation of the resulting population into 

successfully reprogrammed cells and cells that fail to achieve the target identity (Biddy et al., 

2018). 

Another illustrative procedure demonstrates the engineering of fibroblasts to the 

ectoderm lineage, such as neurons (Ladewig et al., 2013). With screening of transcription factors 

(TFs) in the neuronal lineage, a combination of three factors, including Ascl1, Brn2, and Myt1l, 

was identified to reprogram MEFs to induced neurons (Pang et al., 2011; Vierbuchen et al., 

2010), The induced neurons adopt neuronal morphology with expression of neural markers and 

firing of action potential. Further, modulation with additional neural subtype-specific factors can 

further specify different subtypes of neurons, such as motor neurons (Aydin & Mazzoni, 2019; 

Son et al., 2011). In addition to TF-mediated reprogramming, other regulatory factors, such as 

micro-RNAs, have been demonstrated to induce reprogramming. For instance, the combination 

of miR-9/9* and miR-124 can introduce the switch from fibroblast to neuron identity (Yoo et al., 

2011). Though mechanistically distinct between different regulatory factors, the diverse 

approaches further support the plasticity of cells and the ability to cross the “long-distance” 

barrier created by different developmental history (H. Wang et al., 2021). 

Compared to cross germ layer-reprogramming, within germ layer-reprogramming 

concerns the trans-differentiation between cell types that are developmentally related (Ladewig 

et al., 2013). A relevant example involves such lineage switching is within the hematopoiesis 

lineage, from B cells to macrophages. Starting from committed B-cells in the lymphoid lineage, 

overexpression of transcription factor, Cebp, can induce macrophage phenotypes within 72 hours 
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of induction (H. Xie et al., 2004). Like neural reprogramming, addition of other factors, such as 

Gata2, can redirect lymphoid cells to other hematopoietic lineages (Iwasaki et al., 2006). 

However, it was found that the converted cell identity was not sustained, with marker expression 

of the starting cell type regained over time (Morris, Cahan, Li, Zhao, San Roman, et al., 2014).  

Direct cardiac reprogramming exemplifies another protocol that engineers within the 

same germ layer. As it serves a major system in the second half of this thesis, I will discuss this 

cell fate conversion process in detail in the next subsection.   

1.1.3.1 Direct Cardiac Reprogramming 

Heart disease is a leading cause of death worldwide. One of the key pathologies 

contributing to cardiovascular disease is the loss of functional cardiomyocytes, whose post-

mitotic nature limits regenerative potential (Ieda et al., 2010; Qian et al., 2012; Song et al., 

2012). Induced pluripotent stem cell (iPSC) reprogramming from somatic cells opened broad 

opportunities in direct differentiation of mature cardiomyocytes from a stem-cell like state (Lian 

et al., 2012; Takahashi & Yamanaka, 2006). Yet, the inefficient conversion to iPSCs along with 

limited differentiation to cardiomyocytes produces a heterogeneous population, hindering the 

clinical utility of these cells (Ieda et al., 2010). Direct reprogramming between somatic cell types 

is a promising alternative for faster and more efficient production of the target cell types (H. 

Wang et al., 2021). Composing 50% of the heart, cardiac fibroblasts serve important structural 

and signaling functions in normal heart.  Upon injury, cardiac fibroblasts are activated to 

proliferate and respond to form the scar tissue. This endogenous source of cells holds much 

promise for reprogramming and repair to generate functional cardiomyocytes in vivo (Ieda et al., 

2010; Qian et al., 2013; Song et al., 2012; H. Wang et al., 2021). 
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In 2010, without known master regulators, a similar screening approach was employed to 

find appropriate transcription factors (TFs) for cardiac conversion. In brief, cardiac fibroblasts 

and cardiomyocytes were subject to the microarray assay, and 14 higher expressing factors in 

cardiomyocytes were identified as potential factors. Via iterative removal of one factor from the 

combination, the combination of three key transcription factors, Gata4, Mef2c, and Tbx5 (GMT), 

was found to be sufficient to generate cardiomyocytes with cardiac-specific expression, 

sarcomere structure, and electrophysiology. Transplantation of TF-transfected fibroblasts 

demonstrates conversion and functional engraftment in vivo (Ieda et al., 2010). Nonetheless, the 

overall conversion efficiency remains low, ranging from 1.5% to 3% (Qian et al., 2013; Song et 

al., 2012). An optimal set of TFs, including GMT and Hand2 (GHMT), was thus explored and 

established to reprogram with an increased efficiency between 7% and 9% (Song et al., 2012).  

Taking this protocol beyond in vitro, in vivo reprogramming induced by direct delivery of 

TFs into diseased heart is shown to be effective to improve cardiac function in the damaged 

myocardium post myocardial infarction (MI). In brief, the TFs are locally delivered to the 

infarcted region via retrovirus, and the region is allowed to reprogram and recover. Evaluations 

at 12 weeks post MI show significant improvement in cardiac functionality and decrease in scar 

size with the TF-delivery compared to control dsRed-delivery. Notably, in contrast to in vitro 

induced cardiomyocytes, in vivo reprogrammed cells are reported to achieve more mature 

phenotypes, such as contractility, and more closely mimic resident cardiomyocytes in the heart. 

It is suggested that cues from the microenvironment in vivo could have facilitate the process to 

maturity, inspiring additional approaches to improve the protocol (Qian et al., 2012). 

To further enhance reprogramming outcomes, chemical enhancement and additional 

factors have been tested to facilitate the reprogramming process. For instance, in GHMT-guided 
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reprogramming, addition of Akt1, protein kinase B, enhances cardiomyocyte reprogramming by 

2-fold increase in efficiency and enhanced cardiac-specific transcription, structural protein, and 

morphology (H. Zhou et al., 2015). Additionally, alternative modulations with GMT, such as a 

set of two small molecules that inhibit Wnt and TGF pathways, are found to improve the 

efficiency by over three-fold compared to GMT only (Mohamed et al., 2017). Beyond mice, 

direct cardiac reprogramming from human skin fibroblast has been explored considering its 

potential to improve heart diseases. With further optimization, miR-133 is identified as a key 

regulator with MGT to induce efficient conversion in human cells (Y. Zhou et al., 2019). 

Though we have seen continuous advancement in reprogramming protocols the 

underlying molecular mechanisms driving this process remain unclear. Recent studies have 

elucidated important features of this cell fate conversion (de Soysa et al., 2019; Stone et al., 

2019; Y. Zhou et al., 2019). Single-cell transcriptomics has revealed that cells during early 

conversion transit through a bifurcation, with one route leading to reprogramming while the 

other becomes refractory to cardiac conversion (Y. Zhou et al., 2019). In support of this, in joint 

epigenetic and single-cell analysis, transition cells are found to determine their terminal fate in 

the first 24-48 hours and take one of the two paths, either to cardiac fate or to non-cardiac 

identity resembling fibroblast or vascular developmental cell states (Stone et al., 2019). Analysis 

of chromatin landscape changes illustrates enhancers activated at early transition resemble 

mostly neonatal cardiac development, gradually moving toward postnatal and adult stages. This 

demonstrates that early reprogrammed cells adopt an immature identity, mimicking embryonic 

development, before specification and activation of mature cardiac enhancers toward an adult 

fate (Hashimoto et al., 2019). 
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The development of technologies has expedited the discoveries to understand the 

underlying mechanism of cardiac reprogramming, bringing us closer to future clinical 

applications. Current studies rely on clustering to identify cellular subpopulations before, during, 

and after reprogramming (Y. Xie et al., 2022). As aforementioned, the limitations of clustering-

based approach could miss the identification of rare cells or cells in progress of changing. In 

addition, present trajectories established are inferred from gene expression. Based on current 

studies, we ask the following questions. Could we systematically identify and annotate these 

cells, including cells in transition? Using lineage tracing technologies, could we build a “ground 

truth” map of lineage, connecting cell ancestry via heritable cell labeling? In addition, could we 

identify putative TFs that assist reprogramming via gene regulatory network construction? 

In a nutshell, reprogramming strategies have grown exponentially during the past two 

decades, laying the foundation for future regenerative medicine. Yet, the low efficiency and 

fidelity of the resulting cell types hinders the application in clinical settings. Understanding such 

heterogeneity and dissection of cell identity and state at different stages can facilitate potential 

methods for improvement. Laying on a continuum, cells in transition could offer invaluable 

insights into key stages along the processes. In the next section, we will briefly focus on 

transition cells during continuous biological processes and further develop the questions of 

interest in this thesis. 

1.1.4  Cells in Transition 
The Waddington epigenetic landscape established the idea of continuous development as 

well as offering a conceptual framework for mathematical modeling. Flourishing single-cell 

sequencing technologies have brought the resolution to the next level and enabled closer 

exploration of cells during fate decision-making processes, such as differentiation, 
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reprogramming, and disease. Due to the asynchronous nature of captured cells, the data contains 

cells in different states, including differentiated fates, primed progenitor or stem states, and 

transitions (Brackston et al., 2018; MacLean et al., 2018; Moris et al., 2016). Known fates and 

states have been defined based on diverse phenotypes, such as marker expression, morphology, 

and protein level, while transition states take a broader definition as any potential intermediates 

between different defined states (MacLean et al., 2018). For instance, using hematopoiesis 

hierarchical lineage as a model, these transition cells could be bipotent progenitors (e.g., 

granulocyte-monocyte progenitors), states from monocytes to macrophages, or cross-lineage 

stages between monocytes and neutrophils (Olsson et al., 2016). This broad concept paints 

transition states as a continuous blueprint with less stability but more fluidity, posing new 

challenges on inference and modeling (S. Jin et al., 2018). 

One approach of addressing such states in continuous processes from single-cell datasets 

is based on pseudotemporal ordering algorithms, as previously discussed in section 1.1.1. These 

algorithms align the asynchronous cells based on gradual transcriptional changes (Kester & van 

Oudenaarden, 2018). Identification of terminal identities on the trajectories connects the cells in 

between terminals as transition cells. The other category of approaches is established based on 

the concept of the Waddington hierarchical structures (S. Jin et al., 2018). For instance, entropy 

is adopted to measure stemness and potency of the current cell state. StemID is a method 

developed to identify stem cell state based on an entropy metric. RaceID2 is first applied to 

annotate cell types on the single-cell clusters. Lineage tree is then inferred with prior knowledge 

regarding topology of the system of interest, where cells are further positioned on the links 

between pairs of clusters. Cell states with high connectivity and transcriptome entropy are 

predicted to have a stem cell identity. Whereas low entropy states mark the putative 
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differentiated states of the system (Grün et al., 2016). Nevertheless, clustering-based methods 

tend to separate cells into distinct clusters, overlooking potentially rare transiting cell populations 

(P. Zhou et al., 2021). 

To directly dissect transition dynamics, other approaches, incorporating interdisciplinary 

models from physics, have been proposed to model transition probabilities and infer lineage 

trees. ScEpath is an approached based on an energy landscape of single-cell processes. Instead of 

an emphasis on variations between different genes, this approach computes the energy estimation 

based on the connectivity and interdependence among genes within the gene regulatory network. 

Principle component analysis and clustering are further performed on the estimated energy to 

place the cells on a landscape. Transition probabilities for each state are computed based on the 

energy within each state and the distances in the reduced dimensional space between pairs of 

clusters. With the inferred probabilities, lineages are constructed following a probability-directed 

graph, further enabling downstream analysis, such as pseudotime calculation and identification 

of driver genes in cell fate-decision making (MacLean et al., 2018).  

Recently, considering the dynamics within the transition cells, MuTrans took on the idea 

dynamic modeling to characterize transition cells. Taking the metaphor of Waddington landscape 

on development, MuTrans considers that, in the hilly landscape, valleys are differentiated fates 

while peaks are bipotent or multi-potent states. Cells at the peak could have bi-stability or multi-

stability, yet those at the valleys have most stability. Any position in between the peak and valley 

is considered as transitions. To identify a path of movement, MuTrans implements random walks 

in three scales: 1) to compare cell to cell, 2) to compare cluster to cluster, and 3) to compare cell 

to cluster. Iterative modeling in the three scales leads to ultimate identification of a potential path 

of the cell from one fate to the other. Application of MuTrans to dynamic systems, such as iPSC 
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differentiation, has revealed key cell fate-decision dynamics with their key related driver genes 

(P. Zhou et al., 2021).  

At the same time as development of inference of transitional cell states, another important 

question posed is “what are the roles of these intermediate cell states?” Five putative roles of 

these cell states have been proposed. First, these cell states serve as a controlled switch in a 

bidirectional relationship between two fates. For instance, in the condition of epithelial-to-

mesenchymal transition (EMT), the intermediate state is a key transition to push the cells from E 

to M (MacLean et al., 2018). Second, cells at this cell state harbors multiple characteristics from 

distinct cell types, namely a hybrid phenotype. This hybrid phenomena have been previously 

identified in different systems (Farrell et al., 2018; Hong et al., 2012, 2015; Olsson et al., 2016). 

Hematopoiesis is one of the examples where bistable cells are found to express both monocytic 

and neutrophilic lineage-specific markers (Olsson et al., 2016). The third role proposed is to 

maintain the balance of cell populations. Responding environmental cues or changes, cells at 

intermediate states can fluctuate to attenuate the fluctuations within the different cell 

populations, such as E and M cells during EMT. The next function in consideration is that these 

transition states maintain a higher potential to readily expand to their differentiated cell types. An 

example demonstrating this is EMT in cancer, where the identified bipotent intermediates are 

considered to have higher stemness and ability to generate both E and M cells. Last proposed 

function is to serve as a checkpoint during the continual processes, such as checkpoint before full 

differentiation to terminal fates (MacLean et al., 2018; Sha et al., 2019). These proposed 

functions highlight the potential pivotal roles of transition states and postulate interesting 

hypothesis in modulating the dynamics in continuous biological systems. 
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Investigation in transition cells during differentiation and disease progression have 

unraveled genes that guide the decision-making process. Similarly, we would like to consider 

these cell states during transcription factor (TF) -mediated reprogramming. As the current 

reprogramming protocols are inefficient with low fidelity, we can ask key questions from the 

scope of transition cells. What are the key transition states between the starting population and 

target cell types? How can we introduce additional modulation to the core TFs to push the cells 

toward the proper transitions toward the target? 
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1.2  Key Questions in the Field and Goals 

This dissertation will focus on the following challenges in the field: 1) classification in a 

continuous biological process, 2) identification of intermediate cells during programming and 

reprogramming, and 3) systematic characterization of cellular heterogeneity. With these 

challenges in mind, I formulate two specific project goals: 

1. I will develop computational tools to better understand heterogeneity in complex, 

continuous biological systems. 

2. I will apply our in-house technologies and tools in another reprogramming system, direct 

reprogramming of cardiomyocytes, to study the heterogeneity, lineage, and underline 

mechanism. 

To approach these goals, statistical methods, technologies, and biological systems will be 

utilized. Major technologies, methods, and systems will include single-cell RNA-sequencing of 

various systems as discussed in Subsection 1.1.1, classification algorithms as reviewed in 

Subsection 1.1.2, and direct cardiac reprogramming system as discussed in Subsection 1.1.3. 
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Chapter 2: Dissecting Heterogeneity via 
Continuous Measurement of Cell Identity 
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2.1 Abstract 

Transitions in cell identity are fundamental to development, reprogramming, and disease. Single-

cell technologies empower the dissection of tissue composition on a cell-by-cell basis in complex 

biological systems. Yet highly sparse single-cell RNA-seq data poses challenges for cell-type 

annotation algorithms based on bulk RNA-seq data. Furthermore, current methods mostly 

require prior biological knowledge regarding gene signatures and classify cells in a discrete, 

categorical manner. Here, we present a bioinformatic tool, Capybara, to measure cell identity on 

a continuum, at a single-cell resolution. This approach enables the mapping of gradual changes 

in cell identity throughout development and reprogramming. Furthermore, Capybara not only 

supports the classification of discrete cell entities but also identifies cells in transition, a ‘hybrid’ 

cell state, representing critical connections during cell identity acquisition. We benchmark the 

performance of Capybara against other existing classifiers and demonstrate its efficacy to 

accurately annotate cells. Further, we validate Capybara-predicted cell-fate transitions using 

“ground-truth” lineage information within a well-characterized differentiation hierarchy, 

hematopoiesis. Our application of Capybara to in vitro programming strategies reveals 

previously uncharacterized patterning deficiencies, instructing a new approach to alleviate the 

lack of appropriate patterning in motor neuron programming. Further, application to the direct 

reprogramming of fibroblast to induced endoderm progenitors identifies a putative in vivo 

correlate for this engineered cell type that has, to date, remained poorly defined. These findings 

prioritize interventions to increase the efficiency and fidelity of these cell engineering strategies, 

showcasing the utility of Capybara to dissect cell identity and fate transitions in development, 

reprogramming, and disease. 
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2.2 Introduction 

Cells are the fundamental building blocks of complex biological systems, with each 

defined cell type governing specific functions and mechanisms (Altschuler & Wu, 2010; Paszek 

et al., 2010). Uncovering cell identities is essential to establish a comprehensive atlas, 

standardize cell biology, and allow future advancements in medicine and biology. As genes 

encode distinct transcripts in disparate cell types, whole-cell transcriptome profiles serve as a 

characterization metric for cell identities (de Wit, 2017). While population RNA-sequencing was 

applied to classify a bulk group of cells into categories, concerns, such as loss of cell-to-cell 

variation and lack of resolution, have emerged with growing demands of decoding cellular 

heterogeneity at a higher resolution (Alquicira-Hernandez et al., 2019; Elowitz et al., 2002). 

High-throughput single-cell RNA-sequencing (scRNA-seq) technologies have revolutionized the 

cellular resolution of sequencing to a new standard (Klein et al., 2015; Macosko et al., 2015; 

Zheng et al., 2017). This rapidly evolving technique opened broad opportunities to portray cell 

dynamics in complex processes and decode cellular composition on a cell-by-cell basis. 

Nevertheless, scRNA-seq is susceptible to noise and dropout, especially for low-abundance 

transcripts, such as cell-type-specific and regulatory genes, resulting in highly sparse data. This 

poses challenges for cell-type classification algorithms previously developed for bulk 

transcriptome profiles. In recently established atlases (X. Han et al., 2018; Schaum et al., 2018), 

cell identities are manually annotated via unsupervised clustering and known cell-type-specific 

marker analysis within each cluster. Manual annotation of scRNA-seq data is time-consuming 

and labor-intensive as the cell number, especially if prior knowledge of cell type-specific 

markers is limited.  
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In addition, compared to the homeostatic systems characterized in these atlases, accurate 

classification in dynamic systems represents additional challenges as cell states are in a 

continuum. For instance, previous approaches built based on bulk transcriptome revealed 

incomplete conversion of cell identity during reprogramming, where the resulting cell population 

retains the features of the starting cell type, demonstrating continual transition during the process 

(Cahan et al., 2014; Morris et al., 2014).  

To tackle these challenges, various computational and analytical algorithms have 

emerged to support automated annotation of cell identity from single-cell datasets (Abdelaal et 

al., 2019). For example, Garnett utilizes both scRNA-seq and scATAC-seq data to classify 

single-cell data in three steps: input of gene markers, identification of representative cells, and 

classification of other cells (Pliner et al., 2019). In contrast, ScPred builds a prediction model 

based on a training scRNA-seq dataset and estimates the probability of each cell belonging to a 

cell type, based on which a binary classification is provided (Alquicira-Hernandez et al., 2019). 

However, as Garnett is presented as a supervised method, it is limited by the availability of prior 

biological knowledge. In addition, discrete and categorical identification of cell type is beneficial 

in describing cells with deterministic or defined fates. Yet, it can be challenged upon evaluation 

of cells in continuous biological processes, such as early development and reprogramming, 

where quantitative and continuous measures of cell identities would be valuable (Tan & Cahan, 

2019). SingleCellNet (SCN) is an approach that quantitatively assesses identity via comparison to 

reference single-cell datasets using random forests and top-pair transformation. In this approach, 

gene selection was first performed to select genes that are preferentially and specifically 

expressed in each cell type in the training set. Using the selected genes, the training set is 

binarized to train the random forest classifier, which is further used for unknown single-cell cell-
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type classification (Tan & Cahan, 2019). While a thorough selection of gene sets that distinguish 

cell types, it could be challenging to identify a training set that properly contains all cell types to 

map the testing single-cell data without prior information. Moreover, as these approaches 

emphasize discrete and categorical cell types, leading to a potential omission of cells at transition 

or with mixed identities (Tan & Cahan, 2019). 

While cataloging discrete cell types is beneficial in describing cells with deterministic or 

defined fates, it is limited for the evaluation of cells in continuous biological processes, such as 

early development and reprogramming. Here, we present Capybara, an unsupervised method to 

quantitatively assess cell identity as a continuous property against publicly available single-cell 

datasets. Considering cell identities as snapshots of the continuum of biological processes, we 

compute quantitative scores to measure the likelihood of each cell belonging to a defined cell 

class via quadratic programming, a method previously used to evaluate cell identity in 

reprogramming processes (Biddy et al., 2018; Cates et al., 2021; Treutlein et al., 2016). Based on 

these continuous identities, we further establish a comprehensive classifier that determines the 

discrete cell class of each cell. Unlike existing methods, Capybara uses continuous identity 

scores to allow multiple identities to be assigned to an individual cell, enabling identification of 

hybrid cell types. Building on this unique feature, we develop a ‘transition metric’ to quantify 

cell fate transition dynamics.  

The efficacy and robustness of Capybara are evaluated against a range of existing cell 

type classifiers, demonstrating its accuracy to annotate discrete cell identities (Abdelaal et al., 

2019). We validate hybrid cells via experimental lineage tracing data of hematopoiesis, in 

addition to RNA FISH and immunostaining of one of the hybrids during cardiac reprogramming. 

We also showcase distinct applications in differentiation, programming, and reprogramming 



36 
 

processes to diagnose and instruct shortcomings. In direct programming of spinal motor neurons 

from embryonic stem cells (ESCs) and reprogramming of cardiomyocytes, Capybara reveals off-

target cell types arising from potential deficiency in patterning. Addition of signaling factors 

enhances the generation of motor neurons by over four-fold. Finally, beyond relatively well-

characterized cell types, analysis of direct reprogramming from fibroblast to induced endoderm 

progenitors (iEPs) identifies a potential in vivo correlate to this relatively mysterious 

reprogrammed cell type. We further validate this cell type experimentally. Take it together, we 

highlight the utility of Capybara to interrogate cell fate transitions in dynamic biological systems, 

emphasizing strategies to enhance efficiency and fidelity of cell fate engineering. Capybara code 

and documentation are available via https://github.com/morris-lab/Capybara. 

2.3 Results 

2.3.1  Application of quadratic programming 

Quadratic Programming (QP) is a method that has been used to classify single cells into 

cell types during various processes, such as reprogramming. It models the transcriptome of a 

single cell as a linear combination of bulk gene expression signatures of possible cell types. 

Under this model, each single cell receives a set of continuous scores for defined cell classes, 

enabling quantitative measurements of cell identity (Methods) (Treutlein et al., 2016).  

Previously, we have applied this approach to chart cell identity changes over the time 

course of reprogramming from mouse embryonic fibroblasts (MEFs) to induced endoderm 

progenitors (iEPs). This reprogramming protocol was first reported to generate induced 

hepatocytes, where the cells were evaluated transcriptionally using microarray and functionally 

with engraftment in damaged liver (Sekiya & Suzuki, 2011). Leveraging the microarray that 
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measures the start and terminal cells, we performed a time course experiment to dissect the 

lineage and gradual shift of cell identity during this process. With identified differentially 

Figure Error! No text of specified style in document..1: 
Previous Applications of Quadratic Programming (QP) 
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expressed genes, QP assigns an identity score between 0 and 1 to each cell. Comparing this 

quantitative measure of different time points side-by side, we break the data into fibroblast, early 

transition, transition, and reprogrammed populations (Figure 2.1 A, B; (Biddy et al., 2018)).  

Although this approach with bulk data grants us a general idea of the cell identities in a 

single-cell dataset, its resolution is limited by the gene signature selection and low cellular 

resolution of the bulk dataset with masked sub-populations. Therefore, we have adopted this 

approach to incorporate single-cell RNA-seq datasets with the whole gene set as a reference to 

measure cell identity dynamics in the epithelium of small intestine upon small bowel resection 

(SBR). The small intestine is a powerhouse, where different types of nutrients are absorbed from 

different regions of the bowel. Upon diseases or injury, such as necrotizing enterocolitis or 

gastroschisis, a large portion of the bowel is removed with the remaining bowel anastomosed 

together. This procedure is referred as small bowel resection (SBR). The significant loss of the 

bowel leads to major loss of absorptive epithelium, resulting in decreased nutrient absorption, 

potentially resulting in short bowel syndrome (SBS). One potential venue for treatment of SBS 

resides on the adaptation of the remaining intestine regions to absorb a broader range of 

nutrients, compensating for the loss of the bowel. To unravel the mechanisms of this adaptation, 

single-cell RNA sequencing is adopted to understand the epithelium changes post SBR surgery 

in mice. Using QP with a single-cell dataset surveying the epithelium of small intestine, we 

categorized the individual cells to detailed intestinal epithelial populations, permitting a higher 

resolution in cell-type classification (Figure 2.1 C, D; (Seiler et al., 2019)).  

Further, we applied this approach to investigate the developmental transitions and 

reprogramming protocols. First, we evaluated fetal-to-adult transitions of hematopoietic stem 

cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs). HSCs and HPCs 
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harbor different phenotypes, such as reduced self-renewal ability and different lineage bias, 

between fetal and adult stage. Yet, the mechanistic changes during this process were poorly 

characterized. Using QP, we revealed that the transitions of HSCs and HPCs from fetal to adult 

are gradual instead of bimodal as turning on a switch (Y. Li et al., 2020). Compared to this 

continuous scheme, when applied to neural reprogramming using microRNAs, QP reveals a 

stepwise cell-fate determination toward neuron identity (Figure 2.1E-G; (Cates et al., 2021)). 

2.3.2  Capybara overview, benchmarking, and validation 

In Capybara, we further develop QP to enable systematic reference construction based on 

bulk and annotated single-cell atlas datasets as well as identity calculation using reconstructed 

references. We enable quantitative evaluation of cell identities based on single-cell datasets, 

benefiting cell state evaluation in continuous biological processes. This further supports an 

unsupervised classification algorithm in four steps, as follows (Figure 2.2; Methods). 

