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training. To this day, her belief in me has not faltered. She reminds me to keep things in 

perspective, to take breaks as needed, and to have more fun outside. Neither of us expected to 

spend the past few months in self-imposed house arrest during a global pandemic while the 

world literally, and figuratively, burns to the ground. But I would not choose to spend them with 

anyone else. 

During this time, we brought our daughter Ruby into the world. She is a shining light of 

unbridled potential and a reminder of what is most important in life. Ruby, you do not realize it 

yet, but your charming little smile is an instant cure for a stressful day. It is a privilege and joy to 

see you grow. Thank you. 

 
Arnav Moudgil 

Washington University in St. Louis 

May 2022 



xvii 
 

 
 
 
 
 
 
 
 
 
 
 

Dedicated to Ruby, whose toothless smile sparks joy 
 
 
 
 
 
 
 
 
 
 



xviii 
 

ABSTRACT OF THE DISSERTATION 

Deconvolving Genomic Regulatory Heterogeneity with Self-Reporting Transposons 

by 

Arnav Moudgil 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2022 

Professor Robi David Mitra, Chair 

 A cell’s identity is a function of the genes expressed in that cell, which are in turn 

regulated by transcription factors. Over the last decade, single-cell RNA sequencing (RNA-seq) 

has emerged as a powerful class of techniques to characterize cellular diversity in heterogeneous 

tissues. These methods barcode transcripts by their cell-of-origin and assign them to specific 

genes. The resulting high-dimensional data are further processed to reveal clusters of cells 

sharing transcriptional states. Annotating these clusters, based on either known or discovered 

marker genes, offers a glimpse into the dynamic composition of an organ or biological process. 

 While single-cell RNA-seq excels at describing cell states, it alone does not inform us 

about the mechanisms maintaining a particular state. In recent years, multi-modal single cell 

technologies have flourished, combining single cell RNA-seq with at least one other genomic 

modality. As a result, joint assays now exist for assaying gene expression simultaneously with 

genotype, with methylation, with chromatin accessibility, or with lineage. Collectively, these 

methods aim to connect gene expression to regulatory processes in the genome, thereby gaining 

insight into the molecular foundations underpinning cellular identity. 
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Transcription factors are key protein regulators of gene expression. Master transcription 

factors organize gene regulatory networks to promote differentiation or homeostasis and are 

often used as markers of cell type. Unfortunately, no methods exist to measure single-cell RNA-

seq and map transcription factor binding in those same cells. Such a technique would be uniquely 

poised to identify both the identity of a cell and candidate regulatory elements contributing to 

that identity. The Mitra Lab has developed transposon calling cards as an alternative assay to 

map transcription factor binding, using transcription factor-transposase fusions to mark binding 

sites with deposited transposon sequences. Here, I present a single cell extension of this 

technique using a novel construct, the self-reporting transposon, whose genomic location can be 

mapped from single-cell RNA-seq libraries. Thus, in one workflow, single cell calling cards 

identifies cell types in complex systems and deconvolves cell-type-specific regulatory elements 

bound by a transcription factor in those cell types. 

 The remainder of this dissertation is organized as follows. Chapter 1 reviews the 

biological and technological context for this work, with particular focus on single-cell RNA-seq 

techniques and methods to assay transcription factor binding sites. Chapter 2 presents the central 

advancement of this dissertation, the self-reporting transposon and its use in single cell calling 

cards to map cell-type-specific transcription factor binding sites in complex systems. Chapter 3 

discusses the qBED track, a medium for visualizing calling cards data, and its accompanying 

data format for storing results. Chapter 4 examines the Bayesian blocks algorithm, a method 

adopted from the astrophysics community, and employs it to call peaks in calling cards data. 

Chapter 5 explores a new use for self-reporting transposons as surveyors of chromosomal 

compartmentalization. Chapter 6 concludes this dissertation, offering suggestions for future work 

and positing a broader role for self-reporting transposons in genomics.
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Chapter 1: Introduction 
1.1 Background, Significance, and Scope 
Multicellular life is characterized by heterogenous populations of cells woven together to form 

tissues and complex organs. How such diversity arises is a fundamental and cross-disciplinary 

question in biology (Trapnell, 2015). Cataloging the diversity of cell types in an organism has 

inspired several cellular atlas projects (Han et al., 2018b, 2018b; Karaiskos et al., 2017; Regev et 

al., 2017) but these efforts are complicated by variability in cell state. For example, individual 

skeletal muscle cells may appear uniform under a microscope but can have diverse expression 

patterns of myosin isoforms (Biressi et al., 2007). Cell types traditionally thought to be relatively 

homogeneous, such as neutrophils (Silvestre-Roig et al., 2016) and tissue-specific stem cells 

(Goodell et al., 2015; Krieger and Simons, 2015), are proving to be much more functionally 

diverse than previously appreciated. Such heterogeneity is not simply restricted to normal 

development. Cellular diversity is also a hallmark of pathologies like cancer (Almendro et al., 

2013). A tumor cell population can have widely varying morphologies, gene expression profiles, 

and chemotherapeutic resistance potentials (Brooks et al., 2015; Knoechel et al., 2014; 

Litzenburger et al., 2017; Michor and Polyak, 2010). This can present practical challenges for 

diagnostics, therapy, and prognosis. Characterizing cell type diversity, while a necessary first 

step, is not sufficient to mechanistically understand how cell identity is generated during 

development, maintained during homeostasis, and ultimately dysregulated during disease. 

Single-cell RNA sequencing (scRNA-seq) is revealing cellular heterogeneity at 

unprecedented resolution. Investigators have used these methods to discover new subpopulations 

of cells in the immune compartment (Jaitin et al., 2014; Shalek et al., 2014), brain (Zeisel et al., 
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2015), lungs (Plasschaert et al., 2018; Treutlein et al., 2014), intestine (Grün et al., 2015), and 

retina (Macosko et al., 2015); to profile rare circulating tumor cells in cancer patients (Cann et 

al., 2012; Miyamoto et al., 2015; Ramsköld et al., 2012); and uncover patterns of transcription 

during embryogenesis (Xue et al., 2013) as well as facilitate preimplantation diagnosis (Yan et 

al., 2013). In one particularly memorable example, researchers discovered a previously 

uncharacterized subset of planarian neoblast that, when transplanted into a carcass, completely 

regenerated an entire worm (Zeng et al., 2018). A major strength of scRNA-seq is that it allows 

researchers to sample tissues in an unbiased fashion and detect new cell types for which there is 

no known marker or culture method (Jaitin et al., 2014; Shapiro et al., 2013; Wen and Tang, 

2016). This kind of discovery, in one sense a eukaryotic equivalent to bacterial metagenomics 

(Lasken, 2012), represents the power and promise of scRNA-seq.  

Single-cell transcriptomic technologies are rapidly evolving. Following the first 

demonstration of single-cell RNA sequencing (Tang et al., 2009), researchers have developed 

STRT-seq (single-cell tagged reverse transcription) (Islam et al., 2011, 2012), Smart-seq/Smart-

seq2 (Picelli et al., 2013; Ramsköld et al., 2012), CEL-seq/CEL-seq2 (cell expression by linear 

amplification) (Hashimshony et al., 2012, 2016), Quartz-seq (Sasagawa et al., 2013), MARS-seq 

(massively parallel single-cell RNA-sequencing) (Jaitin et al., 2014), MALBAC-RNA (multiple 

annealing and looping-based amplification cycles) (Chapman et al., 2015), Drop-seq (Macosko 

et al., 2015), inDrops (Klein et al., 2015), 10x Genomics (Zheng et al., 2017), sci-RNA-seq (Cao 

et al., 2017), and SPLiT-seq (Rosenberg et al., 2018), to name a few. (Many of these techniques 

are concisely reviewed in (Wen and Tang, 2016).) 

Broadly speaking, scRNA-seq methods rely on isolating single cells into either individual 

wells of a culture plate or within microliter-sized droplets (Wen and Tang, 2016). The cells are 
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lysed, messenger RNA (mRNA) is reverse transcribed, and a complementary DNA (cDNA) 

library is created. The use of barcoded adapters and template-switching oligonucleotides 

uniquely labels molecules from each cell, which are then pooled and sequenced. The resulting 

reads are mapped to a reference genome to identify which genes are expressed and the barcode is 

used to link gene expression values to individual cells. A gene expression matrix can then be 

constructed with cell barcodes along one axis and gene expression values along the other. 

Clustering algorithms reduce the high-dimensional transcriptional profiles of individual cells into 

groups of cell types with shared transcriptomic profiles (Becht et al., 2019; Grün et al., 2015; 

Satija et al., 2015; Xu and Su, 2015; Zeisel et al., 2015). The pattern of gene expression within 

each cluster can then be used to assign cell type. Recently, researchers have been able to overlay 

directional information on top of clusters by comparing the relative ratios of intronic to exonic 

read counts (La Manno et al., 2018; Svensson and Pachter, 2018). 

The assorted scRNA-seq methods have their strengths and weaknesses. STRT-seq only 

captures the 5’ ends of transcripts while CEL-seq captures the 3’ ends. Although this may be 

suitable for measuring gene expression, they cannot be used to detect alternative splicing or 

isoform switching. Smart-seq creates a shotgun library out of the entire transcript, which avoids 

biasing data towards either end, but is incompatible with the use of unique molecular indexes 

(UMIs) (Ziegenhain et al., 2017). Individual cells contain such little mRNA (Macaulay and Voet, 

2014) that amplification bias, drop-out, and other PCR artifacts can skew the interpretability of 

the final dataset. UMIs enable digital counting of transcripts, which is a more noise-tolerant way 

of measuring transcript abundance than relative comparisons of mRNA content (Islam et al., 

2013).  
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Methods relying on manual processing of individual cells in wells can sequence, at most, 

a few hundred cells per run (Wen and Tang, 2016). The Fluidigm C1 microfluidic platform has 

been another popular option for scRNA-seq (Achim et al., 2015; Bacher and Kendziorski, 2016; 

Xin et al., 2016) because of its ability to automatically sort cells into 96-well plate, perform 

reverse transcription, and generate sequencing libraries in a hands-off manner (Hebenstreit, 

2012). Although it can be used to sequence several hundreds of cells in a single experiment 

(Wen and Tang, 2016), it is the most expensive platform for scRNA-seq due to its use of 

proprietary equipment and consumables (Ziegenhain et al., 2017). More self-reliant platforms, 

like Drop-seq (Macosko et al., 2015) and inDrops (Klein et al., 2015), provide microfluidic 

scRNA-seq at an affordable price point. 10x Genomics’ Chromium platform has further 

increased adoption of scRNA-seq by offering easy-to-use kits and competitive cell recovery rates 

(Zheng et al., 2017). Recently, microwells (Han et al., 2018b) and combinatorial barcoding 

strategies (Cao et al., 2017; Datlinger et al., 2021; Rosenberg et al., 2018) have pushed scRNA-

seq to ever larger library sizes, breaking the million-cell barrier (Cao et al., 2019). 

Drop-seq provides a representative example of how microfluidic scRNA-seq techniques 

work. This method uses microparticle beads which are tagged polythymidine oligonucleotides. 

Each oligonucleotide on a bead has a constant sequence (SMART), a 12-bp barcode shared 

across each of probes (the cell barcode), and an 8-bp UMI which is unique to each 

oligonucleotide. The beads are sent through a microfluidic device in a lysis buffer where they 

intersect a parallel stream of single cells in suspension. Immediately afterwards, an oil stream 

splits the aqueous stream into distinct microfluidic droplets. These droplets now contain a single 

cell and as the cell lyses, polyadenylated mRNA molecules are captured by the polythymidine 

sequences on the bead. Library preparation occurs in bulk after droplets have been disrupted. 
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However, single-cell resolution is retained due to the incorporation of the cell barcode and UMI 

into the cDNA. Amplification of the cDNA followed by tagmentation results in a library of 3’ 

transcript ends tagged with information connecting them to cell-of-origin (cell barcode) and 

transcript-of-origin (UMI).  

This library is sequenced and the reads are mapped to a reference. To classify cell types 

from this data, a digital gene expression (DGE) matrix is generated. This table lists cell barcodes 

along one axis and genes along the other. The values in the matrix are integer counts of the 

number of UMIs observed for a given gene for a specified cell barcode. Each UMI can only have 

originated from a single transcript, but PCR jackpotting (Cha and Thilly, 1993) may lead to the 

preferential and disproportionate amplification of a few molecules (Lou et al., 2013). Restricting 

the values of the matrix to the UMI counts helps correct for these kinds of biases (Stegle et al., 

2015). 

A number of informatic strategies can be used to identify transcriptionally distinct groups 

of cells (Butler et al., 2018; Hsu and Culhane, 2020; Satija et al., 2015; Stuart et al., 2019; Wolf 

et al., 2018). Typically this process begins by identifying a subset of highly variable genes across 

the dataset, then performing a combination of principal components analysis (PCA) of these 

genes followed by either t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten 

and Hinton, 2008) or uniform manifold approximation and projection (UMAP) (McInnes and 

Healy, 2018). PCA clusters cells according to vectors which are linear combination of genes; 

these vectors reflect genes that strongly covary with each other (Heimberg et al., 2016). This 

high-dimensional representation is then transformed into a two-dimensional projection (using t-

SNE or UMAP) such that points that were close to each other in high-dimensional space remain 

close to each other in low-dimensional space. Clusters are identified within this representation 
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using either a density-based approach (Ester et al., 1996) or community detection algorithms 

(Blondel et al., 2008; Traag et al., 2019)  Finally, the clusters are organized hierarchically and 

gene expression profiles within each cluster are used for cell type assignment. The original Drop-

seq paper used this method to discover rare subpopulations of retinal amacrine cells that had not 

been previously described and proposed new marker genes for their identification (Macosko et 

al., 2015). 

Limitations of Drop-seq, and droplet microfluidic methods more generally, include a low 

cell capture efficiency: the ratio of beads to cells is chosen to minimize the number of droplets 

containing two cells (Macosko et al., 2015). As a result, only about 5% of beads will be 

encapsulated with a cell, while the rest of the droplets will be empty (i.e. a bead without a cell) 

(Ziegenhain et al., 2017). Thus, relatively large number of cells are required as input into the 

microfluidic device, posing a challenge for rare cell type detection. Close packing of hydrogel 

beads containing barcoded reverse transcription primers improves cell recovery rates (Klein et 

al., 2015; Zheng et al., 2017). There are also limits to the amount of mRNA captured by the 

microparticles; estimates suggest that only 10-20% of all mRNA in a droplet is actually 

represented in the final library (Macosko et al., 2015), which could result in data biased towards 

abundantly transcribed genes. Despite this low-coverage libraries can still be used for cell type 

classification due to strong covariances within gene expression networks (Heimberg et al., 2016). 

Multi-modal scRNA-seq techniques have emerged to mechanistically understand the 

factors governing a particular transcriptional state (Figure 1). We now have methods to 

simultaneously measure single cell transcripts and: genotype (Dey et al., 2015; Han et al., 2018a; 

Li et al., 2015; Macaulay et al., 2015); methylated cytosines (Angermueller et al., 2016; Hu et 

al., 2016); chromatin accessibility (Cao et al., 2018; Ma et al., 2020); protein levels 
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(Katzenelenbogen et al., 2020; Peterson et al., 2017; Stoeckius et al., 2017); genetic perturbation 

(Datlinger et al., 2017; Dixit et al., 2016; Jaitin et al., 2016); and lineage (Alemany et al., 2018; 

Biddy et al., 2018; Raj et al., 2018; Spanjaard et al., 2018; Wagner et al., 2018). However, one 

major class of studies that, until very recently, was absent from this suite of techniques were 

transcription factor binding assays. 

 

Figure 1.1: The landscape of multimodal scRNA-seq technologies. Methods in grey are theoretically compatible 
with scRNA-seq but have not demonstrated this in practice. 
 

Transcription factors (TFs) encompass DNA-binding and chromatin-associated proteins 

that regulate gene expression. It is well-established that TFs are responsible for determining cell 

fate and maintaining cell identity (Baumgardt et al., 2007; Hevner, 2006; Holmberg and 

Perlmann, 2012; Iwafuchi-Doi and Zaret, 2016; Kuo and Grabtree, 1992; Orkin and Zon, 2002; 
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Roeder and Radtke, 2009; Wilson et al., 2003). TFs can directly bind promoters as well as more 

distant elements termed enhancers. A subset of enhancers known as super-enhancers are thought 

to regulate cell identity genes and are characterized by high densities of cell-type-specific TFs, 

permissive epigenetic marks, and transcriptional coactivators like BRD4 and MED1 (Di Micco 

et al., 2014; Hnisz et al., 2013; Niederriter et al., 2015; Whyte et al., 2013). Overexpression of 

TFs can force the transdifferentiation of one cell type into another (Holmberg and Perlmann, 

2012; Liu et al., 2008; Megeney et al., 1996; Takahashi and Yamanaka, 2006; Tapscott, 2005), 

while removal of binding sites can profoundly alter morphology (Gonen et al., 2018; Kvon et al., 

2016). 

TF binding is commonly assayed using chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) in which cellular proteins and DNA are chemically crosslinked with 

formaldehyde (Johnson et al., 2007; Park, 2009; Shlyueva et al., 2014). The DNA is then 

sonicated to an average of 200-600 bp fragments; optionally, fragmentation with an exonuclease 

(ChIP-exo), micrococcal nuclease (ChEC-seq), or the transposase Tn5 can be used to increase 

resolution (Furey, 2012; Schmid et al., 2004; Schmidl et al., 2015; Skene and Henikoff, 2017; 

Zentner et al., 2015). An antibody isolates fragments of genomic DNA bound by the TF of 

interest. The TF-DNA crosslinks are reversed and the freed DNA is used to construct a 

sequencing library whose reads should map back to regions bound by the TF. Another approach 

to identifying binding sites, DamID, relies on fusing TFs to Escherichia coli DNA adenine 

methyltransferase (dam) (Greil et al., 2006; Vogel et al., 2007). When the fusion protein binds 

DNA, the dam domain methylates adenines at nearby GATC sites. This modification does not 

occur naturally in mammalian cells and so is specific to the TF fusion. A methylation-specific 
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PCR amplifies bases bound by the TF and sequencing these reads should correspond to TF 

binding sites.  

DNase-seq (Song and Crawford, 2010) and assay for transposase-accessible chromatin 

using sequencing (ATAC-seq) (Buenrostro et al., 2013) are two methods for identifying open 

chromatin. They work by either lightly digesting or tagmenting (Adey et al., 2010) the genome, 

which fragments unbound DNA. Sequencing these regions can lend insight into which genes 

may be actively transcribed; meanwhile, regions that were not found by sequencing may be 

silenced. By themselves, however, these methods cannot inform us as to which TFs may be 

regulating the activity of particular genes. Instead, they describe regions where certain binding 

motifs may be accessible or not (Stergachis et al., 2013), but this is correlative evidence at best, 

not causal. Different TFs can share very similar motifs, making it even more difficult to identify 

which protein was actually bound (Shively et al., 2019). In combination with TF-specific ChIP-

seq, ATAC-seq data has been used to infer TF binding (Buenrostro et al., 2013), but this 

necessitates having good ChIP-seq data for a particular cell type. 

No technologies exist to jointly assay gene expression and TF binding in single cells. 

Such a technique would be uniquely poised to make mechanistic connections between TF 

activity and cell identity. Several antibody-based single cell techniques have recently been 

developed to measure DNA-protein contacts (Ai et al., 2019; Carter et al., 2019; Grosselin et al., 

2019; Hainer et al., 2019; Harada et al., 2019; Kaya-Okur et al., 2019; Rotem et al., 2015; Wang 

et al., 2019) but they are unable to also recover mRNA. As such, their use is restricted to pre-

defined cell types and, in general, for highly abundant proteins like histones and master TFs.  

Single cell DamID has been reported (Kind et al., 2013, 2015) and has recently been combined 

with scRNA-seq (Rooijers et al., 2019) but has only been used for studying interactions between 
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the genome and the nuclear lamina. Thus, to measure TF binding in single cells, a new method is 

needed. 

Our lab has previously developed transposon calling cards as a unique method of 

recording interactions between DNA-binding proteins and the genome (Wang et al., 2007, 2011, 

2012). It relies on two components: a transposable donor element (the “calling card”), which 

becomes permanently integrated into the genome; and a helper, which is a TF fused to either a 

protein that directs a transposase–as in yeast; (Shively et al., 2019; Wang et al., 2007, 2011)–or a 

transposase itself–as in mammalian cells; (Cammack et al., 2020; Wang et al., 2012; Yen et al., 

2018). The TF-transposase complex directs insertion of the donor element to genomic loci 

visited by the TF. After a period of time, genomic DNA is harvested, transposon insertions are 

recovered, sequenced, and analyzed.  

For mammalian cells we use the piggyBac (PB) transposase (PBase), originally isolated 

from the moth Trichoplusia ni (Yusa, 2015), and its hyperactive version (HyPBase) (Yusa et al., 

2011) as helpers. These proteins show robust activity in a variety of animal cell types (Di Matteo 

et al., 2014; Galvan et al., 2009; Wu et al., 2006; Yusa, 2013) and are amenable to N-terminal TF 

fusions (Wu et al., 2006). The donor element is a screenable or selectable marker gene (e.g. 

tdTomato, puromycin N-acetyltransferase) flanked by PB terminal repeat sequences. Between 

the marker gene and the downstream terminal repeat, we have added a bank of restriction sites, a 

barcode sequence (to uniquely identify a particular donor), and a next-generation sequencing 

site. In a typical calling cards experiment, a plasmid encoding the TF-PBase is transfected along 

with several barcoded donor plasmids. The TF-PBase directs insertion of the donor transposons 

near TF binding sites. The timing of transposase activity is critical for recording. One way to 

manage this is to simply transfect the helper plasmid when we want to record TF binding. We 
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can also fuse TF-PBase to the estrogen receptor ERT2 (Cadiñanos and Bradley, 2007) or a 

destabilization domain (Banaszynski et al., 2006) to create an inducible transposase (Higdon III, 

2015; Mayhew, 2014; Qi et al., 2017). These constructs are inactive until treatment with 

tamoxifen, an estrogen analog, or the small molecule Shld1, respectively. When induced, the TF-

PBase directs insertion of the donor into the genome; upon removal of these agents, TF-PBase 

activity stops (Qi et al., 2017). 

At a later point, we harvest cells, isolate genomic DNA, and digest it. The fragmented 

libraries are then diluted and incubated overnight to promote self-circularization. Next, an 

inverse PCR is performed to specifically amplify transposon insertions that have successfully 

circularized. The products of this step are sent for high-throughput sequencing. One read will 

start within the terminal repeat, read through the PB insertion site motif (“TTAA”) and into 

genomic sequence. The other read will pick up the barcode labeling that donor sequence. The 

first read is trimmed and mapped back to the genome, which informs us to loci visited by the TF. 

To increase confidence that a given mapped read represents a true TF-genome interaction, we 

require multiple barcoded insertions at the same locus. 

Integration of the donor sequence provides a permanent record of TF-genome 

interactions. These marks are stably passed on during mitosis, so interactions recorded in 

progenitor or stem cells are preserved in terminally differentiated cell types. The differentiated 

cells may also be more numerous than the progenitor cells, so in a sense the TF binding signal 

becomes naturally amplified. We have successfully used transposon calling cards to map TF 

binding in progenitor motor neurons in mouse embryoid bodies (Mayhew, 2014) and in zebrafish 

embryos (Higdon III, 2015). 
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One understandable criticism of transposon calling cards is the potential for mutagenesis 

caused by the TF-PBase fusion integrating donors into the genome. Off-target effects in a stem 

cell population may lead to aberrant development and thus may not represent normal 

transcriptional regulation. Moreover, gene trap constructs delivered with piggyBac has been used 

to discover cancer driver genes (Cadiñanos and Bradley, 2007). Our experience suggests that in 

vivo mutagenic effects are not a significant concern. Transfection of zebrafish embryos with 

calling cards plasmids revealed successful transposition in nearly every cell without a visible 

phenotypic effect (Higdon III, 2015). Typically, we expect 50-100 insertions per cell, a small 

number of relative to the size of vertebrate genomes. Our model organisms are also diploid, so in 

the event that one promoter or enhancer is disrupted, the other copy may still be haplosufficient. 

TF-PBase constructs tend to insert donors 100-300 bases away from the TF binding site (Wang 

et al., 2012), so the ability of the TF to bind and exert its function is likely preserved. Finally, in 

diploid yeast–which has much smaller intergenic regions than mammalian genomes–we recover 

essential genes at comparable frequencies to non-essential genes (Wang et al., 2011), suggesting 

at most a tolerable amount of mutagenesis.  

Other limitations are related to sequence constraints. The piggyBac transposase almost 

always inserts into TTAA tetranucleotide motifs (Wang et al., 2012). In relatively GC-rich 

regions, there may be no suitable insertion site and so a potentially meaningful TF interaction 

may not be recorded. Furthermore, genomic sequence downstream of the insertion must contain 

one of the restriction sites found in the donor sequence. If no site is sufficiently close, the inverse 

PCR product will be too long to sequence on the Illumina platform (Wang et al., 2012). One 

potential way to overcome this is to use capture probes designed against the piggyBac terminal 

repeat, thereby isolating all the insertions in the genome (Mann et al., 2016). 



13 
 

Applying transposon calling cards to heterogeneous tissues is not straightforward. Bulk 

calling card data would have the same interpretability problem that faces ChIP-seq: we would 

observe an amalgam of binding sites without a clear link to any particular cell type. While 

scRNA-seq can successfully identify unique cell types, it is an RNA-based technique while 

transposon calling cards is a DNA-based assay. Dual-assay techniques that combine genome 

sequencing with scRNA-seq have recently been described (Macaulay et al., 2015) but amplifying 

genomic DNA from single cells is susceptible to allelic dropout and amplification bias (Gawad et 

al., 2016). Given the relatively small number (50-100) of insertions per cell we expect, relying 

on single-cell genome sequencing may result in noisy data that would not adequately reflect a 

TF’s binding portfolio. 

Our solution, as described over the remainder of this dissertation, is the “self-reporting” 

transposon. This is a novel calling card donor that can be isolated from RNA instead of DNA. 

This is one of our standard piggyBac donor plasmids with a puromycin resistance marker driven 

by the constitutively active promoter elongation factor 1-alpha (EF-1ɑ). Unlike prior donors, 

however, this construct lacks a polyadenylation signal. Thus, as RNA polymerase II transcribes 

the resistance gene, it continues through the downstream PB terminal repeat and into the flanking 

genomic sequence. Hence, it “self-reports” its genomic coordinates via mRNA. 

Our new method, single cell calling cards, enables single cell recovery of SRTs. This 

protocol starts from scRNA-seq libraries, allowing us to characterize the transcriptomes our cell 

population and assign cell barcodes to distinct clusters. Transcripts from SRTs are captured and 

tagged with cell barcodes and UMIs alongside cellular mRNA. We can specifically amplify the 

SRT transcripts and create a library where both the junction of the genome-SRT junction and the 

cell barcode and UMI are on the same piece of DNA. High-throughput sequencing allows us to 



14 
 

map each insertion to a specific cell barcode. By aggregating insertion sites found across all 

barcodes within a cluster, we characterize the TF binding profiles of each cell type. Thus, with 

one single cell calling cards experiment we can assay TF binding across multiple cell types, free 

from the constraints of in vitro cultures. 