Figure Error! No text of specified style in document..2: Overview of Capybara Workflow. 
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First, tissue-level classification is performed prior to assessing cell identity at single-cell 

resolution. Identification of relevant tissues is performed based on bulk transcriptomes from 

ARCHS4, an exhaustive resource platform comprising the majority of published RNA-seq and 

ChIP-seq datasets (Lachmann et al., 2018). This step limits the reference cell types to be 

included in downstream analysis, reducing excessive noise and dependencies caused by 

correlation across tissues. Then, using the tissue of choice, a reference at higher resolution is 

constructed from subsetting a larger atlas, such as the Mouse Cell Atlas (MCA; (X. Han et al., 

Figure Error! No text 
of specified style in 
document..3: QP 
Metric Demonstration 
and Tissue Level 
Reference Validation 
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2018)). To alleviate the effect of gene expression dropout, we sample cells from each defined 

cell type to create a ‘pseudo-bulk’ reference. Application of QP using this constructed reference 

provides continuous measurements of cell identity as a linear combination of all cell types within 

the reference. In the third step, we categorize the cells into three broad buckets: 1) discrete, 2) 

hybrid, and 3) unknown, leveraging QP quality metrics (Figure 2.3A; Methods). Lastly, a 

statistical framework is applied to assign discrete identities to cells. In addition, during this step, 

we characterize cells that resemble multiple cell types, representing potential hybrid cells. 

Annotations of hybrid cells distinguishes Capybara from other classifiers and allows us to 

explore the dynamics as well as maintenance of cell identity in complex systems. 

To assess the efficacy and robustness of this approach, we first evaluate the sufficiency of 

this established bulk reference. Accuracy of tissue classification is pivotal as it helps tease apart 

excessive information and noise from other cells. We evaluate the validity of the tissue reference 

transcriptome based on the identity scores of annotated single-cell atlases. Though variations are 

observed within each cohort of cells, we identify a unique pattern of identity scores for each 

matching tissue, suggesting that this bulk reference is sufficient to imply the correct tissues at 

relevance (Figure 2.3B).  

Next, we assess the classification functionality via an automatic evaluation algorithm 

used in a recent study that benchmarked 20 single-cell classification approaches against various 

public available datasets (Abdelaal et al., 2019). In brief, 10-fold cross validation is performed 

using various datasets. We assess predictions from the methods using the multiclass area under 

the receiver operating characteristic (AUROC), and classification runtime. Based on 5 human 

pancreatic datasets and the Allen Mouse Brain Atlas, the performance of Capybara suggests a 

similar and nearly perfect AUROC performance (average = 0.95; rank 5 out of 11) with 
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reasonable runtime (Figure 2.4A). In this automatic benchmarking method, cross-validation 

provides a relatively large training set compared to the test set. A key feature of Capybara is its 

flexibility on the size of training set. We identified that a minimum number of 90 cells sampled 

from each cell type are required to perform classification. Using the minimum number of cells, 

we evaluate our performance using a recent mouse cell atlas, Tabula Muris (Schaum et al., 

2018). Using AUROC scores, we benchmark our method against two top-performing 

classification approaches, scmap (Kiselev et al., 2018) and SingleCellNet (Tan & Cahan, 2019). 

Here, 90 cells are sampled for each cell type with the remaining cells assessed quantitatively and 

classified against pseudo-bulk generated. In this manner, we demonstrate the comparable 

performance of Capybara with almost perfect AUROC scores (Figure 2.4B).  

Moreover, we evaluate Capybara’s ability to classify between datasets from different 

sequencing platforms. Here, we showcase using two of the human pancreatic islet datasets, 

Figure Error! No text of specified style in document..4: Benchmarking of Capybara using Established 
Pipeline and in-house Cross-Validation. 
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Baron et al (inDrop, (Baron et al., 2016)) and Muraro et al (CEL-seq2, test, (Muraro et al., 

2016)). Cross-platform validation presents a diagonal pattern across matching cell types in the 

two datasets, suggesting agreement between annotation and classification. Nevertheless, four 

major off-target cell-type classifications are observed. Investigating these cells, we separate them 

into two categories. One category includes cell types that are annotated in the test set but not in 

reference. The other includes cell types that are misclassified. In the former, we explore the 

markers used in the reference for labeling to check if the cells annotated differently in the test set 

can map the other type in the reference. From Capybara, mesenchymal cells in the test are 

classified as activated stellate cells. Mesenchymal cells are broadly defined, potentially including 

stellate cells in the pancreas. Expression of PDGFRA shows significant enrichment in the 

classified activated stellate cells compared to other groups. Similarly, PP cells are determined as 

gamma cells, whose marker genes, including PPY, SERTM1 and CARTPT, presents upregulation 

in the classified cells. We further determine cells with unknown cell types to be ductal cell-like. 

In the latter category, it is interesting to note that Capybara identifies heterogeneity in the 

annotated acinar cells. Using three acinar cell marker genes, including REG3A, PRSS1 and 

CPA1, we cannot isolate expression differences between labeled acinar cells and ductal cells. 

Figure Error! No text of specified style in document..5: Validation of Capybara for Datasets generated 
from Different Single-Cell Platforms.  
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While KRT19, a ductal cell marker, reveals a significant upregulation in the labeled ductal cells, 

indicating that KRT19 might play a key role in classification of ductal cells (Figure 2.5). 

Additionally, it is worth noting that the original studies use slightly different marker selection for 

cell type annotation, potentially leading to mismatch between datasets. Overall, we believe this 

cross-platform analysis demonstrates promising application of Capybara across different 

sequencing techniques. 

As a next step performance validation, we simulate a single-cell dataset comprising 

different differentiation paths to assess if Capybara can: 1) Capture cells with discrete identities; 

2) Identify cells that do not correlate with any cell types in the reference; 3) Characterize hybrid 

cells that are in transition between discrete identities. We use Splatter, a simulation framework 

based on gamma-Poisson distribution (Methods; (Zappia et al., 2017)), to simulate distinct 

differentiation paths from a progenitor state (P1), bifurcating toward two discrete states (E1 and 

P2). P2 progenitor cells bifurcate further toward end states #2 and #3 (E2 and E3, respectively; 

Figure 2.6A, B). We include E1, P2, and E2 in the reference with the remaining cells from, such 

Figure Error! No text of specified style in document..6: Simulation Study for Proof of Concept. 
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as P1 and E3, to be tested. Capybara accurately classifies cells in the three different identity 

categories, distinguishing between known discrete identities and cells in transition between them 

(AUROC = 1; Figure 2.6A-D). Further, Capybara can distinguish unknown cell types with 

100% accuracy and potentially isolate unknown progenitor states from unknown terminal states, 

using QP quality metrics with 81% and 65% accuracy, respectively (Figure 2.6C-D; Methods). 

We benchmark our hybrid cell classification against scMap to illustrate how existing cell type 

classifiers cannot resolve mixed identity cells (Figure 2.6E).  

Together, our benchmarking and simulation demonstrate the efficacy of our method for 

cell-type classification of discrete and hybrid cell identities. We next showcase move to evaluate 

Capybara in a well-characterized continuous differentiation process: hematopoiesis. 

2.3.3  Capybara accurately captures cell identity and fate transitions in 

hematopoiesis 

Cells in many biological processes, such as development and reprogramming, reside on a 

continuous landscape, gradually transitioning from one state to another. Understanding these 

transition states is essential to uncover the comprehensive overview of dynamic biological 

systems. Cell fate determination during developmental processes is an important question to be 

addressed to reveal mechanisms and lineages of development (MacLean et al., 2018). In this 

process, a single cell differentiates into populations of cells with distinct identities and 

committed functions. Apart from the cells with dedicated fate, some cells are in progress, where 

the routes are chosen while the ultimate identities are not attained. These cells, we consider, 

embrace an intermediate state or in transit, enabling them to be characterized with multiple 

identities. Variations in the transcriptome profiles of these cells allow us to analyze transitions 

via single-cell RNA-sequencing data, snapshots of individual cells at different time points of the 
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continuum. Hematopoiesis provides a well-characterized example of continuous cell state 

transition and serves as a valuable model to understand cell fate specification (Orkin & Zon, 

2008). Even before birth, hematopoiesis has already started transitioning from a fetal clock to an 

adult clock. As aforementioned, HSCs have distinct self-renewal rate, lineage bias, and 

transcriptome profiles at fetal stages compared to those in adults. Leveraging single-cell profiling 

and continuous identity measurements, we identified gradual and synchronous transition from 

fetal to adult stages. Beyond transcriptome, further analysis in epigenome remodeling uncovers 

gradual and discordant reprogramming of neonatal landscape in addition to the continuous 

accessible fetal chromatin regions after adulthood. Yet, it was found that conversion to adult 

states is initiated before birth and is potentially driven by interferon signaling pathway (Y. Li et 

al., 2020). In the body of an adult, blood cells are renewed at a rate of seconds through 

hematopoiesis. In this process, self-renewing hematopoietic stem cells (HSCs) differentiate 

gradually into their mature cell fate in specific lineages, including erythroid, myeloid and 

lymphoid lineage. Development of fluorescence-assisted cell sorting (FACS) and identification 

of key surface markers in distinct lineages enable the establishment of a hierarchical tree of 

hematopoiesis with a root of HSC growing the leaves of mature blood cells through specific 

progenitor stages. This lineage paradigm serves as a valuable model in understanding blood 

formation and, further, the general mechanism of lineage specification in developmental biology 

(Orkin & Zon, 2008; Paul et al., 2015).  

Addition of single-cell RNA-sequencing in this system elevates the cellular resolution, 

enabling a more comprehensive illustration of the process and demonstrates high heterogeneity 

in hematopoiesis. Here, we demonstrate an application of Capybara on a massively parallel 

single-cell RNA-seq (MARS-seq) dataset, containing 2,730-cell snapshot of myeloid progenitor 
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differentiation (Paul et al., 2015). We first use partition-based graph abstraction (PAGA; (Wolf 

et al., 2019)) and identify a total of 24 clusters, which we annotate according to Paul et al. Initial 

Figure Error! No text of specified style in document..7: Application of Capybara to Classify 
Hematopoietic Cell Identity. 
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tissue-level classification using Capybara corresponds mainly to single-cell bone marrow. Using 

the Mouse Cell Atlas (MCA; (X. Han et al., 2018)), we generate the high-resolution reference, 

containing two major tissue types: bone marrow, bone marrow (c-Kit), primary mesenchymal 

stem cells, and peripheral blood (Figure 2.7A: Step 1). Continuous measurement of cell identity 

further returns populations from two major tissues: bone marrow and peripheral blood (Figure 

2.7A: Step 2). Discrete cell-type classification suggests 0% unknown population and 16.3% (n = 

445) received high identities (Figure 2.7A: Step 3). Doublet analysis in the single-cell dataset 

using DoubleFinder (McGinnis et al., 2019) and DoubleDecon (DePasquale et al., 2019) 

suggests that 7-9% of the hybrid cell population as cell doublets, relative to 4.3-16.9% of the 

discrete population, ruling out doubles as the source of hybrid signals. 

Overall, Capybara classifies the expected myeloid progenitor populations, including 

erythrocytes, megakaryocytes, hematopoietic stem and progenitor cells (HSPCs), monocytes, 

and neutrophils (Figure 2.7A: Step 4). 13 major populations, identified via PAGA and annotated 

according to Paul et al., agree with Capybara classification (Weighted Cohen’s Kappa = 0.95; 

Figure 2.7B-C). Further, each classified population shows enrichment of established cell-type 

marker expression (Cd34, Itga2b, Cebpe, Csf1r, and Car2; P < 2.2E-16, Wilcoxon rank-sum test, 

Figure 2.7D).  

Next, we assess the classification using modified diffusion pseudotime estimated by 

PAGA (Wolf et al., 2019). We first evaluate the identified discrete populations, where Capybara-

classified HSPCs coincide with early pseudotime, as expected for this relatively undifferentiated 

cell population (Figure 2.8A-B). Then, we focus on the identified five major hybrid populations 

(>= 0.5% of the overall population): erythroblast–erythrocyte progenitors, megakaryocyte 

progenitor–erythrocyte progenitors, monocyte progenitor–neutrophils, megakaryocyte 
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progenitor–eosinophil progenitors, and monocyte progenitor–eosinophil progenitors (Figure 

Figure Error! No text of specified style in document..8: Evaluation of Hematopoietic Hybrid Cells 
against Pseudotime. 
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2.7A; Step 4). The largest hybrid population contains cells sharing identities between 

erythrocyte progenitors and more differentiated erythroblast, representing a putative transition 

state. Leveraging PAGA pseudotime, we evaluate these hybrid cells considering hybrids would 

likely occupy intermediate pseudotime between defined identities. Comparisons of pseudotime 

between hybrids and their discrete counterparts demonstrates that the hybrids are located mid-

pseudotime. For instance, the hybrids, erythroblast–erythrocyte progenitors, are in between the 

discrete and erythroblast states (Figure 2.8C-E). Further, clusters enriched for hybrid cells are 

connected based on PAGA connectivity (Figure 2.8F). Taken together, this application 

demonstrates the ability of Capybara to accurately identify major hematopoietic cell populations, 

in addition to hybrid populations. 

2.3.4  Lineage tracing reveals the multi-lineage potential of hybrid-classified 

cells 

To examine hybrid cells, we leverage a single-cell data that simultaneously captures 

lineage and transcriptome of hematopoiesis (Weinreb et al., 2020). In this previous study, Lin- 

Sca1+ Kit+ (LSK) cells were isolated and labeled with random lentiviral-delivered barcodes. The 

cells were allowed to differentiate in vitro and collected for single-cell RNA sequencing at Days 

2, 4, and 6, yielding 72,946 single-cell transcriptomes. The barcoding strategy allows early cell 

state to be linked to later hematopoietic fate and provides a ground truth dataset to assess the 

biological relevance of our hybrid cell assignments (Figure 2.9A). We first construct a high-

resolution reference based on the major Day 6 differentiated myeloid populations, excluding 

undifferentiated cells due to potential heterogeneity (Figure 2.10A-B). Capybara identifies of 

seven major hybrid cell types, including three largest populations: monocyte-neutrophil, 

basophil-mast, and basophil-eosinophil hybrids, who contain clones spanning early and late time 
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points (Figure 2.9B). We assessed these hybrid cells via a close look at their cell-type 

composition of clonal relatives across all time points. This analysis reveals that these clones are 

significantly enriched for the discrete cell types that constitute each hybrid identity (*: P < 0.05; 

randomized test; Figure 2.9C). 

Figure Error! No text of specified style in document..9: Evaluation of Hybrid Cells using Ground-Truth 
Lineage Tracing. 
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Particularly, we showcase monocyte-neutrophil and basophil-mast hybrid identities, two 

major hybrid populations in Day 4 and Day 6. Using Capybara classification, we identified 

clones on Day 4 that strictly contains discrete cell identities (i.e., monocyte, neutrophil, 

basophils, or mast cells only) and found that their Day 6 siblings are significantly lineage 

restricted (P < 0.05, randomization test; Figure 2.9D-E). Next, we investigate into Day 4 clones 

containing hybrid cells. To assess the accuracy of hybrid classification, we evaluate if Day 4 

clones with hybrid cells would be related to or give rise to significant discrete-identity 

populations, reflecting the mixed identities. In monocyte-neutrophil containing Day 4 clones, we 

Figure Error! No text of specified style in document..10: Discrete Identities in Ground-Truth 
Lineage Tracing Dataset and Comparison to Previously Identified bistable states. 
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identified a significant population of both monocyte and neutrophil on Day 6 (Figure 2.9D, left; 

Figure 2.9E). Further, via integration of single-cell datasets, we found that these identified 

monocyte-neutrophil hybrids are similar to previously identified bistable intermediate cell states 

that can yield both monocytes and neutrophils (Figure 2.10C-E; (Olsson et al., 2016)).  

Similarly in Day 4 clones with basophil-mast hybrid cells, there is a significance mast cell 

population but not basophil on Day 4, yet both discrete basophil and mast cells are identified as 

significant populations on Day6 (Figure 2.9D, right). Finally, we compare these results of 

hybrid cells to trajectory inference approach using PAGA (Wolf et al., 2019). From PAGA, we 

obtain the connectivity measure between different clusters of cells identified using Louvain 

algorithm, revealing connected and disconnected regions. Applying similar statistical test as 

described as above on the Weinreb dataset fails to uncover the hybrid cell states we identified 

(Figure 2.10F). Altogether, using ‘ground truth’ lineage tracing data, we validate the hybrid 

cells identified through Capybara to be biologically relevant. 

2.3.5  A metric to quantify cell fate transition dynamics 

From our application of Capybara to hematopoiesis, the identification of cells harboring 

hybrid identities represent intermediate transition states (MacLean et al., 2018). Furthermore, the 

identities and states that these cells are connected to help define the cell transition milestones 

within a differentiation hierarchy. We leverage this capacity of Capybara to identify hybrid cells 

to develop a 'transition metric.' Briefly, for each discrete cell identity, we define in a population, 

we measure the strength and frequency of its connections to hybrid identity states (Methods; 

Figure 2.11A). This generates a metric we define as a 'transition score,' where a high score 

represents a high information state where identities converge, identifying a putative cell fate 

transition. This aspect of Capybara is distinct from approaches such as StemID (Grün et al., 
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2016) and CytoTrace (Gulati et al., 2020) in that our transition score does not aim to quantify 

potential. Instead, this score aims to identify those cell fate transitions that are central to a 

developmental/reprogramming process and is helpful to identify the stages at which a biological 

system is in flux.  

We first validate the concept of transition scores via comparison to cell-to-cell 

connectivity based on PAGA in hematopoiesis (Paul et al., 2015). From PAGA analysis, we 

computed the total connections of cells from each cell type to other cell types. Using Pearson’s 

correlation, we observed a strong correlation (r = 0.84) between the total connectivity and 

transition score (Figure 2.8G). Further, we apply RNA Velocity (la Manno et al., 2018) to 

identify actively transitioning cell states in cardiomyocyte reprogramming (Stone et al., 2019). 

Figure Error! No text of specified style in document..11: Transition Score and Its Validation. 
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Comparing the number of velocity vectors within each defined cell state and transition scores, 

we observe strong correlation between the two (Figure 2.11C-D). We apply the transition score 

metric to published datasets charting the early development to terminal differentiation (Klein et 

al., 2015; Pijuan-Sala et al., 2019; Stone et al., 2019). As development progresses and cells 

specialize, transition scores gradually decrease (Figure 2.11B).  

Via our validation in hematopoiesis and other systems, we highlight the ability of 

Capybara to, in an unbiased manner, accurately distinguish discrete cell identity and cell fate 

transitions. We next apply Capybara to characterize less defined, non-physiological systems, 

such as reprogramming, to identify key fate specification events and propose potential strategies 

to improve the protocols. 

2.3.6  Characterizing off-target and hybrid cell identity in cardiac lineage 

reprogramming 

The identification of transcription factors to convert somatic cells back to a pluripotent 

state open new potentials in regenerative medicine to generate therapeutic cells in vitro 

(Takahashi & Yamanaka, 2006). Despite the premise of differentiation from stem cells, limited 

differentiation to target cell types produces a heterogeneous population, hindering the clinical 

utility of these cells. Lineage reprogramming with ectopic expression of transcription factors, 

such as direct cardiac conversion, bypassing progenitor or stem cell states, holds much promise 

for the generation of clinically valuable cell types from mature somatic cells (H. Wang et al., 

2021). A key question in direct reprogramming concerns the overall efficiency, i.e., percentages 

of successful conversion, and fidelity, i.e., similarity to their in vivo counterparts (Guo & Morris, 

2017; Morris et al., 2014). Here, we take direct cardiac reprogramming as an example to 

demonstrate an application of Capybara to provide some insights.  
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The direct conversion of fibroblast to cardiomyocyte-like cells is introduced via 

overexpression of three transcription factors: Gata4, Mef2c, and Tbx5 (GMT) (Ieda et al., 2010; 

Qian et al., 2013; Song et al., 2012). We select a recently published 30,729-cell transcriptome 

dataset that profiled cardiac reprogramming on day -1, 1, 2, 3, 7, and 14, where transcription 

factors were added on Day -1 followed by TGFb inhibitor and Wnt inhibitor treatments on Day 0 

and Day 1, respectively (Figure 2.12A). On day 14, cells were sorted based on cardiac reporter 

gene, a-Myosin Heavy Chain (Gulick et al., 1991), before single-cell processing (Stone et al., 

2019).  

Via Capybara, initial tissue classification, followed by refinement using the MCA, 

highlights two major tissues, including neonatal skin and neonatal heart (Figure 2.12B). Within 

neonatal skin, we identified two major populations, including macrophages and muscle cells, 

both of which are mesodermal and resident in the heart (de Soysa et al., 2019). With this 

reference, 65.1% of cells are assigned with a discrete identity with 19.7% assigned hybrid 

identities (Figure 2.12C). Based on our classification, we identify gradually decreasing trends in 

non-cardiomyocyte populations across time points with increasing trends in cardiomyocytes 

population. Cell type composition analysis shows enrichment of atrial and left ventricular 

cardiomyocytes on Day 7 (39.4%) and Day 14 (83.7%) (Figure 2.12C). Interestingly, we find a 

bias of cardiomyocyte population generated to be more atrial like instead of a balanced 

distribution between atrial (76%) and ventricular (7.7%) (Figure 2.12C-D). We further validate 

this via examination of expression of some regional specific markers, suggesting a potentially 

chamber-specific reprogramming (Figure 2.12G).  
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Figure Error! No text of specified style in document..12: Capybara Analysis of Direct 
Cardiac Reprogramming. (Discrete Populations) 
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Transition score analysis of this process reveals a significant increase at Day 1 and Day 2 

with a progressive decrease on day 3 and further on day 7 to day 14 (P < 0.0001, Wilcoxon rank-

sum Test; Figure 2.13A), implying an active cell fate transition before deterministic 

commitment. Identification of such a trend reinforces previous findings, where transition cells 

were found to determine their terminal fate in the first 48hr before they bifurcate into two routes 

(Stone et al., 2019). Next, we take a close look at hybrid cells in the day 14 sorted population to 

identify potential intermediate states after commitment to defined fates. Atrial-ventricular (AV) 

cardiomyocyte occupies a dominant proportion of the hybrid cells (55.9%) with a second major 

population between brown adipose tissue and cardiac fate (Figure 2.12C; 2.13B-C). We 

Figure Error! No text of specified style in document..13: Transition Scores and Hybrid Identities of 
Direct Cardiac Reprogramming. 
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consider the cells with brown adipose tissue fate could be derived from cardiac resident 

adipogenic progenitor that have been previously reported to repair the heart upon injury (H. J. 

Chen et al., 2021; K. Wu et al., 2010; Yamada et al., 2006). 

To construct a more comprehensive blueprint of the off-target cell types, we performed 

cardiac reprogramming according to the Stone protocol, without cardiac reporter sorting at day 

14. We obtain a total of 5,107 cells across two independent biological replicates. The queality of 

the data is first assessed via integration with the Stone et al. data, where we observe a cosine 

similarity of 0.71-0.82, noting the successful recapitulation of the protocol (Figure 2.13D). 

Capybara reveals a similar off-target cell profile to the Stone dataset and an enrichment of atrial 

cardiomyocytes (Figure 2.13E). AV hybrid cells are also present in this dataset, though at a 

much lower frequency (<1%). We consider that this low occurrence could be a result of not 

sorting the cells. 

To further validate the dominant AV hybrids, we performed RNA fluorescent in situ 

hybridization (FISH) at day 14 of our reprogramming scheme to evaluate canonical markers, 

Myh6 (atrial myosin heavy chain) and Myh7 (ventricular myosin heavy chain). In addition to 

discrete cells expressing one marker or the other, hybrid cells co-expressing both markers are 

found (Figure 2.14B). Using our own scRNA-seq data, we further select another canonical atrial 

marker, Myl4, along with ventricular enriched expression markers, Actc1 and Tnnc1, to perform 

RNA FISH, where other AV hybrids are identified (Figure 2.14A, C). Interestingly, these hybrid 

cells are binucleated or have irregular nuclear morphology. Beyond expression, we performed 

immunostaining (IF) for canonical markers MYL7 (atrial) and MYL2 (ventricular), supporting 

AV hybrids at the protein level (Figure 2.14E). Moreover, the proportion of hybrid cells 

identified through IF, scRNA-seq, and RNA FISH are consistent with each other (Figure 2.14F).  
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Application of Capybara to direct cardiac reprogramming unravels critical chamber-

specification dynamics and off-target cell types, suggesting potential modulations with additional 

TFs or signaling molecules are necessary to refine reprogramming outcomes. 

 

 

Figure Error! No text of specified style in document..14: Experimental Validation of Hybrid Cells using 
RNA FISH and immunostaining. 
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2.3.7  Capybara reveals a dorsal-ventral patterning deficiency in motor 

neuron reprogramming 

In vitro culture of embryonic stem cells (ESC) and the discovery of induced pluripotent 

stem cells (iPSC) provide opportunities for disease modeling and hold much promise for 

generation of clinically valuable cell types to replace damaged tissues (Takahashi & Yamanaka, 

2006). To derive specific cell types of interest from stem cells, two major approaches – standard 

differentiation or direct programming – are employed. Standard differentiation involves 

sequential induction of developmental signals, mimicking embryonic intermediate states during 

development, while direct programming introduces exogenous expression of transcription factors 

following different routes (Briggs et al., 2017). Both protocols have been reported to recapitulate 

the target cell type efficiently and faithfully. Yet, the relationship between cell types produced in 

vitro procedures and their counterparts in vivo development remains in the fog. Recent 

application of single-cell RNA-sequencing on motor neuron differentiation from mouse ESC 

(mESC) unveils that both approaches achieve the same cell state resembling MNs but through 

different paths.  

With the experiments performed side-by-side, this dataset provides valuable insights and 

a venue for direct comparison of the protocols (Figure 2.15A; (Briggs et al., 2017)). Specifically 

in MN generation, direct programming (DP) induces MN fate via overexpression of three 

transcription factors, Ngn2, Isl1, and Lhx3 (NIL), bypassing developmental progenitor stages 

(Mazzoni et al., 2013; Velasco et al., 2017). On the other hand, direct differentiation (DD) 

utilizes sequential induction of Fibroblast Growth Factors (FGFs), Retinoic Acid (RA), and 

Sonic Hedgehog (SHH) (Wichterle et al., 2002; C. Y. Wu et al., 2012).  Here, we primarily focus 
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on the TF-mediated DP protocol and apply Capybara to compare the cell fate determination to 

mouse spinal cord development. 

Figure Error! No text of 
specified style in document..15: 
Capybara Analysis of Spinal 
Motor Neuron Differentiation 
and Programming. (Briggs et al., 
2017) 
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With prior knowledge regarding the system, we start with the construction of high-

resolution reference, using a recent single-cell atlas of mouse embryonic spinal cord 

development (Figure 2.15B; (Delile et al., 2019)). This reference contains a total of 118 cell 

types and states across five different time points from E9.5 to E13.5, including non-neuronal cell 

types around the spinal cord, such as blood, mesoderm, and neural crest. In combination with the 

embryonic stem cell profile from the MCA, the aggregated dataset is ideal for our analysis of 

MN generation, allowing initial tissue selection to be bypassed (Figure 2.15C).  

With Capybara, 87.8% of cells (n = 4,136/4,704 cells) are classified with discrete 

identities while 12.2% are classified as hybrids with no cells unclassified (Figure 2.15D). We 

observe a gradual emergence of neuronal identities from the dominant ESC population at day -1, 

with 63.8% of day 11 cells classified as neurons. Nonetheless, only 3% of this population are 

classified as motor neurons with majority of them classifying as neurons across the dorsal and 

ventral regions of the spinal cord (Figure 2.15D-E). On the other hand, in direct differentiation, 

MN generation peaks at 13.4% at the early-stage (day 5), decreasing to 3.4% by the end of the 

protocol (day 12), concomitant with an increase in off-target mesoderm identity (1% to 32.9%) 

(Figure 2.15D-E). Transition scores significantly decrease as TF-mediated programming 

progresses (P < 2.2E-16; Wilcoxon Test; Figure 2.15F) with hybrid cell generation peaking at 

day 4 (Figure 2.15G). Within these hybrid states, we observe very few states that map to known 

developmental progression, particularly in DP compared to DD, suggesting the cells with 

multiple identities arise potentially from non-physiological cell fate specification. Altogether, the 

observed distribution of neurons across the spinal cord raises the possibility of potential 

deficiency in dorsal-ventral patterning in the in vitro systems, particularly direct programming, 

instructing addition of potential patterning signals could enhance MN production. 
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2.3.8  Retinoic Acid treatment alleviates off-target identities to enhance MN 

generation 

Regionalization of the spinal cord integrates complex spatial and temporal patterning 

events (Delile et al., 2019), involving different signaling molecules, such as RA and SHH (Lara-

Ramírez et al., 2013; Ribes et al., 2009). Therefore, we hypothesize that these signals could 

potentially fine-tune dorsal-ventral patterning to increase MN production in vitro. We directly 

programmed ESCs using the original protocol (Mazzoni et al., 2013) with or without 1 μM all-

trans RA and/or 0.5 μM smoothened agonist (SAG - a hedgehog pathway activator) (Figure 

2.16C). Single-cell RNA-sequencing was performed four days following embryoid body (EB) 

formation and doxycycline-induced reprogramming, capturing 17,163 cells from two 

independent biological replicates (cosine similarity = 0.988; Figure 2.16A). Using Seurat V4, we 

further integrated our TF-only sample with previous data (DP Days 4 and 11) from Briggs et al., 

2017. Compositional analysis in between the two datasets shows that our sample recapitulates 

the published data (cosine similarity = 0.912). Classification using the same reference as 

described above reveals 11.6 ± 2.9% of cells as MNs in our dataset, representing at least a three-

fold increase than the Briggs protocol. We speculate that this could be an effect due to the initial 

EB formation. In addition, Capybara annotates 13.7 ± 1.7% dorsal and 10.3 ± 1.2% ventral 

neurons, mirroring similar results with the Briggs protocol. Apart from cells with discrete 

identities, 35.4% of cells are classified as hybrids with a major representation by ESC-MN (22.7 

± 0.5%) (Figure 2.16B).  

Next, we evaluate if the addition of RA and/or SAG is capable of increasing the MN 

population by reducing off-target cell generation. Breaking down the classifications to each 

treatment, we observed that RA treatment significantly increases MN generation over four-fold, 
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from 7.5 ± 1.6% to 33.4 ± 4.9% (P < 2.2E-16, randomization test), and significantly depletes the 

off-target dorsal population, mainly dl3, from 13.7 ± 2.0% to 5.8 ± 0.9% (P < 2.2E-16, 

Figure Error! No text of specified style in document..16: Experimental Validation with Modulation 
of Retinoic Acid and Sonic Hedgehog in MN Programming. 
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randomization test) (Figure 2.16B-D). In addition to the dorsal population, the major off-target 

ventral (mainly V2a) population is significantly depleted, from 10.7 ± 1.2% to 6.1 ± 0.5% (P < 

2.2E-16, randomization test). Addition of only SAG slightly enriches for MN generation and 

provides no additional yields when added together with RA. A detailed exploration on the hybrid 

identities uncovers a significant enrichment upon the addition of RA (P < 2.2E-16, 

randomization test), whereas a significant depletion of the ESC-dl3 population (P < 2.2E-16, 

randomization test; Figure 2.16E). Furthermore, using scRNA-seq data, we assess the co-

expression of MN marker, Mnx1, and dorsal neuron marker, Pou4f1, under different treatment 

conditions, and in vivo (Delile et al., 2019). When treated with RA, the percentage of the co-

expressing population decreases by over 6-fold, more in line with the 1% co-expressing cells 

observed in vivo. Treatment with SAG reduced this population by more than half to 4.8% but 

provides no additional reductions in combination with RA (Figure 2.16F-G).  

This exploration manifests the ability of Capybara to inspect aberrant dorsal-ventral 

patterning in MN programming and instruct the addition of signaling, such as RA, to enhance the 

efficiency and fidelity of MN generation in vitro. 

2.3.9  An in vivo correlate for fibroblast to induced endoderm progenitor 

reprogramming 

To further explore the application of Capybara, we turned our focus to interrogate a 

relatively uncharacterized direct conversion protocol, from mouse embryonic fibroblasts (MEFs) 

to induced endoderm progenitors (iEPs). It was first reported that, via the overexpression of two 

transcription factors, Hnf4a and Foxa1, MEFs can be reprogrammed to yield hepatocyte-like 

cells (Sekiya & Suzuki, 2011). Yet, more systematic characterization with CellNet with bulk data 



67 
 

as well as functional studies revealed the capability of these cells to engraft damaged colon and 

small intestine (Guo et al., 2019; Morris et al., 2014). Based on this potential, these cells have 

been suggested to resemble an endoderm progenitor-like state. Nevertheless, the in vivo correlate 

to these reprogrammed cells remains unclear.  

Figure Error! No text of specified style in document..17: Capybara Analysis of fibroblast to induced 
Endoderm Progenitor (iEP) Reprogramming.  
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To characterize these cells, we apply Capybara to our previous 85,010 single-cell RNA-

sequencing dataset spanning eight time points during the 4-week reprogramming process 

(Figure 2.17A; (Biddy et al., 2018)). Initial tissue selection with the high-resolution continuous 

measurement suggests major tissues, including embryonic mesenchyme and several endodermal 

populations (Figure 2.17B). Across the time course, epithelial cells gradually emerge to 5.9% at 

day 28, with few classified hepatocytes, mirroring previous findings using bulk transcriptome 

information (Figure 2.17C-D; (Morris et al., 2014)). Compared to the previously discussed 

systems, a substantial percentage of cells (35%) remain undetermined, indicating a potential 

missing cell type in the reference. 

As iEPs have progenitor characteristics, we hypothesize that they represent a putative 

developmental progenitor. Therefore, we constructed an embryonic atlas containing endoderm 

and foregut tissues across a time course between E3.5 to E9.5 (L. Han et al., 2020; Nowotschin 

et al., 2019). However, iEPs remain largely unclassified using this reference (Figure 2.17D-E). 

An alternative hypothesis is that iEPs may represent a regenerative cell type considering their 

capacity to repair liver and colon (Guo et al., 2019; Morris et al., 2014; Sekiya & Suzuki, 2011). 

Further, it is found that the Hippo signaling effector, Yap1, plays a pivotal role in iEP generation 

(Kamimoto et al., 2020), resembling injured liver regeneration (Pepe-Mooney et al., 2019). Thus, 

we built a high-resolution reference based on both homeostatic and regenerative liver epithelial 

single-cell atlas, containing two main regenerative cell types: hepatocytes and biliary epithelial 

cells (BECs) (Pepe-Mooney et al., 2019). With this new reference, we classify day28 

reprogrammed iEPs, and long-term cultured iEPs (LT-iEPs). Capybara classifies 8.3 ± 4.7% of 

day 28 reprogrammed iEPs (n = 20,532 cells) and 91.8 ± 7.49 % of LT-iEPs (n = 6,170 cells, 
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two independent biological replicates) as post-injury BECs (Figure 2.17E-F). These results lead 

us to perform experimental validation for this putative identity. 

2.3.10  iEPs possesses characteristics of biliary epithelial cells 

Under homeostasis, BECs are quiescent and arrange to form tubular, single-epithelial-

layered bile ducts in the liver. When the liver is injured, BECs enter active proliferation and play 

a key role in regeneration (Kamimoto et al., 2016). Biliary epithelial cells isolated from the 

injured liver can be cultured ex vivo, passaged, and maintained long-term (Okabe et al., 2009). 

With support from the extracellular matrix, these cells form tubular or ductal structures in 3D-gel 

culture, mimicking in vivo BEC morphology (L. Jin et al., 2013; Lewis et al., 2018). Thus, to 

interrogate the BEC potential of iEPs, we cultured LT-iEPs, representing highest of injured BEC 

identity, in a 3D-gel sandwich culture that promotes tubule formation in vitro (Ogawa et al., 

2015). We observed branching tubular structures after three days of culture and become more 

evident by day 5. Via immunostaining, we observe significant upregulation of established BEC 

markers, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) by day 5 

(Figure 2.18A-C). Moreover, side-by-side, we found that 2D-cultured LT-iEPs express Ck19 

with reduced Epcam, recapitulating the reported behavior of injured BECs after expansion in 

vitro for over 30 days (Okabe et al., 2009). 

To further characterize 3D-cultured LT-iEPs, we performed single-cell RNA-sequencing 

on day 5 gel-cultured branching iEPs and obtained a total of 14,047 cells from two independent 

biological replicates. Application of Capybara on this dataset using the high-resolution reference 

established in the previous section demonstrates the significant emergence of a normal BEC 

population in 3D-cultured iEPs (14.3 ± 1.7%; P < 2.2E-16, randomization test). On the contrary, 

classification of cells under 2D culture demonstrates a lack of normal BEC population but an 
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enrichment for post-injury BECs (P < 2.2E-16, randomization test; Figure 2.18D-E). 

Additionally, under 3D culture conditions, we observe a unique hybrid state between injured 

BEC and normal BEC hybrid (Figure 2.18E, right). As normal BECs emerge in 3D-culture, 

there is a significant increase of percentage of cells expressing Epcam (P < 2.2E-16, 

Figure Error! No text of specified style in document..18: Experimental Validation of iEPs resembling 
injured Biliary Epithelial Cells. 
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randomization test, Figure 2.18E), mirroring the results with the above immunostaining. In 

addition, there is a significant reduction in the percentage of cells expressing Cyr61, a marker of 

injured BECs (P < 2.2E-16; randomization test, Figure 2.18F) (Pepe-Mooney et al., 2019). 

Moreover, these BEC-like cells express other specific BEC markers, such as Sox9 (Figure 

2.18G). We further identified a set of specific BEC markers from literature (Verhulst et al., 

2019) and performed module score analysis, revealing higher BEC resemblance of the classified 

BEC-like cells (Figure 2.18H).  

These results support the resemblance of this relatively uncharacterized cell type, iEPs, to 

in vivo biliary epithelial cells. Together, it highlights the application of Capybara to a relatively 

uncharacterized reprogramming protocol, incorporating this analysis with our previous lineage 

tracing studies to offer mechanistic insights into reprogramming, and to identify potential in vivo 

correlates of iEPs, warranting further study. 

2.4 Discussion  

Here, we have presented Capybara, an unsupervised method to quantitatively assess cell 

identity and fate transitions. A unique feature of Capybara is its ability to measure cell identity 

on a continuum, allowing the establishment of the statistical framework to classify hybrid cell 

states. Lineage tracing of myeloid differentiation demonstrates the multi-lineage potential of 

cells classified as monocyte-neutrophil and basophil-mast hybrids. In addition, we found the 

monocyte-neutrophil hybrids to be transcriptionally similar to a previously reported rare bistable 

hybrid that can give rise to both monocyte and granulocyte fates (Olsson et al., 2016). Further, 

we speculate that basophil-mast hybrids may represent a previously described rare basophil-mast 

progenitor cell (BMCP). Previously, BMCPs are found to have hybrid transcriptional profile and 
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have preferred differentiation toward the mast cell and basophil lineages (Dahlin et al., 2018). 

Moreover, we validate the existence of atrial-ventricular cardiomyocyte hybrids in cardiac 

reprogramming via RNA FISH and immunostaining, supporting the capacity of Capybara to 

identify cells sharing features from multiple identities.  

Occurring at low frequency with a transient nature, hybrid states have been relatively 

poorly identified and characterized. High-throughput scRNA-seq brought new opportunities to 

capture and evaluate hybrid states (MacLean et al., 2018).  However, few approaches currently 

exist to characterize hybrid identities. Though trajectory inference algorithms provide insights on 

the continuous trajectory, it may overlook the transition states when the terminal fates are 

undetermined or immature. Capybara represents a unique method in various cell differentiation 

or reprogramming paradigms to uncover hybrid states that may represent novel progenitor cell 

types or transitions between discrete identities. Hybrid cell states have been proposed to fulfill 

vital roles in biological processes as reviewed in Chapter 1 (MacLean et al., 2018). Using 

Capybara, we report wide-ranging hybrid states in the reprogramming paradigms we have 

analyzed here. Our analysis in hematopoiesis reveals hybrids that represent rational cell state 

transitions or reported bistable intermediates. Whereas in reprogramming paradigms, hybrids 

states are rarely overlapping with known developmental progression, leading us to a hypothesis 

that the trajectory of TF-mediated conversion involves non-physiological cell states to the target 

cell identity. Alternatively, the diversity of hybrid states could be from heterogeneity in the 

starting cell population, which often contains diverse cell types. Characterizing hybrids in this 

context might provide insight into the origins of successfully reprogramming cells.  

The benefits of unsupervised cell-type classification go beyond the characterization of 

transition states, as we demonstrate via our analysis of several diverse cell fate engineering 
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strategies. For example, we observed regional patterning dynamics in the TF-mediated 

generation of cardiomyocytes and motor neurons. In the case of cardiomyocyte reprogramming, 

atrial cardiomyocytes dominate ventricular cardiomyocytes. An atrial-ventricular hybrid suggests 

that modulation in the protocol could potentially shift this balance. For instance, signaling factors 

play pivotal roles in chamber-specification in early cardiac development. Previous protocols 

where TGFb signaling is inhibited and Wnt activated yield mainly ventricular cardiomyocytes 

(H. Wang et al., 2014), whereas protocols inhibiting TGFb and Wnt generate mostly atrial-like 

cardiomyocytes, as we demonstrate here. Approaches to fine-tune this balance will be beneficial 

to increasing production of atrial or ventricular cardiomyocytes for further disease and treatment 

modeling. For motor neuron programming, our unbiased identification of a range of dorsal-

ventral spinal neuron identities instructed the addition of signaling factors (RA and SAG) to 

alleviate this patterning deficiency. The modulation with such factors yields over 4-fold more 

motor neurons and increased specification of the resulting population. Finally, Capybara 

identified injured BECs as a potential in vivo correlate for iEPs, a poorly characterized product of 

reprogramming. Together, these observations highlight the broad application of Capybara to 

generate quantitative observations, suggest modulation on reprogramming strategies, and reveal 

the engineered cell identity and potential. 
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2.5 Limitations of Capybara 

It is crucial to note that the performance of Capybara relies on the selection of 

appropriate reference datasets. We have designed the workflow with this limitation in mind, 

where initial tissue-level classification identifies the most appropriate tissue-specific single-cell 

reference to use. If an inappropriate reference is used, Capybara will classify cell identity as 

‘unknown,’ as we demonstrate in our analysis of iEPs, which subsequently led us to a more 

suitable reference. A strength of Capybara to note here is that references can be constructed from 

a minimum of 30 cells, increasing the likelihood that rare cell types can be captured from 

selected references. As more diverse single-cell datasets become publicly available, we 

anticipate that this will support a much broader classification of cell identities. In addition, it is 

worth noting that though Capybara can distinguish unknown progenitors from unknown terminal 

fates, such classification is not to 100% accuracy due to the challenges in deconvolution of 

distributions. With future distribution modeling in-depth, Capybara will support more accurate 

classification of these two classes. Moreover, with expansion of complexity in the dataset, 

Capybara shows a longer runtime due to the exponential increase of rounds of permutation as 

increase of cell types and cell numbers. As parallelization being implemented in the pipeline, we 

expect that this will be alleviated to have shorter runtime with increasing computing power. 
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2.6 Materials and Methods 

2.6.1  Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse Monoclonal Anti-MYL7 Antibody (B-10) Santa Cruz 
Biotechnology 

RRID:AB_1084827
2 

 

Rabbit Monoclonal Anti-MYL2 Antibody Abcam RRID:AB_1056353
5 

Rat Monoclonal Anti-Mouse CD326 (EpCAM) 
Antibody 

BD Biosciences RRID:AB_394370 

Rabbit Monoclonal Anti-Cytokeratin 19 (CK19) 
Antibody 

Abcam RRID:AB_2281020 

CD90.2 (Thy1.2) Monoclonal Antibody, FITC Invitrogen RRID:AB_273503 

Alexa Fluor 546 Goat Anti-rabbit IgG  Invitrogen RRID:AB_2534093 

Alexa Fluor 488 Goat Anti-mouse IgG Invitrogen RRID:AB_2534088 

Alexa Fluor 647 Goat Anti-rat IgG Invitrogen RRID:AB_141778 

Bacterial and Virus Strains  

pMx-MGT Wang et al., 2015 RRID:Addgene_111
810 

pGCDNSam-Hnf4-t2a-Foxa1 Morris et al., 2014  

pCL-Eco Novus Biologicals RRID:Addgene_123
71 

Stellar Competent Cells Takara Bio Cat #: 636763 

Chemicals, Peptides, and Recombinant Proteins 

Fetal bovine serum (FBS) Gibco Cat #: 10082147 



76 
 

Fibroblast Medium-2 ScienCell Research 
Laboratories 

Cat #: 2331 

Matrigel (GFR Membrane Matrix) Corning Cat #: CB-40230 

-mercaptoethanol Life Technologies Cat #: 21985023 

X-tremeGENE9 Transfection Reagent Sigma Aldrich Cat #: 6365779001 

XAV939 Cayman Item #: 13031 

SB431542 Cayman Item #: 13596 

CHIR99021 BioVision Cat #: 1677 

PD0325901 Sigma Cat #: PZ0162 

Leukemia Inhibitory Factor Millipore Cat #: LIF2050 

Retinoic Acid (RA)   

Smoothened Agonist (SAG) Millipore Cat #: 566660 

Epidermal Growth Factor Sigma Aldrich Cat #: E5160 

Hepatocyte Growth Factor Sigma Aldrich Cat #: H9661 

Doxycycline (Dox) Sigma Aldrich Cat #: D9891 

L-Ascorbic Acid Sigma Aldrich Cat #: A8960 

Insulin-Transferrin-Selenium-Ethanolamine (ITS-X) Gibco Cat #: 51500056 

Gentle Cell Dissociation Reagent STEMCELL 
Technologies 

Cat #: 100-0485 

Critical Commercial Assays 

RNAscope Multiplex Fluorescent v2 kit Advanced Cell 
Diagnostics 

Cat #: 323100 

EasySep Mouse FITC Positive Selection Kit II STEMCELL 
Technologies 

Cat #: 17668 

Ampure XP SPRI Beads Beckman B23318 

Chromium Single Cell 3’ Library and Gel Bead Kit v2 10x Genomics PN-120237 
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Chromium Single Cell 3’ Chip kit v2 10x Genomics PN-120236 

Chromium i7 Multiplex Kit 10x Genomics PN-120262 

Chromium Next GEM Chip G Single Cell Kit 10x Genomics PN-1000127 

Library Construction Kit 10x Genomics PN-1000196 

Chromium Next GEM Single Cell 3’ GEM Kit v3.1 10x Genomics PN-1000130 

Chromium Next GEM Single Cell 3’ Gel Bead Kit v3.1 10x Genomics PN-1000129 

Dual Index Kit TT Set A 10x Genomics PN-1000215 

Deposited Data 

scRNA-seq This paper GEO: GSE145251 

Hematopoiesis Development Paul et al., 2015 GEO: GSE72859 

Spinal Motor Neuron Differentiation and Programming Briggs et al., 2017 GEO: GSE97391 

Cardiac Reprogramming Stone et al., 2019 GEO: GSE131328 

MEF to iEP Reprogramming Time course Biddy et al., 2018 GEO: GSE99915 

Normal and Post Injury Hepatocytes and BECs Pepe-Mooney et al., 
2019 

GEO: GSE125688 

Mouse Gastrulation Atlas Pijuan-Sala et al., 
2019 

GEO: GSE87038 

Mouse Cell Atlas Han et al., 2018 https://figshare.com/
articles/MCA_DGE_
Data/5435866  

Tabula Muris Tabula Muris 
Consortium et al., 
2018 

https://figshare.com/
projects/Tabula_Mur
is_Transcriptomic_c
haracterization_of_2
0_organs_and_tissue
s_from_Mus_muscul
us_at_single_cell_re
solution/27733  

Developing Mouse Spinal Cord Atlas Delile et al., 2019 E-MTAB-7320 
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Experimental Models: Cell Lines 

Mouse Cardiac Fibroblast (CD1, P0) ScienCell Research 
Laboratories 

Cat #: M6300 

293T-17 Cells ATCC RRID:CVCL_1926 

Primary Mouse Embryonic Fibroblast (C57BL/6, E13.5)   

NIL-V5 inducible ESC line Mazzoni et al., 2013  

Experimental Models: Organisms/Strains 

Mouse: C57BL/6 The Jackson 
laboratory 

RRID:IMSR_JAX:0
00664 

Software and Algorithms 

ImageJ Schneider et al., 2012 https://imagej.nih.go
v/ij/  

Seurat V4 Satija et al., 2015; 
Butler et al., 2018; 
Stuart et al., 2019  

https://satijalab.org/s
eurat/articles/get_sta
rted.html  

Quadprog Turlach and 
Weingessel, 2007 

https://cran.r-
project.org/web/pack
ages/quadprog/index
.html  

Cell Ranger v5.0.1 10x Genomics https://support.10xge
nomics.com/single-
cell-gene-
expression/software/
downloads/latest  

Velocyto La Manno et al., 2018 http://velocyto.org/  

MASS Venables and Ripley, 
2002 

https://cran.r-
project.org/web/pack
ages/MASS/MASS.
pdf  
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mixdist Macdonald and Du, 
2018 

https://cran.r-
project.org/web/pack
ages/mixdist/mixdist
.pdf  

Splatter Zappia et al., 2017 https://github.com/O
shlack/splatter  

OpenImageR Mouselimis, 2021 https://cran.r-
project.org/web/pack
ages/OpenImageR/O
penImageR.pdf  

PAGA Wolf et al., 2019 https://github.com/th
eislab/paga  

SCANPY Wolf et al., 2018 https://scanpy.readth
edocs.io/en/stable/  

R-4.0.1 R Core Team, 2021 https://www.r-
project.org/  

RStudio RStudio Team, 2020 https://www.rstudio.
com/  

Capybara This Paper https://github.com/m
orris-lab/Capybara  

Other 

RNAscope probe Mm-Myh7 Advanced Cell 
Diagnostics 

Cat #: 454741 

RNAscope probe Mm-Myh6-C3 Advanced Cell 
Diagnostics 

Cat #: 506251-C3 

RNAscope probe Mm-Myl4-C2 Advanced Cell 
Diagnostics 

Cat #: 443801-C2 

RNAscope probe Mm-Actc1 Advanced Cell 
Diagnostics 

Cat #: 510361 

RNAscope probe Mm-Tnnc1-C3 Advanced Cell 
Diagnostics 

Cat #: 511011-C3 
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2.6.2  Methods 

Capybara Pipeline Overview: The Capybara pipeline comprises four major steps: 1) tissue-

level classification, 2) high-resolution custom reference generation and continuous identity 

measurement, 3) initial classification into discrete, hybrid, or unknown identities, and 4) discrete 

cell type classification and hybrid identity scoring. Capybara code and documentation are 

available at: https://github.com/morris-lab/Capybara, along with detailed function descriptions 

and tutorials. 

Basis of Capybara: Quadratic Programming (Setup). Previous studies have measured 

continuous changes in cell identity using Quadratic Programming (QP) (Biddy et al., 2018; 

Treutlein et al., 2016), where The R package QuadProg was used for the calculation of QP 

scores. In brief, the underlying assumption is that each single-cell transcriptome profile can exist 

as a combination of fractional identities from all possible cell types, described as a linear 

combination of gene expression profiles from different cell types. This assumption allows us to 

model cell identity as a multivariate linear regression problem. For ease of biological 

interpretation, constraints are placed on the coefficients: they are bound between 0 and 1, and the 

sum of all coefficients does not exceed 1. These constraints limit the use of least squares 

estimators in this scenario, while QP is an optimization approach that minimizes a quadratic 

function under the given linear inequalities or equalities.  

Let  denote the transcriptomic profile of genes g1, g2, …, gn for a query cell, and 

 denotes the reference dataset of the same set of genes by cell types t1, t2, …, tm. The goal is 
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then to calculate the identity score vector , such that the random error  is minimized, as 

described below.  

 

In addition to the fractional identity score matrix and the error term, each cell receives a 

Lagrangian multiplier, gauging how much the solution is pushed toward the constraints. 

Applying QP offers a quantitative evaluation of cell identity for each cell. 

 

Basis of Capybara: Quadratic Programming (Data processing) Before QP, using raw count 

matrices, we first perform log-normalization on both the reference and sample dataset. Let  

be the matrix with each row representing a gene and each column denoting a cell or a cell type. 