Finally, while SRTs clearly enable single cell calling cards, the idea of SRTs may have 

broader utility than TF binding. Any genomic assay extracting location information could, in 

theory, be combined with scRNA-seq via SRTs. Deploying SRTs across the genome, particularly 

in an unbiased fashion, could be used to discover underappreciated regulatory mechanisms such 

as cryptic polyadenylation or splicing. More abstractly, the location of the SRT itself can be 

conceptualized as a positional barcode. Since transpositions are vertically transmitted, their 

distribution across a population of cells may reflect patterns of clonality and be used to infer 

lineage relationships. Finally, conditionally expressed SRTs may be useful as molecular sentinels 

of a kind, activating in response to upstream triggering events. Whether these constructs are 

widely adopted by the genomics community remains to be seen. In the interim, we might 

surprise and delight ourselves by thinking creatively and open-mindedly about SRTs and their 

application. 
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Chapter 2: Self-reporting transposons enable 
simultaneous readout of gene expression and 

transcription factor binding in single cells 
(A version of this chapter was published in Cell 182, pp. 992-1008) 

2.1 Abstract 
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single cell 

RNA-seq (scRNA-seq) deconvolves cell types from gene expression, but no technology links 

cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons 

(SRTs) and use them in single cell calling cards (scCC), a novel assay for simultaneously 

measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs 

are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be 

used to map TFBS. We then present scCC, which maps SRTs from scRNA-seq libraries, 

simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs 

with this technique. Next, we use scCC to discover BRD4-mediated cell state transitions in K562 

cells. Finally, we map BRD4 binding sites in the mouse cortex at single cell resolution, 

establishing a new method for studying TF biology in situ.  

2.2 Introduction 
Transcription factors (TFs) regulate gene expression during the most critical junctures in the 

specification of cell fate (Gurdon, 2016; Hafler et al., 2012; Mizuguchi et al., 2001; Zhu et al., 

2012). They are central to the maintenance of stem cell pluripotency (Liu et al., 2008; Takahashi 

and Yamanaka, 2006) and are required for normal organogenesis during development (Fogarty et 

al., 2017). Overexpression of certain TFs can transdifferentiate one cell type into another (Davis 

et al., 1987), while abolishing TF binding sites can result in striking global phenotypes (Gonen et 
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al., 2018; Kvon et al., 2016). Furthermore, the pattern of TF binding is often dysregulated in 

disease states (Lee and Young, 2013). A better understanding of TF binding during tissue 

development and homeostasis would provide insights into how cellular diversity arises and is 

maintained under normal and abnormal biological conditions. 

In the past few years, single cell RNA-seq (scRNA-seq) has emerged as the de facto 

paradigm for characterizing cellular diversity in complex tissues and organisms (Campbell et al., 

2017; Cao et al., 2017; Fincher et al., 2018; Han et al., 2018; Karaiskos et al., 2017; Zeisel et al., 

2015). More recently, multi-modal scRNA-seq technologies have been developed (Angermueller 

et al., 2016; Cao et al., 2018; Clark et al., 2018; Dey et al., 2015; Macaulay et al., 2015; Peterson 

et al., 2017; Stoeckius et al., 2017) that link transcriptional information to other genomic assays. 

These methods are motivated by the realization that while scRNA-seq can describe the current 

state of a biological system, it alone cannot explain how that state arose. Thus, for a given 

population of cells, one can now simultaneously measure transcriptome and genome (Dey et al., 

2015; Macaulay et al., 2015), or methylome (Angermueller et al., 2016; Clark et al., 2018), or 

chromatin accessibility (Cao et al., 2018; Clark et al., 2018), or cell surface markers (Peterson et 

al., 2017; Stoeckius et al., 2017). These techniques enable greater insight into the regulatory 

processes driving individual transcriptional programs. 

A notable lacuna in the single cell repertoire is a method for simultaneously assaying 

transcriptome and TF binding. Such a method would allow for the genome-wide identification of 

TF binding sites across multiple cell types in complex tissues. ChIP-seq is the most popular 

technique for studying TF binding (Johnson et al., 2007), relying on antibodies specific to the 

factor of interest to pull down bound DNA. While a number of antibody-based single cell 

epigenomic methods have been reported (Ai et al., 2019; Carter et al., 2019; Grosselin et al., 
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2019; Hainer et al., 2019; Harada et al., 2019; Kaya-Okur et al., 2019; Rotem et al., 2015; Wang 

et al., 2019), these technique have generally mapped highly abundant proteins, such as modified 

histones and CTCF. DamID can recover TF binding sites by identifying nearby exogenously 

methylated adenines (Greil et al., 2006; Vogel et al., 2007), but in single cells it has only been 

used to study lamina-associated domains (Kind et al., 2013, 2015; Rooijers et al., 2019). 

Moreover, while combined single cell DamID and transcriptome (scDamID&T) has been 

described (Rooijers et al., 2019), it is a plate-based assay which limits throughput. None of the 

other single cell epigenomic techniques simultaneously capture mRNA (Ai et al., 2019; Carter et 

al., 2019; Grosselin et al., 2019; Hainer et al., 2019; Harada et al., 2019; Kaya-Okur et al., 2019; 

Rotem et al., 2015; Wang et al., 2019), restricting their use to predetermined cell types. In 

contrast, single cell assays for transposase-accessible chromatin (Buenrostro et al., 2015; Cao et 

al., 2018) can be used to identify nucleosome-free regions that may be bound by TFs across large 

numbers of mixed cells. However, they can only suggest the identity of potential DNA binding 

proteins by motif inference. These assays do not directly measure TF occupancy; moreover, they 

cannot be used to study transcriptional regulators that bind DNA indirectly or non-specifically, 

such as chromatin remodelers. 

Our lab has previously developed transposon calling cards as an alternative assay of TF 

binding (Wang et al., 2007, 2011, 2012a). This system relies on two exogenous components: a 

fusion between a TF and a transposase, and a transposon carrying a reporter gene. The fusion 

transposase deposits transposons near TF binding sites, which are subsequently amplified from 

genomic DNA and subjected to high-throughput sequencing. Thus, the redirected transposase 

leaves “calling cards” at the genomic locations it has visited, which can be identified later in 

time. The result is a genome-wide assay of all binding sites for that particular TF. In mammalian 
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cells, we have heterologously expressed the piggyBac transposase (Ding et al., 2005) fused to the 

TF SP1 and shown that the resulting pattern of insertions reflects SP1’s DNA binding 

preferences (Wang et al., 2012a). However, this method was only feasible in bulk preparations of 

thousands to millions of cells. 

Here we present single cell calling cards (scCC), an extension of transposon calling cards 

that simultaneously profiles mRNA content and TF binding at single cell resolution. The key 

component of our work is a novel construct called the self-reporting transposon (SRT). The 

genomic coordinates of inserted SRTs can be mapped from either mRNA or DNA, but the use of 

mRNA leads to both higher efficiency and compatibility with single-cell transcriptomics. We 

first establish that TF-directed SRTs, in bulk samples, retain the ability to accurately identify TF 

binding sites. Next, we demonstrate that the unfused piggyBac transposase, through its native 

affinity for the bromodomain TF BRD4, can be used to identify BRD4-bound super-enhancers 

(SEs). We then present the scCC method, which allows cell-specific mapping of SRTs from 

scRNA-seq libraries. This enables, in one experiment, concomitant assignment of cell types and 

identification of TF binding sites within those cells. We highlight the range of this technology by 

mapping the binding of multiple TFs in a variety of cell lines. We then use scCC to discover 

bromodomain-dependent cell state dynamics in K562 cells. We conclude by identifying cell type 

specific BRD4 binding sites in vivo in the postnatal mouse cortex. These results demonstrate that 

scCC could be a broadly applicable tool for the study of specific TF binding interactions across 

multiple cell types within heterogeneous systems. 
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2.3 Results 
2.3.1 SRTs can be mapped from mRNA instead of genomic DNA 
To combine scRNA-seq with calling cards, we first developed a transposon whose genomic 

location could be determined from mRNA. We created a piggyBac self-reporting transposon 

(SRT) by removing the polyadenylation signal from our standard DNA-based calling card vector 

(Figure 2.1A). This enables RNA polymerase II (Pol II) to transcribe the reporter gene contained 

in the transposon and continue through the terminal repeat (TR) into the flanking genomic 

sequence. Thus, SRTs “self-report” their locations through the unique genomic sequence found 

within the 3’ untranslated regions (UTRs) of the reporter gene transcripts. Although previously 

published gene- or enhancer-trap transposons (Cadiñanos and Bradley, 2007) could, in principle, 

also capture local positional information via RNA, they are resolution-limited to the nearest gene 

or enhancer, respectively. In contrast, the 3’ UTRs of SRT-derived transcripts contain the 

transposon-genome junction in the mRNA sequence, so we can map insertions with base-pair 

precision. 
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Figure 2.1: Self-reporting transposons (SRTs) are mapped more efficiently from RNA compared to DNA. (A) 
Schematics of a self-reporting piggyBac transposon with puromycin reporter gene (PB-SRT-Puro) and undirected 
(PBase) and SP1-directed (SP1-PBase) piggyBac transposases. (B) Molecular workflow for mapping SRTs from 
bulk RNA libraries. (C) Overlap of SRTs recovered by DNA- or RNA-based protocols in HCT-116 cells. (D) 
Distribution of insertions with respect to genetic annotation between SRT libraries prepared from either DNA or 
RNA. TR: terminal repeat; Puro: puromycin; PAS: polyadenylation signal. 
 

SRTs are mapped following reverse transcription (RT) and PCR amplification of self-

reporting transcripts. These transcripts contain stretches of adenines that are derived from either 

cryptic polyadenylation signals (PAS) or polyadenine tracts encoded in genomic DNA 

downstream of the SRT insertion point (Figure 2.1B). A poly(T) RT primer hybridizes with these 

transcripts and introduces a universal priming site at one end of the transcripts. We then perform 
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a pair of nested PCRs with an intermediate tagmentation step (Picelli et al., 2014) to recover the 

transposon-genome junction. After adapter trimming and alignment, the 5’ coordinates of these 

reads identify the genomic locations of insertions in the library. Libraries generated without 

transposase yield very few reads that map to the genome, but the protocol is highly efficient 

when transposase is added (Figure 2.2A). 
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Figure 2.2: Properties of self-reporting transposons (SRTs). (A) Efficiencies of bulk RNA calling card libraries 
prepared from HEK293T cells transfected with PB-SRT-tdTomato with or without HyPBase transposase. (B) 
Overlap of SRTs recovered by two technical replicates of bulk RNA calling cards in HCT-116 cells transfected with 
PB-SRT-Puro and SP1-PBase. (C) Distribution of insertions with respect to chromatin state between SRT libraries 
prepared from either DNA or RNA. (D) Breakdown of sequencing reads mapping to the genome or plasmid from 
SRT libraries prepared from either DNA or RNA. 
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To compare transposon recovery between the new RNA-based protocol and our standard 

DNA-based inverse PCR protocol (Wang et al., 2012a), we transfected HCT-116 cells with a 

plasmid carrying a piggyBac SRT (PB-SRT-Puro) and a plasmid encoding a fusion of the TF 

SP1 and piggyBac transposase (SP1-PBase; Figure 2.1A). After two weeks of selection, we 

obtained approximately 2,300 puromycin-resistant clones. We split these cells into two 

populations: one half underwent inverse PCR while the other half were processed with our new 

RNA-based method. With inverse PCR, we obtained 31,001 insertions, while the RNA-based 

protocol recovered 62,500 insertions (mean coverage: 709 and 240 reads per insertion, 

respectively; Table 2.1). About 80% of the insertions recovered by DNA calling cards were also 

recovered in the RNA-based library (25,060 insertions; Figure 2.1C), an overlap comparable to 

that between technical replicates of the RNA workflow (Figure 2.2B). However, the RNA 

protocol recovered a further 37,440 insertions that were not found in the DNA-based library. To 

determine if these extra insertions were genuine, we analyzed the distribution of insertions by 

genetic annotation (Figure 2.1D) or chromatin state (Figure 2.2C). Transposons mapped from 

either the DNA or the RNA libraries showed comparable distributions with respect to genic 

annotation or chromatin states. This indicates that RNA-based recovery of transposons appears 

to be unbiased with respect to our established, DNA-based protocol. 

Since SRT recovery relies on transcription, we wondered if SRTs deposited in 

euchromatic regions were recovered more efficiently than SRTs in less permissive chromatin 

states, which might lead to biases when mapping TF binding. Since piggyBac is known to 

preferentially insert near active chromatin (Yoshida et al., 2017), this question cannot be easily 

answered using this transposon. Prior studies have shown that the Sleeping Beauty transposase 

(Ivics et al., 1997; Mátés et al., 2009) has very little preference for chromatin state (Yoshida et 
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al., 2017). Therefore, we created a self-reporting Sleeping Beauty transposon and compared its 

genome-wide distribution to that of SRTs deposited by wild-type piggyBac (Table 2.1; Figure 

2.3A-B). Undirected piggyBac transposases appeared to modestly prefer transposing into 

promoter and enhancers, which is consistent with previous reports (Gogol-Döring et al., 2016; 

Yoshida et al., 2017). By contrast, Sleeping Beauty showed largely uniform rates of insertions 

across all chromatin states, including repressed and inactive chromatin (Figure 2.3B). These 

results affirm that while RNA-based recovery is more efficient, it still preserves the underlying 

genomic distributions of insertions. Furthermore, because SRTs can be recovered from virtually 

any chromatin state, RNA-based calling card recovery can be employed to analyze a variety of 

TFs with broad chromatin-binding preferences. 

 

Figure 2.3: piggyBac, SP1-piggyBac fusions, and Sleeping Beauty display different local transposition rates 
depending on chromatin state. (A) Chromatin state analysis on the local rates of transposition of undirected 
piggyBac, SP1-piggyBac fusions, and Sleeping Beauty transposases in HCT-116 cells. (B) Same data as (A) but with 
different x-axes for each graph. IPKM: insertions per kilobase per million mapped insertions. 
 
Table 2.1: Summary of bulk calling cards experiments 
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Sample Construct Modality Replicatesa Insertions Reads Mean coverage 
HCT-116 SP1-PBase DNAb 1  31,001  21,975,948  708.9  
HCT-116 SP1-PBase RNAb 1  62,500  14,993,901  239.9  
HCT-116 PBase RNA 10  1,521,048  58,316,389  38.3  
HCT-116 SP1-PBase RNA 10  410,588  35,526,586  86.5  
HCT-116 HyPBase RNA 12  5,771,207  47,572,324  8.2  
HCT-116 SP1-HyPBase RNA 11  2,029,931  40,214,827  19.8  
HCT-116 SB100X RNA 12  26,515,072  67,650,985  2.6  
OCM-1A HyPBase RNA 10  5,951,669  261,476,361  43.9  
OCM-1A BAP1-HyPBase RNA 10  5,740,754  293,332,813  51.1  
a Biological replicates. b These experiments were used to assess DNA- vs. RNA-based recovery (Figure 2.1C). 
 

A common artifact observed in DNA-based transposon recovery is a large fraction of 

reads aligning to the donor transposon plasmid instead of the genome. Although this can be 

mitigated by long selection times or by digestion with the methyladenine-sensitive enzyme DpnI 

(Wang et al., 2012a), these methods do not completely eliminate background and are not 

compatible with all experimental paradigms (e.g. viral transduction). To reduce this artifact, we 

included a hammerhead ribozyme (Yen et al., 2004) in the SRT plasmid downstream of the 5’ 

TR. Before transposition, the ribozyme will cleave the nascent transcript originating from the 

marker gene, thus preventing RT. Transposition allows the SRT to escape the downstream 

ribozyme, leading to recovery of the self-reporting transcript. In our comparison of DNA- and 

RNA-based recovery, about 15% of reads from the SP1-PBase DNA library aligned to the 

plasmid, compared to fewer than 1% of reads from the RNA library (Figure 2.2D). Thus, the 

addition of a self-cleaving ribozyme virtually eliminated recovery of un-excised transposons. 

2.3.2 SP1 fused to piggyBac directs SRT insertions to SP1 binding sites 
Since the SRT is a new reagent, we sought to confirm that bulk RNA calling cards can, like 

DNA calling cards (Wang et al., 2012a), be used to identify TF binding sites. We transfected 10-

12 replicates of HCT-116 cells with plasmids containing the PB-SRT-Puro donor transposon and 

SP1 fused to either piggyBac (SP1-PBase) or a hyperactive variant of piggyBac (Yusa et al., 

2011) (SP1-HyPBase). As controls, we also transfected a similar number of replicates with 
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undirected PBase or HyPBase, respectively. We obtained 410,588 insertions from SP1-PBase 

and 1,521,048 insertions from PBase; similarly, we obtained 2,029,931 SP1-HyPBase insertions 

and 5,771,207 insertions from HyPBase (Table 2.1). 

Just as we had observed previously with DNA calling cards (Wang et al., 2012a), RNA 

calling cards were also redirected by SP1-PBase and SP1-HyPBase to SP1-bound regions of the 

genome (Figure 2.4A and Figure 2.5A). Each circle in the insertions track is an independent 

transposition event whose genomic coordinate is along the x-axis. The y-axis is the number of 

reads supporting each insertion on a log10 scale. To better compare transposition across libraries 

with different numbers of insertions, we plotted the normalized local insertion rate as a density 

track. All three of the loci shown in Figure 2.4A and Figure 2.5A show a specific enrichment of 

calling card insertions in the SP1 fusion experiments that is not observed in the undirected 

control libraries. Next, we called peaks at all genomic regions enriched for SP1-directed 

transposition. The number of insertions observed at significant peaks for both SP1-PBase and 

SP1-HyPBase was highly reproducible between biological replicates (R2 = 0.87 and 0.96, 

respectively; Figure 2.4B and Figure 2.5B). Furthermore, calling card peaks were highly 

enriched for SP1 ChIP-seq signal at their centers, both on average (Figure 2.4C and Figure 2.5C) 

and in aggregate (Figure 2.4D and Figure 2.5D). SP1 is known to preferentially bind near TSSs 

and is also thought to play a role in demethylating CpG islands (Brandeis et al., 1994; Macleod 

et al., 1994; Philipsen and Suske, 1999). We confirmed that the SP1-directed transposases 

preferentially inserted SRT calling cards near TSSs, CpG islands, and unmethylated CpG islands 

at statistically significant frequencies (p < 10-9 in each instance, G test of independence; Figure 

2.4E and Figure 2.5E). Moreover, compared to undirected piggyBac, SP1-directed piggyBac 

showed a striking preference for depositing insertions into promoters (Figure 2.3A-B). Lastly, 



47 
 

regions targeted by SP1-PBase and SP1-HyPBase were enriched for the core SP1 DNA binding 

motif (p < 10-70 in each instance; Figure 2.4F and Figure 2.5F). Taken together, these results 

indicate that the genome-wide binding of SP1 can be accurately mapped using piggyBac SRTs. 

 

Figure 2.4: SP1 fused to piggyBac (SP1-PBase) redirects SRTs to SP1 binding sites. (A) Browser view of bulk 
SP1-PBase calling cards in HCT-116 cells. (B) Reproducibility of normalized insertions at bulk SP1-PBase peaks. 
(C) Mean SP1 ChIP-seq signal at bulk SP1-PBase peaks. (D) Heatmap of SP1 ChIP-seq signal at bulk SP1-PBase 
peaks. (E) Enrichment of SP1-PBase-directed insertions to TSSs, CGIs, and unmethylated CGIs (G test of 
independence p < 10-9). (F) SP1 core motif elicited from bulk SP1-PBase peaks. IPM: insertions per million mapped 
insertions; FC: fold change; TSS: transcription start sites; CGI: CpG island. 
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Figure 2.5: SP1 fused to hyperactive piggyBac (SP1-HyPBase) also redirects SRTs to SP1 binding sites. (A) 
Browser view of bulk SP1-HyPBase calling cards in HCT-116 cells. (B) Reproducibility of normalized insertions at 
bulk SP1-HyPBase peaks. (C) Mean SP1 ChIP-seq signal at bulk SP1-HyPBase peaks. (D) Heatmap of SP1 ChIP-
seq signal at bulk SP1-HyPBase peaks. (E) Enrichment of SP1-HyPBase-directed insertions to TSSs, CGIs, and 
unmethylated CGIs (G test of independence p < 10-9). (F) SP1 core motif elicited from bulk SP1-HyPBase peaks. 
IPM: insertions per million mapped insertions; FC: fold change; TSS: transcription start sites; CGI: CpG island. 
 

2.3.3 Clustering of undirected piggyBac insertions identifies BRD4-bound 
super-enhancers 
Previous studies have shown that undirected PBase preferentially inserts transposons near super-

enhancers (SEs) (Yoshida et al., 2017), a unique regulatory element that is thought to play a 

critical role in regulating cell identity (Hnisz et al., 2013). SEs are often enriched for the histone 
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modification H3K27ac as well as RNA polymerase II and transcriptional coactivators like the 

mediator element MED1 and the bromodomain protein BRD4 (Hnisz et al., 2013; Lovén et al., 

2013; Whyte et al., 2013). Moreover, PBase has a strong biophysical affinity for BRD4, as these 

proteins can be co-immunoprecipitated (Gogol-Döring et al., 2016). We hypothesized that, given 

the millions of insertions we assayed from the undirected PBase and HyPBase controls in the 

SP1-directed experiments (Figure 2.4A, Figure 2.5A), we would be able to identify BRD4-bound 

SEs simply from the localization of undirected piggyBac transpositions. 

Both undirected PBase and HyPBase showed non-uniform densities of insertions at 

BRD4-bound loci (Figure 2.6A and Figure 2.7A). At statistically significant peaks of piggyBac 

calling cards, PBase and HyPBase showed high reproducibility of normalized insertions between 

biological replicates (R2 > 0.99 in each instance; Figure 2.6B and Figure 2.7B). We calculated 

the mean BRD4 enrichment, as assayed by ChIP-seq (McCleland et al., 2016), over all piggyBac 

peaks, which showed significantly increased BRD4 signal compared to a permuted control set (p 

< 10-9 in both instances, Kolmogorov-Smirnov test; Figure 2.6C and Figure 2.7C). Maximum 

BRD4 ChIP-seq signal was observed at calling card peak centers and decreased symmetrically in 

both directions. Furthermore, piggyBac peaks showed striking overlap with ChIP-seq profiles for 

several histone modifications (Sloan et al., 2016; The ENCODE Project Consortium, 2012), in 

particular an enrichment for H3K27 acetylation (Figure 2.6D, Figure 2.7D). Since 

bromodomains bind acetylated histones, this observation further supports the hypothesis that 

undirected piggyBac insertions can be used to map BRD4 binding. Peaks were also enriched in 

H3K4me1, another canonical enhancer mark, and depleted for H3K9me3 and H3K27me3, 

modifications associated with heterochromatin (Lawrence et al., 2016). Taken together, these 

results demonstrate that piggyBac insertion density is highly correlated with BRD4 binding 
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throughout the genome and that regions enriched for undirected piggyBac insertions share 

features common to enhancers. 

 

Figure 2.6: Undirected piggyBac (PBase) SRTs mark BRD4-bound super-enhancers (SEs). (A) Browser view 
of an undirected PBase insertions in HCT-116 cells at a SE alongside BRD4 and H3K27ac ChIP-seq data. (B) 
Reproducibility of normalized insertions at PBase peaks. (C) Mean BRD4 ChIP-seq signal at PBase peaks compared 
to permuted control set. (D) Heatmap of H3K27ac, H3K4me1, H3K9me3, and H3K27me3 ChIP-seq signal at PBase 
peaks. (E) Receiver-operator characteristic curve for SE detection using PBase peaks. (F) Precision-recall curve for 
SE detection using PBase peaks. See also Figure S1. SE: super-enhancer; IPM: insertions per million mapped 
insertions; AUROC: area under receiver-operator curve; AUPRC: area under precision-recall curve; FC: fold 
change. 
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Figure 2.7: Undirected hyperactive piggyBac (HyPBase) SRTs also mark BRD4-bound super-enhancers 
(SEs). (A) Browser view of undirected HyPBase insertions at a SE alongside BRD4 and H3K27ac ChIP-seq data in 
HCT-116 cells. (B) Reproducibility of normalized insertions at HyPBase peaks. (C) Mean BRD4 ChIP-seq signal at 
HyPBase peaks compared to permuted control set. (D) Heatmap of H3K27ac, H3K4me1, H3K9me3, and 
H3K27me3 ChIP-seq signal at HyPBase peaks. (E) Receiver-operator characteristic curve for SE detection using 
HyPBase peaks. (F) Precision-recall curve for SE detection using HyPBase peaks. SE: super-enhancer; IPM: 
insertions per million mapped insertions; AUROC: area under receiver-operator curve; AUPRC: area under 
precision-recall curve; FC: fold change. 

We next assessed whether undirected piggyBac peaks can be used to identify BRD4-

bound SEs. We used BRD4 ChIP-seq data from HCT-116 cells (McCleland et al., 2016) to 

create a reference list of BRD-bound SEs (Pott and Lieb, 2014; Whyte et al., 2013) (Figure 2.6A, 

Figure 2.7A). We then constructed receiver-operator characteristic curves based on our ability to 

detect SEs from PBase- and HyPBase-derived peaks (Figure 2.6E and Figure 2.7E). The high 
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areas under the curves (0.98 in each instance) indicate that we can robustly identify BRD4-bound 

SEs from piggyBac transpositions. Across a range of sensitivities, calling card peaks are highly 

specific and have high positive predictive value (AUPRC = 0.92 in each instance; Figure 2.6F 

and Figure 2.7F). Thus, undirected piggyBac transpositions are an accurate assay of BRD4-

bound SEs. 

To project how calling cards would scale to single cell experiments, where molecular 

techniques show broadly reduced sensitivity compared their bulk counterparts, we simulated 

assay performance under increasingly sparse conditions. We quantified the relationship between 

SE sensitivity and the number of insertions recovered in undirected calling cards experiments by 

downsampling the data from the PBase and HyPBase experiments in half-log increments and 

calculating sensitivity (Figure 2.8A-B). These heatmaps show that sensitivity increases with the 

total number of insertions recovered. Since we cannot predict how many, or few, insertions will 

be recovered in future experiments, we also performed linear interpolation on the downsampled 

data. The resulting contour plots (Figure 2.8C-D) indicate the approximate sensitivity of BRD4-

bound SE detection in HCT-116 cells. Our analysis suggests that even with as few as 10,000 

insertions, we can still obtain sensitivities around 50%. Similarly, we investigated the 

reproducibility of SP1-directed peaks at a various downsampled numbers of insertions, using the 

peaks obtained from our bulk SP1-HyPBase experiment as our reference set (Figure 2.8E-F). We 

found that peak detection is directly proportional to the number of SP1-directed insertions 

recovered. At a lower limit of 10,000 insertions in both the experimental and control datasets, 

there was 40% overlap with peaks called from our bulk dataset. Together, these analyses provide 

a guide for how well calling cards will perform in the limit of insertion recovery. 
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Figure 2.8: Downsampling undirected and directed piggyBac insertions simulates assay performance. (A) 
Downsampling analysis of BRD4-bound SE detection by PBase insertions (in HCT-116 cells) at various p-value 
thresholds. (B) Downsampling analysis in (A) applied to HyPBase insertions. (C) Linear interpolation applied to (A) 
to predict SE sensitivity across a range of insertions. (D) Linear interpolation applied to (B). (E) Reproducibility of 
bulk SP1 calling card peaks at various numbers of HyPBase and SP1-HyPBase insertions, relative to the full dataset 
(top right corner). (F) Linear interpolation applied to (E) to predict peak reproducibility across a arange of 
experimental and control insertions. 
 

piggyBac’s baseline preference for BRD4 raises questions about how efficiently TF-

piggyBac fusions can redirect insertions near TF binding sites. We further analyzed the bulk SP1 

directed experiments and found that SP1-piggyBac increased insertion density at SP1-bound, 

BRD4-depleted regions by five- to seven-fold, on average (Figure 2.9A, C). We also saw a 

decrease in insertion density at non-SP1-bound BRD4 peaks on the order of 30 to 50 percent 

(Figure 2.9B, D). This suggests that, while the reduction of signal at BRD4-bound loci may be 

modest, the redirection to TF binding sites can be quite stark, explaining how TF binding sites 

can be accurately identified (Wang et al., 2012a). In contrast to piggyBac, Sleeping Beauty has a 

more uniform background distribution of insertions (Figure 2.10), which suggests that the latter 
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transposon system might be even more redirectable and allow us to perform TF-directed calling 

cards without the need for an undirected transposase control. Unfortunately, direct fusions of TFs 

to Sleeping Beauty almost completely abolish transposase activity (Wu et al., 2006). We 

confirmed this in a colony formation assay with SP1 fused to either piggyBac or Sleeping 

Beauty. The SP1-Sleeping Beauty fusion had virtually undetectable levels of transposition, 

whereas the SP1-piggyBac construct was still enzymatically functional (Figure 2.11). Currently, 

piggyBac remains the practical choice for mammalian calling cards, while the prospect of a 

background-free calling card strategy should motivate future research. 

 

Figure 2.9: Redirectability of SP1-piggyBac fusion constructs. (A) Left: distribution of insertion densities at SP1-
PBase peaks that either overlap, or do not overlap, BRD4-directed PBase peaks (BRD4+ and BRD4–, respectively) 
in HCT-116 cells. Right: mean and SD of distributions. (B) Left: distribution of insertion densities at BRD4-
directed, PBase peaks that either overlap, or do not overlap, SP1-Pbase peaks (SP1+ and SP1–, respectively). Right: 
mean and SD of distributions. (C-D) Similar analysis as (A-B) applied to the SP1-HyPBase and HyPBase datasets, 
respectively. SD: standard deviation. 
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Figure 2.10: Examples of BRD4-bound super-enhancers identified by bulk PBase and HyPBase calling cards 
in HCT-116 cells. Three different loci exhibiting non-uniform densitites of piggyBac insertions correlated with 
BRD4 and H3K27ac ChIP-seq data. Sleeping Beauty insertions at those same loci are more uniformly distributed. 
Density tracks are shown before and after smoothing. 
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Figure 2.11: piggyBac is more tolerant of transcription factor fusions than Sleeping Beauty. Colony formation 
assays of HCT-116 cells transfected with the specified construct(s), selected with puromycin, and stained with 
crystal violet. Numbers indicate biological replicates. (A) PB-SRT-Puro (B) Untransfected (no DNA). (C) PB-SRT-
Puro and hyperactive piggyBac transposase (HyPBase). (D) PB-SRT-Puro and SP1 fused to hyperactive piggyBac 
(SP1-HyPBase). (E) SB-SRT-Puro and hyperactive Sleeping Beauty (SB100X). (F) SB-SRT-Puro and SP1 fused to 
hyperactive Sleeping Beauty (SP1-SB100X). 
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Lastly, we investigated how similar undirected piggyBac transposition is to that of Tn5, 

the transposase at the heart of ATAC-seq (Buenrostro et al., 2013, 2015), which preferentially 

inserts into open chromatin. Since BRD4 and H3K27ac tend to accumulate at accessible 

chromatin, it may be that undirected calling cards and ATAC-seq provide redundant information. 

If that were the case, we should be able to identify BRD4-bound SE’s with high sensitivity from 

ATAC-seq data alone, much as we have shown for piggyBac. We took publicly available ATAC-

seq data from HCT-116 cells (Ponnaluri et al., 2017) and called “super-enhancers” in the same 

manner that we did for BRD4 ChIP-seq. We found almost no overlap between BRD4-bound SEs 

and these so-called SEs from ATAC-seq data–of the 162 SEs in our gold standard set, only 1 was 

identified through our ATAC-seq analysis (Figure 2.12A). Moreover, there are a small number 

(4.3%) of piggyBac peaks that are not found in accessible chromatin (Figure 2.12B), suggesting 

that there are regulatory elements in closed chromatin that calling cards is better able to detect. 

Globally, we find that over 20% of Tn5 insertions are directed to accessible sites, as defined by 

DNase-seq, while undirected piggyBac, hyperactive piggyBac, and Sleeping Beauty show starkly 

decreased affinities for such loci (Figure 2.12C). Interestingly, fusing SP1 to piggyBac appears to 

rescue this behavior, highlighting the efficacy of transposase redirection to TF binding sites 

which tend to fall in accessible chromatin. Finally, we examined BRD4 ChIP-seq signal at 

DNase-seq peaks, ATAC-seq peaks, and undirected piggyBac peaks (Figure 2.12D). We find 

that piggyBac peaks are an order-of-magnitude larger than either DNase- or ATAC-seq peaks 

and capture more BRD4 binding than either of the other two assays. We conclude that, as 

expected, unfused piggyBac reflects BRD4’s binding preferences, whereas Tn5 reports on all 

accessible chromatin; as a result, undirected calling cards is not equivalent to ATAC-seq. 
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Figure 2.12: BRD4 calling cards with undirected piggyBac is not equivalent to ATAC-seq. (A) Overlap of 
BRD4 super-enhancers, as inferred from BRD4 ChIP-seq, and “super-enhancers” inferred from open chromatin 
ATAC-seq peaks in HCT-116 cells. (B) Browser view of a BRD4 calling card peak that is not detected by ATAC-
seq nor DNase-seq. (C) Comparison of transposase predilections for accessible chromatin. (D) Comparison of peak 
sizes and BRD4 ChIP-seq enrichment as called by DNase-seq, ATAC-seq, and undirected piggyBac calling cards, 
resepectively. Peaks are scaled to the median peak width (denoted by the start and end ticks) and are flanked by 3 kb 
in either direction. SE: super-enhancer; DHS: DNaseI hypersensitivity site; FC: fold change; kb: kilobase. 
 

2.3.4 scCC simultaneously identifies cell type and cell type-specific BRD4 
binding sites 
We next sought to recover SRTs from scRNA-seq libraries. This would let us identify cell types 

from transcriptomic clustering and, using the same source material, profile TF binding in those 

cell types. We adopted the 10x Chromium platform due to its high efficiency of cell and 

transcript capture as well as its ease of use (Zheng et al., 2017). Like many microfluidic scRNA-

seq approaches (Klein et al., 2015; Macosko et al., 2015), the cell barcode and unique molecular 

index (UMI) are attached to the 3’ ends of transcripts. This poses a molecular challenge for SRTs 

since the junction between the transposon and the genome may be many kilobases away, 
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precluding the use of high-throughput short read sequencing. To overcome this barrier, we 

developed a circularization strategy to physically bring the cell barcode in apposition to the 

insertion site (Figure 2.13A). 

 

Figure 2.13: Single cell calling cards (scCC) maps BRD4 binding in single cells. (A) Schematic of the scCC 
library preparation strategy from scRNA-seq libraries. (B) Barnyard plot of scCC on a mixture of human HCT-116 
and mouse N2a cells. (C) UMAP of scRNA-seq of a mixture of human HCT-116 and K562 cells. (D) Browser view 
of BRD4 peaks specific to HCT-116 and K562 cells deconvolved using scCC. See also Figures S2 and S3. TR: 
terminal repeat; BC: barcode; pA: poly(A) sequence; UMI: unique molecular index. 
 

We used a modified version of the bulk SRT amplification protocol where we amplified 

with primers that bound to the universal priming sequence next to the cell barcode and the 

terminal sequence of the piggyBac TR. These primers were biotinylated and carried a 5’ 

phosphate group. The PCR products of this amplification were diluted and allowed to self-ligate 

overnight. They were then sheared and captured with streptavidin-coated magnetic beads. The 

rest of the library was prepared on-bead and involved end repair, A-tailing, and adapter ligation. 
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A final PCR step added the required Illumina sequences for high-throughput sequencing. The 

standard Illumina read 1 primer sequenced the cell barcode and UMI, while a custom read 2 

primer, annealing to the end of the piggyBac 5’ TR, sequenced into the genome. Thus, we 

collected both the location of a piggyBac insertion as well as its cell of origin. We call this 

method single cell calling cards (scCC). 

We validated the method by performing a species-mixing experiment with human HCT-

116 cells and mouse N2a cells transfected with HyPBase and PB-SRT-Puro. Cells were cultured 

independently and mixed prior to droplet generation. The resulting emulsion was processed 

through first strand synthesis using the standard 10x Chromium 3’ protocol. We then took half of 

the RT and finished preparing scRNA-seq libraries from it. The resulting analysis revealed 

strong species separation with an estimated multiplet rate of 3.2% (Figure 2.14A). The remainder 

of the first strand synthesis product was used for the scCC protocol. We restricted our calling 

card analysis to those insertions whose cell barcodes were observed in the scRNA-seq library 

(Table 2.2). The distribution of insertions across these cells reflected a continuum from pure 

mouse to pure human (Figure 2.14B-C). Since intramolecular ligation and subsequent PCR may 

introduce unwanted artifacts, such as the mis-assignment of a barcode from an N2a cell to an 

insertion site in an HCT-116 cell, we required that a given insertion in a given cell must have at 

least two different UMIs associated with it. Imposing this filter improved the number of pure 

mouse and human cells (Figure 2.14D), yielding clear species separation with an estimated 

multiplet rate of 7.9% (Figure 2.13B). This establishes that our method can accurately map 

calling card insertions in single cells. 
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Figure 2.14: Filtering single cell SRTs reduces intermolecular artifacts. (A) Barnyard plot from scRNA-seq of 
human HCT-116 and mouse N2a cells. (B) Barnyard plot from scCC of HCT-116 and N2a cells without filtering 
(estimated multiplet rate of 25.1%). (C) Distribution of cell barcode purity from unfiltered scCC data. The x-axis is 
the proportion of transcripts mapping to the human or mouse genomes. (D) Distribution of species purity after 
filtering scCC data. UMI: unique molecular indexes. 
 
Table 2.2: Summary of single cell calling cards experiments 
Sample Construct Libraries Cells Insertions Reads Mean 

coverage 
Mean 
IPC 

Median 
IPC 

% cells 
with ≥ 1 
insertion 

HCT-116 
& N2a 

HyPBase 1a 6,068  33,223 1,710,525  51.5 5.4 4 91.8 

HCT-116 HyPBase 4b 12,891  37,774  4,768,230  126.2 3.0 2 93.4 
K562 HyPBase 4b 11,912  107,385  10,404,042  96.9 9.5 6 96.9 
HCT-116 SP1-

HyPBase 
4 30,411 77,210  9,874,157  127.9 2.6 2 83.8 

K562 SP1-
HyPBase 

4 21,554  327,465  44,851,070  137.0 15.3 9 95.8 

HepG2 HyPBase 3 17,195  144,176  20,035,606  139.0 8.4 6 96.1 
HepG2 FOXA2-

HyPBase 
3 16,623  105,000  15,677,152  149.3 6.3 4 96.0 

OCM-1A HyPBase 3 23,978  150,707  19,794,848  131.3 6.3 4 96.2 
OCM-1A BAP1- 3 19,572  215,330  27,666,808  128.5 11.0 7 97.6 
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HyPBase 
Mouse 
cortex 

HyPBase 9c 35,950  111,382  12,204,369  109.6 3.1 3 73.7 

a This library was from a species-mixing experiment (Figures 2.13B and 2.14). b These libraries were demultiplexed 
from a cell line-mixing experiment (Figures 2.13C-D and 2.15). c This experiment is further stratified by cell type in 
Table 2.3. IPC: insertions per cell. 
 

We then asked whether scCC could discern cell type specific BRD4 binding. We 

transfected two human cell lines, HCT-116 and K562, with HyPBase and PB-SRT-Puro and 

mixed them together. The resulting scRNA-seq libraries clearly identified the two major cell 

populations (Figure 2.13C; Figure 2.15A). We prepared scCC libraries from these cells and used 

the cell barcodes from the HCT-116 and K562 clusters to assign insertions to the two different 

cell types. We obtained 37,774 insertions from 12,891 HCT-116 cells and 107,385 insertions 

from 11,912 K562 cells (Table 2.2). The distribution of insertions per cell varied by cell type 

(Figure 2.15D) and does not appear to be correlated with differences in total RNA content 

(Figure 2.15B-C). Over 93% and 96% of HCT-116 and K562 cells, respectively, had at least one 

insertion event (Table 2.2). Using scCC insertion data alone, we called peaks and successfully 

identified BRD4-bound loci that were specific to HCT-116 cells, shared between HCT-116 and 

K562, and specific to K562 cells, respectively (Figure 2.13D). Both HCT-116 and K562 peaks 

showed statistically significant enrichment for BRD4 ChIP-seq signal over randomly permuted 

peaks (p < 10-9 in both instances, Kolmogorov-Smirnov test; Figure 2.15E-F). Furthermore, 57% 

of HCT-116 peaks and 81% of K562 peaks were specifically bound in their respective cell type. 

From our earlier downsampling analysis, we estimated that with a p-value cutoff of 10-9, our 

sensitivity for detecting BRD4-bound SEs would be approximately 60% (Figure 2.8D). The 

actual sensitivity at this level of recovery was 67%, validating that downsampling analysis can 

reasonably estimate the performance of scCC. To conclude, we investigated the reproducibility 

of the scCC method. Single cell HyPBase insertions showed high concordance between 
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biological replicates at statistically significant peaks in both HCT-116 and K562 cells (R2 = 0.91 

and 0.94, respectively; Figure 2.15G-H). In all, these experiments demonstrate that scCC can be 

used to deconvolve cell type specific BRD4 binding. 

 

Figure 2.15: Validation and performance of undirected in vitro single cell calling cards (scCC). (A) Single cell 
expression levels of three marker genes in a mixed scRNA-seq library of human HCT-116 and K562 cells. (B) 
Distributions of genes per cell by cell type. (C) Distributions of transcripts per cell by cell type. (D) Distributions of 
HyPBase insertions recovered per cell in HCT-116 and K562 cells. (E-F) Mean BRD4 ChIP-seq signal at HyPBase 
peaks in HCT-116 and K562 cells, respectively, compared to randomly permuted peaks (KS test p < 10-9 in each 
case). (G-H) Reproducibility of normalized insertions deposited by HyPBase and recovered by scCC at BRD4 
binding sites in HCT-116 and K562 cells, respectively. KS: Kolmogorov-Smirnov. 
 

2.3.5 scCC identifies binding sites across a spectrum of TFs and in a variety 
of cell types 
Our success mapping BRD4 binding in single cells gave us confidence that we would also be 

able to map TF binding with scCC. We tested the SP1-HyPBase construct in both HCT-116 and 

K562 cells. We recovered 77,210 insertions from 30,682 HCT-116 cells and 327,465 insertions 

from 21,554 K562 cells (Table 2.2). We used the data generated when we mapped BRD4 
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binding in these cells as control datasets. As was observed in bulk (Figure 2.5A), SP1-HyPBase-

directed insertions recovered from single cells localized to SP1 binding sites in both HCT-116 

and K562 cells (Figure 2.16A and 2.16E). In both cell lines, we observed significant enrichment 

of SP1 ChIP-seq signal at peaks (Figure 2.16B-C and Figure 2.16F-G) and motif analysis 

identified the SP1 DNA binding motif (Figure 2.16D and Figure 2.16H) (p < 10-30 in each 

instance). Finally, as with bulk SP1 calling cards (Figure 2.16D and Figure 2.5E), scCC SP1 

calling cards showed significant enrichments for insertions near TSSs, CpG islands, and 

unmethylated CpG islands (G test of independence p < 10-9 in each instance; Figure 2.17A-B). 

 

Figure 2.16: Single cell calling cards (scCC) works with a variety of transcription factors (TFs) and cell lines. 
(A-D) scCC with SP1-HyPBase in HCT-116 cells reveals SP1 binding sites. (A) Browser view of a peak from SP1 
scCC. (B) Mean SP1 ChIP-seq signal at scCC SP1 peaks. (C) Heatmap of SP1 ChIP-seq signal across all scCC SP1 
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peaks. (D) Core SP1 motif elicited from SP1 scCC peaks. (E-H) Same as (A-D) but in K562 cells. (I-L) scCC with 
FOXA2-HyPBase in HepG2 cells reveals FOXA2 binding sites. (I) Browser view of a peak from FOXA2 scCC. (J) 
Mean FOXA2 ChIP-seq signal at scCC FOXA2 peaks. (K) Heatmap of FOXA2 ChIP-seq signal across all scCC 
FOXA2 peaks. (L) Core FOXA2 motif elicited from FOXA2 scCC peaks. (M-P) scCC with BAP1-HyPB in OCM-
1A cells reveals BAP1 binding sites. (M) Browser view of a peak from BAP1 scCC. (N) Mean bulk BAP1 calling 
cards signal at scCC BAP1 peaks. (O) Heatmap of bulk BAP1 calling cards signal across all scCC BAP1 peaks. (P) 
YY1 motif elicited from BAP1 scCC peaks. See also Figure S4. FC: fold change 
 

 
Figure 2.17: Validation and performance of TF-directed in vitro single cell calling cards (scCC). (A-B) 
Enrichment of SP1-HyPBase-directed insertions to TSSs, CGIs, and unmethylated CGIs in single HCT-116 and 
K562 cells, respectively (G test of independence p < 10-9). (C) Enrichment of BAP1-HyPBase-directed insertions 
TSSs in single OCM-1A cells (G test of independence p < 10-9) . (D) Percent of BAP1 targets that increase 
expression upon BAP1 KD stratified by binding site (Fisher’s exact test p < 10-9). The dashed gray line represents 
the overall fraction of genes that increased expression upon KD. (E-H) Reproducibility of normalized insertions 
deposited by either HyPBase or TF-HyPBase fusions and recovered by scCC at TF binding sites, for the respective 
TF-cell line pair. (I-L) The distribution of recovered insertions per cell by construct (HyPBase vs TF-HyPBase) and 
cell type. TF: transcription factor; TSS: transcription start site; CGI: CpG island; KD: knockdown; IPM: insertions 
per million mapped insertions; n.s.: not significant. 
 

We next performed scCC in HepG2 cells with the pioneer factor FOXA2 , which has 

been shown to be required for normal liver development and drives core transcriptional networks 

in cancer cells (Fournier et al., 2016; Lee et al., 2005). We mapped 144,176 undirected HyPBase 

insertions in 17,195 HepG2 cells, and from a further 16,623 cells we recovered 105,000 FOXA2-

HyPBase insertions (Table 2.2). As with SP1, we observed a specific enrichment of insertions at 
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FOXA2 binding sites (Figure 2.16I). Peaks called from scCC FOXA2 data were enriched in 

FOXA2 ChIP-seq signal (Figure 2.16J-K), and motif analysis was able to infer the core FOXA2 

DNA binding motif (Figure 2.16L). 

Lastly, we mapped the binding of BAP1 in the uveal melanoma cell line OCM-1A (Yen 

et al., 2018) using scCC. Unlike SP1 and FOXA2, BAP1 does not bind DNA directly; instead, it 

is drawn to chromatin in a complex by cofactors (Carbone et al., 2013; Yu et al., 2010) where it 

acts as a histone deubiquitinase. We retrieved 150,707 undirected HyPBase insertions from 

23,978 OCM-1A cells and 215,330 BAP1-HyPBase insertions from another 19,572 cells (Table 

2.2). Despite the fact that this protein associates with chromatin indirectly, we were able to 

resolve sharp BAP1-directed peaks (Figure 2.16M). These peaks showed high concordance with 

bulk RNA calling card data that we also generated in this system (Figure 2.16N-O; Table 2.1). 

Sequence analysis elicited the motif of YY1 (Figure 2.16P), a DNA binding TF and known 

member of the BAP1 complex (Yu et al., 2010). BAP1 is known to preferentially bind promoters 

(Dey et al., 2012); accordingly, we observed a significant enrichment for BAP1-directed 

insertions near TSS (G test of independence p < 10-9; Figure 2.17C). While BAP1 is a member of 

the Polycomb repressive complex, there are conflicting reports as to whether it activates or 

represses gene expression (Campagne et al., 2019; Matatall et al., 2013; Yu et al., 2010). We 

cross-referenced our single cell BAP1 peaks against published RNA-seq data obtained in 

unperturbed and BAP1 knockdown OCM-1A cells (Yen et al., 2018). Genes where BAP1 is 

bound at the promoter, as opposed to in the gene body or at a nearby intergenic locus, are 

significantly more likely to have increased expression upon BAP1 knockdown (Fisher’s exact 

test p < 10-9; Figure 2.17D). This suggests that, in OCM-1A cells, promoter-bound BAP1 

primarily acts as a repressor of gene expression. 
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Collectively, these results indicate that single cell calling cards can successfully map 

DNA-protein interactions for a range of TFs and in a variety of cell types. Furthermore, scCC 

showed high reproducibility in all four tested conditions (R2 between 0.71 and 0.95; Figure 

2.17E-H). While TF-piggyBac fusions have been reported to decrease transposase activity (Wu 

et al., 2006), our findings were more equivocal: BAP1 and SP1 fusions in K562 cells showed 

greater activity than undirected HyPBase; FOXA2 showed decreased activity; and SP1 in HCT-

116 cells showed roughly the same activity (Figure 2.17I-L). This suggests that there may be 

some variability in the number of recovered insertions depending on the TF and cell type of 

interest but, overall, the method is robust. 

2.3.6 scCC reveals bromodomain-dependent cell state dynamics in K562 cells 
K562 is a chronic myelogenous leukemia (CML) cell line first isolated in 1970 (Lozzio and 

Lozzio, 1975) and has been a workhorse of molecular biology ever since (Zhou et al., 2019). 

Recently, K562 cultures have been shown to be mixtures of a stem-like state characterized by 

high levels of the surface marker CD24, and a more differentiated, erythroleukemic state marked 

by low CD24 expression, with individual cells dynamically oscillating between these two 

extremes (Litzenburger et al., 2017). Since we profiled BRD4 binding in K562 cells with scCC, 

we wondered whether we could see evidence of these two states in the scRNA-seq data. 

Principal components analysis (PCA) of single cell gene expression (Figure 2.18A) revealed 

CD24 as one of the top genes in PC1, while PC2 was enriched in hemoglobin genes, particularly 

the fetal-specific markers HBE1 and HBZ. Furthermore, the expression of top PC1 and PC2 

genes appear to be anticorrelated: cells that strongly expressed CD24 are not likely to express 

HBZ, and vice-versa (Figure 2.18B), suggesting mutually exclusive states. Scoring single cells 

on a subset of top PC genes revealed a gradient of cell states along a stem-like-to-differentiated 
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axis (Figure 2.19A). We then clustered cells on the basis of this state score to define stem-like 

and differentiated populations (Figure 2.18C-D), which faithfully recapitulate the expression 

differences detected by PCA (Figure 2.18E). 

 

Figure 2.18: Clustering of K562 cells into stem-like and differentiated states. (A) Principal component analysis 
of K562 scRNA-seq data. (B) Relative expression levels of highest-ranking genes in PC1 (top) and PC2 (bottom). 
(C) Gaussian mixture modeling of a cell-state score to define stem-like and differentiated K562 clusters. (D) 
Visualization of assigned cell clusters in the UMAP projection. (E) Specific expression of CD24 and HBZ in the 
stem-like and differentiated clusters, respectively. (F) Genome browser view of scCC in the stem-like and 
differentiated clusters alongside bulk BRD4 and H3K27ac ChIP-seq as well as RNA Pol II ChIA-PET. (G) 
Expression of VMP1 and PVT1 in the stem-like and differentiated clusters. PC: principal component. 
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Figure 2.19: Single cell calling cards uncovers bromodomain-dependent cell state dynamics in K562 cells. (A) 
Gradient of cell states from scRNA-seq analysis of K562 cells. (B) Differential BRD4 binding analysis of undirected 
HyPBase peaks in K562 cells. (C) Representative distributions of CD24high and CD24low cells after either 96 hours of 
DMSO (top) or JQ1 (bottom) treatment. (D) Proportion of CD24high cells over a seven-day time course of JQ1 
treatment (three-way ANOVA p < 0.01). (E) Proportion of CD24high cells after BRD4 CRISPRi (Welch’s t-test p < 
0.01). (F) Representative plots of annexin V and PI staining in K562 cells pretreated with either DMSO or JQ1 (250 
nM) and subsequently treated for 48 hours with either DMSO or imatinib (1 µM). (G) Quantification of (F) (two-
way ANOVA p < 0.01). Bars represent means; error bars denote standard deviations. Experiments were performed 
in triplicate. See also Figures S5 and S6. DMSO: dimethyl sulfoxide; SSC: side scatter; CRISPRi: CRISPR 
interference; NT: non-targeting; gRNA: guide RNA; IMA: imatinib; PI: propidium iodide. 
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Super-enhancers and BRD4 are thought to mark genes important for specifying cell 

identity, and while the strongest evidence for this comes from comparisons between organ 

systems and sharply delineated disease states (Hnisz et al., 2013; Whyte et al., 2013), recent 

studies have shown that even closely related subpopulations of the same cell type can show 

subtle changes in BRD4 enrichment and enhancer utilization (Knoechel et al., 2014; Rathert et 

al., 2015). Therefore, we asked whether we could detect any differences in BRD4 binding 

between CD24high and CD24low cells. We first stratified scCC insertions by cell state, assigning 

41,707 to the stem-like state and 38,482 to the differentiated cluster (Figure 2.20F). We then 

analyzed the peaks generated across all K562 cells and quantified differential binding between 

the two clusters. Indeed, we found multiple peaks that showed significant differential binding at 

a false-discovery rate threshold of 10% (Figure 2.19B). We corroborated these hits by comparing 

our peak calls to bulk BRD4 and H3K27ac ChIP-seq data, as well as to RNA pol II ChIA-PET 

data, which connects putative enhancers to actively transcribed genes (Fullwood et al., 2009). 