Let  denote the number of columns, and  denote the number of rows. Then, for each column 

of the matrix, ,  

 

The normalized matrix is then log-transformed with a base of 2 and pseudo-count of 1. The 

reference dataset undergoes further scaling to ensure that gene expression levels between 

datasets are comparable. We calculate the scaling factor as the ratio between  of the 

reference and sample. Further, we filter the gene list of both matrices to include only those genes  

shared between the reference and sample. 
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Step 1: Tissue-level classification. The performance of Capybara hinges on the selection of an 

appropriate single-cell reference to classify cell identity. Before assessing cell identity at single-

cell resolution, we perform a tissue-level classification designed to restrict the number of 

reference cell types included in downstream analysis, reducing excessive noise and dependencies 

caused by correlation across tissues in the final single-cell reference. This tissue-level 

classification is performed using bulk transcriptomics from ARCHS4, an exhaustive resource 

platform comprising the majority of published RNA-seq datasets (Lachmann et al., 2018). To 

achieve a relatively comprehensive and clean evaluation, we take a two-step approach: 1) 

construct a clean bulk RNA-seq reference and 2) correlation-based tissue classification. 

(1) Bulk Reference Construction 

ARCHS4, a platform that contains most published RNA-seq and ChIP-seq datasets (Lachmann 

et al., 2018), was mined for bulk RNA-seq data. ARCHS4 obtained raw datasets from the Gene 

Expression Omnibus, then realigned and processed through a uniform pipeline. Using this data 

bank, we first filtered the available datasets to retain only poly-A and total RNA-seq data from 

C57BL/6 mice. We then calculated Pearson’s correlations on every sample pair from the same 

tissue. The top 90 samples with the highest Pearson’s correlation scores for each of 30 tissues 

comprised the final bulk reference. For tissues with less than 90 samples, we took the entire 

sample set and randomly sampled with replacement to include 90 total samples. For the selected 

90 samples for each tissue, we calculated the average reads per kilobase per million (RPKM) to 

build the final tissue-level transcriptome profile, containing a total of 30 tissues. We evaluated 

the quality of this bulk reference by calculating the identity scores of cells from manually 

annotated single-cell atlases (MCA; (Han et al., 2018) and Tabula Muris; (Tabula Muris 

Consortium et al., 2018)) based on this reconstructed reference. We randomly selected 90 cells 
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from each tissue of MCA or Tabula Muris and performed QP using the bulk reference, where we 

observe high scores when mapping the same tissue between single-cell and bulk datasets.  

(2) Tissue-Level Classification 

A potential concern of using QP to classify single cells directly is the correlation between similar 

cell types from different tissues. In this scenario, it could be challenging to tease classification 

results apart if high similarity to the correct cell type drives the high identity score. Thus, we first 

perform classification at the tissue level to restrict the number of reference cell types in the 

downstream analysis, reducing excessive noise and dependencies caused by correlation across 

tissues in the final single-cell reference. In general, the three primary inputs of this step include 

the single-cell reference (e.g., MCA), the sample single-cell dataset, and the constructed bulk 

reference. Using the tissue reference, we calculate QP scores for the single-cell reference as well 

as the sample, where we obtain two identity matrices. We then compute the Pearson’s 

correlations of QP scores between each cell from the single-cell reference and each cell from the 

sample. We use a threshold at the 90th percentile of the correlation matrix to binarize the 

correlation matrix, where a cell-cell pair with a correlation that is greater than the threshold is 

marked as 1; otherwise, 0. With the binarized matrix, we count the number of cells in each tissue 

of the reference mapping to the sample. If there is a significant percentage of reference cells of a 

tissue (over 70%) mapped, we record the tissue label. We then calculate the frequency of each 

tissue label in the sample. Tissues with a frequency of at least 0.5% sample cells were selected to 

proceed for further analysis at single-cell resolution. Here, it is worth noting that this tissue-level 

classification removes most irrelevant tissues but still provides a broad range of tissue types, at 

which point further downstream analysis removes non-relevant cell types (see 'Cardiomyocyte 

Reprogramming Analysis,' below). Additionally, having prior information regarding the tissues 
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involved can be beneficial to narrow down the tissue selection step, as exemplified by our 

analysis of hematopoiesis and spinal cord below. 

 

Step 2: Generation of high-resolution custom references and continuous identity 

measurement. Having identified the potential tissues present in a sample from the tissue-level 

classification, we next assemble a custom single-cell reference dataset containing the relevant 

cell types to classify the sample cells accurately. An example of such a reference dataset is the 

Mouse Cell Atlas (MCA; (Han et al., 2018)), which contains both fetal and adult mouse tissues. 

For each tissue, it offers a detailed breakdown of its cell types, including the same cell type with 

different marker genes, offering a high-resolution map of cell-type composition. This reference is 

assembled based on manual annotation of the specific cell types in the tissue involved. A unique 

feature of scRNA-seq is dropout - the failure to capture and detect known expressed genes and 

other technical variation (Lun et al., 2016). Due to the highly sparse nature of scRNA-seq data, 

an individual cell transcriptome may not provide a complete representation of a cell type. To 

alleviate the effect of these technical variations, we construct pseudo-bulk references for each 

cell type of each tissue. We sample 90 cells from each cell type for each tissue. For cell types 

with more than 90 cells, we calculate Pearson’s correlations between each cell pair. Based on the 

correlation matrices, we select the most correlated 45 cells to ensure homogeneity and the least 

correlated 45 cells to ensure the capture of transcriptional diversity. Cell types that have fewer 

than 90 cells, but more than 30 cells are sampled with replacement to achieve a total of 90 cells. 

Summation of the counts of the selected 90 cells is used to construct the final high-resolution 

reference, assuming homogeneity in the annotated population of the original single-cell 



85 
 

reference. Application of QP using this 'high-resolution' reference generates a continuous 

measurement of cell identity as a linear combination of all cell types within the reference. 

 

Step 3: Initial discrete, hybrid and unknown classification. As aforementioned, the 

application of QP generates the continuous scores, from which we calculate a deviance metric of 

the scores from the expected score. In addition, QP provides two additional metrics: the error and 

Lagrangian multiplier, together with the continuous scores. Using these three metrics together, 

we evaluate the likelihood of a cell to have discrete, hybrid, or unknown identities, compared to 

the scoring metric of reference cells. This step can be evaluated in two parts: 1) deviance, 2) 

error, and Lagrangian multiplier. 

(1) Deviance 

The deviance is calculated via comparison between the identity scores to the expected scores 

( ), assuming a cell is equally similar to every cell type in the reference. We 

consider that cells with unique identities will have major deviations, while those with unknown 

identities will have minor deviations from the expectation. Let  denote the score of a cell  on 

cell type . The deviance is then calculated as follows: 

 

Assuming the reference cells are accurately annotated with discrete identities, we first calculate 

the total deviance of each reference cell using the identity score matrix of the reference data. We 

further model the total deviance from the reference cells as a normal distribution, serving as the 
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reference distribution of discrete identity cells. Restricting the hybrid cells to have a maximum of 

two identities, we establish an ideal distribution for the hybrid cells by shifting the density of 

discrete identities by 2x standard deviation to the left. Lastly, the unknowns are expected to have 

an even lower deviation than the hybrid cells. We then calculate the total deviance of each 

sample cell in the same manner. With the established distributions, we obtain probability scores 

from the evaluation of each distribution by computing . Cells with 

 are considered as discrete. Cells with 

 are considered hybrids. 

Cells with  are considered unknowns. 

(2) Error & Lagrangian Multiplier 

The selection of cells to build the high-resolution custom reference includes both highly 

correlated and uncorrelated cells in the population of the corresponding cell type. Such a 

selection scheme provides a multimodal distribution for the error and Lagrangian multiplier 

metric, serving as background distributions for the extreme cases of matching and unmatching 

cells. Based on the multimodal density, we build an ideal distribution for the test samples, where 

the mean is the weighted mean of the mixed normal distribution, and the standard deviation is 

the weighted standard deviation of the mixed distribution. We consider unknown cells will 

establish higher error (on the right tail). In contrast, hybrid cells will have comparable levels of 

error but a lower Lagrangian multiplier (on the left tail). In addition, unknowns can potentially 

be distinguished into unknown progenitors vs. unknown end states by considering the 

combination of the two distributions. As unknown end states take both higher error and 

Lagrangian multiplier, unknown progenitors are considered to have a relatively high error, but 

even lower Lagrangian multiplier compared to the hybrids. Yet, due to the challenges in 
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deconvolving overlapping distributions, we could partially distinguish the two unknown cell 

types leveraging the combination of the two metrics. 

 

Step 4: Discrete cell type classification and hybrid identity scoring. While continuous identity 

scores are informative, discrete cell-type assignment offers a more practical assessment of cell-

type composition for a biological system. One approach to call discrete cell types is to apply a 

threshold to the calculated continuous scores. However, threshold selection and quality of the 

custom high-resolution reference can bias cell type calling via this approach. To overcome this 

limitation, we apply QP to score cells in the single-cell reference against the bulk reference. This 

strategy accounts for reference quality, enabling background matrices to be generated, charting 

the distributions of possible identity scores for each cell type. We then take a two-step approach 

to give discrete and hybrid cell type classification: 1) empirical p-value calculation via 

randomized testing, and 2) Mann-Whitney-based binarization and classification. 

(1) Empirical P-Value Calculation via Randomized Testing 

With the constructed single-cell reference, we apply QP to both the sample and reference 

single-cell datasets to generate continuous measurements of cell identity. Let  denote the 

identity score matrix of the reference data with a total of  cell types and  cells, where 

 denotes the score of reference cell  on cell type . Let  denote the identity score matrix 

of the sample data with a total of  cell types and  cells, where  denotes the score of 

sample cell  on cell type . We then carry out the following steps to calculate the empirical p-

values. (1) For each cell type in , we randomly sampled 1000 times and constructed a 
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background density of the identity scores, . (2) For each 

score in the identity matrices, we calculate the empirical p-value as follows: 

 

where  if  is true; otherwise, . (3) Next, we repeat steps (1) and (2) for a 

total of 50 rounds, recording the empirical p-values matrix for each cell of both the reference and 

the sample. The result of this step includes two lists of p-value matrices: one for the reference 

and the other for the sample. For each cell, each column of the p-value matrix denotes a cell 

type, while each row describes each round of 50.  

(2) Binarization and Classification 

From randomized testing, we construct two lists of empirical p-value matrices: one for all 

sample cells, , and the other for all reference cells, . Using the list for all reference cells 

together with its annotation data, we computed a benchmark empirical p-value for each cell type. 

Specifically, the annotation data contains cell barcodes with their associated annotated cell types. 

For each cell  and its annotated cell type , we identified the corresponding list of empirical p-

values, . As a result, we construct a possible range of p-values for each cell type, , from 

which we generate the benchmark values. For each cell type , we eliminate the outlier p-values 

and select the maximum p-value of the remaining cells as the final benchmark score, 

. Outlier p-values are identified based on the definition of outliers in the 

boxplot (outside of 1.5x the interquartile range above the third quantile or below the first 

quantile).  

Next, we move forward to evaluate the sample list with the initial classification results. If 

the cell is initially considered as an unknown, it is skipped for this statistical framework 



89 
 

evaluation. The length of the sample list, , is the number of sample cells. The  empirical p-

value matrix  in the list defines empirical p-value for the   sample cell belonging to 

reference cell type  under the   resampling background, where . We rank all 

empirical p-values inside the matrix, from the lowest to the greatest, and break any tie by 

averaging. The rank-sum for each column t of is then calculated, and the cell type with the 

lowest rank-sum, t*, is determined to be the putative identity for cell c. We then compare 

 to  to assign an identity for cell . To assign cells harboring hybrid identities, 

recapitulating those identities, we perform a pairwise Mann–Whitney U test between the t* 

column and other columns of . For any cell type t’ with rank-sum that is not significantly 

greater than the rank-sum of t* (significant level=0.05), we consider t’ to be one of multiple 

identities of query c along with t*. Applying this process to each cell, we generated a binary 

matrix with 1 = putative identities. Further, we generate a classification table with labeled cell 

types for each cell barcode. 

Transition Scoring. Cells with multiple identities (hybrid cells) label critical transition states in 

different trajectories. Building on this concept, we also measure the strength and frequency of 

connection to the discrete cell state, which provides a metric that we define as a 'transition score.' 

The calculation of transition scores only involves cells with hybrid identities. In general, using 

QP, each cell receives fractional identity scores for different cell types in the reference. 

Interpreting QP as probabilities of the cell transitioning to each discrete cell identity, we use QP 

scores as a measure of transition probability.  

For a cell marked with multiple identities, we consider a transition between the cell to its 

terminal cell state as events with the transition probability measured by QP scores , where i 
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denotes the cell and j denotes the cell state. Therefore, based on information theory, the 

information of such transition event can be measured as . We 

further consider how much information the terminal cell state has received, which can be defined 

as: 

 

Thus, the total amount of information received for cell state j from n connected cells can be 

computed as: 

 

The measurement appears to be similar to Shannon’s entropy, while we note that with each cell 

independently in transition, probabilities from all events do not necessarily add up to 1, 

distinguishing it from a measure of entropy. Here, to demonstrate this metric, consider an 

example as demonstrated in Figure 3F, where Cells 1 to 5 harbor multiple identities connecting 

Cell State I to III. In this example scenario, the transition score for Cell State II can be calculated 

as: 

 

Using such measurement, we incorporate the frequency as well as the likelihood of connection 

such that high information labels a discrete cell state associated with an abundance of dynamic 

cell transitions. 



91 
 

Benchmarking Capybara. To assess the efficacy and robustness of Capybara to classify cell 

identity, here we validate each step and demonstrate its basic functionality. In the first step of the 

Capybara pipeline, tissue-level classification, accuracy is pivotal as it helps reduce noise from 

other cell types that are not present in the sample. We evaluate the validity of the tissue reference 

transcriptome based on the identity scores of annotated single-cell atlases (Han et al., 2018; 

Tabula Muris Consortium et al., 2018). We randomly selected 90 cells from each tissue of MCA 

and Tabula Muris using the bulk reference, where we observed higher scores mapping of the 

same tissue between single-cell and bulk.  

Next, we assess the classification functionality of Capybara. In this step, we use a 

benchmarking algorithm that was recently developed to compare a range of single-cell 

classification approaches using an array of publicly available datasets (Abdelaal et al., 2019). 

Briefly, we perform 10-fold cross-validation using various datasets. Here, the predictions from 

the methods are assessed based on the area under the receiver operating characteristics 

(AUROC) using the multiclass.roc function in R. Based on five human pancreatic datasets and 

Allen Mouse Brain Atlas, the performance of Capybara indicates similar accuracy (rank 5) and 

median F1 score (rank 4.2) with reasonable runtime when benchmarked against ten other 

classifiers (Figure 2.4). In this automatic benchmarking method, 5-fold cross-validation provides 

a relatively large training set (80%) compared to the test set (20%). A key feature of Capybara is 

its flexible requirement in terms of training set size. We find that a minimum number of 90 cells 

sampled from each cell type is required to perform accurate classification. For cell types with 

fewer than 90 cells, we require a minimum of 30 cells, from which a 90-cell sample will be 

drawn with replacement from the pool. Using this minimum number of cells, we evaluate our 

performance using the Tabula Muris mouse cell atlas (Tabula Muris Consortium et al., 2018). 
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Using AUROC scores and accuracy, we benchmark our method against two other classification 

approaches, scmap (Kiselev et al., 2018) and SingleCellNet (Tan & Cahan, 2019). As a result, 

we demonstrate the comparable performance of Capybara with excellent performance (AUROC 

> 0.8).  

Generation of simulated data. We use Splatter, an R-based simulation framework based on 

Gamma-Poisson distribution, to simulate a single-cell dataset comprising distinct differentiation 

paths (Zappia et al., 2017). We design the cell population to originate from a progenitor state 

(P1) bifurcating toward two discrete states (E1: End State #1; P2: Progenitor State #2). P2 

progenitor cells bifurcate further toward end states #2 and #3 (E2 and E3, respectively; Figure 

1B, C). Using this simulated dataset, we assess if Capybara can 1) Capture cells with unique 

identities; 2) Identify cells that do not correlate with any cell types in the reference; 3) 

Characterize transition cells with multiple identities. E1, P2, and E2 cell populations were 

defined as within 5% variability of the max pseudotime at each terminal. We construct a 

reference using 90 of the most correlated and diverse cells from E1, P2, and E2 cell populations. 

Cells in E1, P2, and E2 that did not contribute to the reference are used to test the efficacy of 

accurate classification. The remaining cell populations are not included in the reference to test 

how Capybara classifies cells with no correlates in the reference. 

Capybara Analysis with Previously Published scRNA-seq data 

(1) Paul et al. (2015) Mouse Hematopoiesis Analysis 

We obtained the raw hematopoiesis count data from GSE72859 (Paul et al., 2015c). The data 

was processed and clustered using SCANPY (Wolf et al., 2018) and PAGA (Wolf et al., 2019). 

From processing, we included 3,451 genes in the dataset of 2,730 cells. We first perform tissue-
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level classification with the bulk reference established using ARCHS4, as described in the 

previous sections. From this, we identified three major relevant tissues: primary mesenchymal 

stem cells (bone marrow mesenchyme), bone marrow, and bone marrow (c-Kit). Further 

breakdown of these three major tissues using the MCA (X. Han et al., 2018) resulted in 49 

different cell types. We constructed the high-resolution reference using these 49 cell types. 90 

cells were selected from each cell type as described above and saved as the reference single-cell 

dataset. Followed by preprocessing, we applied QP on the reference and sample single-cell 

dataset, based on which we further categorized them to discrete, hybrid and unknown, calculated 

empirical p-values, performed binarization and classification. We projected cells with single 

identities onto the cluster embedding from PAGA. Cells with hybrid identities were isolated, and 

we extracted the pseudotime for themselves and their terminal cell identities. We re-assessed 

these multiple identity cells using their scores. If one of the identities scored near zero (score < 

10E-3), we considered such identity as inaccurate and discarded it. In this process, we re-

evaluated transitioning cells, retaining only those cells with relatively higher shared identity 

scores. For a hybrid identity to be considered usable, it needs to be represented by more than 

0.5% of the sample population. Using this filtering, we alleviate potential transitions due to noise 

but maintain the more putative transitions. Wilcoxon test was used to compare if the pseudotime 

density differs comparing hybrids with their discrete identity parts. 

(2) Weinreb et al. (2020) Mouse Hematopoiesis Lineage-Tracing Analysis 

We obtained the normalized InDrop single-cell data, annotation, and SPRING embedding for 

mouse hematopoiesis lineage-tracing dataset from https://github.com/AllonKleinLab/paper-data. 

In this analysis, we mainly focused on the Lin- Sca+ cKit+ (LSK) population, containing a total of 

72,946 cells. We constructed the high-resolution reference using 90 cells in each of the major 
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day 6 differentiated cell types, including basophils, eosinophils, mast cells, monocytes, and 

neutrophils. Considering the myeloid differentiation culture condition, we selected these five 

populations as they are the continuous expanding populations from day 2 to day 6. Following 

preprocessing, we generated the continuous identity score measurements for the remaining LSK 

cells using QP, followed by initial classification, binarization, and classification. Leveraging the 

lineage information in the dataset, we then identified clones that contained hybrid cells on day 4 

to evaluate their siblings on day 4 and progeny on day 6. To compare with the hybrid-containing 

clones, we also identified day 4 clones that are strictly represented by the discrete compartments 

of the hybrids. For instance, while assessing monocyte-neutrophil hybrids, we compared the 

siblings and progeny of day 4 clones strictly represented by monocytes or neutrophils. 

Enrichment of populations was tested via randomization testing. Briefly, for the clones 

representing the hybrid and its siblings, we randomly sampled the same number of cells as the 

clones from the entire population and calculated the proportion of the cell type represented in the 

sample. We iterated this process 10,000 times to establish a distribution. The likelihood of 

proportions presented in the hybrid family was evaluated based on this density, providing 

empirical p-values. 

The raw count of the data was obtained by taking the reciprocal of the smallest non-zero 

gene expression of each cell, following https://github.com/AllonKleinLab/paper-data/issues/7. 

The data was then processed and clustered using SCANPY (Wolf et al., 2018) and PAGA (Wolf 

et al., 2019), following the tutorials. Connectivity among clusters was obtained from PAGA 

analysis. Assuming clusters connected to two differentiated fate clusters as potential hybrid 

clusters, we evaluated if these cells were lineage restricted. From the connected cluster, we 
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identified the day 4 cells and assessed their siblings and progeny. The enrichment of each 

population is tested via randomization testing as described above. 

(3) Pijuan-Sala et al. (2019) Mouse Gastrulation Transition Score Analysis 

We obtained 10x scRNA-seq UMI count data and annotation of mouse gastrulation from 

GSE87038 (Pijuan-Sala et al., 2019), containing a total of 139,331 cells. The dataset was 

processed using Seurat (Butler et al., 2018; Satija et al., 2015). We performed classification 

using all 23 tissues, composed of 361 cell types, in the adult MCA as a reference directly (X. 

Han et al., 2018). We constructed the high-resolution reference using these annotated cells. 

Following preprocessing, we generated the continuous identity score measurements for these 

cells using QP, followed by initial classification, binarization, and classification. We then 

performed Capybara transition scoring analysis for each sample, analyzing transition score 

distributions of each annotated cell type from Pijuan-Sala et al. 

(4) Stone et al. (2019) Cardiomyocyte Reprogramming Analysis 

We obtained the 10x single-cell RNA-sequencing count data from GSE131328 (Stone et al., 

2019), containing a total of 30,729 cells. This dataset was processed using Seurat (Butler et al., 

2018; Satija et al., 2015) and clustered using UMAP. We used raw data from the filtered cells 

and genes as input into the Capybara pipeline. We next performed tissue-level classification 

using ARCHS4 (Lachmann et al., 2018), as described in previous sections, revealing four major 

tissues, including neonatal skin, neonatal heart, fetal stomach, and fetal lung. Further breakdown 

of these tissues using MCA (X. Han et al., 2018) contains 57 cell types. We constructed the high-

resolution reference using these annotated cells. Following preprocessing, we generated the 

continuous identity score measures of these cells using QP, based on which we further performed 

initial classification, binarization, and classification. We calculated the percentage of each 
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identified cell type in the population. Additionally, we computed the transition scores for the cell 

states involved in transitions. We performed transition score comparisons using a one-sided 

Wilcoxon test. We identified region-specific markers from MuscleDB 

(http://muscledb.org/mouse/mRNA/). 

(5) Briggs et al. (2017) In Vitro Spinal Cord Motor Neuron Derivation Analysis 

We obtained 10x scRNA-seq UMI count data and annotation of developing mouse spinal cord 

from https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7320/ (Delile et al., 2019), 

including a total of 38,976 cells. We removed unannotated cells and built a high-resolution 

reference for each cell type at each developmental stage (E9.5 to E13.5), resulting in a total of 

118 cell types (19 types for E9.5, 26 for E10.5, 26 for E11.5, 25 for E12.5, 22 for E13.5). We 

also included embryonic stem cells from the MCA (X. Han et al., 2018). We obtained the InDrop 

single-cell dataset for in vitro spinal cord motor neuron derivation from GSE97391 (Briggs et al., 

2017). The in vitro datasets were processed and clustered using Seurat (Butler et al., 2018; Satija 

et al., 2015). From processing, we included 7,860 genes and 7,799 genes in the dataset of 1,984 

cells and 2,720 cells in direct programming (DP) and direct differentiation (DD), respectively. 

We analyzed ESCs from each protocol separately.  Following preprocessing, we applied QP 

using the high-resolution reference on four datasets, including two ESC populations, DP and DD. 

Based on the identity score matrices, we categorized them into discrete, hybrid, and unknown, 

calculated the empirical p-value matrices, performed binarization and classification. Cells with 

discrete identities were separated to calculate the composition in the ventricular zone and mantle 

zone. The ventricular zone also included the neural crest neurons and mesoderm lineage. Hybrid 

cells were filtered and refined, as described in the above hematopoiesis section. With the QP 

scores attached to each identity in the mixed set, we calculated the transition scores for the cell 
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states involved, as described in the transition scoring section. We compared transition scores 

between different timepoint via a one-sided Wilcoxon test. 

(6) Biddy et al. (2018) MEF to Induced Endoderm Progenitor Analysis 

We processed scRNA-seq data of induced endoderm progenitor (iEP) reprogramming, as 

previously described (Biddy et al., 2018). In brief, Scater was used to normalize (McCarthy et 

al., 2017) the data across time points, and Seurat (Butler et al., 2018; Satija et al., 2015) was used 

to integrate biological replicates, perform clustering, and visualize cells using t-SNE. We 

performed tissue-level classification using ARCHS4 (Lachmann et al., 2018), as described in 

previous sections, highlighting the involvement of 9 potential tissues, containing a total of 73 cell 

types. Following the construction of a high-resolution reference, we performed preprocessing on 

the reference and the sample, on which we then applied QP to generate the identity score 

matrices. Further, we categorized them into discrete, hybrid, and unknown, calculated the p-

value matrices, and performed binarization and classification. We calculated the percent 

composition of each cell type. Cells with hybrid identities were filtered as described in the above 

hematopoiesis section, represented by more than 0.5% cells of the population. 

We obtained scRNA-seq data of biliary epithelial cells (BECs) and hepatocytes, before 

and after injury, from GSE125688 (Pepe-Mooney et al., 2019). We built a custom high-

resolution reference by incorporating additional tissues from the MCA: fetal liver, MEFs, and 

embryonic mesenchyme. The long-term iEPs were cultured for 12 months before collection and 

processing. We had previously used these cells to engraft mouse colon (Guo et al., 2019; Morris 

et al., 2014). The long-term iEP dataset was processed, filtered, and clustered using Seurat, 

resulting in 2,008 cells. We then constructed the high-resolution reference panel with 20 cell 

types and performed preprocessing on the reference and single-cell sample. Application of QP 
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using the processed reference and long-term iEP and iEP reprogramming datasets provides us the 

continuous metric of identity scores, from which we carried out initial classification, 

binarization, and classification. Gene expression was compared between groups via Wilcoxon 

test. 

10x alignment, digital gene expression matrix generation.  