We highlight two genes that showed both differential binding and expression: VMP1, bound 

more in the CD24high stem-like cells; and PVT1, bound more in the differentiated, CD24low cells 

(Figure 2.18F-G). VMP1 overexpression is sufficient to induce autophagy (Ropolo et al., 2007), 

which is important for hematopoietic stem cell function (Folkerts et al., 2019; Ho et al., 2017) 

and may be one pathway recruited during these dynamic state transitions. PVT1 can act as both a 

tumor-suppressor and oncogene, in both instances acting on the MYC locus (Cho et al., 2018). 
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Figure 2.20: Validation of bromodomain-dependent K562 cell states. (A) Annexin V staining in CD24high (red) 
or CD24low (blue) K562 cells treated with DMSO (dashed line) or JQ1 (solid line) over a seven-day time course. (B) 
Genome browser view of the CD24 locus. (C) qRT-PCR for MYC and CD24 expression levels in bulk K562 cells 
treated with JQ1 relative to DMSO-treated controls. (D) Expression changes in BRD2, BRD3, and BRD4 in K562 
cells transduced with dCas9-KRAB and BRD4 CRISPRi gRNA (Welch’s t-test p < 0.05). (E) Annexin V and PI co-
staining in cells subjected to either non-targeting (top) or BRD4 (bottom) CRISPRi followed by either DMSO (left) 
or imatinib (right) treatment. (F) Average percent of annexin V/PI double positive cells in either the non-targeted or 
BRD4 CRISPRi replicates, stratified by either DMSO or imatinib exposure (two-way ANOVA p < 0.01). (G) 
Percent of K562 cells in either G1 (left) or G2 (right) phase after 36 hours of drug treatment (one-way ANOVA with 
Dunnett’s test * p < 0.05, ** p < 0.01). (H) Percent of K562 cells in the CD24high state (left) after 5 days, and the 
percent of annexin V/PI double positive cells (right) at the same time point (p < 0.01 in each instance, one-way 
ANOVA with Dunnett’s test). Bars/points represent means; error bars denote standard deviations. Experiments were 
performed in triplicate. DMSO: dimethyl sulfoxide; n.s.: not significant; FC: fold change; SSC: side scatter; 
CRISPRi: CRISPR interference; NT: non-targeting; gRNA: guide RNA; IMA: imatinib; PI: propidium iodide. 
 

We next investigated whether the observed differences in BRD4 binding might be 

causally responsible for establishing these two cell states. Since modulation of this epigenetic 
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reader has been previously shown to influence cell identity across a range of tissues (Di Micco et 

al., 2014; Kfoury et al., 2017; Najafova et al., 2017), we hypothesized that perturbing BRD4 

would change the distribution of cells in the stem-like and differentiated states. Moreover, due to 

the asymmetric nature of significant hits in Figure 2.19B, there is a subset of peaks specific to 

the CD24high state that are not shared by the CD24low state, suggesting that there may be a gene 

regulatory network that is recruited as cells transit from the differentiated to stem-like state and 

lost as they return. Thus, we predicted that not only should the distribution of CD24high/CD24low 

cells change upon BRD4 perturbation, but also that the stem-like CD24high population should be 

more susceptible to such a perturbation. 

To test this hypothesis, we treated cells with the small molecule bromodomain inhibitor 

JQ1, commonly used to disrupt BRD4 binding and alter target gene expression (Delmore et al., 

2011; Garcia-Carpizo et al., 2018; Lovén et al., 2013; Sdelci et al., 2019). We observed that JQ1 

exposure was sufficient to shift the population from one containing equal proportions of 

CD24high/CD24low cells to one comprised of almost exclusively CD24low cells (> 95% CD24low 

cells, Figure 2.19C). A time course analysis showed that this conversion takes place rapidly over 

the first two days, plateaus at day four, and remains stable one week after treatment; in contrast 

the control cells remain evenly split between the two states at this timepoint (Figure 2.19D; two-

way ANOVA p < 0.01). We ruled out the possibility that JQ1 is selectively cytotoxic to CD24high 

cells as there were no significant differences in levels of the early apoptotic marker annexin V 

between CD24high and CD24low cells, regardless of whether they had been exposed to JQ1 or 

DMSO (Figure 2.20A; three-way ANOVA p = 0.84). We also investigated whether CD24 is a 

direct target of BRD4, which would imply that the loss of CD24high cells does not reflect a true 

change in cell state but is, instead, a trivial transcriptional consequence of downregulating BRD4 
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by JQ1. To do so, we examined genomic signals at the CD24 locus and did not find any 

prominent BRD4 binding sites, either by ChIP-seq or calling cards, or elevated levels of H3K27 

acetylation in the vicinity of CD24 (Figure 2.20B). We  also compared the relative changes in 

mRNA levels of MYC, a known BRD4 target (Knoechel et al., 2014; Lovén et al., 2013; Rathert 

et al., 2015; Zuber et al., 2011), to that of CD24 during the first 24 hours of JQ1 exposure. 

Whereas MYC levels fell within the first 3 hours of exposure, transcript levels of CD24 

decreased most precipitously somewhere between 3 and 9 hours after JQ1 induction (Figure 

2.20C). This delayed response suggests that CD24 is not a direct target of BRD4, but instead its 

expression changes as the result of downstream regulatory factors. These results argue that JQ1 

treatment does not simply downregulate a cell surface marker, but rather perturbs transcriptional 

networks that ultimately include CD24. 

While JQ1 shows greatest affinity for BRD4, it does have some promiscuity toward other 

bromodomains, such as those of the related bromodomain and extraterminal domain (BET) 

proteins BRD2 and BRD3 (Filippakopoulos et al., 2010). Thus, it was possible that the observed 

state shift may be arising through off-target effects and not through BRD4 itself. To address this, 

we specifically downregulated BRD4 expression with CRISPRi using a dCas9-KRAB (Fulco et 

al., 2016; Xie et al., 2017) fusion directed to the BRD4 locus. We confirmed, with qRT-PCR, 

that our BRD4 guide RNA (gRNA) resulted in knockdown of BRD4 and not BRD2 nor BRD3 

(Figure 2.20D; Welch’s t-test p < 0.05). As with JQ1, we observed a significant decrease in the 

proportion of CD24high cells with the BRD4 gRNA compared to the non-targeting (NT) gRNA 

(Figure 2.19E; Welch’s t-test p < 0.01), though not to the same levels as JQ1. This result 

suggests that BRD4 is necessary for the observed cell state dynamics between CD24high and 

CD24low K562 cells, though it is likely that other bromodomains also play a role. 



74 
 

We next sought to obtain further evidence that bromodomain inhibition shifts K562 cell 

state by performing a direct functional assay. The CD24high/CD24low K562 cell states have been 

previously shown to have different chemosensitivities, with the latter population showing more 

apoptosis when exposed to imatinib (Litzenburger et al., 2017). We wondered whether 

bromodomain perturbation similarly increased imatinib sensitivity, or if its effect was restricted 

to modulating CD24. We tested this by first pre-treating K562 cells with either DMSO or JQ1 

for five days. In the DMSO-treated group, the fraction of CD24high cells rose to 54% on average, 

while the mean for JQ1-treated cells was 17% (Figure 2.19F). We then challenged each 

pretreatment group with either DMSO or imatinib and measured apoptosis by staining for 

annexin V and propidium iodide (PI). We observed a significant increase in annexin V/PI double 

positive cells in imatinib-treated cells over those pre-treated with DMSO (Figure 2.19F-G; two-

way ANOVA p < 0.01), indicating that JQ1 sensitizes K562 cells to imatinib. We also found that 

BRD4 CRISPRi partially phenocopied this sensitization, though again not to the same effect size 

as JQ1 (Figure 2.20E-F; Tukey’s honestly significant difference p = 0.68). This phenomenon is 

likely dosage dependent: in our experiments, CRISPRi reduced BRD4 mRNA levels by less than 

50% (Figure 2.20D), whereas JQ1, at this concentration, is expected to almost completely 

abolish BRD4 activity (Filippakopoulos et al., 2010). Thus, while a mild knockdown can reduce 

CD24 levels, a higher level of inhibition may be necessary to induce imatinib sensitivity. 

Nevertheless, these results establish that bromodomain inhibition functionally, in addition to 

phenotypically, shifts the underlying cell state of K562 cells. 

Finally, we asked whether the JQ1-induced K562 cell state shift could be a non-specific 

response to generic drug treatment. To test this, we treated K562 cultures with cell cycle 

inhibitors, another class of commonly used antineoplastic agents. We used lovastatin and 
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nocodazole, two drugs classically used to synchronize cells in culture (Jackman and O’Connor, 

1998), as well as the cyclin-dependent kinase inhibitors CVT-313 (Brooks et al., 1997) and RO-

3306 (Vassilev et al., 2006). We first confirmed that all drugs perturbed cell cycle by altering the 

proportions of cells in either G1 or G2/M phase (Figure 2.20G). CVT-313 caused a significant 

increase in G1 arrest cells (one-way ANOVA p < 0.05) and both nocodazole and RO-3306 

caused significant G2 arrest (one-way ANOVA p < 0.01). While lovastatin has been reported to 

arrest cells in G1, in our hands it caused a significant decrease in G1 phase K562 cells (one-way 

ANOVA p < 0.01). Cultures remained under drug treatment until five days had elapsed, at which 

point we measured CD24 levels and stained for apoptotic activity (Figure 2.20H). JQ1 caused the 

greatest reduction in CD24high cells (one-way ANOVA p < 0.01) and induced significantly less 

apoptosis than its closest competitor, lovastatin (one-way ANOVA p < 0.01). While all cell cycle 

inhibitors caused cell death, the mitotic inhibitors nocodazole and RO-3306 had very few 

surviving cells after five days of treatment. Thus, JQ1’s effect on cell state appears to be 

mediated by a unique mechanism of action that is not readily replicated by cell cycle 

perturbation. 

2.3.7 scCC deconvolves cell type-specific BRD4 binding sites in the mouse 
cortex 
To establish broad utility for scCC, we sought to record TF binding in vivo. Since in vivo models 

preclude puromycin selection, we designed an SRT carrying the fluorescent reporter tdTomato 

(Figure 2.21A) and tested this reagent in cell culture. When this construct was transfected 

without transposase, merely 3.4% of cells registered as tdTomato-positive, likely due to the 

action of the self-cleaving ribozyme downstream of the transposon. However, when the construct 

was co-transfected with PBase or HyPBase, this figure rose to 33% and 48%, respectively, 

corresponding to 11- and 16-fold increases in signal (Figure 2.21B). In addition, cells transfected 
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with only the fluorescent SRT produced very few reads that mapped to the genome, while the 

overwhelming majority of reads from cells co-transfected with transposase mapped to genomic 

insertions (Figure 2.2A). Thus, this new construct, PB-SRT-tdTomato, allows us to collect cells 

carrying calling card insertions by fluorescence activated cell sorting (FACS). 

 

Figure 2.21: Single cell calling cards (scCC) deconvolves BRD4-bound loci in the mouse cortex. (A) Schematic 
of PB-SRT-tdTomato. (B) Distribution of fluorescence intensity in K562 cells transfected with PB-SRT-tdTomato 
with and without piggyBac transposase. (C) Neuron and astrocyte clusters from scRNA-seq analysis of mouse 
cortex libraries transduced with AAV-HyPBase and AAV-PB-SRT-tdTomato. (D) Browser view of scCC HyPBase 
peaks in astrocytes and neurons alongside whole cortex H3K27ac ChIP-seq. (E) Expression specificity distributions 
of genes overlapping astrocyte or neuron peaks; horizontal lines indicate medians of the distributions. See also 
Figure S7. TR: terminal repeat; Rz: ribozyme. 
 

We chose the mouse cortex for our in vivo proof-of-concept because it is a heterogeneous 

tissue that has been the focus of several recent single cell studies (Rosenberg et al., 2018; 

Saunders et al., 2018; Tasic et al., 2018; Zeisel et al., 2015, 2018). We separately packaged the 

PB-SRT-tdTomato and HyPBase constructs in AAV9 viral particles (Cammack et al., 2020) and 
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delivered mixtures of both viruses to the developing mouse cortex via intracranial injections at 

P1. After 2-4 weeks, we dissected the cortex, dissociated it to a single cell suspension, performed 

FACS to isolate tdTomato-positive cells, and analyzed these cells by scRNA-seq and scCC using 

the 10x Chromium platform. We collected nine libraries in total, encompassing 35,950 cells and 

111,382 insertions (Table 2.2). We clustered cells by their mRNA profiles and used established 

marker genes to classify different cell types (Figure 2.22A-B) (Saunders et al., 2018; Tasic et al., 

2018; Zeisel et al., 2018). Neurons and astrocytes were the two major cell populations we 

recovered (Figure 2.21C, Table 2.3), which is consistent with the known tropism of AAV9 

(Cammack et al., 2020; Schuster et al., 2014) . We also identified a spectrum of differentiating 

oligodendrocytes and trace amounts of microglial, vascular, and ependymal cells. We then used 

the cell barcodes shared between the scRNA-seq and scCC libraries to assign insertions to 

specific cell types. 
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Figure 2.22: Clustering of SRT-treated cortical cells and associated marker genes. (A) Schematic of PB-SRT-
tdTomato. (B) Distribution of fluorescence intensity in K562 cells transfected with PB-SRT-tdTomato with and 
without piggyBac transposase. (C) Neuron and astrocyte clusters from scRNA-seq analysis of mouse cortex libraries 
transduced with AAV-HyPBase and AAV-PB-SRT-tdTomato. (D) Browser view of scCC HyPBase peaks in 
astrocytes and neurons alongside whole cortex H3K27ac ChIP-seq. (E) Expression specificity distributions of genes 
overlapping astrocyte or neuron peaks; horizontal lines indicate medians of the distributions. See also Figure S7. 
TR: terminal repeat; Rz: ribozyme. 
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Table 2.3: Breakdown of cortical cell types and scCC HyPBase insertions per cluster 
Cluster Cells Insertions Mean IPC 
Astrocyte 4,727 16,791 3.6 
Astro_Neuron_Doublet  394 1,653 4.2 
Ependymal 107 153 1.4 
Microglia 569 238 0.4 
Neuroblast_SVZ 369 1,084 2.9 
Neuron_Cajal-Retzius 552 4,363 7.9 
Neuron_Excit_AON 1,939 8,190 4.2 
Neuron_Excit_Indeterminate 3,660 6,377 1.7 
Neuron_Excit_L2-4 9,083 29,465 3.2 
Neuron_Excit_L5 5,544 26,437 4.8 
Neuron_Excit_L6 1,436 5,169 3.6 
Neuron_Granule_DG 535 1,674 3.1 
Neuron_Inhibitory 2,409 6,564 2.7 
Oligo_Mature 2,740 1,729 0.6 
Oligo_NewlyForming 959 674 0.7 
Oligo_Progenitor 504 477 0.9 
Vascular_endothelial 196 69 0.4 
Vascular_meningeal 227 275 1.2 
IPC: insertions per cell. 
 

To determine whether scCC could recover biological differences between cell types in 

vivo, we analyzed HyPBase insertions in neurons and astrocytes, excluding neuroblasts and 

astrocyte-neuron doublets. We collected 88,239 insertions from 25,158 neurons and 16,791 

insertions across 4,727 astrocytes (Table 2.3). We then called peaks on the insertions within each 

cluster and identified astrocyte-specific, neuron-specific, and shared BRD4 binding sites (Figure 

2.21D). Since BRD4 ChIP-seq has not yet been reported for the mouse brain, we compared our 

peak calls to a recent cortical H3K27ac ChIP-seq dataset (Stroud et al., 2017). Although this 

ChIP-seq dataset was agglomerated over all cell types in the brain, we nevertheless found that 

scCC peaks in both astrocytes and neurons showed statistically significant enrichment of 

H3K27ac signal (Figure 2.23A, C; Kolmogorov-Smirnov p < 10-9 in each case). BRD4 is also 

thought to mark cell type-specific genes, so we identified genes that overlapped or that were near 

astrocyte or neuron peaks and evaluated the specificity of expression of these genes. After 

accounting for differences in library size, we identified 383 genes near astrocyte peaks and 184 
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genes near neuron peaks, with 46 genes found in both datasets. We used bulk RNA-seq data 

from purified populations of cells (Zhang et al., 2014) to assign gene expression values for each 

gene and plotted the distribution of these values along a continuum from purely astrocytic 

expression to purely neuronal expression. Genes near astrocyte peaks were more likely to be 

specifically expressed in astrocytes, and vice-versa for genes near neuron peaks (Figure 2.16E). 

Gene Ontology enrichment analysis (Mi et al., 2017) on the astrocyte gene list included terms 

like “gliogenesis,” and “glial cell differentiation,” as well as copper metabolism (Figure 2.23B), 

a known function of astrocytes (Scheiber and Dringen, 2013); while the neuronal gene list was 

enriched for terms related to synapse assembly, axonal guidance, and neuron development 

(Figure 2.23D). Overall, we conclude that scCC can accurately identify cell type specific BRD4 

binding sites in vivo. 

 

Figure 2.23: Validation of in vivo BRD4 binding in astrocytes and neurons. (A) Mean H3K27ac ChIP-seq signal 
at HyPBase peaks in astrocytes compared to randomly permuted peaks (KS test p < 10-9) (B) GO term enrichment 
analysis of genes near astrocytic BRD4 binding sites. (C) Mean H3K27ac ChIP-seq signal at HyPBase peaks in 
neurons compared to randomly permuted peaks (KS test p < 10-9). (D) GO term enrichment analysis of genes near 
neuronal BRD4 binding sites. (B and D) The white line indicates the Bonferroni-adjusted p-value threshold at α = 
0.05. GO: Gene Ontology; KS: Kolmogorov-Smirnov; FC: fold change. 
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Finally, we wondered if scCC in vivo could discriminate BRD4 binding between closely 

related cell types, much as we had shown in vitro with K562 cells. From our scRNA-seq data 

(Figure 2.22A-B; Figure 2.24B), we identified upper and lower layer cortical excitatory neurons 

and compared HyPBase scCC data between them to identify shared and specific BRD4-bound 

loci (Figure 2.24A). From 9,083 upper cortical neurons we obtained 29,465 insertions, which 

was on par with the 31,606 insertions collected from 6,980 lower cortical neurons (Table 2.3). 

As a positive control, we identified a shared BRD4 binding site at the Pou3f3 (Brn-1) locus 

(Figure 2.24A, p < 10-9). Pou3f3 was broadly expressed in both populations (Figure 2.24C) and 

has been used to label layers 2-5 of the postnatal cortex (Molyneaux et al., 2007; Pucilowska et 

al., 2012). We then identified differentially bound regions in each cluster using insertions from 

the other cluster as a control. Upper cortical neurons showed specific BRD4 binding at Pou3f2 

(Brn-2), which is more restricted to layers 2-4 than Pou3f3 (Fan et al., 2008; Molyneaux et al., 

2007), while lower cortical neurons showed BRD4 binding at Bcl11b (Ctip2) and Foxp2, 

common markers of layer 5 and layer 6 neurons, respectively (Figure 2.24A; p < 10-9 in each 

instance) (Molyneaux et al., 2007; Rašin et al., 2007). The expression patterns of these genes 

mirrored BRD4’s binding specificity, with Pou3f2’s expression mostly retained to the layer 2-4 

cluster and the expression of Bcl11b and Foxp2 restricted to the layer 5-6 neuron population 

(Figure 2.24C). Thus, scCC can successfully identify differentially bound loci between very 

similar cell types in vivo. 
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Figure 2.24: Single cell calling cards (scCC) deconvolves BRD4 binding in cortical excitatory neurons and 
identifies known layer markers. (A) Browser view of scCC HyPBase peaks in upper (layer 2-4) or lower (layer 5-
6) cortical excitatory neurons alongside whole cortex H3K27ac ChIP-seq. (B) Layer 2-4 and layer 5-6 cortical 
excitatory neurons highlighted among the scRNA-seq clusters. (C) Single cell gene expression patterns of the four 
genes from (A). 
2.4 Discussion 
Mapping TF binding in heterogeneous tissues is a challenging problem because traditional 

methods combine signals from multiple cell types into a single, agglomerated profile. This 

difficulty is further compounded if individual cell types are difficult to identify, isolate, or are 

rare. Single cell RNA-seq is the dominant paradigm for handling such heterogeneity; here, we 

have combined it with transposon calling cards and developed a novel method to simultaneously 

discover cell types and TF binding sites within specific subpopulations. Moreover, we have 

shown that single cell calling cards (scCC) is robust and flexible: it can map multiple kinds of 

DNA binding proteins–from sequence-specific TFs like SP1 and FOXA2, to histone-associated 

factors like BRD4 and BAP1 that bind DNA indirectly–in a variety of in vitro systems and in 

vivo in the mouse cortex. Furthermore, our finding that cell state transitions in K562 cells are 

mediated by bromodomain proteins including BRD4 demonstrates how scCC can lead to new 

hypotheses about transcriptional regulation in dynamic, heterogeneous systems. scCC is an 

important addition to the single cell repertoire, fills a recognized void in the field (Shapiro et al., 



83 
 

2013; Shema et al., 2018), and, unlike scDamID&T (Rooijers et al., 2019), is compatible with 

high-throughput droplet microfluidic platforms such as the 10x Chromium. We anticipate this 

technique will empower researchers to study TF binding in a variety of challenging ex vivo and 

in situ models. 

A concern with any transposon-based technique is the potential for deleterious 

interruption of target genes leading to cell death and, consequently, false negatives. Previous 

experiments in diploid yeast found that calling cards are deposited into promoters of essential 

and non-essential genes at comparable frequencies (Wang et al., 2011). Since mammalian 

genomes have much larger intergenic regions than yeast, human and mice genomes are likely 

also able to tolerate calling card transpositions. Long term follow-up of mice transduced 

intracranially with AAV calling cards showed no significant tissue pathology, behavioral 

deficits, developmental defects, or metabolic dysregulation (Cammack et al., 2020). This 

suggests calling cards imposes, at most, a small mutagenic burden, though more studies are 

needed to verify this. 

The relatively few insertions recovered on a per-cell basis is one of the limitations of this 

technique, inflating the number of cells that must be analyzed to achieve good sensitivity. Based 

on our experiments, we recommend processing enough cells to obtain at least 15,000 insertions 

to analyze BRD4-bound super-enhancers with undirected piggyBac; and at least 30,000 

insertions for both constructs in TF-directed experiments. These minimum recommendations 

should achieve moderate sensitivities (~50%) that can be increased by collecting additional 

insertions (Figure 2.8). The limited amount of data recovered on a per-cell level likely stems 

from a combination of limited transposase activity—up to 15-30 insertions per cell for PBase 

(Kettlun et al., 2011; Saridey et al., 2009; Wang et al., 2008; Wilson et al., 2007), and likely 
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higher for HyPBase (Kalhor et al., 2018; Yusa et al., 2011)—and the low capture rate of mRNA 

transcripts in droplet scRNA-seq (Hwang et al., 2018). This sparsity precludes certain kinds of 

analyses, such as multimodal data integration, and leads to broader peaks with lower spatial 

resolution. We overcame the latter constraint by focusing on peak centers and, particularly for 

motif analysis, on relatively narrow peaks (e.g., less than 5,000 bp in length). Nevertheless, peak 

width is inversely correlated with the number of insertions analyzed; as such, improving the per-

cell recovery of insertions should be prioritized. The inclusion of cis-regulatory features known 

to enhance mRNA maturation and stability, such as the woodchuck hepatitis virus post-

transcriptional regulatory element (WPRE) may increase representation of SRTs in scRNA-seq 

libraries. Furthermore, as the transcript capture rates of scRNA-seq technologies improve, we 

expect the sensitivity of our method will increase. Sensitivity can also be improved by simply 

analyzing larger numbers of cells, such as with Cell Hashing (Stoeckius et al., 2018) or 

combinatorial barcoding (Rosenberg et al., 2018). Since the per-cell costs for scRNA-seq are 

falling exponentially (Svensson et al., 2018), we expect that scCC could be used to analyze TF 

binding in even very rare cell types in the near future. 

Another potential limitation of this technique is the exogenous expression of a TF at 

supraphysiological levels. One possibility is that overexpression of the TF-piggyBac construct 

will lead to ectopic binding and, consequently, false positives. However, we note that over 90% 

of our peaks from scCC of SP1 in HCT-116 cells and FOXA2 in HepG2 cells were within 1,000 

bp of a ChIP-seq peak from the respective TF. This suggests that calling card peaks reflect 

endogenous binding activity, though this behavior may vary by factor. Overexpression might 

also alter the transcriptome of transfected cells. Comparing gene expression levels between cells 

treated with TF-piggyBac and undirected piggyBac can determine whether there is 
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transcriptional perturbation and to what extent. Both concerns can be alleviated by tagging the 

endogenous TF locus with piggyBac, which would ensure native expression levels but may be 

more time-consuming than transfection or transduction. Although we exclusively used N-

terminal fusions in his study, calling cards can also work with C-terminal fusions (Yen et al., 

2018). For viral constructs where space is limited, we have also had success fusing a TF’s 

binding domain to piggyBac (Cammack et al., 2020). In general, multiple fusion strategies 

should be tested to empirically determine the optimal construct, particularly if the binding 

domain lies near one of the termini. Finally, some TFs may not bind when fused to piggyBac and 

thus would not work with calling cards, though in our experience this is uncommon (less than 

25% of the time or so). 

Our scCC experiments employed the piggyBac transposase, but for some applications, 

other transposases may prove advantageous. piggyBac inserts almost exclusively into TTAA 

tetranucleotides. For TFs that bind GC-rich regions or have high GC-content motifs, piggyBac 

fusions may have a difficult time finding nearby insertion sites. Sleeping Beauty, which inserts 

into TA dinucleotides, or Tol2, which does not have a strict insertion site preference (Yoshida et 

al., 2017), could be used to overcome these limitations. This direction would also improve peak 

resolution by increasing the number of potential transposition sites. Neither of these transposases 

tolerate TF fusions, however, which would be the first obstacle to address (Meir et al., 2011; Wu 

et al., 2006). Meanwhile, the natural affinity of piggyBac for BRD4 makes it ideal for studying 

BRD4-bound SEs, which play important regulatory roles in development and disease (Hnisz et 

al., 2013; Lovén et al., 2013; Whyte et al., 2013). It is unclear why piggyBac has this 

predilection. BRD4 has an intrinsically disordered region and cooperative interactions between 

BRD4 and coactivators like MED1 may mediate the formation of intranuclear condensates 
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(Sabari et al., 2018) at SEs. One hypothesis is that piggyBac has a similarly disordered domain 

that allows it to preferentially enter condensates and enrich SEs with insertions. If such a domain 

exists, mutating it may make unfused piggyBac more uniform in its insertion profile, improving 

its utility for TF-directed calling cards. 

The defining feature of the scCC method is the self-reporting transposon (SRT). While 

here we have reported the piggyBac and Sleeping Beauty SRTs, the self-reporting paradigm 

should be generalizable to any transposon lacking a polyadenylation signal (PAS) in at least one 

terminal repeat. Expanding the palette of SRTs will illuminate the genome-wide behaviors of 

transposases and may yield further insight into chromatin dynamics (Yoshida et al., 2017). 

Simultaneous expression of many TFs, each tagged to a different transposase, may also enable 

multiplexed studies of TF binding in the same cells. Mapping SRTs using cellular RNA appears 

to be substantially more efficient than the DNA-based inverse PCR method, but the reasons for 

this are unclear. Some efficiency is likely gained by eliminating self-ligation, as well as having 

multiple mRNA copies of each insertion to buffer against PCR artifacts. It is also unknown what 

fraction of self-reporting transcripts are actually polyadenylated as opposed to merely containing 

A-rich genomic tracts. Non-genic PASs prevent anti-sense transcription (Chiu et al., 2018), 

which suggests that PASs may be more common in the genome than previously appreciated. 