The Cell Ranger v5.0.1 pipeline (https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest) was used to align reads, process, and filter data generated 

using 10x Chromium single-cell gene expression platform. Following this step, the default Cell 

Ranger pipeline was implemented to generate the filtered output data for downstream analysis. 

scRNA-seq Data Processing 

To process and analyze scRNA-seq data, we used the R package, Seurat V4, following the 

tutorial (https://satijalab.org/seurat/articles/pbmc3k_tutorial.html). Briefly, each sample was pre-

processed based on RNA counts and mitochondria percentages and then normalized. The highly 

variable genes were then identified, followed by scaling and dimensional reduction via PCA. 

With the selected number of components, graph-based clustering and UMAP plotting were 

further performed.  

(1) Cardiac Reprogramming 

When comparing our data with Stone et al., 2019, the data were integrated using canonical 

correlation analysis and mutual nearest neighbor with the Seurat V4 pipeline (Butler et al., 2018; 

Stuart et al., 2019). The similarity between the dataset was evaluated based on cosine similarity 

between the cluster representation in the two datasets.  
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(2) In Vitro Motor Neuron Programming and iEP Reprogramming 

To evaluate reproducibility, datasets for each treatment were integrated across the two biological 

replicates following the same process described above. The integrated Seurat objects were 

further integrated to evaluate the effect of different treatment groups. 

scRNA-seq Data Capybara Analysis 

With the tissues identified from the corresponding publicly available dataset, we started from 

step 2 of the Capybara pipeline for the single-cell RNA-sequencing data we generated for this 

study. Using the raw counts, we performed preprocessing on the reference and the sample, on 

which we then applied QP to generate the identity score matrices. Further, we categorized them 

into discrete, hybrid, and unknown, calculated the p-value matrices, and performed binarization 

and classification. We calculated the percent composition of each cell type. Cells with hybrid 

identities were filtered as described in the above hematopoiesis section, represented by more than 

0.5% cells of the population. 

2.6.3  Experimental Methods 

Reprogramming Virus Production 

The retrovirus for cardiac and induced endoderm progenitor (iEP) reprogramming was freshly 

prepared. 293T cells (RRID:CVCL_1926) were maintained and passaged in fibroblast media 

(10% FBS, 1x penicillin-streptomycin, 1x -Mercaptoethanol, in DMEM). 293T cells were seeded 

at a density of 3 million per 10-cm plate the day before transfection. The following day, the cells 

were transfected with pMX-MGT (RRID:Addgene_111810) or pGCDN-Sam-Hnf4-t2a-Foxa1 

with 5g of pCL-Eco (RRID:Addgene_12371), using X-tremeGENE 9 DNA transfection reagent 

(Sigma, 6365779001) according to the manufacturer's instructions. Media was replaced with 
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fresh fibroblast media the following day. Retrovirus was harvested the next day by taking the 

supernatant from the transfected plate and filtered through a 45- m syringe filter. 500x protamine 

sulfate was added to the viral media prior to transduction of the mouse cardiac fibroblasts 

(cardiac) or mouse embryonic fibroblasts (iEP). 

Cardiomyocyte Reprogramming 

Direct cardiac reprogramming was performed using primary cardiac fibroblasts derived from a 

postnatal day 2 CD1 Mouse (ScienCell, Catalog #M6300) following previously published 

protocols (Ieda et al., 2010; Qian et al., 2013; Stone et al., 2019). Briefly, cardiac fibroblasts 

(MCFs) were cultured overnight on gelatin-coated plates in Fibroblast Medium-2 (ScienCell, 

Cat. #2331). MCFs were passaged 1-2 times, cultured for ~5 days for expansion, and prepared 

for selection of Thy1+ (RRID:AB_273503) cells by MACS. After sorting, MCFs were plated at a 

density around 100k~200k per 6-cm dish pre-treated overnight with gelatin (day -1). Thy1+ 

MCFs were infected with freshly harvested pMX-MGT retrovirus (L. Wang et al., 2015) (day 0). 

The viral media was replaced with fresh cardiomyocyte media (10% M199, 10% FBS, 1% 

NEAA, 1% sodium pyruvate, 1x penicillin-streptomycin, 1x Glutamax, in DMEM) containing 

2.6M SB431542 (Cayman Chemical, Catalog #13031) or DMSO as a vehicle control (day 1). 

5M XAV939 (Cayman Chemical, Catalog #13596) or DMSO was added to the plate without 

media change (day +1). The media was replaced with fresh cardiomyocyte media two days after 

the last addition of small molecule (day +3). Media was renewed every 2~3 days. The cells were 

collected, filtered through a 70m strainer, resuspended in 1% BSA in PBS, and counted on Day 

14 for scRNA-seq (see below). 
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Immunostaining for day 14 Reprogrammed Cells in Cardiac Reprogramming 

Mouse cardiac fibroblasts were generated as described above. On day 13 of the reprogramming 

process, the cells were transferred to 4-Chamber Culture Slides (Falcon). On the next day, the 

cells were rinsed with 1x DPBS and fixed in 4% paraformaldehyde for 20 minutes at room 

temperature. The samples were then washed with 1x DPBS three times, permeabilized, and 

blocked with blocking buffer (0.2% TritonX-100 and 3% FBS in DPBS) for an hour. The 

primary antibodies, MYL2 (RRID:AB_10563535) and MYL7 (RRID:AB_10848272), were 

diluted 1:250 (MYL2 and MYL7) in the blocking buffer. The blocking buffer was then removed 

from the sample, and the primary antibodies were added. The samples were incubated with the 

primary antibody at 4°C overnight (12hr). The samples were then washed for 5 minutes three 

times. The secondary antibodies, Alexa Fluor 546 Goat Anti-rabbit IgG (RRID:AB_2534093) 

and Alexa Fluor 488 Goat Anti-mouse (RRID:AB_2534088), were diluted 1:1000 in the 

blocking buffer. The secondary antibodies were added and incubated at 4°C overnight (12hr). 

The samples were washed again for 5 minutes, three times. 100 l of 300 nM DAPI (Invitrogen) 

was added to each slide chamber and incubated at room temperature for 1 minute. The samples 

were washed for 5 minutes three times. In the last wash, we aspirate all the DPBS and remove 

the chamber from the slides. A coverslip was then applied with ProLong Gold Antifade 

Mountant (Invitrogen). The slides were imaged using an Olympus FV1200 Confocal Microscope 

with 10x, 20x, and 40x water objectives. The number of positive cells was counted in each 

channel using ImageJ with “Analyze Particles” function. The total number of cells was 

determined based on the DAPI counts. 
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RNA Fluorescent in Situ Hybridization 

On day 13 of mouse cardiac reprogramming (above), the cells were transferred to 4-Chamber 

Culture Slides (Falcon). The next day, cells were rinsed with 1x DPBS and fixed with 10% 

Neutral Buffered Formalin for 30 minutes at room temperature. RNAscope Multiplex 

Fluorescent v2 kit (Advanced Cell Diagnostics) was used to perform RNA-FISH to probe Myh6 

and Myh7 mRNA, following the protocol for cultured adherent cell samples. Briefly, the slides 

were treated with hydrogen peroxide and RNAscope protease III (Advanced Cell Diagnostics). 

Then, the slides were incubated to hybridize with the specified probes using the RNAscope 

HybEZ II Oven (Advanced Cell Diagnostics). Probes were then amplified, and the HRP signal 

was developed using the TSA Fluorescein Plus Evaluation Kit. Finally, DAPI (Advanced Cell 

Diagnostics) staining was applied to the slide, and a coverslip was then applied with ProLong 

Gold Antifade Mountant (Invitrogen). The slides were imaged using an Olympus FV1200 

Confocal Microscope with 40x and 60x water objectives. Images were then analyzed using 

computational quantification: RNA-FISH images were first processed through ImageJ to ensure 

the same maximum intensity across images. Through ImageJ, individual cells were segmented 

into smaller regions. All three channels of each selection were stored for further processing with 

a custom R script to quantify intensity at single-cell resolution. Individual cells were read in as 

individual matrices, where averaged green and red intensity were calculated and compared. 

Motor Neuron Programming from mouse ESC 

The NIL (Ngn2-Isl1-Lhx3)-V5 inducible ESC line was previously described (Mazzoni et al., 

2013b). All the inducible ESC lines were grown in 2-inhibitors medium (Advanced 

DMEM/F12:Neurobasal (1:1) Medium (Gibco), supplemented with 2.5% ESC-grade fetal 
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bovine serum (vol/vol, Corning), N2 (Gibco), B27 (Gibco), 2mM L-glutamine (Gibco), 0.1 mM 

β-mercaptoethanol (Gibco), 1000 U/ml leukemia inhibitory factor (Millipore), 3µM CHIR 

(BioVision) and 1 µM PD0325901 (Sigma). To obtain Embryoid bodies (EBs) ESC were 

trypsinized (Gibco) and 3 x 105 cells were plated in each 100 mm dish in AK medium 

(Advanced DMEM/F12:Neurobasal (1:1) Medium, 10% Knockout SR (vol/vol) (Gibco), 

Pen/Strep (Gibco), 2mM L-glutamine and 0.1 mM 2-mercaptoethanol) (day -2).  After 48 hr, 

EBs were passed 1:2, and the inducible cassette was induced by adding 3 µg/ml of Doxycycline 

(Sigma) and/or 1 μM all-trans retinoic acid and/or 0.5 μM smoothened agonist (SAG) (Millipore, 

566660). Differentiating EBs were washed three times with PBS, dissociated with Trypsin, and 

pipetted into single-cell suspensions. After 48 hr, cells were preserved in methanol (Alles et al., 

2017) before processing for single-cell profiling (below).  

Long-term iEP culture 

Mouse Embryonic Fibroblasts were derived from the C57BL/6J strain 

(RRID:IMSR_JAX:000664). All animal procedures were based on animal care guidelines 

approved by the Institutional Animal Care and Use Committee. Mouse embryonic fibroblasts 

were reprogrammed to iHeps/iEPs, as in Sekiya and Suzuki (2011). Briefly, fibroblasts were 

prepared from E13.5 embryos and serially transduced with polyethylene glycol concentrated 

Hnf4�-t2a-Foxa1, followed by culture on gelatin for two weeks in hepato-medium (DMEM:F-

12, supplemented with 10% FBS, 1 mg/ml insulin (Sigma-Aldrich), dexamethasone (Sigma-

Aldrich), 10 mM nicotinamide (Sigma-Aldrich), 2 mM L-glutamine, 50 mM -mercaptoethanol 

(Life Technologies), and penicillin/streptomycin, containing 20 ng/ml hepatocyte growth factor 

(Sigma-Aldrich), and 20 ng/ml epidermal growth factor (Sigma-Aldrich)), after which the 

emerging iEPs were cultured on collagen and passaged twice per week for three months.  
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Matrigel Sandwich Culture of Long-term iEPs 

We adapted the culturing methods in Ogawa et al., 2015 and Okabe et al., 2009. Briefly, 70% 

Matrigel in DMEM was added as a bottom layer to the plate, 96-well glass-bottom plate (20 l) or 

glass-bottom 35mm -Dish (100 l; iBidi) or 6-well plate (100 l). The bottom layer was allowed to 

solidify at 37°C for 30 minutes. Long-term iEPs were dissociated using 0.05% Trypsin-EDTA 

(diluted from 0.25%; Gibco, Cat #: 25200056). The cells were resuspended in pre-chilled OVM-

medium (William’s E medium, supplemented with 10% FBS, dexamethasone, 10 mM 

nicotinamide, 2 mM L-glutamine, 0.2 mM ascorbic acid, 20 mM HEPES, 1% 

penicillin/streptomycin, 1% sodium pyruvate, 0.15% of 7.5% sodium bicarbonate, 14 mM 

glucose, containing 1x ITS-X (Gibco), 20 ng/ml hepatocyte growth factor (Sigma-Aldrich), and 

20 ng/ml epidermal growth factor (Sigma-Aldrich)). The top layer was prepared with 40% 

Matrigel, with1.2mg/ml Collagen Type I (Gibco, stock of 3mg/ml), mixed with 20k cells for 

each well of 96-well plate, or 80k for each well of a 6-well plate. After 30 minutes, the top layer 

was added to the plate and allowed to solidify and set in the incubator for 45 minutes. After the 

top layer solidified, pre-warmed OVM medium was added. The medium was changed every 

other day. After five days of gel culture, the cells were imaged and processed for single-cell 

RNA-sequencing. 

iEP Preparation from Matrigel Culture for Single-Cell Profiling 

Cells in 3D gel-culture were dissociated using a combination of Type I Collagenase (Gibco; 100 

l of 500 mg/ml Type I Collagenase in 1 ml of OVM) and 1ml of Gentle cell dissociation reagent 

(STEMCELL Technologies). Briefly, the medium was carefully pipetted off, and 1 ml of enzyme 

mix was added to each well of the 6-well plate. The plate was incubated at 37°C for 10 minutes. 
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The partially dissociated gel was collected into a 15-ml Falcon tube, further mixed on a rocker 

for 15 minutes at room temperature. The cells were then pelleted at 300xg for 5 minutes and 

washed with 1ml HBSS. The solution was passed through a 27-gauge needle using a 3 ml 

syringe. The cells were counted, centrifuged, resuspended in 0.04% BSA in 1x DPBS, and 

passed through a 70 m cell strainer before loading onto the 10x Chromium Single Cell Chip. 

Immunofluorescence Staining of Branching iEPs 

3D-cultured iEPs were cultured in 96-well glass-bottom plate or glass-bottom 35mm -Dish for 

imaging. The cells ready for immunostaining was washed with 1x DPBS three times and fixed 

overnight in 4% paraformaldehyde at 4°C. The fixed sample was then washed twice with 1x 

DPBS for 15 minutes, permeabilized, and blocked with blocking buffer (0.2% TritonX-100 and 

3% FBS in DPBS) for 10 minutes at room temperature. The primary antibodies, EpCAM 

(RRID:AB_394370) and CK19 (RRID:AB_2281020), were diluted at 1:100 (EpCAM) and 

1:200 (CK19) in the blocking buffer. The samples were incubated with the primary antibodies at 

4°C overnight (12hr). The sample was then washed for 15 minutes three times. Secondary 

antibodies Alexa Fluor 546 Goat Anti-rabbit (RRID:AB_2534093), and Alexa Fluor 647 Goat 

Anti-rat IgG (RRID:AB_141778), were diluted 1:500 (Alexa Fluor 546 and Alexa Fluor 647) in 

the blocking buffer. 50 l of 300 nM DAPI (Invitrogen) was added with the secondary antibodies 

and incubated at 4°C overnight (12hr). The samples were washed again for 15 minutes three 

times. Cells in 96-wells were imaged as 3D z-stack images using Zeiss LSM 880 Confocal with 

Airyscan with 40x air objective. Samples in the 35-mm dish were transferred to a slide, covered 

with a coverslip with ProLong Gold Antifade Mountant (Invitrogen), and imaged using an 

Olympus FV1200 Confocal Microscope with 40x water objective. Representative images were 

chosen.  
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Single-cell profiling 

For single-cell library preparation on the 10x Genomics platform, we used: the Chromium Single 

Cell 3′ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3′ Chip kit v2 (PN-

120236), and Chromium i7 Multiplex Kit (PN-120262), according to the manufacturer’s 

instructions in the Chromium Single Cell 3′ Reagents Kits V2 User Guide. Prior to cell capture, 

methanol-fixed cells were placed on ice, then spun at 3000rpm for 5 minutes at 4°C, followed by 

resuspension and rehydration in PBS, according to Alles et al., 2017. 17,000 cells were loaded 

per lane of the chip, aiming to capture 10,000 single-cell transcriptomes. The resulting cDNA 

libraries were quantified on an Agilent Tapestation and sequenced on an Illumina HiSeq 2500. 

For analysis of cardiomyocyte reprogramming, The Chromium Single Cell 3’ (v2) Reagent Kits 

(PN-120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq libraries, 

according to manufacturer’s guidelines. Libraries were pooled and sequenced on an Illumina 

NextSeq 550. For motor neuron programming, prior to loading the 10x chip, methanol-fixed 

cells were counted, spun, resuspended in 1% BSA in PBS, and counted again, according to 10x 

Genomics methanol fixation protocol. The Chromium Single Cell 3’ (v2) Reagent Kits (PN-

120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq libraries, according 

to manufacturer’s guidelines. Libraries were pooled and sequenced on an Illumina NextSeq 550. 
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2.7 Detailed Figure Legends 

Figure 2.1: Previous Applications of Quadratic Programming (QP). (A) Continuous identity 

score measuring at different time points during MEF to iEP reprogramming using previously 

available microarray data (Sekiya & Suzuki, 2011). (B) Using the identity scores, single-cell data 

was labelled from fibroblast state to the reprogrammed states. (C) Continuous identity score 

measuring of epithelial cells from the small intestine using a reference constructed from a single-

cell survey of the epithelium of mouse intestine (Haber et al., 2017). (D) Using the identity 

scores, single-cell data was labelled of different cell populations in the intestine. (E-F) Gradual 

identity measures of hematopoietic stem/progenitor cell development from fetal to adult state. 

(G) Continuous identity score measuring at different time point during fibroblast to neuron 

reprogramming with microRNAs.  

Figure 2.2: Overview of the Capybara Workflow. Four major steps of the Capybara 

workflow: 1) tissue-level classification; 2) continuous identity measurement; 3) initial 

classification; 4) discrete cell type classification. In brief, we first perform tissue-level 

classification to restrict the number of reference cell types in the downstream analysis. We 

further identify the correlated tissues in a single-cell atlas, such as the Mouse Cell Atlas (MCA; 

(Han et al., 2018)). Using only the highly correlated tissues, we build a high-resolution reference. 

Application of quadratic programming (QP) provides a continuous measure of cell identity as a 

linear combination of all cell types within the reference. With the quality metrics from QP, we 

perform an initial classification to categorize the sample cells into discrete, hybrid, or unknown 

identities. Lastly, cells with discrete or hybrid identities are mapped to their corresponding cell 

types using a statistical framework. 
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Figure 2.3: QP Metric Demonstration and Tissue-Level Reference Validation. (A) 

Distributions of quadratic programming metrics, including error, Lagrangian multiplier, and 

deviance. Black line represents the distribution of these metrics in the reference. Other lines 

represent the ideal distributions for discrete, hybrid, and unknown, which are modeled based on 

the reference metrics. Assuming each cell in the reference has a discrete identity, the ideal 

distribution of deviance for discrete cells is modeled based on the reference identity scores. The 

ideal distribution of deviance for hybrid is constructed as 2 standard deviations shifted to the left 

from the one for discrete, and the deviance distribution for unknown is 2-standard-deviation 

shifted to the left from the one for hybrid. (B) Correlation heatmap of bulk expression between 

each pair of the 30 identified tissues from ARCHS4. The bulk expression is the logged reads per 

kilobase per million (RPKM). The RPKM was calculated as the average of the 90 samples 

selected for each tissue (See Methods). The color of each square denotes the correlation between 

tissues, where a lighter color indicates a higher correlation. 

Figure 2.4: Benchmarking of Capybara using Established Pipeline and in-house Cross-

Validation. (A) Evaluation using five human pancreatic datasets and the Allen Mouse Brain 

atlas against ten other classifiers, using an established benchmarking pipeline (Abdelaal et al., 

2019). The performance of the classification was evaluated by the area under the receiver 

operating characteristic (AUROC) and the mean total time in seconds. The color of each square 

labels the assessment of each aspect. (B) Cross-validation using Tabula Muris processed with 

10x droplet-based or Smart-seq2 technologies. In this evaluation, 90 cells were sampled from 

each cell type of each tissue to construct the high-resolution reference. Sample cells used for 

reference construction were used as training sets for scMap and SingleCellNet. The remaining 

cells were used as test samples. The performance was evaluated by AUROC scores. 
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Figure 2.5: Validation of Capybara for Datasets generated from Different Single-Cell 

Platforms. Cross-platform validation between Baron et al., 2016 (InDrop) and Muraro et al., 

2016 (CEL-Seq2). Left: Proportions of cells mapping between Capybara classification and the 

original annotation. A lighter color indicates a higher percentage agreement. Right: Log-

normalized expression levels of marker genes across classified cell types, calculated using 

Seurat. The marker genes were identified from Baron et al., 2016. Gamma cells: PPY, SERTM1, 

CARTPT; Activated stellate cells: PDGFRA; Acinar cells: REG3A, PRSS1, CPA1; Ductal cells: 

KRT19.  

Figure 2.6: Simulation Study for Proof of Concept. (A) Design of the simulation study with 

Splatter. Differentiation of single cells is simulated from the progenitor state to two end states. 

Further, from end-state #2, cell differentiation into two other end states is simulated. Red Node: 

Test cells; Black Node: Cells to build the reference. (B) Pseudotime presentation of the 

simulated single-cell dataset with different states marked in circles. (C) Expected classification 

outcomes using the simulated single-cell dataset. (D) Heatmap comparing the result from 

Capybara to the ground truth as designed with color showing percentage matched. The transition 

state is mapped with a hybrid classification; end states are mapped with corresponding discrete 

identities; unknown cell types are correctly identified. (E) Classification of the simulated dataset 

(described in Figure 1) using scMap with cell or cluster mapping. The color of each square labels 

the percentage of the actual annotation mapped to each scMap annotation. 

Figure 2.7: Application of Capybara to Classify Hematopoietic Cell Identity. We first 

applied Capybara analysis to a well-characterized cell differentiation paradigm: hematopoiesis. 

(A) Stepwise cell-type classification of an existing hematopoiesis dataset (Paul et al., 2015), 
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consisting of 2,730 myeloid progenitors. 1) Tissue-level classification identifies three major 

tissues, including bone marrow, primary mesenchymal stem cells, and peripheral blood; 2) Using 

the higher resolution MCA reference, the main cell types correspond to two primary tissues: 

bone marrow and peripheral blood; 3) Initial classification places cells into discrete, hybrid, and 

unknown identity categories; 4) Cells are mapped to discrete and hybrid cell types. ‘Prog’: 

Progenitor; ‘MPP/HSPC’: Multipotent Progenitors/Hematopoietic Stem and Progenitor Cell. 

‘Other’: includes basophils, eosinophil progenitors, B cell progenitors, macrophages, dendritic 

cells, and NK cells. (B) PAGA embedding of the myeloid progenitor dataset. ‘FA’: Force Atlas. 

(I) Manual annotation of clusters, based on Paul et al., 2015 and Wolf et al., 2019. ‘DC’: 

Dendritic Cell; ‘MEP’: Megakaryocyte and Erythroid Progenitor; ‘Ery’: Erythroid; ‘Lymph’: 

Lymphoid; ‘GMP’: Granulocyte and Monocyte Progenitor. (II) Projection of the major 

Capybara-classified populations. (C) Heatmap comparing Capybara classifications to the manual 

annotations. Color denotes the percentage matched. (D) Comparison of log-normalized 

expression between classified cell types and other cells. The following genes are used as key 

markers for different populations: MPPs: Cd34; Megakaryocytes: Itga2b; Neutrophils: Cebpe; 

Monocytes: Csf1r; Erythrocytes: Car2. A Wilcoxon test was used for significance testing (****: 

P <=0.0001). 

Figure 2.8: Evaluation of Hematopoietic Hybrid Cells against Pseudotime. (A) Diffusion 

pseudotime analysis projected onto the PAGA embedding. (B) Pseudotime for each cell type. 

MPP/HSPC classified cells, representing early cell states in the hematopoietic lineage, are 

associated with the lowest pseudotime values. (C) Projection of the major hybrid population, 

‘erythrocyte progenitor–erythroblasts,’ along with discrete erythrocyte progenitors and 

erythroblasts onto the erythroid lineage. (D) Comparison of pseudotime between the hybrid and 
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discrete identities shown in (C). (E) Top: Projection of the classified hybrid cell populations on 

the PAGA-guided clustering, along with their corresponding discrete identities. Bottom: 

Comparison of pseudotime between hybrids and their discrete identity counterparts. A Wilcoxon 

test was used for significance testing. (F) PAGA-guided clustering of the Paul et al. dataset, 

consisting of a total of 2,730 myeloid progenitors enriched from mouse bone marrow, revealing a 

total of 24 clusters. PAGA connectivity links the clusters containing hybrid cells, as expected, 

but does not pinpoint the hybrid state. (G) Correlation between log (PAGA connectivity scores) 

and log (transition scores). 

Figure 2.9: Evaluation of hybrid cells using ground-truth lineage tracing. (A) Schematic of 

the Weinreb 2020 hematopoietic lineage-tracing dataset. Hematopoietic progenitor cells were 

isolated, barcoded at Day 0, and first collected for scRNA-seq at Day 2. The cells were then 

cultured under myeloid differentiation conditions and collected at Days 4 and 6 for scRNA-seq. 

The barcode captured from the single-cell transcriptome allows the capture of clonally related 

cells. Thus, we can test whether hybrid cells possess significant multi-lineage potential using this 

dataset. (B) Major hybrid populations identified by Capybara. (C) Cell-type composition of cells 

clonally related to major hybrid cell types. Upper row: Cell-type distribution of the overall 

population. Lower rows: Average cell-type breakdown for all clonal relatives of each major 

hybrid cell population. For example, clonal relatives of Monocyte-neutrophil hybrids are 

significantly enriched for discrete Neutrophil, Monocyte, and hybrid Monocyte-neutrophil 

populations (*: P <= 0.05, n.s.: P > 0.05, randomization test; 24 +/- 4 cells per clone, 10 clones, 

243 cells). (D) State-fate analysis: Detailed breakdown of populations across timepoints. We 

identified clones composed of discrete or hybrid identities at Day 4 and assessed the cell-type 

composition of their differentiated clonal relatives at Day 6. The top two rows represent the day 
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6 clonal relatives derived from day 4 lineage-restricted clones. The bottom row represents day 6 

clonal relatives derived from day 4 clones containing hybrid cells. Significant population 

enrichment is assessed using a randomization test (*: P <= 0.05). (E) SPRING projection of cells 

related to monocyte- or neutrophil-restricted clones and monocyte-neutrophil hybrid clones. 

Figure 2.10: Discrete Identities in Ground-Truth Lineage Tracing Dataset and Comparison 

to Previous Identified bistable states. A) Manual annotation of the major differentiated cell 

populations identified from the Weinreb et al., 2020 hematopoiesis lineage tracing dataset, 

projected onto the SPRING embedding. (B) Comparison between Capybara classification and 

the manual annotation. We selected the major differentiated myeloid cell types, including 

basophils, eosinophils, mast cells, monocytes, and neutrophils, as a reference. Cell types not 

included in the reference are correctly identified as ‘Unknown.’ 95.1% of cells with unknown 

identities are labeled as undifferentiated in the original Weinreb et al. annotation. The color of 

each square denotes the percentage agreement between the manual and Capybara-based 

annotations. (C) Integrative analysis of monocyte-neutrophil hybrids, monocytes, neutrophils 

(identified by Capybara), and IG2 and GMP cells (identified in Olsson et al., 2016). IG2 cells 

have the potential to differentiate into monocytes or granulocytes. To evaluate monocyte-

neutrophil hybrids, we used Seurat V4 to integrate monocytes, neutrophils, and monocyte-

neutrophil hybrids with the IG2 and GMP population, showing the overlap between monocyte-

neutrophil hybrids and the IG2 population. (D) The color of each square denotes the percentage 

of each population in each cluster. (E) Cosine similarity of percentage cluster representations 

across all populations, showing the highest similarity between monocyte-neutrophil hybrids and 

the IG2 population. (F) Left: PAGA-guided clustering of the Weinreb dataset, revealing a total of 

15 clusters, along with calculated connectivity between these clusters. Right: Projection of 
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Weinreb annotations onto the PAGA-guided clustering and lineage analysis. We identified 

cluster 3 as discrete monocytes, cluster 7 as discrete neutrophils, cluster 8 as discrete basophils, 

and cluster 14 as discrete mast cells. The most connected clusters were then identified based on 

the connectivity plot to test if they are lineage-restricted using clonal data. A randomization test 

was used for testing the significant enrichment of populations on day 6 (*: P <=0.05) 

Figure 2.11: Transition Scores and Its Validation. (A) Schematic of the principles underlying 

Capybara’s transition metric. Squares represent discrete cell identities. Circles represent cells 

with hybrid identities.  represents the probability of cell i transitioning to cell type j. Then, we 

calculate the transition score of each cell type as the accumulated information received from each 

cell connection. (B) Demonstration of transition scores using the mouse gastrulation atlas 

(Pijuan-Sala et al., 2019), embryonic stem cell (ESC) dataset (Briggs et al., 2017), and 

cardiomyocyte dataset (Stone et al., 2019). Transition scores decrease as development progresses 

during mouse gastrulation. ESCs under maintenance conditions demonstrate low transition 

scores as they are not actively differentiating. On the other hand, cardiomyocytes show low 

transition scores as they are terminally differentiated. (****: P <= 0.0001, ***: P <= 0.001, **: P 

<= 0.01, *: P <= 0.05, Wilcoxon test). (C) Comparison between RNA velocity and Capybara 

transition scores in cardiac reprogramming (Stone et al., 2019). RNA velocity vectors projected 

onto the UMAP embedding (Square: area containing a small number of moving vectors; Circle: 

area containing a large number of moving vectors). Middle: Transition scores projected onto the 

UMAP embedding (Square: area corresponding to the RNA velocity plot showing low transition 

scores; Circle: area corresponding to the RNA velocity plot showing high transition scores). (D) 

correlation between log (velocity vector counts) and log (transition scores). 
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Figure 2.12: Capybara Analysis of Direct Cardiac Reprogramming. (A) Stone et al., 2019 

experimental design: Cardiac fibroblasts were harvested from neonatal mice. Three transcription 

factors, Mef2c, Gata4, and Tbx5 (MGT), were overexpressed via retroviral transduction (Day -

1), followed by the addition of TGFb inhibitor (Day 0) and Wnt inhibitor (Day 1). 

Reprogrammed cells were collected on days -1, 1, 2, 3, 7, and 14 for scRNA-seq. (B) Initial 

tissue-level classification of this dataset reveals four major tissues, which the high-resolution 

atlas restricts to two major tissues with the higher-resolution reference. (C) Discrete, hybrid and 

unknown cell composition. Top: Capybara classified cell type composition over the time course. 

The dot size is proportional to the discrete population size. Bottom: Hybrid cell identities of cells 

after 14 days of reprogramming. (D) UMAP plot of the cardiac reprogramming dataset. Top: 

Collection time points projected onto the UMAP embedding; Bottom: Projection of the two 

major target populations: atrial and ventricular cardiomyocytes. (E) Normalized gene expression 

of cardiac markers labeling atrial vs. ventricular cardiomyocytes (****: P <=0.0001, Wilcoxon 

test). 

Figure 2.13: Transition Scores and Hybrid Identities of Direct Cardiac Reprogramming. 

(A) Transition scores across the cardiac reprogramming process (****: P <= 0.0001, ***: P <= 

0.001, **: P <= 0.01, *: P <= 0.05, Wilcoxon test). (B) Breakdown of cell types listed as “Other” 

in Figure 4. (C) Detailed hybrid cell-type breakdown for each time point of the cardiac 

reprogramming time course. (D) Integration of 10x dataset generated in this study with days 7 

and 14 from the Stone et al., 2019 dataset, Cosine similarity = 0.804 between the independent 

studies. Bottom right: Projection of the two major cardiomyocyte populations, atrial and 

ventricular cardiomyocytes, onto the integrated UMAP. (E) Detailed cell type and hybrid 

classification of our in-house reprogramming dataset (n = 5,107 cells, two independent biological 
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replicates). Note that in our experiment, the day 14 cells were not sorted for the cardiac reporter 

gene used in Stone et al., 2019. Left: Discrete cell-type composition. Right: Hybrid cell-type 

composition. 

Figure 2.14: Experimental Validation of Hybrid Cells using RNA FISH and 

immunostaining. (A) Normalized gene expression of Actc1 and Tnnc1 in the classified cells in 

the scRNA-seq data. (B) RNA FISH of cells expressing only Myh7 or Myh6. (C) RNA FISH for 

Myl4 (atrial) and Actc1, Tnnc1 (ventricular) showing discrete and hybrid cells. Scale bars = 

10mm. (D) Negative staining controls for RNA FISH and immunostaining. (E) 

Immunofluorescence for MYL7 (atrial) and MYL2 (ventricular) proteins showing cells 

expressing a single protein (discrete) or co-expressing both proteins (hybrids). (F) Left: 

Quantification of discrete cells identified from immunostaining and scRNA-seq. MYL7-

expressing cells are enriched relative to MYL2-expressing cells, confirming the atrial/ventricular 

bias observed from scRNA-seq data. Right: Hybrid cell percentages measured by RNA FISH, 

immunofluorescence, and scRNA-seq.  

Figure 2.15: Capybara Analysis of Spinal Motor Neuron Differentiation and Programming 

(Briggs et al 2017). (A) Differentiation vs. direct programming of motor neurons (MNs) from 

ESCs (Briggs et al., 2017). (B) Spinal cord domains and regions included in the reference atlas. 

(C) Capybara classification steps: with prior knowledge that these protocols aim to generate 

spinal motor neurons, we selected a single-cell spinal cord development atlas (Delile et al., 2019) 

as the high-resolution reference, omitting the general tissue selection step. We identified the 

major embryonic development stages corresponding to each protocol. (D) Cell type composition 

over the differentiation and programming time courses. Dot size is proportional to the discrete 
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population size. (E) UMAP plot of this dataset, divided by protocol (Direct Programming: DP; 

Directed Differentiation: DD). Top: Projection of time points onto the UMAP embedding. 

Bottom: Projection of major discrete cell types, as identified via Capybara analysis, onto the 

UMAP embedding. (F) Transition scores for each protocol across experimental time points 

(****: P <=0.0001, n.s. = not significant, Wilcoxon test). (G) Major hybrid populations in the 

direct programming and differentiation protocols. For each time point, we show the percentage 

of each hybrid type. 

Figure 2.16: Experimental Validation with Modulation of Retinoic Acid and Sonic 

Hedgehog in MN Reprogramming. (A) UMAP plot of the integrated datasets generated in this 

study, including four samples with different treatment groups. The major Capybara classification 

is labelled for each cluster. (B) All discrete and hybrid cell type compositions for each treatment 

group. (C) Top: Experimental design in this study. After 48 hr of embryoid body (EB) formation, 

we induced the original reprogramming cocktail (Ngn2, Isl1, Lhx3: NIL) with retinoic acid (RA) 

and/or smoothened agonist (SAG). Day 4 cells were collected for scRNA-seq (Cells profiled: TF 

only: 2,926; TF + Shh: 3,340; TF + RA: 2,828; TF + RA +Shh: 8,042; two independent 

biological replicates per condition). Bottom: Differentiated spinal cord neuron composition and 

percentage breakdown of dorsal-ventral populations for each treatment group (*: P <= 0.05, 

****: P <= 0.0001, randomization test). (D) UMAP plot of MN and dorsal populations 

comparing TF-only to TF + RA groups. (E) Major hybrid populations across treatment groups 

(****: P <= 0.0001, *: P <= 0.05; Two sample Chi-squared test). (F) Expression of the dorsal 

marker, Pou4f1, and motor neuron marker, Mnx1, comparing this study to the in vivo study 

(Delile et al., 2019). (G) Quantification of co-expressing cells in across treatment groups and in 

vivo (****: P <= 0.0001; Two sample Chi-squared test) 
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Figure 2.17: Capybara Analysis of fibroblast to induced Endoderm Progenitor (iEP) 

Reprogramming. (A) MEF to iEP reprogramming (Biddy et al., 2018). (B) Tissue-level 

classification of this dataset reveals seven major tissues. With the high-resolution reference, the 

relevant tissues narrow down to three major tissues. (C) Top: Discrete cell type composition over 

the time course. Dot size is proportional to the discrete population size. Bottom: Hybrid cell 

identity proportions of cells after 28 days of reprogramming. (D) Cell composition with a 

developmental atlas (Han et al., 2020; Nowotschin et al., 2019) or a combined regenerative liver 

atlas (Han et al., 2018; Pepe-Mooney et al., 2019). (E) Cell type composition of day 28 and long-

term cultured iEPs (n = 20,532 and 2,008 cells). (F) Cell-type classification using an expanded 

reference with embryonic populations. We selected a foregut organogenesis atlas (Han et al., 

2020) and a gut tube development atlas (Nowotschin et al., 2018). We combined the two 

references and performed Capybara analysis. 99.9% of cells were classified as ‘unknown.’ We 

then combined this endoderm development atlas with the regenerative liver atlas, where the iEPs 

were primarily classified as injured BECs. (C) Hybrid populations in day 28 and long-term iEPs. 

Figure 2.18: Experimental Validation of iEPs resembling injured Biliary Epithelial Cells. 

(A) Imaging of 2D and 3D-cultured iEPs. Left: Bright-field images and DAPI field of composite 

z-stack images. Right: Immunofluorescence images of DAPI, CK19, and EpCAM staining. (B) 

3D-rendering of a microscopy z-stack for 3D-cultured iEPs stained for DAPI, EpCAM, and 

CK19, demonstrating branching. (C) Quantification of the percentage of positively stained cells, 

with MEFs as a negative control (n = two independent biological replicates, two technical 

replicates each). (D) UMAP plot of our integrated 2D and 3D single-cell datasets with classified 

cell types labeled (Two independent biological replicates: n = 9,348 and 4,699 cells). (E) 

Discrete and hybrid cell type composition of iEPs in 2D and 3D cultures. (*: P <= 0.05, 
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randomization test). (F) Percentage of 2D- and 3D-cultured iEPs expressing Epcam, Cyr61 (P <= 

0.0001; Two sample Chi-squared test). (G) Expression of other BEC markers on the UMAP plot, 

including Krt19, Sox9, and Cftr. (H)  Module scores comparing identified injured BECs, 

MEF/Stromal cells (LT-iEP Dataset), and primary BECs (Pepe-Mooney et al., 2019). BEC 

markers used for module scores are identified from Verhulst et al., 2019. 
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3.1 Abstract 

The Waddington landscape depicts development as a unidirectional descent from a 

pluripotent state, down valleys toward defined cell identities. Lineage reprogramming, such as 

direct cardiac conversion, crosses the barrier between valleys, bypassing progenitor or stem cell 

states. These cell fate engineering strategies hold much promise for generation of clinically 

valuable cell types from mature somatic cells. However, current reprogramming protocols are 

inefficient, marked by low conversion rates and failure to fully recapitulate the properties of 

target cells. Insights into the mechanisms of reprogramming and trajectories leading to 

undesired, off-target identities will improve the efficiency and fidelity of this process.  

Cardiac reprogramming from non-myocyte donor cells to cardiomyocytes via exogenous 

expression of transcription factors (TFs), provides a promising approach to repair damaged heart 

tissue. Despite recent advances in cardiac reprogramming, its inefficiency and low fidelity 

hinders the clinical use of the resulting engineered cells.  Application of single-cell technologies 

together with epigenetic analyses has provided valuable insight into the reprogramming process. 

However, properties such as reprogramming trajectory – i.e., the transition of cells toward target 

or off-target identities, are often inferred from gene expression alone thus key information on the 

progression of cell fate conversion remains unknown. This is an important area of study, as 

lineage can provide answers to key questions in cardiac reprogramming, such as: 1) what 

molecular changes accompany transition states on the trajectory? 2) Are conversion trajectories 

stochastically or deterministically determined? Here, we apply methodologies in the Morris lab 

to resolve lineage relationships using CellTagging to find key regulatory transcription factors 

with CellOracle and evaluate the effect of small molecules on patterning biases using Capybara. 
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3.2 Introduction 

Heart disease is a leading cause of death worldwide. One of the key pathologies 

contributing to cardiovascular disease is the loss of functional cardiomyocytes, whose post-

mitotic nature limits regenerative potential (Ieda et al., 2010; Qian et al., 2012; Song et al., 

2012). Induced pluripotent stem cell (iPSC) reprogramming from somatic cells opened broad 

opportunities in direct differentiation of mature cardiomyocytes from a stem-cell like state 

(Takahashi & Yamanaka, 2006). Yet, the inefficient conversion to iPSCs along with limited 

differentiation to cardiomyocytes produces a heterogeneous population, hindering the clinical 

utility of these cells (Ieda et al., 2010). Recent advances in direct lineage reprogramming from 

somatic cells enable the generation of cardiomyocyte-like cells from fibroblasts with 

overexpression of three key transcription factors - Gata4, Mef2c and Tbx5 (GMT) (Ieda et al., 

2010; Qian et al., 2013; Song et al., 2012; Srivastava & Ieda, 2012). As a major building block of 

the heart making up of 50% of composition, cardiac fibroblasts have promise as an endogenous 

source of cells for reprogramming in vivo (Ieda et al., 2010; Qian et al., 2012). Though there 

have been continuous improvements in cardiac reprogramming protocols, the underlying 

molecular mechanisms driving this process remain unclear. Recent studies have elucidated 

important features of this cell fate conversion (de Soysa et al., 2019; Liu et al., 2017; Stone et al., 

2019; Y. Zhou et al., 2019). Single-cell transcriptomics has revealed that cells during early 

conversion transit through a bifurcation, with one route leading to reprogramming while the 

other becomes refractory to cardiac conversion (Y. Zhou et al., 2019). In support of this, in joint 

epigenetic and single-cell analysis, transition cells are found to determine their terminal fate in 

the first 24-48hr and take one of two paths, either to a cardiac destination or to a non-cardiac 
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identity resembling fibroblast or vascular developmental cell states (Stone et al., 2019). Analysis 

of chromatin landscape changes illustrates enhancers activated at early transition resemble 

mostly neonatal cardiac development, gradually moving toward postnatal and adult stages. This 

demonstrates that early reprogrammed cells adopt an immature identity, mimicking embryonic 

development, before specification and activation of mature cardiac enhancers toward an adult 

fate (Hashimoto et al., 2019).  

Most current studies rely on enrichment of reprogrammed cells using an a-Myosin 

Heavy Chain (a-MHC) reporter gene (Gulick et al., 1991), building a restricted lineage rather 

than a comprehensive map, where off-target identities and interactions between non-myocyte and 

reprogrammed cells may reside. Moreover, current trajectories leading to reprogrammed and off-

target identities are inferred from gene expression. Therefore, the molecular mechanisms 

underlying these trajectories are also inferred. A “ground truth” map of lineage, connecting cell 

ancestry via heritable cell labeling, has not been constructed for cardiac reprogramming, 

representing a critical gap in knowledge for direct cardiac conversion. Unraveling this 

comprehensive lineage map will help us gauge in vivo delivery of transcription factors or small 

molecules as putative drugs and to understand potential obstacles to generating functional 

cardiac tissue. As aforementioned, a key driver of cardiovascular disease is the loss or defect in 

functional cardiomyocytes, which could potentially be rescued via in vivo regeneration. 

To construct the “ground-truth” lineage map of this reprogramming process, we leverage 

CellTagging (Biddy et al., 2018; Kong et al., 2020), joint with single-cell sequencing across 

different time points to establish trajectories. Further, we apply nascent computational tools, 

including CellOracle (Kamimoto et al., 2020) and Capybara, developed in the Morris lab to 

identify potential transcription factors that could potentially promote or block successful 
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reprogramming outcomes. Lastly, via joint profiling of lineage, transcriptome, and chromatin 

accessibility, we attempt to characterize and compare the origins of successfully converted cells 

and learn the diverse outcomes from clonally related siblings during direct cardiac conversion. 

3.3 Results 

3.3.1  CellTagging: Simultaneous Capture of Lineage and Transcriptomics 

The rapid advancement of single-cell technologies opens broad opportunities in 

uncovering heterogeneity and mechanisms at a single-cell resolution. Yet, during a single-cell 

experiment, lineage relationships between cells are destroyed, hindering the mechanistic 

understanding of continuous biological processes, such as reprogramming. To reveal such 

relationships, we developed CellTagging, a combinatorial cell barcoding approach, enabling 

Figure Error! No text 
of specified style in 
document..19: 
Overview of the 
CellTagging System 
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Discovery in MEF to 
iEP Reprogramming. 
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parallel capture of clonal history and transcriptional changes with single-cell RNA sequencing.  

In brief, CellTagging labels the cells with an 8-nt heritable lentiviral-delivered barcode, 

where sequencing cell barcoding during biological processes allows us to construct a multilevel 

lineage tree (Figure 3.1A). Each delivery uses a distinct CellTag library that differs from each 

other based on a short motif right before the random CellTag region. This design allows us to 

demultiplex the cells after sequencing. We applied CellTagging to the direct reprogramming of 

mouse embryonic fibroblast to induced endoderm progenitors (iEPs). As this epithelial-like cell 

population has been shown to have both intestinal and hepatic potentials (Morris et al., 2014; 

Sekiya & Suzuki, 2011), it serves as a prototypical example of direct reprogramming, 

representing low efficiency and fidelity (Cahan et al., 2014; Guo & Morris, 2017; Morris et al., 

2014).  

In this experiment, initial CellTag library CellTagMEF was transduced into MEFs. After 

expansion for two days post transduction, the MEFs were split into two replicates for 

independent reprogramming via overexpression of transcription factors, Hnf4 and Foxa1 

according to previously reported protocols (Morris et al., 2014; Sekiya & Suzuki, 2011). At the 

end of 60-hour of transcription factor delivery, CellTagD3, a second barcode library, was 

delivered with a third round of CellTag delivery, CellTagD13, on day 13. During the time course 

of this reprogramming, a portion of cells was collected and fixed in methanol every three days in 

early reprogramming days (before d15) and every 7 days during the later days (day 21 and day 

28), while the remaining cells were replated for continued expansion and reprogramming. 

Single-cell RNA-seq was employed on all collected and fixed cells at the end of the experiments, 

following the 10x Genomics protocol. 
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In total, we recovered over 100k cells during this direct reprogramming protocol with 

CellTag barcoding information and transcriptomic profiles. The CellTag information was 

extracted, binarized, filtered, and processed for final computation of clonal or lineage 

relationships. Using randomized testing with this lineage information, we identified bifurcation 

trajectories with two terminals – one to successful conversion, expressing Apoa1 and Cdh1, and 

the other to a “dead-end”, where fibroblast gene expression is retained (Figure 3.1B). In 

addition, when investigating early CellTag labels, we found that clonally related cells from the 

same fibroblast ancestor populations, tend to follow the same trajectory of reprogramming, 

revealing early initiation of deterministic commitment to these trajectories.  

Construction of distinct trajectories led us to explore potential regulators that can enhance 

reprogramming, where we found that expression of a putative methyltransferase, Mettl7a1, was 

identified to associate with successful reprogramming. Previously, it has been reported that 

METTL3, which catalyzes N6-methyladenosine (m6A) modification of mRNA, plays a key role 

in stem-cell differentiation and reprogramming to pluripotency (Batista et al., 2014; T. Chen et 

al., 2015). We performed MEF to iEP reprogramming experiment with the addition of Mettl7a1 

into the cocktail and subjected the cells on day 14 to colony formation assays and single-cell 

RNA-sequencing. Colony formation assays demonstrate a two-fold increase in E-cadherin-

positive colonies by day 14. Analysis of single-cell RNA-sequencing revealed higher expression 

of Apoa1 and higher similarity to the successfully reprogrammed cells identified in the previous 

time course experiment (Biddy et al., 2018).  

To enable more streamlined discoveries using CellTagging, we developed a lineage 

reconstruction pipeline, CellTagR (https://github.com/morris-lab), to analyze CellTag data 

(Biddy et al., 2018; Kong et al., 2020a). In brief, CellTagR supports two different parts to 
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analyze CellTag. First, post generation of CellTag library, its complexity needs be accessed via 

sequencing to further produce an allow list for downstream design of the experiment and analysis 

of single-cell RNA-sequencing data. CellTags were extracted from FASTQ files, counted, and 

sorted to provide an allow list (Figure 3.2A). The allow list provides instruction for the design of 

the experiment to ensure the complexity of the single-cell CellTag library. Then, after generation 

of the single-cell RNA sequencing data, CellTags were extracted from filtered alignment files 

and further subject to UMI quantification and count matrix generation. The data was then 

filtered, binarized, corrected for errors, filtered with the allow list and metrics, and lastly used for 

clone calling and lineage construction (Figure 3.2B). 

Figure Error! No text of specified style in document..20: Overview of CellTagR pipeline and 
CellTag Indexing Strategy.  



128 
 

In an effort to alleviate batch effects introduced by differing sample preparation, 

CellTagging has been adapted for multiplexing of samples for high-throughput single-cell RNA-

sequencing. In brief, different CellTag barcodes can be delivered to distinct populations, 

enabling the separation via barcodes in the downstream analysis post-sequencing. In this manner, 

samples can be pooled for preparation and single-cell RNA-sequencing. CellTag information 

was extracted similarly as described above. With such information, we employed similar 

classification strategy as Capybara in the downstream analysis to classify cells into different 

groups based on their CellTag profile (Figure 3.2C). Using genetically distinct populations, 

CellTag Index-based multiplexing was shown to be accurate and efficient. In addition, as 

CellTags are heritable and lentivirus-delivered, CellTag Indexing demonstrates efficacy for long-

term live cell multiplexing, supporting cell tracking in a competitive transplant assay in vivo 

(Guo et al., 2019). 

Together, CellTagging has enabled us to build a quantitative map of direct iEP 

reprogramming and empowered us to identify key regulators to enhance reprogramming 

efficiency and fidelity. Next, we sought to deploy this system in the direct cardiac 

reprogramming system to build a comprehensive lineage map during this process. 

3.3.2  Successful recapitulation of direct lineage reprogramming with CellTag 

delivery 

To deploy CellTagging in cardiomyocyte reprogramming, we started to establish the 

reprogramming protocol in the lab, following previous established protocols (Qian et al., 2013). 

Cardiac fibroblasts were harvested from neonatal mouse hearts using an explant protocol 

(Methods). The cells attached and expanded for 7 days prior to the reprogramming experiment. 

We first sought to test via immunostaining to ensure successful recapitulation of this 
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reprogramming protocol in the lab. Transcription factors (TFs), Mef2c, Gata4, and Tbx5 (MGT), 

were retrovirally delivered into the cells, followed by the reprogramming period of 28 days with 

media change every two to three days. On day 28, we fixed the cells and performed 

immunostaining labeling cardiac troponin, a regulatory protein in cardiac muscle cells (Sharma 

et al., 2004). Utilizing confocal microscopy, we identified positive cells only in samples infected 

with the TFs (Figure 3.3), supporting successful conversion of cells from fibroblast to 

cardiomyocytes.  

Next, we applied a similar CellTagging experimental scheme as aforementioned to the 

conversion of cardiomyocytes. Three days prior to introduction of TFs, the cells were stained and 

replated from the explant culture, followed by infection of CellTag V1 library on the next day 

(day -2). After expansion for 48-hr post transduction, the reprogramming cocktail was introduced 

according to previously reported protocols (Qian et al., 2013). CellTag V2, the second barcode 

library, was delivered on day 10 with a third round of CellTag delivery, CellTag V3, on day 21. 

During the process, the cells were collected, and methanol fixed at day 0, 13 and 27, to perform a 

pilot single-cell experiment using the 10x Genomics platform (Figure 3.5A) (Zheng et al., 

Figure Error! No text 
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2017), where we obtained a total of 3,418 cells (Day0: 1,517; Day 13: 618; Day 27: 1,283) after 

quality metric filtering. Preliminary clustering analysis using Seurat reveals 14 clusters in total 

(Figure 3.4A). We identified fibroblast markers, Col1a2 and Tbx20, as well as cardiomyocyte 

markers, Tnnt2 and Des, in distinct clusters (Figure 3.4B). Interestingly, we observe most of the 

cells expressing cardiac gene signatures occur on day 13 with decreasing percentages on day 27, 

reflecting a possible refractory path as previously reported in Zhou et al. Additional 

immunofluorescence using sarcomeric a-actinin antibody of these cells shows striation and 

sarcomere structure (Figure 3.4C, Top). Moreover, we evaluate CellTag expression by 

identification of GFP+ cells in culture (Figure 3.4D). Along with imaging, we performed initial 

lineage analysis, demonstrating our ability to capture CellTag expression in this reprogramming 

process with average of over 95% of cells captured to have at least one UMI count and over 78% 

with 2 or more counts (Figure 3.4E, F).  This further enabled successful clone and lineage 

detection in the system (Figure 3.4C, Bottom). 