Targeted 3’-end sequencing (Chen et al., 2017; Zheng et al., 2016) of SRT libraries should help 

resolve this question, while long-read sequencing of self-reporting transcripts may identify non-

canonical PASs. Finally, SRTs could lead to new single cell transposon-based assays. For 

example, just as CRISPR/Cas9 has been combined with scRNA-seq to assess the transcriptional 

effects of many single gene perturbations in parallel (Datlinger et al., 2017; Dixit et al., 2016), 



87 
 

SRTs could enable massively multiplexed transposon mutagenesis screens to be read out by 

scRNA-seq. 

Finally, calling card insertions, being integrated into the genome and preserved through 

mitosis, could serve as a molecular memory for recording TF binding events. For example, the 

use of an inducible transposase (Qi et al., 2017) would enable the recording and identification of 

temporally-restricted TF binding sites. This would help uncover the stepwise order of events 

underlying the regulation of specific genes and inform cell fate decision making. More generally, 

transposon insertions could serve as barcodes of developmental lineage. Single transposition 

events have been used to delineate relationships during hematopoiesis (Rodriguez-Fraticelli et 

al., 2018; Sun et al., 2014). Multiplexing several SRTs across every cell in an organism could 

code lineage in a cumulative and combinatorially diverse fashion, generating high-resolution 

cellular phylogenies. 

2.5 Methods 
Table 2.4: Oligonucleotides referenced in this work 

Name Sequence Purification Notes 
SMART_dT18VN AAGCAGTGGTATCAACGCAGAGTACGTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTVN 
Standard desalt RT primer for bulk RNA calling 

card recovery 
SMART AAGCAGTGGTATCAACGCAGAGT Standard desalt PCR primer for bulk RNA 

calling card amplification 
SRT_PAC_F1 CAACCTCCCCTTCTACGAGC Standard desalt Puromycin marker in SRT 
SRT_tdTomato_F1 TCCTGTACGGCATGGACGAG Standard desalt tdTomato marker in SRT 
Raff_ACTB_F CCTCGCCTTTGCCGATCCG Standard desalt Human ACTB primer (for RT 

control) 
Raff_ACTB_R GGATCTTCATGAGGTAGTCAGTCAGGTCC Standard desalt Human ACTB primer (for RT 

control) 
OM-PB-ACG AATGATACGGCGACCACCGAGATCTACACTCTTTCC

CTACACGACGCTCTTCCGATCTACGTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-CTA AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTCTATTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-GAT AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTGATTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-TGC AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTTGCTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-TAG AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTTAGTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-ATC AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTATCTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 
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OM-PB-CGT AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTCGTTTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-PB-GCA AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTGCATTTACGCAGAC
TATCTTTCTAG 

Standard desalt For use with piggyBac SRTs 

OM-SB-ACG AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTACGTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-CTA AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTCTATAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-GAT AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTGATTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-TGC AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTTGCTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-TAG AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTTAGTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-ATC AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTATCTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-CGT AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTCGTTAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

OM-SB-GCA AATGATACGGCGACCACCGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCTGCATAAGTGTATGTAAACT
TCCGACTTCAA 

Standard desalt For use with Sleeping Beauty 
SRTs 

N7 indexed primer CAAGCAGAAGACGGCATACGAGAT[index]GTCTC
GTGGGCTCGG 

Standard desalt Uniquely identifies each bulk 
RNA calling card library in 
conjunction with barcoded 
transposon primer 

10x_TSO AAGCAGTGGTATCAACGCAGAGTACATrGrGrG Standard desalt For continuing 10x scRNA-seq 
prep after splitting first RT 
product in half 

Bio_Illumina_Seq1_scCC_
10X_3xPT 

/5Phos/ACACTCTTTCCC/iBiodT/ACACGACGC
TCTTCCGA*T*C*T 

HPLC Single cell calling card primer 
for use with 10x Chromium 3' v2 
kit 

Bio_Long_PB_LTR_3xPT /5Phos/GCGTCAATTTTACGCAGAC/iBiodT/AT
CTTTC*T*A*G 

HPLC Single cell calling card primer 
for use with piggyBac SRTs 

scCC_P5_adapter AATGATACGGCGACCACCGAGATCTTCACTCATTCC
ACACGACTCCTTGCCAGTCTC*T 

Standard desalt Adapter for scCC (needs to be 
pre-annealed with 
scCC_P7_adapter) 

scCC_P7_adapter /5Phos/GAGACTGGCAAGTACACGTCGCACTCACC
ATGA[index]ATCTCGTATGCCGTCTTCTGCTTG 

Standard desalt Adapter for scCC (needs to be 
pre-annealed with 
scCC_P5_adapter) 

scCC_P5_primer AATGATACGGCGACCACCGAGATC Standard desalt For final scCC library PCR 
scCC_P7_primer CAAGCAGAAGACGGCATACGAGAT Standard desalt For final scCC library PCR 
scCC_PB_CustomRead2 CGTGTAGGGAAAGAGTGTGCGTCAATTTTACGCAGA

CTATCTTTCTAG 
PAGE For custom sequencing of 

piggyBac scCC libraries; read 2 
should begin with GGTTAA 

scCC_CustomIndex1 GAGACTGGCAAGTACACGTCGCACTCACCATGA PAGE For custom sequencing of scCC 
libraries 

ACTB_PrimerBank_F CATGTACGTTGCTATCCAGGC Standard desalt For qRT-PCR 
ACTB_PrimerBank_R CTCCTTAATGTCACGCACGAT Standard desalt For qRT-PCR 
CD24_PrimerBank_F CTCCTACCCACGCAGATTTATTC Standard desalt For qRT-PCR 
CD24_PrimerBank_F AGAGTGAGACCACGAAGAGAC Standard desalt For qRT-PCR 
MYC_PrimerBank_F GTCAAGAGGCGAACACACAAC Standard desalt For qRT-PCR 
MYC_PrimerBank_R TTGGACGGACAGGATGTATGC Standard desalt For qRT-PCR 
BRD2_PrimerBank_F AATGGCACAAACGCTGGAAAA Standard desalt For qRT-PCR 
BRD2_PrimerBank_R CACTGGTAACACTGCCCTG Standard desalt For qRT-PCR 
BRD3_PrimerBank_F TGCAAGCGAATGTATGCAGGA Standard desalt For qRT-PCR 
BRD3_PrimerBank_R CATCTGGGCCACTTTTTGTAGAA Standard desalt For qRT-PCR 
BRD4_PrimerBank_F GAGCTACCCACAGAAGAAACC Standard desalt For qRT-PCR 
BRD4_PrimerBank_R GAGTCGATGCTTGAGTTGTGTT Standard desalt For qRT-PCR 
BRD4 CRISPRi gRNA GCGGCTGCCGGCGGTGCCCG N/A For knockdown of BRD4 with 

CRISPRi 
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NT CRISPRi gRNA GGAGGCGAGGTAAGACGCGG N/A Control non-targeting gRNA for 
CRISPRi 

 

2.5.1 Materials and data availability 
Plasmids generated in this study have been deposited to Addgene, where possible, and are 

available to the community. Plasmids encoding the piggyBac transposase are not available 

through Addgene due to licensing restrictions. These plasmids are available upon request to the 

Lead Contact. Data generated in this study have been submitted to the Gene Expression Ominbus 

(GEO) and are available at accession GSE148448. All code used to analyze the data is online at 

https://github.com/arnavm/calling_cards. A complete listing of reagents, datasets, and software 

used in this study is given in Table 2.5. 

Table 2.5: Key Resources Table 
Reagent or Resource Source Identifier 
Antibodies 
Brilliant Violet 421™ anti-human CD24 Antibody 
(clone ML5) 

BioLegend Cat#311121; RRID:AB_10915556 

Brilliant Violet 421™ Mouse IgG2a, κ Isotype Ctrl 
Antibody (clone MOPC-173) 

BioLegend Cat#400259; RRID:AB_10895919 

APC anti-human CD24 Antibody (clone ML5) BioLegend Cat#311117; RRID:AB_1877150 
APC Rat IgG2a, κ Isotype Ctrl (clone RTK2758) BioLegend Cat#400511; RRID:AB_2814702 
Bacterial and Virus Strains 
AAV9-PB-SRT-tdTomato Joseph D. Dougherty 

(Cammack et al., 2020) 
N/A 

AAV9-HyPBase Joseph D. Dougherty 
(Cammack et al., 2020) 

N/A 

Lenti-dCas9-KRAB This study N/A 
Lenti-BRD4-CRISPRi This study N/A 
Lenti-NT-CRISPRi This study N/A 
Chemicals, Peptides, and Recombinant Proteins 
DMEM Gibco Cat#11965-084 
Antibiotic-Antimycotic (100X) Gibco Cat#15240-062 
FBS Peak Serum Cat#PS-FB3 
RPMI 1640 Medium Gibco Cat#11875-085 
Lipofectamine™ 3000 Transfection Reagent Invitrogen Cat#L3000015 
Trypsin-EDTA solution Sigma-Aldrich Cat#T4049 
DPBS, no calcium, no magnesium Gibco Cat#14190-136 
RNAprotect Cell Reagent QIAGEN Cat#76526 
2-Mercaptoethanol Gibco Cat#21985-023 
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RNase-Free DNase Set QIAGEN Cat#79254 
Maxima H Minus Reverse Transcriptase Thermo Scientific Cat#EP0752 
Advantage® UltraPure PCR Deoxynucleotide Mix Takara Bio Cat#639125 
RNaseOUT™ Recombinant Ribonuclease Inhibitor Invitrogen Cat#10777019 
TransIT®-LT1 Transfection Reagent Mirus Cat#MIR2304 
RNase H New England BioLabs Cat#M0297S 
HiFi HotStart ReadyMix (2X) Kapa Biosystems Cat#KK2601 
AMPure XP beads Beckman Coulter Cat#A63880 
Puromycin dihydrochloride Sigma-Aldrich Cat#P8833 
Crystal violet Sigma-Aldrich Cat#C0775 
Methanol Fisher Scientific Cat#A452-4 
Formaldehyde Fisher Scientific Cat#BP531-500 
High Sensitivity D1000 Reagents Agilent Cat#5067-5585 
Ficoll PM400 (Dry Powder) GE Healthcare Cat#17030010 
NxGen® RNAse Inhibitor Lucigen Cat#30281-1 
Dynabeads™ MyOne™ Silane Life Technologies Cat#37002D 
IDTE pH 8.0 (1X TE Solution) IDT Cat#11-05-01-13 
High Sensitivity D5000 Reagents Agilent Cat#5067-5593 
NEBuffer™ 2 New England BioLabs Cat#B7002S 
Buffer EB QIAGEN Cat#19086 
Hibernate™-A Medium Gibco Cat#A1247501 
D-(+)-Trehalose dihydrate Sigma-Aldrich Cat#T9531 
B-27™ Supplement (50X), serum free Gibco Cat#17504044 
0.5M EDTA, pH 8.0 Corning Cat#46-034-CI 
Papain, Lyophilized Worthington 

Biochemical 
Cat#LS003118 

Deoxyribonuclease I, Filtered Worthington 
Biochemical 

Cat#LS002060 

Trypsin Inhbitor, Ovomucoid Worthington 
Biochemical 

Cat#LS003087 

Bovine Serum Albumin Sigma-Aldrich Cat#A9418 
OptiPrep™ Density Gradient Medium Sigma-Aldrich Cat#D1556 
HBSS (10X) Gibco Cat#14185052 
Magnesium chloride Sigma-Aldrich Cat#M4880 
Magnesium sulfate Sigma-Aldrich Cat#M2643 
Calcium chloride dihydrate Sigma-Aldrich Cat#C7902 
D-(+)-Glucose Sigma-Aldrich Cat#G7021 
Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat#D2650 
Cell Staining Buffer BioLegend Cat#420201 
Annexin V Binding Buffer BioLegend Cat#422201 
SuperScript™ VILO™ cDNA Synthesis Kit Invitrogen Cat#11754250 
PowerUp™ SYBR™ Green Master Mix Applied Biosystems Cat#25742 
(+)-JQ1 Selleck Chemicals Cat#S7110 
Propidium iodide (PI) Invitrogen Cat#P3566 
Hoechst 33342 Thermo Scientific Cat#62249 
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Annexin V-FITC BioLegend Cat#640905 
Blasticidin S HCl Gibco Cat#A1113903 
Lenti-X™ Concentrator Takara Bio Cat#631232 
Lipofectamine™ 2000 Transfection Reagent Invitrogen Cat#11668030 
Polybrene Infection / Transfection Reagent Sigma-Aldrich Cat#TR-1003 
Esp3I New England BioLabs Cat#R0734S 
T4 DNA Ligase New England BioLabs Cat#M0202S 
IMDM Gibco Cat#12440046 
Penicillin-Streptomycin (10,000 U/mL) Gibco Cat#15140122 
Imatinib mesylate Sigma-Aldrich Cat#SML1027 
Lovastatin Sigma-Aldrich Cat#M2147 
Nocodazole Sigma-Aldrich Cat#M1404 
CVT-313 Sigma-Aldrich Cat#238803 
RO-3306 Sigma-Aldrich Cat#SML0569 
Critical Commercial Assays 
Neon™ Transfection System 100 µL Kit Invitrogen Cat#MPK10025 
RNeasy Plus Mini Kit QIAGEN Cat#74134 
Qubit™ RNA HS Assay Kit Invitrogen Cat#Q32852 
Qubit™ dsDNA HS Assay Kit Invitrogen Cat#Q32851 
Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1024 
High Sensitivity D1000 ScreenTape Agilent Cat#5067-5584 
Chromium Single Cell 3’ Library & Gel Bead Kit v2 10x Genomics Cat#PN-120267 
High Sensitivity D5000 ScreenTape Agilent Cat#5067-5592 
Nextera Mate Pair Library Prep Kit Illumina Cat#FC-132-1001 
Deposited Data 
K562 CpG islands Richard Myers GEO:GSM1014203 
HCT-116 SP1 ChIP-seq Richard Myers ENCODE:ENCFF000PCT 
HCT-116 CTCF ChIP-seq Richard Myers ENCODE:ENCFF000OZC 
HCT-116 ChIP-seq input control (SP1, CTCF) Richard Myers ENCODE:ENCFF000PBO 
HCT-116 BRD4 ChIP-seq Ron Firestein SRA:SRR2481799 
HCT-116 ChIP-seq input control (BRD4) Ron Firestein SRA:SRR2481800 
HCT-116 H3K27ac ChIP-seq Bradley Bernstein ENCODE:ENCFF082JPN; 

ENCODE:ENCFF176BXC 
HCT-116 H3K4me1 ChIP-seq Bradley Bernstein ENCODE:ENCFF088BWP; 

ENCODE:ENCFF804MJI 
HCT-116 H3K4me2 ChIP-seq Bradley Bernstein ENCODE:ENCFF936MMN; 

ENCODE:ENCFF937OOL 
HCT-116 H3K4me3 ChIP-seq Bradley Bernstein ENCODE:ENCFF183OZI; 

ENCODE:ENCFF659FPR 
HCT-116 H3K9me2 ChIP-seq Bradley Bernstein ENCODE:ENCFF760OZN; 

ENCODE:ENCFF565FDP 
HCT-116 H3K9me3 ChIP-seq Bradley Bernstein ENCODE:ENCFF578MDZ; 

ENCODE:ENCFF033XOG 
HCT-116 H3K27me3 ChIP-seq Bradley Bernstein ENCODE:ENCFF281SBT; 

ENCODE:ENCFF124GII 
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HCT-116 H3K36me3 ChIP-seq Bradley Bernstein ENCODE:ENCFF850EAH; 
ENCODE:ENCFF312RKB 

HCT-116 H3K79me2 ChIP-seq Bradley Bernstein ENCODE:ENCFF865KPW; 
ENCODE:ENCFF947YPU 

HCT-116 H4K20me1 ChIP-seq Bradley Bernstein ENCODE:ENCFF070JDY; 
ENCODE:ENCFF334HHB 

HCT-116 ChIP-seq input control 
(H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9m
e2, H3K9me3, H3K27me3, H3K36me3, H3K79me2, 
H4K20me1) 

Bradley Bernstein ENCODE:ENCFF048ZOQ; 
ENCODE:ENCFF827YXC 

HCT-116 H3K9ac ChIP-seq Bradley Bernstein ENCODE:ENCFF408RRT 
HCT-116 ChIP-seq input control (H3K9ac) Bradley Bernstein ENCODE:ENCFF413RQG 
K562 BRD4 ChIP-seq Bradley Bernstein ENCODE:ENCFF335PHG 
K562 H3K27ac ChIP-seq Bradley Bernstein ENCODE:ENCFF000BXH 
K562 ChIP-seq input control (BRD4, H3K27ac) Bradley Bernstein ENCODE:ENCFF000BWK 
K562 SP1 ChIP-seq Michael Snyder ENCODE:ENCFF002DPL; 

ENCODE:ENCFF002EGC 
K562 ChIP-seq input control (SP1) Michael Snyder ENCODE:ENCFF002EGI; 

ENCODE:ENCFF002EGA 
HepG2 FOXA2 ChIP-seq Richard Myers ENCODE:ENCFF000PIX 
HepG2 ChIP-seq input control (FOXA2) Richard Myers ENCODE:ENCFF000POV 
OCM-1A HyPBase DNA calling cards Michael Onken DOI:10.1186/s12920-018-0424-0 
OCM-1A BAP1-HyPBase DNA calling cards Michael Onken DOI:10.1186/s12920-018-0424-0 
OCM-1A RNA-seq (BAP1 and control shRNA) Michael Onken GEO:GSE110193 
Mouse cortex H3K27ac ChIP-seq Michael Greenberg SRA:SRR6129714 
Mouse cortex ChIP-seq input control (H3K27ac) Michael Greenberg SRA:SRR6129695 
K562 RNA Pol II ChIA-PET Yijun Ruan ENCODE:ENCFF000KYH 
HCT-116 DNase-seq John Stamatoyannopou

los 
ENCODE:ENCFF001DCK 

HCT-116 ATAC-seq Sriharsa Pradhan SRA:SRR5453778 
HCT-116 ATAC-seq control Michael Guertin GEO:GSE92674 
HCT-116 CpG islands Richard Myers GEO:GSM1014209 
Sequencing data and processed output This study GEO:GSE148448 
Experimental Models: Cell Lines 
Neuro-2a (N2a) ATCC Cat#CCL-131 
K-562 ATCC Cat#CCL-243 
Hep G2 ATCC Cat#HB-8065 
OCM-1A Michael Onken (Yen et 

al., 2018) 
N/A 

HCT 116 ATCC Cat#CCL-247 
293T/17 [HEK 293T/17] ATCC Cat#CRL-11268 
Experimental Models: Organisms/Strains 
Mouse: C57BL/6J Joseph D. Dougherty 

(Cammack et al., 2020) 
N/A 

Oligonucleotides 
Primers and oligonucleotides This study, see Table N/A 
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2.4 
Recombinant DNA 
pRM1024: PBase This study N/A 
pRM1114: HyPBase This study N/A 
pRM1023: SP1-PBase This study N/A 
pRM1677: SP1-HyPBase This study N/A 
pRM1882: FOXA2-HyPBase This study N/A 
pRM1863: BAP1-HyPBase This study N/A 
pRM1304: PB-SRT-Puro This study RRID:Addgene_154884 
pRM1535: PB-SRT-tdTomato This study RRID:Addgene_154885 
pCMV(CAT)T7-SB100 Zsuzsanna Izsvák RRID:Addgene_34879 
pRM1665: SP1-SB100X This study RRID:Addgene_154887 
pRM1668: SB-SRT-Puro This study RRID:Addgene_154888 
pRM1217: AAV-HyPBase Joseph D. Dougherty 

(Cammack et al., 2020) 
N/A 

pRM1648: AAV-PB-SRT-tdTomato Joseph D. Dougherty 
(Cammack et al., 2020) 

RRID:Addgene_154889 
 

pUC19 Vector New England BioLabs Cat#N3041S 
Lenti-dCas9-KRAB-blast Gary Hon RRID:Addgene_89567 
sgOpti Eric Lander & David 

Sabatini 
RRID:Addgene_85681 

pMD2.G Didier Trono RRID:Addgene_12259 
psPAX2 Didier Trono RRID:Addgene_12260 
pRM1889: BRD4 CRISPRi plasmid This study RRID:Addgene_154890 
pRM1890: Non-targeting CRISPRi plasmid Robi D. Mitra (Lalli et 

al., 2019) 
RRID:Addgene_154891 

Software and Algorithms 
cutadapt 1.16 Martin, 2011 RRID:SCR_011841 
NovoAlign 3 Novocraft 

Technologies 
RRID:SCR_014818 

Cell Ranger 2.1.0  10x Genomics RRID:SCR_017344 
scanpy 1.3.7 Wolf et al., 2018 RRID:SCR_018139 
Drop-seq tools 1.11 Macosko et al., 2015 RRID:SCR_018142 
astropy 3.2.1 Robitaille et al., 2013 RRID:SCR_018148 
WashU Human Epigenome Browser 46 Zhou et al., 2011 RRID:SCR_006208 
MEME-ChIP 4.11.2 Machanick and Bailey, 

2011 
RRID:SCR_001783 

Tomtom 5.1.0 Gupta et al., 2007 RRID:SCR_001783 
MACS 1.4.1 Zhang et al., 2008 RRID:SCR_013291 
BEDTools 2.27.1 Quinlan and Hall, 2010 RRID:SCR_006646 
NumPy 1.17.2 Oliphant, 2015 RRID:SCR_008633 
SciPy 1.4.1 Virtanen et al., 2020 RRID:SCR_008058 
statsmodels 0.10.1 Seabold and Perktold, 

2010 
RRID:SCR_016074 

matplotlib 3.0.3 Hunter, 2007 RRID:SCR_008624 
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deeptools 3.0.1 Ramírez et al., 2016 RRID:SCR_016366 
ChromHMM 1.15 Ernst et al., 2011 RRID:SCR_018141 
liftOver Hinrichs et al., 2006 RRID:SCR_018160 
FlowCal 1.2.0 Castillo-Hair et al., 

2016 
RRID:SCR_018140 

PANTHER 14.0 Mi et al., 2017 RRID:SCR_004869 
ROSE 0.1 Whyte et al., 2013 & 

Lovén et al., 2013 
RRID:SCR_017390 

FlowJo™ Software for Mac Version 10 Becton, Dickson and 
Company 

RRID:SCR_008520 

Multcomp 1.4-12 Hothorn et al., 2008 RRID:SCR_018255 
Custom calling card code This study https://github.com/arnavm/calling_c

ards 
Other 
Qubit® 3.0 Fluorometer Thermo Fisher Cat#Q33216 
4200 TapeStation System Agilent Cat#G2991AA 
E220 Focused-ultrasonicator Covaris N/A 
MasterCycler Pro PCR System Eppendorf Cat#950030010 
Attune NxT Flow Cytometer Thermo Fisher N/A 
CytoFLEX S Beckman-Coulter Cat#B75442 
QuantStudio™ Applied Biosystems Cat#A28567 
Protocol: Mammalian Calling Cards Quick Start 
Guide 

This study DOI:10.17504/protocols.io.xurfnv6 

Protocol: Bulk Calling Cards Library Preparation This study DOI:10.17504/protocols.io.xwhfpb6 
Protocol: Single Cell Calling Cards Library 
Preparation 

This study DOI:10.17504/protocols.io.xwifpce 

Protocol: Processing Bulk Calling Card Sequencing 
Data 

This study DOI:10.17504/protocols.io.xwjfpcn 

Protocol: Processing Single Cell Calling Card 
Sequencing Data 

This study DOI:10.17504/protocols.io.4phgvj6 

Protocol: Calling Peaks on piggyBac Calling Card 
Data 

This study DOI:10.17504/protocols.io.bb9xir7
n 

Protocol: Visualizing Calling Card Data on the 
WashU Epigenome Browser 

This study DOI:10.17504/protocols.io.bca8ish
w 

 

2.5.2 Experimental model and subject details 
HCT-116, N2a, HEK293T, and HepG2 cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% of either penicillin-

streptomycin or antibiotic-antimycotic. K562 (unless otherwise indicated) and OCM-1A cells 

were grown under the same conditions as described above, replacing DMEM with RPMI 1640 

Medium. Cells were grown at 37ºC with 5% carbon dioxide (CO2). Media was replenished every 
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2 days. HepG2 cells were a gift from the Genome Engineering iPSC Center (GEiC) at 

Washington University in St. Louis School of Medicine. OCM-1A cells were a gift from Dr. 

Michael Onken. For the CD24high/CD24low cell state analyses, K562 cells were grown in IMDM 

containing 10% v/v FBS and 1% penicillin-streptomycin at 37 ºC with 5% CO2. Frozen aliquots 

were thawed and passaged every 48 hours until they reached a maximum concentration of 

800,000 cells/ml. For experiments, cells were seeded at mid-log phase concentrations, around 

400,000 cells/ml. At this point, ratio of CD24high/CD24low cells was approximately 1:1, as 

determined by flow cytometry. 

All mouse experiments were done following procedures described in (Cammack et al., 

2020). In brief, we cloned the PB-SRT-tdTomato and HyPBase constructs into AAV vectors. 

The Hope Center Viral Vectors Core at Washington University in St. Louis packaged each 

construct in AAV9 capsids. Titers for each virus ranged between 1.1x1013 and 2.2x1013 viral 

genomes/ml. We mixed equal volumes of each virus and performed intracranial cortical 

injections of the mixture into newborn wild-type C57BL/6J pups (P0-2). As a gating control, we 

injected one litter-matched animal with AAV9-PB-SRT-tdTomato only. After 2 to 4 weeks, we 

sacrificed mice and dissected the cortex (8 libraries) or hippocampus (1 library). All animal 

practices and procedures were approved by the Washington University in St. Louis Institutional 

Animal Care and Use Committee (IACUC) in accordance with National Institutes of Health 

(NIH) guidelines. 

2.5.3 DNA- vs RNA-based recovery 
Approximately 500,000 HCT-116 cells were plated in a single well of a 6-well plate. Cells were 

transfected with 2.5 µg of the SP1-PBase plasmid and 2.5 µg of the PB-SRT-Puro plasmid using 

Lipofectamine 3000 following manufacturer’s instructions. After 24 hours, cells were split and 
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plated 1:10 in each of three 10 cm dishes. Puromycin was then added to a final concentration of 

2 µg/ml and colonies were grown under selection for two weeks. We obtained approximately 

2,300 colonies. All cells were pooled together and split into two populations. One half was 

subjected to DNA extraction, self-ligation, and inverse PCR, as described previously (Wang et 

al., 2012a), with the following modification: digestion with MspI was not performed as the SRT 

construct contained an second MspI cut site near the terminal repeat. The other half of cells 

underwent RNA extraction and SRT library preparation (see below). 

2.5.4 In vitro bulk calling card experiments 
We cotransfected 10-12 replicates of HCT-116 cells with 5 µg of PB-SRT-Puro plasmid and 5 

µg PBase plasmid via Neon electroporation Each replicate contained 2x106 cells. As a negative 

control, we transfected one replicate of HCT-116 cells with 5 µg PB-SRT-Puro plasmid only. 

We used the following settings–pulse voltage: 1,530 V; pulse width: 20 ms; pulse number: 1. We 

used the same experimental setup for experiments with PB-SRT-Puro and each of SP1-PBase, 

HyPBase, and SP1-HyPBase plasmids, as well as with SB-SRT-Puro and SB100X plasmids. 