Figure Error! 
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3.3.3  CellTag lineage analysis mainly reveals trajectory toward off-target cell 

types 

Next, we sought to further explore the lineage of this reprogramming process leveraging 

this preliminary dataset. As this dataset captures a time course of continuous reprogramming, we 

turned to use partition-based graph abstraction (PAGA; (Wolf et al., 2019)), supporting a better-

connected embedding. Similar to Seurat outcomes, PAGA identifies a total of 14 clusters with 

cells from distinct time points distributed across clusters (Figure 3.5B). To evaluate lineage 

outcomes, we first annotate clusters that represents successfully reprogrammed cardiomyocytes 

and other off-target cell types. As discussed in previous subsection, we identified distinct clusters 

expressing fibroblast signatures or cardiac signatures (Figure 3.5C). Moreover, using the 

reference established for Stone et al dataset in Chapter 1, we applied Capybara on this new 

dataset to distinguish clusters. Continuous scoring reveals enriched atrial cardiomyocyte identity 

scores in cluster 10 and enriched cardiac muscle cell scores in cluster 1, 2, and 12 (Figure 3.5E). 

Further cell-type classification identifies 20.4% hybrid cells with the remaining being classified 

as discrete populations. We further assigned cell-type labels to the clusters based on the 

dominant cell-type represented, leading to the identification of atrial cardiomyocytes in cluster 

10 and cardiac muscle cells in cluster 1. Intriguingly, we also recognized a population labelled as 

brown adipose tissue, mirroring previous findings in Chapter 1 (Figure 3.5F). 

With the identified target population, we performed randomized testing to assess major 

clones (more than 10 cells) that were significantly enriched for or depleted of induced 

cardiomyocytes (Figure 3.6A). Interestingly, the test uncovers zero enriched clones with seven 

depleted clones (p value < 0.05), in which less than 5% of cells coincide with the reprogrammed 

populations. The major depleted source population largely occupies cluster 0 and 3, representing 
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mainly cells from day 0, which infers a potential directionality from cluster 0 and 3 toward 

cluster 4 and 5. Indeed, leveraging diffusion pseudotime analysis, we found a low pseudotime 

profile in cluster 0 and 3 and relatively higher pseudotime in cluster 4 and 5, supporting more 

“differentiated” states (Figure 3.6B-D).  

Figure Error! No text of specified style in document..23: Further Analysis of the Preliminary 
Data using SCANPY and PAGA. 
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Furthermore, we interrogated potential reasons why there is no identified enriched clones. 

Though large proportion of the cells received qualitied CellTags, we found that the cells 

associated with a clone were biased toward the off-target lineage, largely overlapping with the 

categorized iCM depleted clones (Figure 3.6B-C). Further, compared to day 0 and day 27, we 

captured at least 50% fewer cells on day 13, where major reprogrammed cardiomyocytes reside 

(contains 69.1% of atrial cardiomyocyte population). We speculate that this could be due to the 

post-mitotic nature of cardiomyocytes, where once reprogrammed, the cells would halt 

proliferation. As previously reported, the number of reprogrammed cardiomyocytes achieve its 

Figure Error! No text of specified style in document..24: Identification of Enriched 
vs. Depleted clones. 
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peak by day 14 (Qian et al., 2013), explaining the potential capture of all reprogrammed cells at 

day 13 without their clonally related cells left in culture. This concern potentially can be 

addressed via restriction of the initial fibroblast population size and careful selection of 

collection time points, coupled with sequencing more cells to optimize clone detection. 

Alternatively, this could be alleviated via changing the reprogramming source cell type to an 

immortalized MEF-T cell line (Vaseghi et al., 2016), where cells do not exit cell cycle as much 

as primary fibroblasts once reprogrammed. Despite the concern of immaturity of the 

reprogrammed cells, this cell line could serve as a good model to dissect lineages and 

mechanisms in this reprogramming process. 

In a nutshell, CellTagging enabled us to distinguish the trajectory to the off-target cell 

types. Though this experiment did not bring detailed information regarding the lineage, it 

supports the compatibility of CellTagging with the system and instructs high-level information 

regarding experimental design and time point of CellTag delivery. Future adaptation and 

adjustment of the experimental design could support better capture of the clonal dynamics and 

lineage relationships. 

3.3.4  Probing cell-type dynamics with potential modulation leverage 

Capybara 

Additional small molecules, such as TGFb- and Wnt-inhibitors (Y. Fu et al., 2015; 

Mohamed et al., 2017; Zhao et al., 2015), have been demonstrated to improve the efficiency of 

reprogramming, relative to conversion with Gata4, Mef2c, and Tbx5 (MGT) alone. In Chapter 1, 

we utilized Capybara to probe the cell types during reprogramming with MGT and small 

molecules (SM), where we observe an atrial (76%) vs. ventricular (7.7%) bias in resulting cell 
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types. As TGFb and Wnt signaling play key roles in chamber specification in early development 

of the heart, it has been previously shown that TGFb inhibition and Wnt agonism yields mostly 

ventricular cardiomyocytes (H. Wang et al., 2014). We hypothesize that the TGFb and Wnt 

inhibitors (SB431542, and XAV939, respectively) applied in the Stone et al., protocol could be 

potentially responsible for the generation of mostly atrial-like cardiomyocytes that we observed.  

To test this hypothesis, we collected cells for scRNA-seq, without sorting, yielding a total 

of 11,215 cells from two biological replicates (+SM: 5,107; -SM: 6,108) (Figure 3.7A). 

Integration with days 7 and 14 of the Stone et al., data demonstrates successful recapitulation of 

the protocol (cosine similarity between Day 7 from Stone et al. and +SM samples = 0.71 
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(Replicate #1); 0.89 (Replicate #2)). Capybara analysis reveals that the addition of SM to the 

GMT cocktail produces relatively higher percentages of cardiomyocytes (+SM: 25.3 ± 1.06%, -

SM: 24.0 ± 0.7%; P = 0.057, randomized test). Breaking down the atrial and ventricular 

cardiomyocytes reveals that the addition of SM produces a higher ratio of atrial to ventricular 

cardiomyocytes (P = 0.0287, randomization test; Figure 3.7B-C). Confirming this observation, 

we observed a significant increase in atrial genes, such as Myl7 (P=0.021, Wilcoxon rank sum 

test), and decrease in ventricular genes, such as Myl12a (P=0.00061, Wilcoxon rank sum test), in 

the presence of SM (Figure 3.7D). Together, this offers support to the hypothesis that small 

molecules in reprogramming play a role in altering region specification.  

In addition to small molecules, other factors, such as transcription factors (Akt1 and 

Hand2) (Hashimoto et al., 2019; H. Zhou et al., 2015) and microRNA (miR-133) (Jayawardena 

et al., 2012), have been demonstrated to improve the efficiency and fidelity of reprogramming. 

Next, we sought to look for potential transcriptional regulators that plays vital parts during this 

reprogramming process. 

3.3.5  CellOracle reveals two transcription factors as key regulators during 

direct cardiac reprogramming 

During reprogramming, transcriptional regulators play key roles in “wiring” cells to their 

destined cell fate. Identification of such factors can largely facilitate the derivation or 

differentiation toward their terminal fate. Traditionally, transcription factors were identified via 

differential gene expression analysis and screened via experimental approach (Ieda et al., 2010; 

Song et al., 2012; Takahashi & Yamanaka, 2006). Here, we turned to in silico approach, using 

CellOracle, to identify key transcriptional regulators and simulate potential outcomes from 

knockout or overexpression.  
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CellOracle reconstructs gene regulatory networks (GRNs) from scRNA-seq profiles. 

Integrated with chromatin accessibility information, this approach utilizes regularized linear 

regression to build statistical models for predicting gene expression, the strength of gene-gene 

interactions, inferring regulatory factors to maintain or reprogram cell identity. Beyond GRN 

prediction, it provides functionality to simulate expression profile shift once the expression of the 

transcript factor is altered (Kamimoto et al., 2020).  

We first examined the time course reprogramming dataset generated in the preliminary 

experiment. With the data preprocessed, we constructed GRN models for each of the 14 clusters 

identified, representing cardiomyocyte fates (cluster 1 and 10) as well as other off-target cell 

types with the starting population labeled in cluster 0 and 3 (smooth muscle/mesenchymal).  

Ranking of the degree centrality of the top 30 TFs in cluster 1 and cluster 10 suggests a potential 

factor, Klf5 (Figure 3.8B). KLF5 has previously been reported as significant in cardiovascular 

remodeling upon injury. During embryonic development, it is expressed abundantly, yet 

downregulated as development progress. Nonetheless, upon injury, Klf5 expression is reinduced 

to activate downstream wound repair response and remodeling (Nagai et al., 2005). Together 

with pseudotime (Figure 3.8A) and CellOracle gradient vectors, we observe the inferred normal 

trajectory from cluster 0 and 3 toward different other branches (Figure 3.8C). We performed 

perturbation simulation of Klf5 to evaluate the potential effect of it on this reprogramming 

system. The perturbation results reveal that upon knockout, the transitions to cardiac fate are 

blocked while transitions toward fibroblast fate is promoted (Figure 3.8E). On the contrary, 

overexpression simulation shows promotion toward the cardiomyocyte fate with blocked 

fibroblast transitions (Figure 3.8F), suggesting overexpression of Klf5 in joint with the MGT 

cocktail could potentially improve this direct lineage reprogramming. 
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Figure Error! No text of specified style in document..26: CellOracle Analysis of the 
preliminary time course single-cell dataset. 
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Next, we sought to assess the reprogramming dataset that profiles the reprogramming 

process initiated with a modified cocktail (MGT + SM). We reanalyzed the data using PAGA 

(Wolf et al., 2019) to obtain a better-connected embedding, yielding a total of 13 clusters 

(Figure 3.9). Based on Capybara annotation, we labeled the clusters with the most dominant fate 

within each cluster and identified cluster 3, 4 and 10 as reprogrammed clusters. Using similar 

approaches as described above, ranking of the degree centrality of the top 30 TFs in cluster 3, 4, 

and 10 suggests potential factors, including Klf5 and Atf3 (Figure 3.10B). Previously, it has been 

reported that Atf3 is a key regulator for ventricular remodeling to protect the heart from 

hypertensive stress. The major source of Atf3 response resides in the cardiac fibroblasts, which is 

the source of reprogramming in this protocol (Y. Li et al., 2017). Similar to Klf5, pseudotime 

(Figure 3.10A) and CellOracle gradient vector inferred that the normal trajectory starts from 

cluster 1 toward different other branches (Figure 3.10C). Further perturbation simulation of Atf3 

reveals that upon knockout, the transitions to all cardiac fates are blocked while transitions 

toward the fibroblastic fate is promoted (Figure 3.10E). Interestingly, overexpression simulation 

shows promotion toward one subpopulation of cardiomyocyte fates (cluster 4) yet with blocked 

Figure Error! No text of specified style in 
document..27: SCANPY and PAGA analysis 
of the dataset with small molecule treatment. 
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fibroblast and other cardiac fates (cluster 3) transitions (Figure 3.10F), suggesting Atf3 as a 

potentially more specific driver factor in determination of fates. 

 

Figure Error! No text of specified style in document..28: CellOracle Analysis of 
the dataset with small molecules. 
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Overall, leveraging GRN analysis, I have pinpointed putative transcriptional regulators, 

overexpression of which could promote the efficiency and fidelity of reprogramming. 

Intriguingly, both Klf5 and Atf3 have been found to serve important roles in cardiovascular 

remodeling when exposed to injury or stress, suggesting potential similarity between in vitro 

reprogramming and in vivo cardiac repair process. 

3.3.6  Lineage tracing with immortalized MEF-T cell line uncovers two 

overlapping putative trajectories in transcriptional profiles 

We route back to the big-picture scope of this project to construct a comprehensive 

lineage map of cardiac reprogramming. To alleviate the previously identified concerns, we 

moved on to use the inducible MEF-T cell line. In brief, this cell line is constructed from primary 

cells harvested from transgenic mice, which harbors the reporter under the a-MHC promoter as 

aforementioned (Gulick et al., 1991). The three transcription factors, MGT, are integrated into 

the genome in a polycistronic manner and regulated under a Tetracycline inducible promoter. 

Once doxycycline is introduced, MGT TFs are overexpressed, initiating reprogramming. As the 

cells initiate cardiac program, they start to express the GFP reporter protein, serving as a 

benchmark for successful reprogramming. SV40 large T antigen was retrovirally delivered into 

the primary cells, followed by selection, to establish the immortalized cell line (Vaseghi et al., 

2016). As these cells are more prolific than primary MEFs and the reprogramming outcomes are 

less mature (Stone et al., 2019; Vaseghi et al., 2016), we consider it could help alleviate the 

concerns as cells become non-proliferative. In addition, doxycycline induces a peak 

reprogramming within three days post-initiation (Vaseghi et al., 2016), enabling us to probe the 

initiation and reprogramming in a short time frame. 
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Inspired by the state-fate experiment performed in hematopoiesis (Weinreb et al., 2020), 

we designed a similar experiment in the direct cardiac reprogramming, profiling the state 

Figure Error! No text of specified style in document..29: State-Fate Experiment (RNA Profile). 
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samples at day 2 and fate samples at day 5 post induction of doxycycline. Accompanying this 

design is the advancement in the CellTagging system (CellTag-AR), where the 8-nt random 

barcode is replaced with an 18-nt barcode, enabling higher library complexity and lower MOIs. 

In addition, CellTagging has been adapted to capture lineage in concurrent with single-cell assay 

for transposase-accessible chromatin sequencing (scATAC-seq) (Kunal Jindal, unpublished, 

manuscript in preparation). Here, ~10,000 cells were plated (0hr) and transduced with CellTag-

AR library 12 hr later with doxycycline induction. The virus was removed 12 hours later, with 

replacement of fresh media containing doxycycline. Doxycycline was maintained and replaced 

every day in culture for ~3 days to initiate reprogramming, where the GFP reporter signal was 

observed by day 2 (data not shown). We collected and counted cells on day 2, two-thirds of 

which were prepared for single-cell sequencing with the remaining replated for continual 

expansion. The collected cells were further split for two assays, scRNA-seq and scATAC-seq. 

After an additional three-day expansion, we collected all the cells at day 5 and subjected them to 

similar protocols as day 2. Having the cells sharing the same CellTag-AR infection enables us to 

join RNA and ATAC data together by lineage (Figure 3.11A).  

Post-sequencing, the RNA data was subject to CellRanger analysis to align, filter, and 

generate the count matrices. Through scRNA-seq, we obtained a total of 72,834 cells (Day 2: 

18,702; Day 5: 54,132) post QC metrics through Seurat analysis. Application of integration with 

Seurat V4 reveals 12 clusters with even distribution of cells from day 2 and day 5 (Figure 

3.11B-C). These clusters dynamically express fibroblastic and cardiac marker genes (Figure 

3.11D). To have a better idea of identity shifts, we constructed a reference based on the sorted 

day 14 (iCM) and initial day -1 populations (fibroblast) in Stone et al. Referencing against this 

dataset, we assigned identity scores to these cells via QP and found the iCM scores to be 
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enriched in cluster 6 while fibroblast scores to be evenly distributed across all other clusters 

(Figure 3.11E). Based on the expression level of Col1a2, we speculate cluster 5 is the source of 

fibroblasts. Notably, the iCM scores peak around 0.6 compared to day 14 sorted population in 

Stone et al, suggesting immaturity in these reprogrammed cells. 

Next, we turned our focus to CellTag clonal information. A total of 47,671 RNA and 

ATAC cells were captured as in clones with at least 2 cells in a clone. From RNA clonal 

information only, 31,111 RNA cells (Day 2: 7,823; Day 5: 23,288) were identified as in clones 

with overall even distributions across the clusters (Figure 3.12A). Here, following the interest in 
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looking at different time points, we mainly investigate the state-fate clones in this RNA dataset, 

defined as clones containing cells from day 2 and day 5. Within a total of 12,460 clones, we 

found 3,477 state-fate (SF) clones. With the identified target population (cluster 6), we 

performed randomized testing to assess major SF clones (more than 10 cells) that were 

significantly enriched for or depleted of induced cardiomyocytes, uncovering nine enriched 

clones with 25 depleted clones (p value < 0.1). 14~16% of the cells in the enriched clones are 

transcriptionally similar to the identified successfully reprogrammed cluster (cluster 6). The 

major depleted source population represents 0% of cells in the clone to become reprogrammed, 

largely locating in cluster 0 and 10 (Figure 3.12B). The dominant depleted clones reflect our 

pilot experiment with serial infection of CellTags. It is worth noting that there is a significant 

overlap of distribution of the cells identified in the reprogrammed enriched or depleted clones, 

suggesting similarity in expression profiles of these cells, which further support the immaturity 

of these reprogrammed cells 

3.3.7  Lineage tracing with immortalized MEF-T cell line uncovers two 

distinctive putative trajectories in chromatin landscapes 

Next, we sought to chart the dynamics on the chromatin landscape during this 

reprogramming protocol. In addition to transcriptional remodeling, direct lineage reprogramming 

involves significant shifts in chromatin landscape. For instance, in TF-mediated lineage 

reprogramming, pioneer transcription factors, who can open heterochromatin, alter the chromatin 

landscape with facilitation from additional co-factors. The chromatin remodeling then drives the 

transcriptional shift to the expression profile of the target cell types (Guo & Morris, 2017). In 

cardiac conversion, it has been found that the transcriptional remodeling involves a rapid gain of 

the cardiac program, yet with gradual loss of the fibroblast profile (Liu et al., 2017; Stone et al., 
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2019; Y. Zhou et al., 2019).  In effort to chart chromatin remodeling in cardiac reprogramming, a 

recent study leveraging scATAC-seq reveals key regulatory factors, including Fos and Tcf21, 

during early stages of the process, providing invaluable insights in epigenomic remodeling (H. 

Figure Error! No text of specified style in 
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Wang et al., 2022). 

After we obtained the sequencing data, the ATAC data was subject to CellRanger-atac 

analysis to align, filter, and generate the fragment counts. Through scATAC-seq, we obtained a 

total of 52,365 cells (Day 2: 20,476; Day 5: 31,889) post QC metrics through ArchR analysis 

(Granja et al., 2021). Clustering via ArchR reveals 11 clusters with distribution of cells from day 

2 mainly occupies the top and those from day 5 lays on the bottom (Figure 3.13A-B). We further 

compute imputed gene activity scores using ArchR, where we observe these clusters distinctively 

have high activity scores for fibroblastic and cardiac marker genes (Figure 3.13C). To better 

pinpoint the identities of each cluster, we further perform differential peak analysis, followed by 

motif enrichment analysis, where we found significant enrichment of previously reported 

fibroblastic motif, such as Fos and Bach2, in cluster 5 and 6. On the other hand, we found 

enrichment of cardiac motifs, such as Mef2c and Tead4, in cluster 8 and 10. To further confirm 

the cluster identities, we performed GREAT analysis, a tool that predict functions of cis-

regulatory regions, to assign biological meanings to these regions (McLean et al., 2010), where 

we found cluster 5 and 6 to be significantly enriched for vascular and immune development. In 

addition to being fibroblastic, cluster 5 and 6 mirrors previous findings of vascular off-target 

during this reprogramming ((Stone et al., 2019) (Figure 3.14A). Annotation of cluster 8 and 10 

reveals significant enrichment of muscle and cardiac cell development as well as muscle fiber 

organization, supporting these two clusters as reprogrammed clusters (Figure 3.14B). Further 

comparison of these differential peaks to the binding profile of Mef2c, Gata4, and Tbx5 

highlights cluster 8-11 as enriched for these binding sites (Figure 3.14C).  
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Considering cluster 10 is composed mainly of day 5 fate cells, we consider this cluster as 

the cluster harboring successfully reprogrammed cells. We next performed similar randomized 

test using the ATAC clonal and lineage information. From ATAC clonal information only, 

16,560 ATAC cells (Day 2: 5,157; Day 5: 11,403) were identified as in clones with overall even 

distributions across the clusters (Figure 3.15A). Again, we mainly investigate the state-fate 

clones in this dataset, where we found 1,305 state-fate (SF) clones out of 9,653 total clones. With 

the identified target population (cluster 10), we performed randomized testing to assess major SF 

clones (more than 10 cells) that were significantly enriched for or depleted of induced  

Figure Error! No text of specified style in document..14: GREAT analysis and Comparison 
to Chip-seq Peaks.  
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cardiomyocytes, uncovering eight enriched clones with eight depleted clones (p value < 0.1). 

30~50% of the cells in the enriched clones coincide with the identified successfully 
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reprogrammed cluster (cluster 10). The major depleted source population represents 0% of cells 

in the clone to become reprogrammed, largely locating in cluster 5 and 6 (Figure 3.15B-C). It is 

worth noting that, compared the RNA lineages identified, there is a more distinct distribution of 

the cells identified in the reprogrammed enriched or depleted clones, suggesting distinctions in 

their epigenetic landscape to define the two fates. Interestingly, in the depleted clones, we 

observe clones that remained within the region of cluster 5 and 6 across the two time points as 

well as clones that traversed cluster 8 to cluster 5/6. As mentioned above, cluster 8 demonstrates 

strong cardiac profile. This observation mirrors the previous identified refractory trajectory in 

this reprogramming protocol (Stone et al., 2019; Y. Zhou et al., 2019). 

Taking RNA and ATAC together, we demonstrate the rich information presented in 

combination of lineage, transcriptome, and chromatin landscape. We speculate that the observed 

more distinct trajectories in the epigenome suggests that the chromatin remodeling has already 

occurred while the more overlapping trajectories in transcriptome profile reveals the delay in 

transcriptional remodeling. 

3.4 Discussion 

In this Chapter, we report the application of our in-house tools on a new direct lineage 

reprogramming protocol to generate cardiomyocytes. In the pilot experiment, with serial delivery 

of CellTags, we showcase the compatibility of the CellTag lineage tracing system with this new 

reprogramming system. In addition, we learn the behavior of these cells, which instruct our 

future experimental design to take these factors into account. 

Brief investigation of atrial-ventricular regionalization with or without small molecules 

suggests potential patterning events introduced via these modulations. This result requires further 
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validation as our small molecule treatment group did not show as significant fold increase as 

previously described in producing cardiomyocytes (Mohamed et al., 2017). We speculate a 

potential reason that the construct we used for MGT infection is previously optimized and 

ordered in a polycistronic manner. This construct has previously been shown to significantly 

increase production of reprogrammed cardiomyocytes, compared to separate transduction of the 

M, G, T factors (L. Wang et al., 2015), resulting in our observed higher cardiomyocyte rates in 

the control groups. 

In order to identify key transcriptional regulators in this system, we employed CellOracle 

analysis to construct gene regulatory networks and identified two potential key factors, Klf5 and 

Atf3. Both factors have been previously reported to play vital roles in cardiovascular remodeling 

in response to injury and hypertensive stress (Y. Li et al., 2017; Nagai et al., 2005). Perturbation 

simulation with CellOracle demonstrates that knockout of either one of the factors will block 

transitions to successful reprogrammed cells. Yet, overexpression of either one will promote 

transition to more cardiomyocyte-like cell states. In addition, we speculate that overexpression of 

Atf3 could lead us to a specific cardiac cell type, blocking possibilities to other cardiac fates. 

This analysis opens new hypothesis for testing to promote the efficiency and fidelity of 

reprogramming. 

Refocusing on the blueprint of this project to identify the comprehensive lineage map, we 

perform state-fate experiment to capture lineage information together with transcriptome profiles 

or chromatin landscapes. Leveraging nascent CellTag-AR development, we identified two 

putative trajectories in both assays – one toward successfully reprogrammed and the other to 

fibroblastic states. This mirrors our previous discoveries in MEF to iEP reprogramming, where 

we observed a successfully reprogrammed vs a ‘dead-end’ trajectory. In addition, it reflects 
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previous reported refractory lineage inferred via RNA velocity (Stone et al., 2019; Y. Zhou et al., 

2019). Comparing RNA and ATAC trajectories, we observe a more distinct separation between 

the two directions from the ATAC clonal information than the more overlapping trajectories in 

RNA. We speculate that this demonstrates the upstream chromatin remodeling has occurred to 

turn off fibroblastic program while the downstream transcriptional remodeling is gradually 

losing their fibroblast expression profile. Indeed, it has been previously reported that the cells 

acquire a cardiac expression profile rapidly with a gradual loss of their starting transcriptional 

profiles (Liu et al., 2017; Stone et al., 2019; Y. Zhou et al., 2019).  

Through this preliminary analysis, we present this rich dataset profiling both 

transcriptional and chromatin landscape and demonstrate our ability to track cells in this system. 

This opens broad opportunities to probe changes occurring in the transcriptome and chromatin 

level, further providing mechanistic insight in reprogramming to improve cell fate engineering 

strategies. 

3.5 Materials and Methods 

3.5.1 Cell Culture 

Immortalized mouse embryonic fibroblast cell line was a kind gift from the laboratory of Dr. 

Li Qian at University of North Carolina, Chapel Hill. The cells were maintained and passaged 

according to its protocol (Vaseghi et al., 2016) in Dulbecco’s Modified Eagle Medium (Gibco) 

supplemented with 10% Fetal Bovine Serum (Gibco), 1% penicillin/streptomycin (Gibco), and 

55 M 2-mercaptoethanol (Gibco).  
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3.5.2 Mice 

Mice used for cardiac fibroblast explant experiment were of C57BL/6J background (The 

Jackson Laboratory #000664). All animal care procedures were approved by Washington 

University Institutional Animal Care and Use Committee. 

3.5.3 Cardiac Fibroblast Explant Culture 

The cardiac fibroblasts were derived via an explant culture, following previous protocol 

(Qian et al., 2013). In brief, explant media was prepared with Iscove’s Modified Dulbecco’s 

Medium (IMDM) supplemented with 20% Fetal Bovine Serum (Gibco), 1% 

penicillin/streptomycin (Gibco), and 55 M 2-mercaptoethanol (Gibco). hearts were harvested 

from P0-P3 mice, rinsed with 1x DPBS (Gibco) for 3 times, and minced to small pieces around 

0.5 mm3 in size. The tissue pieces were plated on a 0.1% gelatin-coated 6-well plate with 

minimum explant media (~0.5 to 1 ml to barely cover the bottom). The plate was incubated at 

37°C, 5% CO2 in an incubator for 2 hours to allow the tissue pieces to attach on the bottom of 

the plate. Post the 2-hour incubation, 2-ml fresh and pre-warmed explant media was added to 

each well. The plate was then incubated at 37°C, 5% CO2 in an incubator for 3 days without 

disturbance. After the 3 days, medium was changed every three to four days or till medium 

becomes yellow. Explanted fibroblast was harvested with trypsin, followed by passing through a 

70- m cell strainer, on day 7 post initiation of the explant culture. The resulting cells were 

counted and replated on 0.1% gelatin coated plates at a density of 500k/10-cm dish to be used for 

reprogramming the next day. 