After transfection, each replicate was plated into a 10 cm dish. For the OCM-1A library, we 

transfected 1.25 µg of PB-SRT-Puro and 1.25 µg of either HyPBase or BAP1-HyPBase (a gift 

from Dr. Michael Onken) using the TransIT-LT1 transfection reagent following manufacturer’s 

protocol for 6-well plates. Puromycin was added after 24 hours to a final concentration of 2 

µg/ml. Cells were grown under selection for one week, by which time almost all negative control 

transfectants were dead. After 7 days, we dissociated each replicate with trypsin-EDTA and 

created single cell suspensions in phosphate-buffered saline (PBS). Aliquots of each replicate 

were cryopreserved in cell culture media (see above) supplemented with 5% DMSO. The 
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remaining cells were pelleted by centrifugation at 300g for 5 minutes. Cell pellets were either 

processed immediately or kept at -80ºC in RNAProtect Cell Reagent. 

2.5.5 Isolation and RT of bulk RNA 
Total RNA was isolated from each replicate using the RNEasy Plus Mini Kit following 

manufacturer’s instructions. Briefly, cell pellets were resuspended in 600 µl of Buffer RLT Plus 

with 1% 2-mercaptoethanol. Cells were homogenized by vortexing. DNA was removed by 

running lysate through gDNA Eliminator spin columns, while RNA was bound by passing the 

flow-through over RNEasy spin columns. An on-column treatment with DNaseI was also 

performed. After washing, RNA was eluted in 40 µl RNase-free H2O. RNA was quantitated 

using the Qubit RNA HS Assay Kit. 

We performed first strand synthesis on each replicate with Maxima H Minus Reverse 

Transcriptase. We mixed 2 µg of total RNA with 1 µl 10 mM dNTPs and 1 µl of 50 µM 

SMART_dT18VN primer (Table 2.4), brought the total volume up to 14 µl, and incubated it at 

65ºC for 5 minutes. After transferring to ice and letting rest for 1 minute, we added 4 µl 5X 

Maxima RT Buffer, 1 µl RNaseOUT, and 1 µl of 1:1 Maxima H Minus Reverse Transcriptase 

diluted in 1x RT Buffer (100 U). The solution was mixed by pipetting and incubated at 50ºC for 

1 hour followed by heat inactivation at 85ºC for 10 minutes. Finally, we digested with 1 µl 

RNaseH at 37ºC for 30 minutes. cDNA was stored at -20ºC. 

2.5.6 Amplifying self-reporting transcripts from RNA 
The PCR conditions for amplifying self-reporting transcripts (i.e. transcripts derived from self-

reporting transposons) involved mixing 1 µl cDNA template with 12.5 µl Kapa HiFi HotStart 

ReadyMix, 0.5 µl 25 µM SMART primer, and either 1 µl of 25 µM SRT_PAC_F1 primer (in the 

case of puromycin selection) or 0.5 µl of 25 µM SRT_tdTomato_F1 primer (in the case of 
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tdTomato screening). The mixture was brought up to 25 µl with ddH2O. Thermocycling 

parameters were as follows: 95ºC for 3 minutes; 20 cycles of: 98ºC for 20 seconds–65ºC for 30 

seconds–72ºC for 5 minutes; 72ºC for 10 minutes; hold at 4ºC forever. As a control, cDNA 

quality can be assessed with exon-spanning primers for β-actin (Table 2.4; (Raff et al., 1997)) 

under the same thermocycling settings. 

PCR products were purified using AMPure XP beads. 12 µl of resuspended beads were 

added to the 25 µl PCR product and mixed homogenously by pipetting. After a 5-minute 

incubation at room temperature, the solution was placed on a magnetic rack for 2 minutes. The 

supernatant was aspirated and discarded. The pellet was washed twice with 200 µl of 70% 

ethanol (incubated for 30 seconds each time), discarding the supernatant each time. The pellet 

was left to dry at room temperature for 2 minutes. To elute, we added 20 µl ddH2O to the pellet, 

resuspended by pipetting, incubated at room temperature for 2 minutes, and placed on a magnetic 

rack for one minute. Once clear, the solution was transferred to a clean 1.5 ml tube. DNA 

concentration was measured on the Qubit 3.0 Fluorometer using the dsDNA High Sensitivity 

Assay Kit. 

2.5.7 Generation of bulk RNA calling card libraries 
Calling card libraries from bulk RNA were generated using the Nextera XT DNA Library 

Preparation Kit. One nanogram of PCR product was resuspended in 5 µl ddH2O. To this mixture 

we added 10 µl Tagment DNA (TD) Buffer and 5 µl Amplicon Tagment Mix (ATM). After 

pipetting to mix, we incubated the solution in a thermocycler preheated to 55ºC. The 

tagmentation reaction was halted by adding 5 µl Neutralization Tagment (NT) Buffer and was 

kept at room temperature for 5 minutes. The final PCR was set up by adding 15 µl Nextera PCR 

Mix (NPM), 8 µl ddH2O, 1 µl of 10 µM transposon primer (e.g. OM-PB-NNN) and 1 µl Nextera 
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N7 indexed primer. The transposon primer anneals to the end of the transposon terminal repeat–

piggyBac, in the case of OM-PB primers, or Sleeping Beauty, in the case of OM-SB primers–and 

contains a 3 base pair barcode sequence. Every N7 primer contains a unique index sequence that 

is demultiplexed by the sequencer. Each replicate was assigned a unique combination of 

barcoded transposon primer and indexed N7 primer, enabling precise identification of each 

library’s sequencing reads. 

The final PCR was run under the following conditions: 95ºC for 30 seconds; 13 cycles of: 

95ºC for 10 seconds–50ºC for 30 seconds–72ºC for 30 seconds; 72ºC for 5 minutes; hold at 4ºC 

forever. After PCR, the final library was purified using 30 µl (0.6x) AMPure XP beads, as 

described above. The library was eluted in 11 µl ddH2O and quantitated on an Agilent 

TapeStation 4200 System using the High Sensitivity D1000 ScreenTape. 

2.5.8 In vitro single cell calling card experiments 
All cell lines (HCT-116, K562, N2a, HepG2, and OCM-1A) were cultured as described above. 

HCT-116 cells were transfected using Neon electroporation with the aforementioned settings. 

K562 cells were electroporated with the following settings–pulse voltage: 1,450 V; pulse width: 

10 ms; pulse number: 3. N2a cells were electroporated with the following settings–pulse voltage: 

1,050 V; pulse width: 30 ms; pulse number: 2. HepG2 cells were electroporated with the 

following settings–pulse voltage: 1,200 V; pulse width: 50 ms; pulse number: 1. Each replicate 

for electroporation was comprised of 2x106 cells. All cells were allowed to recover for 24 hours 

before undergoing puromycin selection. A negative control replicate, transfected only with PB-

SRT-Puro, was treated identically in parallel. Replicates were harvested once the negative 

control cells had died. For the species mixing experiment, we transfected one replicate each of 

HCT-116 and N2a cells with 5 µg PB-SRT-Puro and 5 µg HyPBase. For the cell line mixing 
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experiment, we transfected four replicates each of HCT-116 and K562 cells with 5 µg PB-SRT-

Puro and 5 µg HyPBase. Cells were cultured independently and mixed immediately prior to 

generating single cell emulsions. For single cell calling cards analysis of SP1 binding in HCT-

116 and K562 cells, we transfected four replicates each with 5 µg PB-SRT-Puro and 5 µg SP1-

HyPBase. These libraries were not mixed. We used the demultiplexed data from the cell line 

mixing experiment with HyPBase as controls. For single cell calling cards analysis of FOXA2 

binding in HepG2 cells, we transfected six replicates each with 5 µg PB-SRT-Puro; three of 

these replicates were co-transfected with 5 µg HyPBase, while the other three were co-

transfected with 5 µg FOXA2-HyPBase. We used the mouse ortholog of FOXA2, which has 

97% primary sequence identity with human FOXA2. For single cell calling cards analysis of 

BAP1 binding in OCM-1A cells, we lipofected (as described above) six replicates each with 1.25 

µg PB-SRT-Puro; three of these replicates were co-transfected with 1.25 µg HyPBase, while the 

other three were co-transfected with 1.25 µg BAP1-HyPBase. 

2.5.9 Single cell RNA-seq library preparation 
Single cell RNA-seq libraries were prepared using 10x Genomics’ Chromium Single Cell 3’ 

Library and Gel Bead Kit. Each replicate was targeted for recovery of 6,000 cells. Library 

preparation followed a modified version of the manufacturer’s protocol. We prepared the Single 

Cell Master Mix without RT Primer, replacing it with an equivalent volume of Low TE Buffer. 

Gel-in-emulsion (GEM) generation and GEM-RT incubation proceeded as instructed. At the end 

of Post GEM-RT cleanup, we added 36.5 µl Elution Solution I and transferred 36 µl of the eluted 

sample to a new tube (instead of 35.5 µl and 35 µl, respectively). The eluate was split into two 

18 µl aliquots and kept at –20ºC until ready for further processing. One fraction was kept for 
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single cell calling cards library preparation (see next section), while the other half was further 

processed into a single cell RNA-seq library. 

We then added the RT Primer sequence to the products in the scRNA-seq aliquot. We 

created an RT master mix by adding 20 µl of Maxima 5X RT Buffer, 20 µl of 20% w/v Ficoll 

PM-400, 10 µl of 10 mM dNTPs, 2.5 µl RNase Inhibitor and 2.5 µl of 100 µM 10x_TSO. To this 

solution we added 18 µl of the first RT product and 22 µl of ddH2O. Finally, we added 5 µl 

Maxima H Minus Reverse Transcriptase, mixed by flicking, and centrifuged briefly. This 

reaction was incubated at 25ºC for 30 minutes followed by 50ºC for 90 minutes and heat 

inactivated at 85ºC for 5 minutes. 

The solution was purified using DynaBeads MyOne Silane following 10x Genomics’ 

instructions, beginning at “Post GEM-RT Cleanup – Silane DynaBeads” step D. The remainder 

of the single cell RNA-seq protocol, including purification, amplification, fragmentation, and 

final library amplification, followed manufacturer’s instructions. 

2.5.10  Single cell calling cards library preparation 
To amplify self-reporting transcripts from single cell RNA-seq libraries, we took 9 µl of RT 

product (the other half was kept in reserve) and added it to 25 µl Kapa HiFi HotStart ReadyMix 

and 15 µl ddH2O. We then prepared a PCR primer cocktail comprising 5 µl of 100 µM 

Bio_Illumina_Seq1_scCC_10X_3xPT primer, 5 µl of 100 µM Bio_Long_PB_LTR_3xPT, and 

10 µl of 10 mM Tris-HCl, 0.1 mM EDTA buffer. One µl of this cocktail was added to the PCR 

mixture and placed in a thermocycler. Thermocycling settings were as follows: 98ºC for 3 

minutes; 20-22 cycles of 98ºC for 20 seconds–67ºC for 30 seconds–72ºC for 5 minutes; 72ºC for 

10 minutes; 4ºC forever. PCR purification was performed with 30 µl AMPure XP beads (0.6x 
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ratio) as described previously. The resulting library was quantitated on an Agilent TapeStation 

4200 System using the High Sensitivity D5000 ScreenTape. 

Single cell calling card library preparation was performed using the Nextera Mate Pair 

Sample Prep Kit with modifications to the manufacturer’s protocol. The library was circularized 

by bringing 300 fmol (approximately 200 ng) of DNA up to a final volume of 268 µl with 

ddH2O, then adding 30 µl Circularization Buffer 10x and 2 µl Circularization Ligase (final 

concentration: 1 nM). This reaction was incubated overnight (12-16 hours) at 30ºC. After 

removal of linear DNA (following manufacturer’s instructions), we sheared the library on a 

Covaris E220 Focused-ultrasonicator with the following settings–peak power intensity: 200; duty 

factor: 20%; cycles per burst: 200; time: 40 seconds; temperature: 6ºC. 

The library preparation was performed per manufacturer’s instructions until adapter 

ligation. We designed custom adapters (Table 2.4) so that the standard Illumina sequencing 

primers would not interfere with our library. Adapters were prepared by combining 4.5 µl of 100 

µM scCC_P5_adapter, 4.5 µl of 100 µM scCC_P7_adapter, and 1 µl of NEBuffer 2, then heating 

in a thermocycler at 95ºC for 5 minutes, then holding at 70ºC for 15 minutes, then ramping down 

at 1% until it reached 25ºC, holding at that temperature for 5 minutes, before keeping at 4ºC 

forever. One microliter of this custom adapter mix was used in place of the manufacturer’s 

recommended DNA Adapter Index. The ligation product was cleaned per manufacturer’s 

instructions. For the final PCR, the master mix was created by combining 20 µl Enhanced PCR 

Mix with 28 µl of ddH2O and 1 µl each of 25 µM scCC_P5_primer and 25 µM 

scCC_P7_primer. This was then added to the streptavidin bead-bound DNA and amplified under 

the following conditions: 98ºC for 30 seconds; 15 cycles of: 98ºC for 10 seconds–60ºC for 30 

seconds–72ºC for 2 minutes; 72ºC for 5 minutes; 4ºC forever. All of the PCR supernatant was 
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transferred to a new tube and purified with 35 µl (0.7x) AMPure XP beads following 

manufacturer’s instructions. The final library was eluted in 25 µl Elution Buffer and quantitated 

on an Agilent TapeStation 4200 System using the High Sensitivity D1000 ScreenTape. 

2.5.11  Staining protocols for K562 cells 
CD24 surface protein was quantified using monoclonal human antibodies. Cells were spun down 

at 300g for 3 minutes and washed twice with 1 ml of Cell Staining Buffer. The cell pellet was 

then resuspended in 50 µl of Cell Staining Buffer containing 0.2 µg of either CD24-APC or 

CD24-BV421. The tube was rotated at 4 ºC in the dark for 30 minutes. After, cells were washed 

twice (as before) and finally resuspended in 200 µl of Cell Staining Buffer. Cells were excited 

with 450/45 and 660/20 lasers (wavelength/filter bandwidth, both in nm). For concomitant 

analysis of DNA content, we used CD24-APC. Cells were incubated with 10 µg/ml Hoechst 

33342 in 5 ml of growth medium for 30 minutes prior to the staining protocol. For simultaneous 

assessment of apoptosis, cells were stained with CD24-BV421. After the final wash, instead of 

resuspending in 200 µl of Cell Staining Buffer, cells were washed twice with Annexin V 

Staining Buffer. Cells were then incubated in 50 µl Annexin V Staining Buffer containing 0.2 µg 

Annexin V-FITC and 100 µg/ml propidium iodide (PI). The reaction was incubated for 15 

minutes at room temperature in the dark. Afterwards, we added 150 µl of Annexin V Staining 

Buffer and proceeded to flow cytometry. All samples were measured on a Beckman-Coulter 

CytoFLEX S flow cytometer. Cells were excited with 450/45, 525/40, and 610/20 lasers. We 

collected 10,000 events per sample. The resulting data were processed with FlowJo™ Software 

for Mac Version 10. 
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2.5.12  JQ1 treatment of K562 cells 
For the longitudinal treatment of K562 cells with JQ1, we seeded cells at log phase growth and 

treated them with growth medium containing DMSO (~0.4% final concentration) or 250 nM JQ1 

(dissolved in DMSO). Medium was replaced every 48 hours without splitting. On days 1, 2, 3, 4, 

and 7, cells were split in half: one half was stained for CD24 and DNA content, while the other 

half was stained for CD24 and apoptosis (both described above). Experiments were performed 

with three biological replicates. 

For qRT-PCR, we cultured K562 cells in either DMSO or 250 nM JQ1, in triplicate, and 

collected cells at 0, 3, 6, 9, 12, and 24 hours of treatment. Cells were pelleted, resuspended in 

300 µl of RNA CellProtect, and stored at -80 ºC. When we were ready to extract RNA, we 

thawed cells, prepared samples using QIAGEN RNEasy Plus Mini Kit, and quantitated with the 

Qubit RNA High Sensitivity kit. We reverse transcribed 500 ng of RNA with the SuperScript 

VILO cDNA Synthesis Kit in a 20 µl reaction, with the following thermocycling parameters: 25 

ºC for 10 minutes; 42 ºC for 2 hours; 85 ºC for 5 minutes. We then performed PCR with 2 µl of 

the RT product as template, 1 µl each of forward and reverse primer (10 µM), 6 µl ddH2O, and 

10 µl PowerUp SYBR Green Master Mix. We ran the PCR on an ABI QuantStudio 3 with the 

following settings: 2 minutes at 50 ºC, then 2 minutes at 95 ºC (hot start); 45 cycles of 95 ºC for 

15 seconds followed by 60 ºC for 1 minute. We generated melt curves after each PCR and all 

samples yielded a single peak. Gene-specific primers were obtained from PrimerBank (Wang et 

al., 2012b). Data were normalized to the levels of β-actin. 

2.5.13  BRD4 CRISPRi of K562 cells 
For CRISPRi, we first made lentivirus expressing dCas9-KRAB from Addgene plasmid #89567, 

a gift from Gary Hon, packaged in HEK 293T cells along with pMD2.G (Addgene plasmid 

#12259) and psPAX2 (Addgene plasmid #12260), both gifts from Didier Trono. We cloned a 
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BRD4 guide RNA, selected from the Dolcetto collection (Sanson et al., 2018), into the sgOpti 

plasmid (Addgene plasmid #85681, a gift from Eric Lander & David Sabatini) using Golden 

Gate assembly with Esp3I. We used an in-house pipeline to design a non-targeting gRNA 

sequence, which was cloned into CROP-seq-opti (Lalli et al., 2019). Plasmids were transfected 

into HEK 293T cells using Lipofectamine 2000. Media was collected after 24 and 48 hours, and 

subsequently concentrated using Lenti-X™ Concentrator. Viral titers were functionally assed on 

HEK 293T cells using the appropriate antibiotic (blasticidin or puromycin). 

Next, we generated a polyclonal pool of dCas9-KRAB-expressing K562 cells. We seeded 

each well of a 6-well plate with 200,000 cells each containing 2 ml of growth media 

supplemented with 4 µg/ml polybrene and 1,000,000 infectious lentiviral particles for an 

estimated multiplicity of infection (MOI) of 5. Plates were centrifuged at 2,000g for 30 minutes 

and returned to the incubator. After 48 hours, cells were split to mid-log phase concentration 

(~400,000 cells/ml) and selected on blasticidin (10 µg/ml) for 48 hours. We made frozen stocks 

from these cells. 

For the knockdown experiments, cells were thawed and allowed to recover for 4 days. 

We confirmed that the proportions of CD24high/CD24low was approximately equal at this point. 

We then seeded 200,000 cells into each well of a 6-well plate. Three wells received the BRD4 

gRNA lentivirus, while the other three received the non-targeting gRNA lentivirus, at an MOI of 

2.5. We followed the same transduction protocol described above. After 48 hours of incubation, 

puromycin was added to the medium at a final concentration of 2 µg/ml. After a further 48 hours, 

cells were passaged 1:1 into 10 cm dishes containing 10 ml of growth medium. The surviving 

cells were allowed to expand for a further 5 days before being stained for CD24 (nine days after 

gRNA transduction.) 
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2.5.14  Imatinib treatments of K562 cells 
Cells were challenged with imatinib either after JQ1 treatment or BRD4 CRISPRi. For the 

former, we plated 200,000 cells each well of a 6-well plate with 2 ml of growth medium. Half of 

the wells received DMSO while the other half received 250 nM JQ1. Cells were incubated for 5 

days, with fresh media changes on days 1, 2, and 3. On day 5, a portion of each well was stained 

for CD24 levels. The remaining cells in each well were split between two new wells. One well 

continued to receive medium supplemented with DMSO, while the other was treated with 

medium containing imatinib mesylate at a concentration of 1 µM. After 48 hours, every well was 

stained for CD24 levels and apoptotic activity, as previously described. Cells undergoing BRD4 

or non-targeted CRISPRi were split in two and treated with either DMSO or imatinib (1 µM) as 

described and in triplicate. The resulting data were processed with FlowJo™. We set gates such 

that we could exclude debris but that we would capture both live and dying cells. This gate was 

used to calculate levels of annexin V and PI. 

2.5.15  Cell cycle perturbation of K562 cells 
The cell cycle inhibitors lovastatin, nocodazole, CVT-313 and RO-3306 were purchased from 

Sigma-Aldrich. All drugs were dissolved in DMSO except nocodazole, which was dissolved in 

ethanol. We treated 200,000 cells per well in 6-well plates with either DMSO, ethanol (~0.4% 

final concentration), 250 nM JQ1, 12 µM lovastatin, 40 ng/µl nocodazole (in ethanol), 2 µM 

CVT-313, or 4.5 µM RO-3306. Media was refreshed every 48 hours. After 36 hours of 

treatment, we stained for CD24 levels and nuclear DNA content. We gated for live, single cells 

using the forward scatter (FSC) and side scatter channels (SSC). Univariate cell cycle analysis 

was performed with FlowJo™. After 5 days of treatment, we stained for CD24 levels and 

apoptotic activity. As before, we set gates to exclude debris to quantitate annexin V and PI, and 
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measured CD24 in live cells gated on FSC and SSC. The G2 inhibitors, in particular, had very 

few cells in the FSC/SSC gate (typically below 5%). 

2.5.16  SRT-tdTomato fluorescence validation 
To test the fluorescence properties of the SRT-tdTomato construct, we transfected K562 cells as 

previously described with either 1 µg of pUC19 plasmid; 0.5 µg of PB-SRT-tdTomato plasmid 

and 0.5 µg pUC19; 0.5 µg of PB-SRT-tdTomato and 0.5 µg pBase plasmid; and 0.5 µg of PB-

SRT-tdTomato and 0.5 µg HyPBase plasmid. Cells were allowed to expand for 8 days, after 

which fluorescence activity was assayed on an Attune NxT Flow Cytometer with an excitation 

wavelength of 561 nm. Flow cytometry data were visualized using FlowCal (Castillo-Hair et al., 

2016). We also performed bulk RNA calling cards on HEK293T cells transfected with SRT-

tdTomato with or without HyPBase plasmid. While these cells were not sorted based on 

fluorescence activity, the SRT library from cells transfected with both SRT and transposase were 

more complex and contained many more insertions than the library from cells receiving SRT 

alone (Figure 2.2A). 

2.5.17  In vivo scCC experiments 
Mouse cortical tissues were dissociated to single suspensions following a modification of 

previously published methods (Avey et al., 2018; Saxena et al., 2012). We incubated samples in 

a papain solution containing Hibernate-A with 5% v/v trehalose, 1x B-27 Supplement, 0.7 mM 

EDTA, 70 µM 2-mercaptoethanol, and 2.8 mg/ml papain. After incubation at 37ºC, cells were 

treated with DNaseI, triturated through increasingly 2narrow fire-polished pipettes, and passed 

through a 40-micron filter prewetted with resuspension solution: Hibernate-A containing 5% v/v 

trehalose, 0.5% Ovomucoid Trypsin Inhibitor, 0.5% Bovine Serum Albumin (BSA), 33 µg/ml 

DNaseI (Worthington), and 1x B-27 Supplement. The filter was washed with 6 ml of 
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resuspension solution. The resulting suspension was centrifuged for 4 minutes at 250 g. The 

supernatant was discarded. The pellet was then resuspended in 2 ml of resuspension solution and 

resuspended by gentle pipetting. 

We eliminated subcellular debris using gradient centrifugation. We first prepared a 

working solution of 30% w/v OptiPrep Density Gradient Medium mixed with an equal volume 

of 1x Hank’s Balanced Salt Solution (HBSS) with 0.5% BSA. We then prepared solutions of 

densities 1.057, 1.043, 1.036, and 1.029 g/ml using by combining the working solution with 

resuspension solution at ratios of 0.33:0.67, 0.23:0.77, 0.18:0.82, and 0.13:0.87, respectively. We 

layered 1 ml aliquots of each solution in a 15 ml conical tube beginning with the densest solution 

on the bottom. The cell suspension was added last to the tube and centrifuged for 20 minutes at 

800g at 12ºC. The top layer was then aspirated and purified cells were isolated from the 

remaining layers. These cells were then resuspended in FACS buffer: 1x HBSS, 2 mM MgCl2, 2 

mM MgSO4, 1.25 mM CaCl2, 1 mM D-glucose, 0.02% BSA, and 5% v/v trehalose. Cells were 

centrifuged for 4 minutes at 250 g, the supernatant was discarded, and the pellet was resuspended 

in FACS buffer by gentle pipetting. 

Cells were then sorted based on fluorescence activity. As a gating control, we analyzed 

cells from cortices injected with AAV9-PB-SRT-tdTomato only. We then collected cells from 

brains transfected with AAV9-PB-SRT-tdTomato and AAV9-HyPBase whose fluorescence 

values exceeded the gate. After sorting, cells were centrifuged for 3 minutes at 250 g. The 

supernatant was discarded and cells were resuspended in FACS buffer at a concentration 

appropriate for 10x Chromium 3’ scRNA-seq library preparation. 
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2.5.18  Quantification and statistical analysis 
Statistical analyses were performed in Python 3.7.3 using SciPy (Virtanen et al., 2020) 

and statsmodels (Seabold and Perktold, 2010) as well as R 3.5.3 using the multcomp package 

(Hothorn et al., 2008). Flow cytometry figures were created with FlowJo™. All other figures 

were created with Python using matplotlib (Hunter, 2007). Statistical details for individual 

experiments have been provided in the main text, figure legends, and Method Details. In general, 

we used 10-12 replicates for bulk RNA calling cards experiments; at least three separate libraries 

for single cell calling cards experiments; and three biological replicates for the K562 cell state 

experiments. 

2.5.19  Sequencing and analysis: bulk DNA CC libraries 
DNA calling card libraries were sequenced on the Illumina HiSeq 2500 platform. To increase the 

complexity of the library, PhiX was added at a final loading concentration of 50%. Reads were 

demultiplexed by the 3 base-pair barcode TAG followed by the end of the transposon terminal 

repeat, culminating with the piggyBac insertion site motif TTAA. Reads that had exact matches 

to these sequences were hard trimmed using cutadapt (Martin, 2011) with the following settings: 

-g "^TAGTTTACGCAGACTATCTTTCTAGGGTTAA" --minimum-length 1 --discard-

untrimmed -e 0 --no-indels. Reads passing this filter were then trimmed of vector sequence along 

read 2 using cutadapt with the following settings: -g "^ATCACTTAAGCCGGTAC"" --

minimum-length 1 --discard-untrimmed -e 0 --no-indels. The remaining reads were aligned to 

the human genome (build hg38) with NovoAlign and the following settings: -n 40 -o SAM -o 

SoftClip. Aligned reads were validated by confirming that they mapped adjacent to the insertion 

site motif. Successful reads were then converted to calling card format (.ccf; see 

http://wiki.wubrowse.org/Calling_card) using custom programs (available at 
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https://github.com/arnavm/calling_cards) and visualized on the WashU Epigenome Browser v46 

(Zhou et al., 2011) (http://epigenomegateway.wustl.edu/legacy/). 

2.5.20  Sequencing and analysis: bulk RNA CC libraries 
Multiple calling card libraries were pooled together for sequencing on the Illumina HiSeq 2500 

platform with 50% phiX. Reads were demultiplexed by the N7 index sequences added during the 

final PCR. Read 1 began with the 3 base-pair barcode followed by the end of the transposon 

terminal repeat, culminating with the insertion site motif (TTAA in the case of piggyBac; TA in 

the case of Sleeping Beauty) before entering the genome. piggyBac reads were checked for exact 

matches to the barcode, transposon sequence, and insertion site at the beginning of reads before 

being hard trimmed using cutadapt with the following settings: -g 

"^NNNGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAA" --minimum-length 1 --

discard-untrimmed -e 0 --no-indels, where NNN is replaced with the primer barcode. Sleeping 

Beauty libraries were trimmed with the following settings: -g 

"^NNNTAAGTGTATGTAAACTTCCGACTTCAACTGTA" --minimum-length 1 --discard-

untrimmed -e 0 --no-indels. Reads passing this filter were then trimmed of any trailing Nextera 

adapter sequence, again using cutadapt and the following settings: -a 

"CTGTCTCTTATACACATCTCCGAGCCCACGAGACTNNNNNNNNNNTCTCGTATGCC

GTCTTCTGCTTG" --minimum-length 1. The remaining reads were aligned to the human 

genome (build hg38) with NovoAlign and the following settings: -n 40 -o SAM -o SoftClip. 

Aligned reads were validated by confirming that they mapped adjacent to the insertion site motif. 

Successful reads were then converted to calling card format (.ccf) and visualized on the WashU 

Epigenome Browser v46 (Zhou et al., 2011) (http://epigenomegateway.wustl.edu/legacy/). 
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2.5.21  Sequencing and analysis: scRNA-seq libraries 
scRNA-seq libraries were sequenced on either Illumina HiSeq 2500 or NovaSeq machines. 

Reads were analyzed using 10x Genomics’ Cell Ranger with the following settings: --expect-

cells=6000 --chemistry=SC3Pv2 --localcores=16 --localmem=30. The digital gene expression 

matrices from 10x were then further processed with scanpy (Wolf et al., 2018) for identification 

of highly variable genes, batch correction, dimensionality reduction, and Louvain clustering. 

Processed scRNA-seq datasets were stored as .loom files (http://loompy.org). We cross-

referenced gene expression data with published datasets (Rosenberg et al., 2018; Rouillard et al., 

2016; Saunders et al., 2018; Tasic et al., 2018; Zeisel et al., 2018) to assign cell types. The 

species mixing analysis was performed using Drop-seq_tools (Macosko et al., 2015) 

2.5.22  Sequencing and analysis: scCC libraries 
scCC libraries were sequenced on Illumina NextSeq 500 machines (v2 Reagent Cartridges) with 

50% PhiX. We used the standard Illumina primers for read 1 and index 2 (BP10 and BP14, 

respectively), and custom primers for read 2 and index 1 (Table 2.4). Read 1 sequenced the cell 

barcode and unique molecular index of each self-reporting transcript. Read 2 began with 

GGTTAA (end of the piggyBac terminal repeat and insertion site motif) before continuing into 

the genome. Reads containing this exact hexamer were trimmed using cutadapt with the 

following settings: -g "^GGTTAA" --minimum-length 1 --discard-untrimmed -e 0 --no-indels. 

Reads passing this filter were then trimmed of any trailing P7 adapter sequence, again using 

cutadapt and with the following settings: -a 

"AGAGACTGGCAAGTACACGTCGCACTCACCATGANNNNNNNNNATCTCGTATGCC

GTCTTCTGCTTG" --minimum-length 1. Reads passing these filters were aligned using 10x 

Genomics’ cellranger with the following settings: --expect-cells=6000 --nosecondary --

chemistry=SC3Pv2 --localcores=16 --localmem=30. This workflow also managed barcode 
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validation and collapsing of UMIs. Aligned reads were validated by verifying that they mapped 

adjacent to TTAA tetramers. Reads were then converted to calling card format (.ccf). Finally, to 

minimize the presence of intermolecular artifacts, we required that each insertion must have been 

tagged by at least two different UMIs. We used the set of validated cell barcodes from each 

scRNA-seq library to demultiplex library-specific barcoded insertions from the scCC data. This 

approach requires no shared cell barcodes between individual scCC (and scRNA-seq) libraries. 

As a result, we excluded insertions from non-unique cell barcodes, which represented a very 

small number of total cells lost (< 1% per multiplexed library). More details on these steps are 

also provided in the associated protocols. For the species mixing experiment, cells were 

classified as either human or mouse if at least 80% of self-reporting transcripts in that cell 

mapped to the human or mouse genome, respectively, and as a multiplet. The estimated multiplet 

rate was calculated by doubling the observed percentage of human-mouse multiplet, to account 

for human-human and mouse-mouse doublets. 

2.5.23  Peak calling on calling card data 
We called peaks in calling card data using Bayesian blocks (Scargle et al., 2013), a noise-tolerant 

algorithm for segmenting discrete, one-dimensional data, using the astropy implementation 

(Robitaille et al., 2013; The Astropy Collaboration et al., 2018). Bayesian blocks segments the 

genome into non-overlapping blocks where the density of calling card insertions is uniform. By 

comparing the segmentation against a background model, we were able to use Poisson statistics 

to assess whether a given block shows statistically significant enrichment for insertions. Let 

 represent the set of blocks found by performing Bayesian block segmentation 

on all insertions from a TF-directed experiment (e.g. SP1-PBase). For each block , let  be the 

number of insertions in that block in the TF-directed experiment. Similarly, let  be the number 
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of insertions in that block in the undirected experiment (e.g. PBase) normalized to the total 

number of insertions found in the TF-directed experiment. Then, for each block we calculated 

the Poisson p-value of observing at least  insertions assuming a Poisson distribution with 

expectation : . We accepted all blocks that were significant beyond a 

particular p-value threshold. 

For the analysis of TF-directed insertions, either in bulk or in single cells, we added a 

pseudocount of 1 to , the number of insertions in block  in the undirected experiment. We 

selected all blocks whose p-values were significant at a Benjamini-Hochberg false discovery rate 

of 5% (Benjamini and Hochberg, 1995). We polished peak calls by merging statistically 

significant blocks that were within 250 bases of each other and by aligning block edges to 

coincide with TTAAs. 

To identify BRD4 binding sites from undirected piggyBac insertions, we segmented those 

insertions using Bayesian blocks. For each block , we let  denote the number of undirected 

insertions in that block. We also calculated , the expected number of insertions in block  

assuming piggyBac insertions were distributed uniformly across the genome. We did this by 

dividing the total number of TTAAs in the genome by the total number of undirected insertions, 

then multiplying this value by the number of TTAAs in block . Then, for each block we 

calculated the Poisson p-value . We accepted all blocks that were significant 

beyond a particular p-value threshold. Finally, we merged statistically-significant blocks that 

were within 12,500 bases of each other (Pott and Lieb, 2014; Whyte et al., 2013). 

For the bulk PBase and HyPBase analysis, we used p-value cutoffs of 10-30 and 10-62, 

respectively. (We chose these stringent thresholds to better resolve super-enhancers, which is our 

primary focus here.) For both in vitro and in vivo single cell HyPBase analyses, we used a p-
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value cutoff of 10-9. To identify the differentially-bound loci between CD24high/CD24low K562 

cells, as well as between upper and lower cortical layer neurons (i.e. Pou3f2/Brn-2, 

Bcl11b/Ctip2, and Foxp2), we used the same framework as described above for TF-directed 

analysis but did reciprocal enrichment analyses, where one dataset was used as the “experiment” 

track and the other as the “control” track, and vice-versa. This results in two one-sided 

hypothesis tests. When analyzing differential binding between upper and lower cortical layer 

neurons, we used a p-value cutoff of 10-9. For the CD24high/CD24low K562 analysis, we restricted 

our hypothesis testing to BRD4-bound peaks found in the cell line mixing experiment that had at 

least 20 insertions between both groups. For each peak, we normalized the number of insertions 

from each population by a library-specific scaling factor and calculated the fold change in 

binding as . We then took the smaller of the two p-values and 

adjusted for multiple hypotheses at a Benjamini-Hochberg false discovery rate of 10%. This was 

plotted against the fold change values to generate the volcano plot.  

Density tracks were generated by taking the Bayesian blocks segmentation of each 

calling card dataset and, for each block, calculating the normalized number of insertions and 

dividing by the length of the block in kilobases (insertions per kilobase per million mapped 

insertions, or IPKM). This was plotted as a bedgraph file with smoothing applied in the WashU 

Epigenome Browser (25 pixel windows). 

Custom code to facilitate these analyses is available online 

(https://github.com/arnavm/calling_cards). Detailed instructions on how to analyze calling card 

data are provided in Appendices 4-6. 
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2.5.24  TF binding analysis  
We compared our TF-directed calling card peaks to publicly available ChIP-seq datasets. See 

below for more details on aligning and analyzing ChIP-seq data. We collated a list of unique 

TSSs by taking the 5’-most coordinates of RefSeq Curated genes in the hg38 build (UCSC 

Genome Browser). A list of CpG islands in HCT-116 and K562 cells and their methylation 

statuses were derived from previously-published Methyl-seq data (Brunner et al., 2009). We 

used the liftOver tool (Hinrichs et al., 2006) to convert coordinates from hg18 to hg38. We tested 

for enrichment in SP1-directed insertions at TSSs, CpG islands, and unmethylated CpG islands 

with the G test of independence. We used the same test when testing enrichment of BAP1-

directed insertions at TSSs. For motif discovery, we restricted our analysis to peaks less than 5 

kb in length. We then used MEME-ChIP (Machanick and Bailey, 2011) with a dinucleotide 

shuffled control and the following settings: -dna -nmeme 600 -seed 0 -ccut 250 -meme-mod 

zoops -meme-minw 4 -meme-nmotifs 10. Motifs were aligned on the web version of Tomtom 

(Gupta et al., 2007) querying the “Vertebrates (In vivo and in silico)” database. We cross-

referenced BAP1 scCC binding sites with publicly available BAP1 shRNA data (Yen et al., 

2018), focusing on genes that showed a significant change in gene expression (adjusted p-value 

< 0.05).  

2.5.25  BRD4 sensitivity, specificity, and precision 
We used a published BRD4 ChIP-seq dataset (McCleland et al., 2016) to identify BRD4-bound 

super-enhancers in HCT-116 cells, following previously-described methods (Lovén et al., 2013; 

Whyte et al., 2013). We first called peaks using MACS 1.4.1 (Zhang et al., 2008) at p < 10-9 

(using the parameters -p 1e-9 --keep-dup="auto" -f BAM -g hs -w -S --space=50), then fed this 

into ROSE. We discarded artifactual loci less than 2,000 bp in size, yielding a final list of 162 

super-enhancers. To evaluate sensitivity, we used BEDtools (Quinlan and Hall, 2010) to ask 
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what fraction of piggyBac peaks, at various p-value thresholds, overlapped the set of BRD4-

bound super-enhancers. To measure specificity, we created a list of regions predicted to be 

insignificantly enriched (p > 0.1) for BRD4 ChIP-seq signal. We then sampled bases from this 

region such that the distribution of peak sizes was identical to that of the 162 super-enhancers. 

We sampled to 642x coverage, sufficient to cover each base with one peak, on average. We then 

asked what fraction of our piggyBac peaks overlapped these negative peaks and subtracted that 

value from 1 to obtain specificity. Finally, we calculated precision, or positive predictive value, 

by dividing the total number of detected super-enhancer peaks by the sum of the super-enhancer 

peaks and the false positive peaks. 

2.5.26  Downsampling and replication analysis 
When performing downsampling analyses on calling card insertions, we randomly sampled 

insertions without replacement and in proportion to the number of reads supporting each 

insertion. Peaks were called on the downsampled insertions at a range of p-value cutoffs. Linear 

interpolation was performed using NumPy (Oliphant, 2015) and visualized using matplotlib 

(Hunter, 2007). Replication was assessed by splitting calling card insertions into two, 

approximately equal, files based on their barcode sequences. Each new file was treated as a 

single biological experiment. For each peak called from the joint set of all insertions, we plotted 

the number of normalized insertions (IPM) in one replicate on the x-axis and the other replicate 

on y-axis. 

2.5.27  Analysis of external datasets 
For ChIP-seq, ATAC-seq, and DNase-seq data, we aligned raw reads using Novoalign with the 

following settings for single-end datasets: -o SAM -o SoftClip; while paired-end datasets were 

mapped with the additional flag -i PE 200-500. To calculate and visualize the fold enrichment in 
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ChIP-seq signal at calling card peaks, we used deeptools (Ramírez et al., 2016). We tested for 

significant mean enrichment in BRD4 ChIP-seq signal at piggyBac peaks over randomly shuffled 

control peaks with the Kolmogorov-Smirnov test. Chromatin state analysis was performed using 

ChromHMM (Table 2.6) as previously described (Ernst et al., 2011). For each chromatin state, 

we plotted the mean and standard deviation of the rate of normalized insertions (IPKM). We 

called peaks on SP1 ChIP-seq, DNase- and ATAC-seq data using MACS 2 with the following 

settings: -q 0.05 --keep-dup="auto". For the analysis of “super-enhancers” from ATAC-seq data, 

we used control data derived from ATAC-seq on deproteinized human genomic DNA (Martins 

et al., 2018) and followed the same steps for calling super-enhancers from BRD4 ChIP-seq data 

(above). If necessary, files were converted to hg38 using liftOver (Hinrichs et al., 2006). 

Table 2.6: ChromHMM chromatin state annotations in HCT-116 cells  
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Promoter 

3 25 0 0 0 2 1 35 100 100 96 98 37 

4 14 0 1 0 2 1 89 98 36 95 41 4 

Enhancer 5 3 2 2 1 1 2 59 57 1 9 1 3 

6 3 1 2 0 14 9 77 90 27 53 22 92 

7 1 1 4 0 13 10 11 1 0 5 0 85 

Transcribed 
8 0 1 3 0 14 5 4 0 0 2 0 12 

9 5 0 2 0 32 8 16 5 0 65 1 36 

13 0 3 6 1 1 3 4 0 0 0 0 2 

12 0 1 19 1 1 3 3 0 1 0 0 1 
Repressed 

15 0 2 3 30 0 5 3 0 0 0 0 1 
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11 0 0 0 0 0 0 0 0 0 0 0 0 

Inactive 14 0 1 1 1 0 1 2 0 0 0 0 0 

10 3 48 69 30 54 36 28 21 34 21 15 28 
    Chromatin mark observation frequency (%)   

 

2.5.28  Cell state analyses of K562: scRNA-seq and scCC 
Cell state analysis was performed on batch-corrected K562 scRNA-seq data derived from the 

HyPBase cell mixing experiment. We observed that the top genes in PC1 (VIM, CD24, TMSB4X, 

LYZ, and LGALS1) and PC2 (HBE1, HBG2, HBG1, HBZ, and HBA2) were anticorrelated with 

each other (Figure 2.18A-B), implying the existence of two mutually exclusive states. We scored 

cells based on the expression of VIM, TMSB4X, HBG1, and HBG2. We then modeled the 

distribution of this state score as a 3 component Gaussian mixture model, drawing cutoffs where 

adjacent Gaussian distributions intersected (Figure 2.18C). These cutoffs were then used to label 

cells as either stem-like (CD24high), differentiated (CD24low), or intermediate (Figure 2.18D). The 

expression levels of CD24 and HBZ, which were not used to score cells, showed high specificity 

for the stem-like and differentiated clusters (Figure 2.18E). Differentially bound peaks were 

called as described above. 

2.5.29  Analysis of K562 experiments 
We analyzed the JQ1 time course experiment using a two-way ANOVA with treatment and day 

as the independent variables and the percentage of CD24low cells as the dependent variable. For 

the analysis of annexin V levels in either JQ1- or DMSO-treated CD24high and CD24low cells, we 

used a three-way ANOVA with treatment, cell state, and day as independent variables. The 

imatinib experiments following either JQ1 or BRD4 CRISPRi pretreatment were analyzed using 

a two-way ANOVA with pretreatment (JQ1/DMSO or NT/BRD4 gRNA) and treatment as the 

independent variables. Multiple hypothesis correction was performed using Tukey’s honestly 
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significant difference. For the cell cycle inhibitor experiment, data were analyzed using a one-

way ANOVA with Dunnett’s post-hoc test using either DMSO or EtOH (for RO-3306) as 

controls.  

2.5.30  In vivo scCC analysis and validation 
Single cell RNA-seq and single cell calling card libraries were prepared, sequenced, and 

analyzed as described above. Cell types were assigned based on the expression of key marker 

genes and cross-referenced with recent cortical scRNA-seq datasets (Rosenberg et al., 2018; 

Saunders et al., 2018; Tasic et al., 2018; Zeisel et al., 2018). BRD4-bound peak calls were 

validated by comparing to a previously published cortical H3K27ac ChIP-seq dataset (Stroud et 

al., 2017). Read alignment and statistical analysis were performed as described above. 

The specificity of BRD4-bound gene expression in astrocytes and neurons was analyzed 

by first identifying all genes within 10,000 bases of astrocyte and neuronal BRD4 peaks. 

Although assigning an enhancer to its target gene is a difficult problem, using the nearest gene is 

common practice (Gasperini et al., 2019). To control for sensitivity of gene detection, we 

downsampled the neuron insertions to the same number of astrocyte insertions, then called peaks 

and identified nearby genes in this subset. We used gene expression data from a bulk RNA-seq 

dataset (Zhang et al., 2014) to compute the specificity of gene expression between astrocytes and 

neurons. We first discarded genes whose expression was not measured, and then set the value for 

genes with 0.1 FPKM to zero (to better distinguish non-expressed genes from lowly-expressed 

genes). Finally, for each gene , we calculated the specificity as 

. Thus, a value of 0 denotes a gene purely expressed in neurons, 

a value of 0.5 for a gene equally expressed in both cell types, and a value of 1 for a gene purely 

expressed in astrocytes. We plotted distributions of gene expression specificity for the set of 



120 
 

astrocyte-bound genes and the downsampled astrocyte-bound genes. Gene Ontology analysis 

was performed on the same sets of genes using PANTHER (Mi et al., 2017) on the “GO 

biological process complete” database. Fisher’s exact test was used to compute p-values, which 

were then subject to Bonferroni correction. 

2.5.31  Additional resources 
We have created a number of protocols describing how to perform all aspects of bulk and single 

cell calling cards, from molecular biology and sequencing through data analysis and 

visualization. While these are listed in the Key Resources Table (Table 2.5) and reproduced in 

the appendices, we have also created a publicly accessible portal for easy access to all our 

workflows: https://www.protocols.io/groups/calling-cards/. Moving forward, this folder should 

contain the most up-to-date information. 
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Chapter 3: The qBED track: a novel genome 
browser visualization for point processes 

(A version of this chapter was published in Bioinformatics 37(8), pp. 1168-1170) 

3.1 Abstract 
3.1.1 Summary 
Transposon calling cards is a genomic assay for identifying transcription factor binding sites in 

both bulk and single cell experiments. Here we describe the qBED format, an open, text-based 

standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track 

on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect 

calling card data in their genomic context. Finally, through examples, we demonstrate that qBED 

files can be used to visualize non-calling card datasets, such as CADD scores and GWAS/eQTL 

hits, and may have broad utility to the genomics community. 

3.1.2 Availability and Implementation 
The qBED track is available on the WashU Epigenome Browser 

(http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the 

WashU Epigenome Browser with qBED support is available on GitHub 

(http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition 

of the qBED format is available as part of the WashU Epigenome Browser documentation 

(https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on 

how to upload qBED data to the browser (dx.doi.org/10.17504/protocols.io.bca8ishw). 

3.2 Introduction 
Advances in genomic technologies often lead to new data formats and new platforms to visualize 

those data. The Human Genome Project originated the popular Browser Extensible Data (BED) 
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standard for describing genomic intervals (Kent et al., 2002). Routine next-generation 

sequencing projects, such as whole-genome sequencing and RNA-seq, use the SAM format to 

store and visualize data (Li et al., 2009). Epigenetic modifications detected by bisulfite 

sequencing can be visualized using methylC tracks (Zhou et al., 2014). The bedGraph and 

wiggle (.wig/.bigWig) formats have emerged as flexible standards for encoding pseudo-

continuous integer- and real-valued signals across the genome, such as from normalized ChIP- or 

ATAC-seq assays (Huy Hoang and Sung, 2014; Kent et al., 2010; Rosenbloom et al., 2010). 

Finally, the .hic and .cool formats (Abdennur and Mirny, 2019; Durand et al., 2016) encapsulate 

intra-chromsomal contact frequencies and have contributed to our understanding of chromatin 

organization. 

Over the past several years, we have introduced, and developed, transposon calling cards 

to identify genome-wide transcription factor (TF) binding sites (TFBS) (Wang et al., 2007, 2008, 

2011, 2012). This approach uses a TF of interest fused to a transposase. The fusion construct 

deposits transposons into the genome near TFBS, which can be recovered from either DNA or 

RNA libraries. Significantly enriched clusters of transposons indicate putative TFBS. Instead of 

plotting read coverage, as would be done in more traditional TF studies like ChIP-seq, we plot 

each insertion as a discrete point along the (genomic) x-axis and the number of reads supporting 

that particular insertion on the y-axis. The result resembles a scatterplot in which an increased 

density of insertions is typically observed near TFBS. 

Historically, raw insertion data were visualized using GNASHY, an in-house file format 

and genome browser custom built for calling card data. While useful, the GNASHY browser 

suffered from two major limitations: first, it was restricted to visualizing one track–and therefore, 

one sample or experiment–at a time; and second, it did not support conventional genomic 
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formats like bedGraph or bigWig. Thus, any comparative analysis of calling card data with, say, 

ChIP-seq or ATAC-seq relied on manually aligning images from different browsers (Wang et al., 

2012). 

Calling card technology is currently undergoing a renaissance. We have recently used 

calling cards to study TF binding in bulk populations of cells in vivo (Cammack et al., 2020), and 

we have also combined calling cards with single cell RNA-seq to simultaneously profile cell 

identity in complex organs and heterogenous disease states (Moudgil et al., 2020). Calling cards 

has also been used to dissect TF binding in both steady state and dynamic contexts (Mayhew and 

Mitra, 2014; Shively et al., 2019). As the scope and application of the calling card technique 

grows, we anticipate greater interest and increasingly complex visualization demands. Here, to 

better support existing and future users, we describe the qBED format, a new text-based genomic 

data format for storing calling card data. We also describe the qBED track, an interface for 

visualizing calling card data on the WashU Epigenome Browser. Finally, we present examples of 

non-calling card genomic data visualized using the qBED standard to demonstrate the format’s 

flexibility. 

3.3 Implementation 
We christened our format qBED because it stores multidimensional, quantitative information 

about quantized events, such as calling card transpositions. Formally, qBED follows a BED3+3 

standard (Figure 3.1A). For calling card data, the first three columns denote the chromosome, 

start, and end coordinates of the transposon insertion. The width of the interval depends on the 

transposase used: mammalian calling cards, which employs the piggyBac transposase, uses a 

four base-pair width for the insertion coordinate as piggyBac overwhelmingly inserts into TTTA 

tetramers (Wang et al., 2012); whereas yeast calling cards uses single base-pair intervals as these 
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assays use the motif-agnostic Ty5 retrotransposon (Wang et al., 2007). qBED files inherit the 

BED format’s 0-based, half-open intervals and are compatible with programs like bedtools 

(Quinlan and Hall, 2010) and bedops (Neph et al., 2012) for intersection analysis. The fourth 

column encodes a numerical value–in this case, the number of reads supporting each insertion–

and is the last column required in qBED files. The fifth and sixth columns are optional, but 

recommended, as the former denotes the strand (+/-, or . if unspecified) that was targeted, while 

the latter encodes an annotation string. For calling card experiments, this is where sample-

specific barcodes are registered (Figure 3.1A). Like BED files, qBED files can be compressed 

and indexed with bgzip and tabix, respectively (Li et al., 2009). 

To visualize qBED files, we have created the qBED track and implemented it in the 

WashU Epigenome Browser (Li et al., 2019; Zhou et al., 2011), a leading portal for analyzing 

epigenomic data such as ChIP-seq, ATAC-seq, and Hi-C. (Prior to version 51.0.3, the qBED 

track was known as the calling card track).  qBED tracks display circular markers for genomic 

features in two dimensions: genomic position along the x-axis and numerical value along the y-

axis (Figure 3.1Bi). For calling card experiments, these represent transposon insertions and read 

counts, respectively. When the insertion coordinate spans more than one base, the marker is 

drawn at the midpoint of the interval. Moreover, as multiple insertions may occur at the same 

insertion site (e.g. from different replicates), multiple markers can co-occur at the same x-

coordinate and stratify across the y-axis. qBED tracks support interactive exploration of data. As 

a cursor approaches a data point, a rollover pane appears (Figure 3.1Bii), displaying the read 

count, strand, and annotation (columns 4, 5 and 6, respectively). Near the top of the rollover pane 

is the track name and an approximate (to the nearest pixel) genomic location. 
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Figure 3.1: Overview of the qBED format and qBED tracks. (A) Example of a qBED file encoding transposon 
calling card data. The first three columns are inherited from the BED standard and encode the location of the 
insertion site. The fourth column stores the number of reads observed for each entry, while the fifth denotes strand. 
The sixth and final column is an annotation recording the sample-specific barcode for each insertion in the library. 
(B) Screenshot of qBED tracks depicting calling card data in the WashU Epigenome Browser. (i) qBED features 
appear on two-dimensional tracks, with genomic position along the x-axis and a numerical value on the y-axis (here, 
log-transformed read counts). (ii) An informational panel appears upon rollover of a calling card insertion, revealing 
read count, strand, barcode, and approximate location. (iii) Right-clicking on a qBED track pulls up a configuration 
panel. Tracks can be customized with respect to color, size, y-axis limits and transformations, marker size (iii-iv), 
opacity (v), and sample size (vi). (vii) Orthogonal datasets like transcription factor and histone ChIP-seq data can be 
directly displayed alongside calling card data. 
 

Right-clicking on a qBED track leads to a customization panel (Figure 3.1Biii). 

Individual tracks can be shaded in any RGB color (Figure 3.1Biii-vi), to better delineate different 
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samples. The size of the calling card marker can be made larger (Figure 3.1Biii) or smaller 

(Figure 3.1Biv), depending on user preference. The opacity of the track can also be adjusted 

(Figure 3.1Bv), which may help reveal structure in regions of pronounced insertion density. For 

very large datasets, a random subsample of the data can be displayed (Figure 3.1Bvi). This 

prevents overplotting of markers and can reduce the browser’s memory consumption. Finally, 

and most importantly, the WashU Epigenome Browser enables calling card data to be natively 

visualized alongside other genomic datasets, such as ChIP-seq from the same cell type (Figure 

3.1Bvii). 

3.4 Applications 
qBED files present genomic data as a discrete point process as opposed to a pseudo-continuous 

function of sequencing coverage. In addition to analyzing calling card experiments, this format 

may also be useful for existing genomic data types. Here we present two such examples. 

Combined Annotation Dependent Depletion (CADD) scores integrate multiple streams of 

information to predict the deleteriousness of single nucleotide polymorphisms (SNPs) and indels 

(Kircher et al., 2014; Rentzsch et al., 2019). These are typically displayed as vertical lines 

depicting the maximum score observed for each base (Figure 3.2A). This approach, while useful 

as a summary statistic, does not allow for interactive exploration of individual mutations. We 

converted CADD scores for indels from variant call format (VCF) to a qBED file, using the 

numeric column to store the CADD score and the annotation column to store the mutation. When 

viewed on the WashU Epigenome Browser, individual polymorphisms can be inspected. A view 

of the homeobox gene CRX reveals a cluster of strongly deleterious indels in the terminal exon 

(Figure 3.2A). The qBED display emphasizes the density of variants along both the genomic (x) 
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and CADD (y) axes, offering an unvarnished look at the complete spectrum of deleteriousness in 

a dataset. 