154 
 

3.5.4 Reprogramming Virus Production 

The retrovirus for cardiac reprogramming was freshly prepared. 293T cells 

(RRID:CVCL_1926) were maintained and passaged in fibroblast media (10% FBS, 1x 

penicillin-streptomycin, 1x -Mercaptoethanol, in DMEM). 293T cells were seeded at a density of 

3 million per 10-cm plate the day before transfection. The following day, the cells were 

transfected with pMX-MGT (RRID:Addgene_111810) with 5g of pCL-Eco 

(RRID:Addgene_12371), using X-tremeGENE 9 DNA transfection reagent (Sigma, 

6365779001) according to the manufacturer's instructions. Media was replaced with fresh 

fibroblast media the following day. Retrovirus was harvested the next day by taking the 

supernatant from the transfected plate and filtered through a 45- m syringe filter. 500x protamine 

sulfate was added to the viral media prior to transduction of the mouse cardiac fibroblast. 

3.5.5 Cardiomyocyte Reprogramming with Primary Cells 

Direct cardiac reprogramming was performed using primary cardiac fibroblasts derived 

from the cardiac fibroblast explant culture. Briefly, cardiac fibroblasts (MCFs) were harvested 

after seven days of the explant culture and cultured overnight on gelatin-coated plates in MEF 

media (DMEM supplemented with 10% FBS, 1% penicillin/streptomycin, and 55 M 2-

mercaptoethanol). MCFs were plated at a density around 500k per 10-cm dish pre-treated with 

0.1% gelatin solution for 20~30 minutes. MCFs were infected with freshly harvested pMX-MGT 

retrovirus (L. Wang et al., 2015) (day 0). The viral media was replaced with fresh cardiomyocyte 

media (10% M199, 10% FBS, 1% NEAA, 1% sodium pyruvate, 1x penicillin-streptomycin, 1x 

Glutamax, in DMEM). In the small molecule comparison experiment, the cardiomyocyte media 

was supplemented with 2.6M SB431542 (Cayman Chemical, Catalog #13031) or DMSO as a 

vehicle control (day 1). 5M XAV939 (Cayman Chemical, Catalog #13596) or DMSO was added 
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to the plate without media change (day +1) for the small molecule group. The media was 

replaced with fresh cardiomyocyte media two days after the last addition of small molecule (day 

+3). Media was renewed every 2~3 days. The cells were collected, filtered through a 70-m 

strainer, resuspended in 1% BSA in PBS, and counted on day 0, day 13, and day 27 for scRNA-

seq (see below). 

3.5.6 Cardiomyocyte Reprogramming with inducible Fibroblast Cell Line 

Direct cardiac reprogramming was performed using the immortalized inducible fibroblast 

cell line (MEF-T iMGT) (Vaseghi et al., 2016). Briefly, MEF-T iMGT was maintained on 

gelatin-coated plates in MEF media (DMEM supplemented with 10% FBS, 1% 

penicillin/streptomycin, and 55 M 2-mercaptoethanol). 12-hour prior to reprogramming 

initiation, MEF-T iMGT cells were replated at a density around 10k per well on a 48-well plate 

with 0.1% gelatin solution for 20~30 minutes. The cells were allowed to attach for ~12hrs. The 

media was aspirated and replaced with cardiomyocyte media with CellTag-AR virus and 1 g/ml 

doxycycline. The viral media was replaced with fresh cardiomyocyte media (10% M199, 10% 

FBS, 1% NEAA, 1% sodium pyruvate, 1x penicillin-streptomycin, 1x Glutamax, in DMEM), 

containing 1 g/ml doxycycline. Doxycycline was maintained in culture for three days and 

replaced with new treatment every day. The cells were collected, filtered through a 70-m 

strainer, resuspended in 1% BSA in PBS, and counted on day 2 and day 5 for scRNA-seq. 

3.5.7 Immunostaining for day 28 Reprogrammed Cells in Cardiac 
Reprogramming 

Mouse cardiac fibroblasts were generated as described above. On day 27 of the 

reprogramming process, the cells were transferred to 4-Chamber Culture Slides (Falcon). On the 

next day, the cells were rinsed with 1x DPBS and fixed in 4% paraformaldehyde for 20 minutes 
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at room temperature. The samples were then washed with 1x DPBS three times, permeabilized, 

and blocked with blocking buffer (0.1% TritonX-100 and 5% BSA in DPBS) for an hour. The 

primary antibodies, Cardiac Troponin T (RRID:AB_11000742) and -Actinin (Sigma-Aldrich, 

Product No. A7811), were diluted 1:500 (cTnT) and 1:800 (ACTN2) in the 1% BSA in DPBS. 

The blocking buffer was then removed from the sample, and 250 l of diluted primary antibodies 

was added to two different wells. The samples were incubated with the primary antibody at 4°C 

overnight (12~16 hrs). The samples were then washed for 5 minutes three times. The secondary 

antibodies, Alexa Fluor 568 Goat Anti-mouse IgG (RRID:AB_2534072), were diluted 1:1000 in 

the blocking buffer. The secondary antibodies were added and incubated at room temperature for 

1 hour in the dark on a rocker. The samples were washed again for 5 minutes, three times. 100 l 

of 300 nM DAPI (Invitrogen) was added to each slide chamber and incubated at room 

temperature for 1 minute. The samples were washed for 5 minutes once. The final wash with 

DPBS was aspirated and the chamber was removed from the slides. A coverslip was then applied 

with ProLong Gold Antifade Mountant (Invitrogen). The slides were imaged using an Olympus 

FV1200 Confocal Microscope with 60x water objectives.  

3.5.8 CellTag Lentivirus Production 

293T cells (RRID:CVCL_1926) were maintained and passaged in fibroblast media (10% 

FBS, 1x penicillin-streptomycin, 1x -Mercaptoethanol, in DMEM). 293T cells were seeded at a 

density of 3 million per 10-cm plate the day before transfection. CellTag virus was produced by 

transfecting 293T cells with lentiviral pSMAL vector and packaging plasmids pCMV-dR8.2 

dvpr (Addgene plasmid 8455) and pCMV-VSV-G (Addgene plasmid 8454) using X-tremeGENE 

9 (Sigma, 6365779001). Media was replaced with fresh fibroblast media the following day. 
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Virus was collected 48 and 72 hours after transfection by filtering the supernatant through a 

0.45-m syringe filter.  

3.5.9 CellTag Transduction 

The CellTag virus containing supernatant as collected above was used immediately or kept 

at 4°C for up to a week. Prior to transduction, 500x protamine sulfate was added to the viral 

media. Media was aspirated from the cells to be transduced. The viral media was immediately 

added to the cells and left on the plate for a 24-hour transduction period. This transduction was 

performed on day -2 with V1 library, day 10 with V2 library, and day 21 with V3 library for the 

primary fibroblast reprogramming or day 0 with CellTag-AR library for inducible MEFs. 

3.5.10 Single-Cell RNA Profiling 

For single-cell library preparation on the 10x Genomics platform, we used: the Chromium 

Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3′ Chip kit v2 

(PN-120236), and Chromium i7 Multiplex Kit (PN-120262), according to the manufacturer’s 

instructions in the Chromium Single Cell 3′ Reagents Kits V2 User Guide. Prior to cell capture, 

methanol-fixed cells were placed on ice, then spun at 3000rpm for 5 minutes at 4°C, followed by 

resuspension and rehydration in PBS, according to Alles et al., 2017. 17,000 cells were loaded 

per lane of the chip, aiming to capture 10,000 single-cell transcriptomes. The resulting cDNA 

libraries were quantified on an Agilent Tapestation and sequenced on an Illumina HiSeq 2500. 

For analysis of cardiomyocyte reprogramming, The Chromium Single Cell 3’ (v2) Reagent Kits 

(PN-120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq libraries, 

according to manufacturer’s guidelines. Libraries were pooled and sequenced on an Illumina 

NextSeq 550. For motor neuron programming, prior to loading the 10x chip, methanol-fixed 
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cells were counted, spun, resuspended in 1% BSA in PBS, and counted again, according to 10x 

Genomics methanol fixation protocol. The Chromium Single Cell 3’ (v2) Reagent Kits (PN-

120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq libraries, according 

to manufacturer’s guidelines. Libraries were pooled and sequenced on an Illumina NextSeq 550. 

3.5.11 Single-Cell ATAC Profiling 

For single-cell ATAC library preparation on the 10x Genomics platform, we used: the 

Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (PN-1000175), 

Chromium Next GEM Chip H Single Cell Kit v1.1 (PN-1000161), and Single Index Kit N Set A 

(PN-1000212), according to the manufacturer’s instructions in the Chromium Next GEM Single 

Cell ATAC Reagents Kits v1.1 User Guide. Briefly, the cells were harvested, counted, and 

subjected to nuclei isolation and light fixation with 4% paraformaldehyde for 4 minutes at room 

temperature, followed by tagmentation of accessible genome in the nuclei. An in-situ reverse 

transcription step was performed on the nuclei prior loading the chip for better capture of the 

CellTag-AR barcodes. After the reverse transcription, the nuclei were resuspended and spun at 

600xg for 10 min at 4°C. Supernatant was partly removed with measured amount left for loading 

on the 10x scATAC Chip. 20,000 cells were processed to generate nuclei for loading per lane of 

the chip, aiming to capture 10,000 single-nuclei accessible genome. The GEM generated from 

the chip was further prepared to generate the final libraries, according to the manufacturer’s 

instructions. The resulting libraries were quantified on an Agilent Tapestation and sequenced on 

an Illumina NextSeq 550.  
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3.5.12 Single-Cell RNA Sequencing Analysis 

The Cell Ranger v6.0 pipeline (https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest) was used to align reads, process, and filter data generated 

using 10x Chromium single-cell gene expression platform. Following this step, the default Cell 

Ranger pipeline was implemented to generate the filtered output data for downstream analysis. 

To process and analyze scRNA-seq data, we used the R package, Seurat V4, following the 

tutorial (https://satijalab.org/seurat/articles/pbmc3k_tutorial.html). Briefly, each sample was pre-

processed based on RNA counts and mitochondria percentages and then normalized. The highly 

variable genes were then identified, followed by scaling and dimensional reduction via PCA. 

With the selected number of components, graph-based clustering and UMAP plotting were 

further performed.  

3.5.13 CellOracle Gene Regulatory Network Analysis 

To analyze the scRNA-seq data through CellOracle, the data was processed through 

SCANPY standard pipeline (https://scanpy.readthedocs.io/en/stable/) (Wolf et al., 2018). The 

single-cell data was processed through similar preprocessing, filtering, and clustering as 

described above. The data was then subject to trajectory inference using PAGA (Wolf et al., 

2019). The Anndata result from this processing was passed into CellOracle. Gene regulatory 

network models were constructed on a cluster-by-cluster basis and enabled network analysis of 

each individual cluster to identify top rank transcription factors. Leveraging the in-silico 

perturbation function with GRNs in CellOracle, the data was the altered to have a gene knocked 

out or overexpressed. Knockout set the expression level to zero where overexpression set the 

expression level to the max expression level of that gene in the system. The perturbation was 

then visualized with gradient vectors and perturbation scores. 
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3.5.14 CellTag Data Analysis 

For CellTag V1, V2, and V3, CellTag information was analyzed as aforementioned (Biddy 

et al., 2018; Kong et al., 2020). In brief, the CellTags were extracted from aligned bam files, 

followed by UMI counting to generate the count matrix. With the count matrix, the data was 

further binarized, passed through an allow list, and QC metric filtered. Finally, Jaccard analysis 

was performed on the filtered matrix and further graph-based method was used to identify 

clonally related cells. For CellTag-AR, similar approaches were adapted for extraction, filtering 

of the data, and clone calling. The clone calling process using CellTag-AR leverage an additional 

step to break down sparse clones using graph cliques. 

3.5.15 Randomized Test for Trajectory Discovery 

To identify clones enriched or depleted of iCM generation, we applied similar strategies as 

previously described (Biddy et al., 2018). Briefly, randomized testing to evaluate whether each 

clone (of at least 10 cells) has a similar percentage of fully reprogrammed cells relative to a 

randomly selected population of the same size. The percentage of reprogrammed cells is defined 

as the proportion of cells within each group found in the reprogrammed cluster, as defined by 

Seurat together with Capybara and marker gene scores. Let N represent the number of cells in 

each clone and M represent the remaining cell population size. We pool the two groups of cells 

(size=N+M) and resample N random cells, without replacement, from the pooled cells (N+M)/N 

times such that every possible separation with ending groups of size N and M can be sampled 

and captured. During this process, the percentage is calculated based on the N randomly sampled 

cells. With the percentage calculated, P values can be evaluated based on the proportion of 

randomly sampled cells with a percentage greater than or equal to the null percentage. 
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3.6 Detailed Figure Legends 

Figure 3.1: Overview of CellTagging System and Previous Discovery in MEF to iEP 

Reprogramming. (A) Top: Schematic of the CellTagging barcode cell label, including a GFP 

with an 8-nt random barcode integrated into its 3’-UTR. Bottom: Outline of CellTagging and 

trace method for reconstruction of lineage during reprogramming. (B) Application of the lineage 

tracing approach to MEF to iEP reprogramming uncovers two distinct trajectory – one toward 

successfully reprogrammed outcome (Bottom) and one toward an off-target cell type (Top). 

Figure 3.2: Overview of CellTagR Pipeline and CellTag Indexing Strategy. (A) Pipeline to 

assess library complexity after sequencing of the CellTag barcode library, prior to application to 

biological systems. (B) Pipeline for CellTag data extraction, filtering, and clone calling post 

single-cell RNA sequencing. (C) Schematic of CellTag Indexing Strategy, where unique 

barcodes are delivered to different populations. Post single-cell sequencing, the barcodes were 

extracted, normalized, filtered, and provide a classification of the samples toward their labelled 

population categories. 

Figure 3.3: Immunostaining of Cardiac Troponin Protein. Top Row: Negative control group 

staining fibroblast. Bottom Row: Staining of the protein in cells 28 days after cardiomyocyte 

reprogramming was initiated. 

Figure 3.4: Preliminary single-cell RNA-sequencing analysis. (A) Left: Clustering of the data 

using Seurat, presenting a total of 14 clusters. Right: the distribution of cells from different time 

points on the UMAP embedding. (B) Expression of key markers. Cardiac fibroblast: Tbx20 and 

Col1a2. Cardiomyocyte: Tnnt2 and Des. (C) Top: Immunofluorescent experiment staining for a-
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actinin. Red: a-actinin. Bottom: primary lineage analysis using single-cell data, in which each 

center node labels for a clone for each version of CellTag libraries and each branch node denote 

a cell in the clone. D) CellTag expression gauged by GFP expression. E) Overall distribution of 

CellTag counts captured after filtering. F) Percentages of cells captured with 1+ or 2+ CellTags. 

Figure 3.5: Further Analysis of the Preliminary Data using SCANPY and PAGA. (A) 

Schematic of the experiment. (B) Left: PAGA embedding of the time course reprogramming 

dataset. ‘FA’: Force Atlas. Right: Distribution of cells from different time points on the PAGA 

embedding. (C) Expression of additional key markers. Cardiac fibroblast: Postn, Tcf21, and 

Tbx20. Cardiomyocyte: Tnnt2, Tnnc1, and Des. (D) Overall distribution of CellTag counts 

captured after filtering. (E) Cardiomyocyte and fibroblast identity score distribution on the FA 

plot. (F) Clusters labelled with dominant cell-type classified by Capybara. 

Figure 3.6: Identification of Enriched vs Depleted Clones. (A) P-values of major clones tested 

(>10 cells) using randomized test. (B) Distribution of cells that have clonally related siblings. (C) 

Overlay of the iCM depleted clones on the FA plot. It demonstrates the depleted clone initiates at 

the source fibroblast population and move to the off-target branch. (D) Projection of pseudotime 

of these cells to guide the directionality of cell identity shift. 

Figure 3.7: Capybara Analysis comparing Cardiac Reprogramming with or without small 

molecules. (A) Schematic for the design of the experiment. (B) Comparison of the atrial to 

ventricular cardiomyocyte ratio between the small molecule and no small molecule treatment. 

An increase of this ratio was observed with the addition of small molecules (P=0.0287, 

randomized test). (C) Overlay of Capybara classification on the integrated space of our dataset 

with Stone et al dataset. (D) Log-normalized expression profile of atrial and ventricular markers 
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between the two treatment groups. Differential enrichment or depletion of the expression is 

tested by Wilcoxon rank sum test (*: P <= 0.05; **: P <= 0.01; ***: P <= 0.001; ****: P <= 

0.0001) 

Figure 3.8: CellOracle Analysis of the Preliminary Time Course Single-Cell Dataset. (A) 

Diffusion pseudotime calculated via PAGA. (B) Degree centrality for the top 30 TFs in cluster 1 

and 10, suggesting a putative factor Klf5. (C) Inferred gradient vector under normal development 

from CellOracle, indicating potential directionality of the cell movement in this dataset. (D) Log-

normalized Klf5 expression projected on the FA plot. (E) CellOracle knockout simulation of 

Klf5, showing transitions toward cardiac fate is blocked. (F) CellOracle overexpression 

simulation of Klf5, showing promoted transition to cardiomyocytes. Blue region: negative 

perturbation score, transitions toward this region are blocked. Red region: positive perturbation 

score, transitions toward this direction are promoted. 

Figure 3.9: SCANPY and PAGA analysis of the dataset with small molecule treatment. 

PAGA embedding of the time course reprogramming dataset, representing a total of 13 clusters. 

‘FA’: Force Atlas. 

Figure 3.10: CellOracle Analysis of the Dataset with small molecules. (A) Diffusion 

pseudotime calculated via PAGA. (B) Degree centrality for the top 30 TFs in cluster 3, 4 and 10, 

suggesting a putative factor Atf3. (C) Inferred gradient vector under normal development from 

CellOracle, indicating potential directionality of the cell movement in this dataset. (D) Log-

normalized Atf3expression projected on the FA plot. (E) CellOracle knockout simulation of Atf3, 

showing transitions toward cardiac fate is blocked. (F) CellOracle overexpression simulation of 

Atf3, showing promoted transition to cardiomyocytes. Blue region: negative perturbation score, 



164 
 

transitions toward this region are blocked. Red region: positive perturbation score, transitions 

toward this direction are promoted. 

Figure 3.11: State-Fate Experiment (RNA Profile). (A) Schematic of the experimental design. 

(B) The samples were processed and integrated via Seurat V4, representing a total of 12 clusters. 

(C) Distribution of cells from different time points on the UMAP projection, showing even 

distribution across the clusters. (D) Expression of key markers. Fibroblast: Col1a2 and S100a4. 

Cardiomyocyte: Tnnt2 and Tnnc1. (E) Cardiomyocyte and fibroblast identity score distribution 

on the UMAP plot, referencing the Stone et al. dataset. 

Figure 3.12: Identification of Enriched or Depleted Clones based on Transcriptional 

Lineage. (A) Distribution of cells that have clonally related siblings, split by time points, 

showing even clonal relationship across the clusters and days (B) Overlay of the iCM enriched 

clones on the UMAP plot. (D) Overlay of the iCM depleted clones on the UMAP plot.  

Figure 3.13: State-Fate Experiment (ATAC Profile). (A) The samples were processed and 

aggregated via ArchR, representing a total of 12 clusters. (B) Distribution of cells from different 

time points on the UMAP projection, showing major occupation of day 2 cells on the top and day 

5 cells on the bottom. (C) Imputed gene activity scores of key markers as previously reported (H. 

Wang et al., 2022). Fibroblast: Postn, Dcn and Dsp. Cardiomyocyte: Ryr2, Myom2, and Actc1. 

(D) Percentage of day 2 and day 5 cells in each cluster. (E) Motif enrichment identified in the 

differentially accessible peaks for each cluster. 

Figure 3.14: GREAT analysis and Comparison to Chip-seq Peaks. (A) Predicted annotation 

for the genomic regions differentially accessible for Cluster 5 and 6. GREAT analysis predict 

functional annotation for genomic regions. We note most annotations to be related to immune 
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response and vascular development. (B) Predicted annotation for the genomic regions 

differentially accessible for Cluster 8 and 10. We note most annotations to be related to muscle 

and cardiac development as well as muscle structure organization. (C) Comparison of differential 

peaks to Chip-seq data of Mef2c, Gata4, and Tbx5, suggesting cells in Cluster 8-11 have 

accessible peaks for these three reprogramming TFs. 

Figure 3.15: Identification of Enriched or Depleted Clones based on Chromatin Landscape. 

(A) Distribution of cells that have clonally related siblings, split by time points, showing even 

clonal relationship across the clusters (B) Top: projection of the cells in enriched (left) or 

depleted (right) clones on the UMAP. Light purple: Day 2 cells, Dark purple: Day 5 cells. Each 

colored path marks a different clone. Bottom: Overlay of the iCM enriched (left) or depleted 

(right) clones on the UMAP plot. The arrows are the inferred the direction of movement based 

on the paths marked by the clones, sourcing from day 2 cells to day 5 cells. 
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Chapter 4: Closing Remarks and Future 
Directions 

In this dissertation, we aim to unravel population heterogeneity in a complex and continuous 

biological system via development and application of computational and experimental tools, with 

a focus on reprogramming. The findings of this work, both preliminary and published, advance 

the field by providing a valuable tool with a unique focus on the hybrid cells and a rich dataset 

that captures lineage together with transcriptome profiles as well as chromatin landscapes. The 

discoveries with the application of nascent tools in the Morris lab opens opportunities to answer 

broad range of questions for continued advancement of the field and research. In this final 

chapter, we briefly pinpoint interesting questions for future pursuit from this work. 

Can we distinguish different types of hybrid cells? In Chapter 2, we present our work, 

Capybara, in effort to capture transition cells during continual biological processes. It enabled us 

to observe rare intermediates in different dynamic systems. Yet, as transition cells have been 

proposed to play diverse roles (MacLean et al., 2018), an interesting problem to pursue is further 

separation and characterization of these transition cells. For instance, the transition population 

can mark a bistable state toward two terminal fates or a transient state from one progenitor state 

to a terminal fate. A potential approach to isolate such population is to consider the stability of 

the identified hybrid state. A bistable state would demonstrate higher stability compared to a 

transient state. In addition, as we carefully note that hybrid cells identified in Capybara do not 

imply directionality, incorporation of trajectory inference or velocity metric could facilitate the 

identification of directionality of flow in these identified intermediate states. 
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 In Chapter 3, we showcase the joint application of nascent tools in the Morris lab to 

reveal cell type dynamics and mechanistic insights in direct cardiac reprogramming. Particularly, 

we reveal two putative trajectories of this reprogramming – one toward successfully 

reprogrammed state vs. the other toward the fibroblastic fate. The preliminary analysis describes 

the overarching picture of the lineage map. Taking a deeper dive, we can ask the following 

questions to further identify changes that define fates.  

From fate to state, where are the reprogrammed cells originating from? It has been 

previously reported that the dynamic cell types in the heterogeneous starting population have 

different reprogramming efficiency (Biddy et al., 2018; Mahmoudi et al., 2019). Leveraging this 

state-fate dataset, we can trace from the fate cells to their originating states. Further comparison 

of their gene expression profile and chromatin landscape can lead us to identify conserved 

expression or accessible chromatin regions that could be key to a restricted fate. Identification of 

such can lead to discovery of key regulatory genes in specific fate decision. 

From state to fate, do the cells diverge? Previously, we have identified that cell fate 

decision is stochastic yet becomes deterministic early during reprogramming, leading to 

restricted lineages (Biddy et al., 2018). Here, we can follow the state cells to their fate cells to 

assess if we observe similar lineage restriction as we previously observed. If the cells in a clone 

diverge, additional comparisons between the bifurcation cluster and fate clusters can highlight 

key transition transcriptional state and chromatin landscape. In this manner, we can further 

assess if the chromatin has already been remodeled prior to transcriptional changes. Such 

analysis can further refine our lineage maps for this reprogramming protocol and pinpoint 

bifurcation dynamics in the system. 



169 
 

Are successfully reprogrammed clones identified with transcription profile also 

considered successful in chromatin landscape? As described in Chapter 3, we observe more 

distinctive trajectories from the chromatin landscape point of view compared to expression 

profiles, reflecting the slow transcriptional remodeling. In addition, in the ATAC lineages, we 

identified a potential trajectory to depleted clones from an early reprogrammed cluster. Hence, it 

would be intriguing to explore if their RNA siblings have also lost the cardiac profile with a 

regain of fibroblastic fate. Considering the delay between upstream chromatin shift to 

downstream transcriptome modification, this can help identify key accessible genomic regions 

that are responsible for this refractory lineage. 

With the basic lineage map, how is the map altered upon modulation with other 

factors, such as signaling molecules and other regulatory factors? Previously, it has been 

shown that other factors can enhance efficiency and fidelity of reprogramming (Mohamed et al., 

2017; Hashimoto et al., 2019; Zhou et al., 2015; Jayawardena et al., 2012). Additional functional 

studies reveal the different roles of the factors in alteration of the chromatin landscape and 

transcriptional space (Hashimoto et al., 2019). From a lineage perspective, we could ask the 

question if the lineage is shifted, and the bifurcation observed in this study disappears. State-fate 

experiments with this modulation can be further employed to identify lineage changes and find 

key drivers of these changes. In addition, alternation in the lineage map can help pinpoint the 

factors could achieve both high efficiency and fidelity during reprogramming. 

Can we improve the efficiency and fidelity of cardiac reprogramming more? This is a 

long-standing question in the field of direct cell fate engineering (Guo & Morris, 2017). Utilizing 

CellOracle (Kamimoto et al., 2020), we highlight two putative transcription factors that could 

potentially increase the generation of cardiomyocytes in vitro. These factors can be tested and 
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evaluated in vitro by performing a reprogramming experiment with the traditional cocktail in 

joint with the new factors. The resulting cells can be evaluated via qRT-PCR or single-cell 

sequencing for full profile and immunostaining for structural representation of cardiomyocytes.  

In a nutshell, the tool and data presented in this dissertation provide important findings to 

the field of cell fate engineering. In addition, it laid the foundation for exploration in 

understanding the mechanisms of in vitro regeneration strategies, further improving them closer 

to future application in medicine. 
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