 

Figure 3.2: Application of the qBED specification to other genomic datasets. (A) Top: CADD scores for the 
gene CRX, as visualized on the UCSC Genome Browser. Bottom: CADD scores visualized on the WashU 
Epigenome Browser after conversion to qBED. Genomic position is along the x-axis and Phred-style CADD scores 
are along the y-axis. The mouseover pane reveals more information on an individual variant. (B) eQTLs for CD20+ 
B cells visualized as calling card tracks. The top track shows all significant eQTLs in view plotted as a BED 
(density) track, followed by a qBED representation of the same data. The y-axis represents the negative base-ten 
logarithm of the p-value. The next three tracks show significant eQTLs for the genes GSDMB, ORMDL3, and 
ZPBP2, respectively. Finally, we show H3K27ac ChIP-seq (coverage on the y-axis) and a super-enhancer for this 
cell type. A mouseover pane can reveal further details stored in the qBED file, including Reference SNP ID and 
mutation. 
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A second application of qBED files is in genome wide association studies (GWAS) and 

expression quantitative trait locus (eQTL) mapping, which aim to identify SNPs that are 

significantly correlated with either phenotypes or gene expression, respectively. Most significant 

SNPs fall in noncoding regions and their functional significance can be unclear (Gloss and 

Dinger, 2018; Tak and Farnham, 2015). One way to prioritize variants is by considering their 

regulatory and epigenetic context (Gloss and Dinger, 2018; Tak and Farnham, 2015); however, a 

quantitative view of SNPs is not supported by most genome browsers. Investigators either 

manually align separate views of SNPs with views of epigenetic profiles, or encode SNPs as 

BED tracks, which shows position but sacrifices the quantitative measure–usually the negative 

base-ten logarithm of the p-value–of the association (Farh et al., 2015). 

We reasoned that the qBED track could display both the density and the quantitative 

value of SNPs in association studies. We used a publicly available eQTL dataset from CD20+ B 

cells (Schmiedel et al., 2018) and converted it to qBED format, storing the negative base-ten 

logarithm of the p-value of the eQTL association in the numeric column; and storing the 

reference SNP, mutation, and linked gene in the annotation field. We simultaneously plotted 

H3K27ac ChIP-seq data (Davis et al., 2018; The ENCODE Project Consortium, 2012) and a 

track of super-enhancers for the same cell type (Figure 3.2B). Such data would either have to be 

manually aligned with another browser shot or plotted as a BED track (shown) that only 

emphasizes the local density of variants. The qBED visualization shows both the density of 

variants and the significance of each variant, alongside epigenetic context, all in a single pane. 

We can also separate eQTLs by target gene and assign them to individual tracks, revealing how 

genes in close proximity to each other can have different eQTL effect sizes from the same 

genomic sequence. In particular, eQTLs associated with GSDMB and ORMDL3 expression span 
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a large swath of flanking DNA, including overlapping an adjacent super-enhancer, while eQTLs 

associated with ZPBP2 expression are constrained to a much narrower segment. This example 

demonstrates how the qBED track can bridge the fields of association studies and epigenomics, 

simplifying certain kinds of analyses for researchers. 

The qBED track is best positioned for exploring dense, quantitative data driven by high-

resolution point processes. As such, it can be a useful complement to the popular lollipop track 

(Jay and Brouwer, 2016; Lee et al., 2019), either as a way to publish figures of raw data without 

the clutter of lollipop stems; or as a way to inspect data before choosing individual points for 

further annotation and emphasis. Moreover, by first specifying the x- and y- (columns 1-3 and 4, 

respectively) values, the qBED format prioritizes the two-dimensional relationship of the data. 

This may also have some advantages for data compression as the strand and annotation columns 

are not required and can be added if additional specificity is required. In contrast, interval-based 

formats like BED and ENCODE’s tagAlign would require six fields to store the same data. 

Finally, where tagAlign stores the actual sequence of each read, qBED defers to sequence in the 

reference genome at the x coordinate. The annotation field can be used to record departures from 

the reference, similar to the way Variant Call Format (VCF) files encodes SNPs, but remains 

broadly flexible for the end user. 

3.5 Conclusion 
The qBED specification and the accompanying qBED track offer researchers the ability to 

visualize genomic point processes–such as transposon insertions, polymorphism deleteriousness, 

or phenotypic associations–by adding a numerical y-axis for stratifying features on the genomic 

x-axis. We envision investigators using this format not only for analyzing calling card 

experiments, but any data involving relatively small, quantitatively separable genomic features. 
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While we feel the six-column format presented here is complete enough for existing analyses, we 

leave open the possibility for future enhancements. In particular, extra columns could be added 

to encode secondary and/or tertiary information for each entry. These could be visualized, 

pending browser support, with either a numerical color scale, in the case of quantitative data, or 

different marker shapes, for categorical data. 
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Chapter 4: Fast and optimal genome 
segmentation with Bayesian blocks 

4.1 Abstract 
Genome segmentation and peak calling are common tasks to identify regions enriched in a signal 

of interest. Typically, the signal is a dependent function of genomic position; examples include 

epigenetic marks assayed by ChIP-seq and accessible loci by ATAC-seq. Less common is the 

determination of peaks based on the local density of genomic features. Here, we present 

Bayesian blocks, an algorithm for optimally segmenting intervals based on the underlying 

density of data. While this algorithm was initially developed for astrophysics, we have adapted it 

for use in genomics. We first explain the mathematical foundations of the algorithm, including a 

linear runtime optimization. We next demonstrate Bayesian blocks on two genomic datasets: 

first, to call peaks in transposon calling cards data and identify transcription factor binding sites; 

and second, to identify CpG islands based on genomic sequence. We conclude that Bayesian 

blocks may be generally useful in genomics and have released an accompanying Python package 

(blockify) implementing support for genomic data formats. 

4.2 Introduction 
Genomic analysis frequently involves segmenting the genome into regions, often termed peaks, 

enriched for signals of interest. Peaks can identify fine-grained features, such as protein-bound 

DNA detected using chromatin immunoprecipitation and sequencing (ChIP-seq), or accessible 

loci detected by the assay for transposase-accessible chromatin (ATAC-seq) (Zhang et al., 2008). 

On a broader scale, segmentation can be used to identify open reading frames (Cleynen et al., 

2014) and transcriptionally active regulatory elements (Wang et al., 2019) from RNA sequencing 
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(RNA-seq) data as well as larger domains of organized chromatin (Hansen et al., 2010; Keough 

et al., 2020) and structural variants such as duplications and deletions (Fan and Mackey, 2017). 

Peak callers often look for a statistical enrichment of coverage, or read depth, relative to a 

control dataset or against flanking sequence (Zhang et al., 2008). Transcription factor (TF) ChIP-

seq, for example, uses an antibody to pull down DNA crosslinked to a TF on interest (Johnson et 

al., 2007). Peaks are then called by comparing the relative amount of reads in the experimental 

track compared to the input control, which is typically the same sample but without antibody 

enrichment. Coverage is a pragmatic metric for assays that generate random genomic fragments, 

though read depth can be skewed by technical artifacts such as skewed representation and 

chimeras (Cha and Thilly, 1993; Kanagawa, 2003). 

Over the past few years, we have developed transposon calling cards as an alternative 

assay to map TF binding sites (Wang et al., 2007, 2012). This technique uses a TF of interest 

fused to a transposase. As the TF visits its binding sites, the transposase deposits transposons 

nearby. Loci that show a high density of transpositions in the TF-transposase condition, but not 

in the undirected transposase dataset, represent sites likely bound by the TF. In contrast to ChIP-

seq, we do not visualize our data as function of coverage. Rather, each transposition is drawn as 

a distinct marker (Figure 4.1). While insertions are stratified across two dimensions for 

visualization, we only consider the genomic coordinates for downstream analysis using count-

based statistics. 
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Figure 4.1: Example calling cards tracks. Two representative tracks from calling cards experiment. The top track 
are insertions from a Cbf1p-directed yeast calling cards experiment and the bottom track are insertions from the 
negative control. Insertions are drawn as circular markers with genomic coordinate on the x-axis and log10-
transformed read count on the y-axis. n denotes the total, genome-wide library size. 
 

While calling cards can generate highly specific binding profiles, there are challenges 

with calling peaks on calling cards data. Mammalian calling cards uses the piggyBac 

transposase, which almost exclusively inserts into TTAA tetramers (Wang et al., 2012). As a 

result, the insertion profile can be sparse. Yeast calling cards can be deposited without such 

constraint, resulting in very smooth peaks. However, our analyses only looked for differences 

over entire promoters (Shively et al., 2019). One drawback of this is that we are not able to 

distinguish between sharp, TF-directed insertions against a diffuse background of undirected 

transpositions, leading to false negatives (Figure 4.1). Finally, while mammalian and yeast 

calling cards are philosophically identical and generate similar kinds of data, their analytical 

pipelines are divorced. We therefore set out to develop a new strategy for calling peaks that 

would be flexible enough to work with both yeast and mammalian datasets, but robust enough to 

handle sparsity. 

We turned to Bayesian blocks, an algorithm developed by astrophysicists for counting 

photons (Scargle, 1998; Scargle et al., 2013). Among its strengths is the ability to generate a 

mathematically optimal segmentation of one-dimensional data by globally maximizing a 

piecewise Poisson likelihood function. It can also tolerate gaps, repeated values, and noise, 
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which makes it attractive for analyzing calling cards experiments. Calling card transpositions 

also share certain features with photons that make them appropriate for this approach, namely 

that they are discrete, independent events and can be aptly described by Poisson-based counting 

processes. We realized, as we began exploring Bayesian blocks, we that this algorithm may be 

generally useful in genomics. Indeed, Bayesian blocks has already made a few appearances in 

the genomics literature (Cang and Nie, 2020; Chan et al., 2017; Ish-Horowicz and Reid, 2017; 

Stumpf et al., 2017). However, we have not yet seen an introduction or implementation 

specifically tailored to the genomics community. 

The remainder of the manuscript is structured as follows. We start by reviewing the 

mathematical foundations of the algorithm and implement an optimization strategy that greatly 

improves the runtime complexity. Next, we demonstrate how Bayesian blocks, in conjunction 

with control and experimental datasets, can be used as a peak caller for calling cards to identify 

TF binding sites. Finally, we turn Bayesian blocks onto a classic problem, identifying CpG 

islands from genomic sequence. We find that Bayesian blocks can be competitive with hidden 

Markov models (HMMs), the dominant paradigm for segmenting genomic data. We conclude 

that Bayesian blocks may have broad utility in genomics as a general-purpose approach to 

segmentation. 

4.3 Results 
4.3.1 Review of Bayesian blocks 
Bayesian blocks seeks to segment a one-dimensional dataset into a series of contiguous blocks 

where the rate of events per block is piecewise-constant (Scargle et al., 2013). In doing so, it 

optimizes the global likelihood of the partition assuming a regularized Poisson likelihood 

function. 
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Figure 4.2: Overview of Bayesian blocks. (A) Sample dataset and terminology. Nearby data points are drawn 
arbitrarily stacked on top of each other. (B) Schematic of the Optimal Partitioning (OP) algorithm. (C) Explanation 
of the pruned exact linear time (PELT) optimization scheme. (D) Runtime comparison between OP and PELT on 
real-world calling cards datasets.  
 

Formally, Bayesian blocks considers a set of ordered data points  along a 

one-dimensional interval (Figure 4.2A). The interval is divided into cells such that each unique 
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 belongs to a cell , which is bounded by edges  and . The cells form a Voronoi 

tessellation of X: , with  and . Blocks are composed of consecutive 

cells; we denote a block , where . For a given block , let  

represent the number of data points in the block, and let  be the length of the 

block. The edges of blocks demarcate sites where the local density of events changes. Thus, 

Bayesian blocks fits into the class of change point detection algorithms. While change point 

detection is commonly performed on a time- or position-dependent signal, Bayesian blocks is 

distinct in that it operates on the underlying density of data along the interval itself.  

Bayesian blocks proceeds using a dynamic programming strategy called Optimal 

Partitioning (OP) (Jackson et al., 2005) (Figure 4.2B). For a point , the algorithm determines 

the optimal location of the last change point containing . We denote the Poisson maximum 

log-likelihood function for block  as . (The objective function must be additive across 

blocks, which is why the likelihood is log-transformed. A complete derivation is provided in the 

Proofs section). We define the global log-likelihood of a partition containing  as 

. Thus, for each data point, Bayesian blocks works backwards, 

considering each previous data point as possible block members and storing the index  that 

maximizes , i.e.  is the location of the optimal last change point 

containing . After all points have been considered, the algorithm performs a traceback: the first 

change point to be emitted corresponds to the index maximizing the log-likelihood function of 

the last data point (  for  in Figure 4.2B), the next change point corresponds to the index 
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maximizing the log-likelihood function for the data point immediately preceding  (  for ), 

and proceeding so forth until we reach . 

This scheme offers two key benefits. First, by iterating through the interval in this 

manner, the algorithm performs  calculations, which is a significant improvement over the 

 total possible combinations of change points. Second, by maximizing the log-likelihood at 

every iteration, the algorithm is guaranteed to find the globally optimal log-likelihood partition. 

The proof for this relies on mathematical induction and is described in (Jackson et al., 2005). 

While Bayesian blocks’ quadratic runtime is tolerable for many applications, genomes 

readily span millions to billions of base pairs and our capacity to generate sequencing data grows 

exponentially. Even within our own lab, calling cards datasets have grown two orders of 

magnitude in the last five years. To keep pace with technological advances, we have 

implemented an optimization scheme called Pruned Exact Linear Time (PELT) (Killick et al., 

2012) into Bayesian blocks (Figure 4.2C). The intuition here is that we can reduce how far back 

we search if, at some point, the log-likelihood function monotonically decreases. To take 

advantage of this, we have to show that there exists a constant  such that 

, for . (We show that that the objective function 

satisfies this criterion in the Proofs section). Next, if there exists  such that 

 is true for all points up to and including , then the last optimal 

change point for all points  and beyond will not be found beyond . Put differently, the last 

optimal change point is bounded by  for the remaining data points. As such, we can prune all 

points up to and including . This optimization achieves linear runtime in practice on real-world 

genomic datasets (Figure 4.2D). 
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Finally, to prevent overfitting, Bayesian blocks incorporates a regularization term. This 

penalty takes the form of a prior on the total number of change points. We use the original 

formulation of , where  is the total number of points 

in the dataset and  represents a false positive rate in the interval . Tuning the value of  

alters the sensitivity of block detection. Modest values (e.g. ) can yield generally good 

segmentations but may fail to segment subtle differences in densities (Figure 4.3A). Conversely, 

a more aggressive value may excel at detecting fine structure but may also be more likely to 

spuriously partition noise (Figure 4.3B). Regardless, we note that both outputs look remarkably 

similar and partition the data in a manner that accords with our intuition. This example 

demonstrates the core strengths of Bayesian blocks: a minimal number of hyperparameters; 

robustness to hyperparameter choice; and block widths that adapt to local variability in signal-to-

noise ratio. 

 
Figure 4.3: Effect of varying p0 on segmentation. (A) Segmentation resulting from a modest choice of p0 on 
multimodal data. (B) Same as (A) but with a more aggressive p0. The asterisk marks a potential false positive block. 
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4.3.2 Calling peaks using Bayesian blocks 
We next use Bayesian blocks to call peaks in calling cards data. As mentioned earlier, calling 

cards are similar to photons in that they are discrete, independent events and can be appropriately 

described by Poisson-based counting processes. Furthermore, as calling cards data can be sparse 

in certain contexts, Bayesian blocks’ ability to tolerate noise makes it a practical choice as the 

basis for a peak caller. We have previously used Bayesian blocks to call peaks in mammalian 

calling cards (Cammack et al., 2020; Moudgil et al., 2020a). Here, we demonstrate Bayesian 

blocks on publicly available yeast calling cards data and provide a thorough benchmark of the 

algorithm’s performance. 

 
Figure 4.4: Calling peaks on calling cards data with Bayesian blocks. (A) Overview of the peak calling 
workflow. (B) Example of Cbf1p calling cards peak. Raw insertions in the Cbf1p-directed and negative control 
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datasets are drawn in the top-most tracks. Output of the Bayesian blocks segmentation is shown toward the bottom, 
scaled by unadjusted p-value on the y-axis. Peaks were formed by merging significant adjacent blocks. Peak 
summits denote blocks where the peak achieves maximum significance. (C) Sensitivity, specificity, and precision of 
Cbf1p peak calls as a function of varying p0. Dashed line represents the default value of 0.05. (D) Motif analysis of 
peaks identified from Cbf1p calling cards elicits the core Cbf1p motif. 
 

Calling cards experiments rely on comparing data from a TF-directed transposase against 

a control dataset from the undirected transposase (Figure 4.4A). Since the signal we are most 

interested in are TF-directed densities, we begin by segmenting the TF-directed data using 

Bayesian blocks. As yeast and mammalian chromosomes are linear, each chromosome is 

partitioned independently. The resulting blocks are candidate peaks. To account for variable 

numbers of insertions between the control and experimental datasets, we scale the number of 

insertions in the control track to equalize library sizes. This scalar is then applied per block ( ) 

to the control dataset (subject to a small pseudocount), which then establishes a block-specific 

mean ( ) parameterizing a block-specific Poisson process. 

We then consider the data from the TF-directed experiment. For each block , we 

perform a one-tailed Poisson hypothesis test on observing  events or greater in the block, where 

 is the number of insertions within  in from the TF-directed experiment, i.e. 

. In other words, for each block, the null hypothesis is that insertions are 

distributed according to a Poisson process inferred from the control experiment. We then 

perform multiple hypothesis correction on these p-values, accepting those beyond a specified 

threshold. These candidates are then polished, such as by merging significant blocks within a 

small distance window, before generating a final set of peaks. 

We analyzed the data from the basic-helix-loop-helix (bHLH) TF Cbf1p in this manner 

(Figure 4.4B), finding that our peak calling strategy accurately characterizes Cbf1p binding. We 

observed that the global likelihood of the segmentation was relatively invariant as a function of 
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 (Figure 4.5A), which highlights Bayesian blocks’ ability to robustly find an optimal 

segmentation. Moreover, while the number of significant blocks increased slowly as  

increased, the number of significant peaks remained constant (Figure 4.5B). Here, we polished 

peaks by only merging significant adjacent blocks. This suggests that much of the increased 

partitioning from raising  is likely occurring under Cbf1p peaks, where we would expect to 

see signal, rather than at unbound loci with sparser insertion densities. 

 
Figure 4.5: Additional benchmarking of peak calling. (A) Global negative log-likelihood from segmenting Cbf1p 
calling cards as a function of p0. (B) Total numbers of significant blocks and significant peaks in Cbf1p calling 
cards as a function of p0. Here, as in (A), dashed line represents the default value of 0.05. (C) Raw insertion data, 
block representation, peaks, and peak summits from Leu3p calling cards data. (D) Motif analysis of Leu3p peaks 
elicits the core Leu3p motif.  
 

Finally, we measured the accuracy of our peaks by comparing them to a set of gold-

standard set of promoters predicted to be either bound or not bound by Cbf1p (Shively et al., 

2019). We called peaks using a default  of 0.05 and calculated their sensitivity, specificity, 
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and precision as 98.1%, 99.6%, and 90.3%, respectively. Varying  had little effect on 

sensitivity and precision and only affected specificity at the highest values. A motif analysis of 

our peaks returned a near-perfect match to the Cbf1p motif, confirming the biological validity of 

our peak calls. To generalize across TF families, we also analyzed data generated from the zinc 

finger TF Leu3p. As with Cbf1p, we identified stark peaks enriched for Leu3p-directed 

insertions (Figure 4.5C). Our sensitivity, specificity, and precision were 85.8%, 99.7%, and 89%, 

respectively (Shively et al., 2019), and we were able to elicit the Leu3p motif from our peak calls 

(Figure 4.5D). We conclude that Bayesian blocks can accurately identify TF binding sites from 

transposon calling cards data. 

One limitation of calling peaks using Bayesian blocks is that it may generate relatively 

broad peaks (Figure 4.4B, 4.5C). By design, calling cards experiments use a TF-transposase 

fusion. When bound at its motif, the TF may sterically hinder the transposase, blocking it such 

that the transposase targets the flanking genomic sequence. This can result in doublets flanking 

the TF motif (Figure 4.5D). Similarly, high local concentrations of TF-transposase fusion 

proteins, such as through cooperative binding (Shively et al., 2019), can cause “spillover” of 

insertions into adjacent DNA (Figure 4.4B). Peaks are built from the underlying structure of 

blocks. In general, block sizes scale inversely with the relative enrichment of TF-directed 

insertions over background (Figure 4.6A), which reflects focal redirection to TF binding sites. 

This effect is also observed in mammalian calling cards on a coarser scale (Figure 4.6B-C), 

though there are important biological and technical considerations: the human genome is 250 

times larger than that of yeast; the transposase targets a specific motif which may be less 

frequent in certain sequence contexts (Wang et al., 2012); and recovery of insertions can be 

sparse, particularly in single cell assays (Moudgil et al., 2020a). While we have successfully used 
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Bayesian blocks to map well-resolved TF binding sites in mammalian systems (Cammack et al., 

2020; Moudgil et al., 2020a), there are opportunities for informatic and molecular improvements 

to further sharpen our analyses. 

 
Figure 4.6: TF-directed block sizes are a function of relative enrichment. (A) Block widths in yeast calling cards 
experiments plotted as a function of log2 fold change in normalized insertions between the TF and control datasets. 
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(B-C) Same as in (A) but for human cell line calling cards experiments with SP1 (B) and BAP1 (C). Data from 
matched bulk and single cell (sc) experiments are shown. Contours are drawn to emphasize the density of data 
points. Lines are LOESS-smoothed curves. 

4.3.2 Identifying CpG islands using Bayesian blocks 
Finally, we consider an application of Bayesian blocks beyond transposon calling cards. CpG 

islands represent clusters of CG dinucleotides in the genome. These base pairs decay over 

evolutionary time due to spontaneous cytidine deamination into thymine. Their occurrence, 

particularly in clusters, suggests functional selection, and CpG islands are often observed at gene 

promoters (Tahir et al., 2019). Identifying CpG islands from genomic sequence is a classic 

segmentation problem in genomics, with methods ranging from sliding window analyses 

(Gardiner-Garden and Frommer, 1987; Ponger and Mouchiroud, 2002; Takai and Jones, 2002) to 

more complex Markov models (Byung-Jun Yoon, 2004; Kakumani et al., 2012; Wu et al., 2010). 

We noted that the task of identifying CpG islands is a density detection problem similar to 

calling peaks in calling cards data. Therefore, we investigated whether Bayesian blocks could be 

used to find CpG islands. 
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Figure 4.7: Detecting CpG islands with Bayesian blocks. (A) Representative CpG islands as derived from UCSC 
(Gardiner-Garden and Frommer, 1987), a hidden Markov model (HMM; Wu et al. 2010), and Bayesian blocks. n 
represents the total number of called islands. (B) Overlap between the Bayesian blocks annotations and the UCSC 
and HMM datasets, respectively. The number indicates the percent of CpG islands called by Bayesian blocks that 
overlap the respective comparison set. (C) Mean methylation status of CpG islands in H1 human embryonic stem 
cells by dataset. kb: kilobase. 
 

We first segmented the genome based on the locations of CpG dinucleotides, a feat that 

was greatly aided by the PELT optimization. A block was considered a CpG island if it met the 

criteria laid out by (Gardiner-Garden and Frommer, 1987), whose own annotations form the 

default set of CpG islands in the UCSC Genome Browser and thus have considerable visibility to 

researchers. Since many repetitive elements are also rich in CG dinucleotides (Tahir et al., 2019; 

Wu et al., 2010), we performed our analysis on a repeat-masked genome. Our Bayesian blocks-

based CpG islands showed strong overlap with the UCSC set (Figure 4.7A), with over 90% of 

our calls overlapping a UCSC CpG island (Figure 4.7B). This suggests that Bayesian blocks can 

be used sensitively and specifically detect CpG islands. 

We were curious as to how Bayesian blocks compares to hidden Markov models 

(HMMs), which is a well-established method for genome segmentation (Chou and Danko, 2019; 

Durbin et al., 1998; Ernst et al., 2011; Ha et al., 2012; Keough et al., 2020; Malekpour et al., 

2017; Munch and Krogh, 2006). We cross-referenced our CpG islands against a published set of 

HMM-based CpG islands (Wu et al., 2010) (Figure 4.7A-B). Once again, we observed high 

specificity of overlap, with over 97% of our CpG islands overlapping an HMM-based CpG 

island. However, there was a large fraction of HMM CpG islands that did not overlap the 

Bayesian blocks set, which may indicate that the latter is susceptible to false negatives. To 

investigate further, we looked at the average methylation status of these called CpG islands 

(Stevens et al., 2013). While CpGs are generally methylated, CpG islands show decreased 

methylation relative to surrounding sequence (Greenberg and Bourc’his, 2019). All three 
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datasets followed this pattern, though the UCSC and Bayesian blocks sets had markedly less 

methylation on average than the HMM set (Figure 4.7C). We conclude that the Bayesian blocks 

approach to calling CpG islands is not likely prone to false negatives. 

To close, we looked at the size distribution of these called CpG islands. HMMs use 

transition probabilities to mark changes in state. As such, the probability of staying in the same 

state decreases exponentially and so HMMs should be more likely to generate short 

segmentations. We found that the HMM-based CpG islands had a greater enrichment for smaller 

segments over Bayesian blocks (Figure 4.8). CpG islands from Bayesian blocks also appear to 

avoid the short segment bias seen in the UCSC dataset. The tendency toward longer features is 

one key difference between HMMs and Bayesian blocks. For some applications, this may be a 

desirable feature. 
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Figure 4.8: Length distributions of CpG islands. For this analysis, block lengths were log-transformed. In 
addition, we removed the 200 bp minimum length requirement for the Bayesian blocks dataset to better visualize the 
entire distribution. 

4.4 Discussion 
Segmentation is a common task in biology. PELT, for example, has been used to segment two-

dimensional signals, such as coverage across the genome (Burke et al., 2018; Weinberg et al., 

2019), neuronal firing over time (Gouwens et al., 2019; Jewell et al., 2019), and fluorescence 

intensity over spatial trajectories (Desai et al., 2019). Its adoption was facilitated by the R 

package changepoint (Killick and Eckley, 2014). However, there was no analogous software for 

segmenting one-dimensional data, such as the location of exogenous transposons or CG 

dinucleotides.  
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We fill that gap by introducing Bayesian blocks as a density-based approach to 

partitioning genomic features. In addition to this manuscript, we have released a Python package, 

blockify (https://github.com/arnavm/blockify), for analyzing genomic datasets with Bayesian 

blocks. Blockify directly operates on BED files, a popular standard for encoding genomic 

features; incorporates the PELT-based optimization for fast segmentation; comes with a peak 

caller to facilitate discriminative analyses; and is globally available via the Python Package 

Index. We have also created an online notebook illustrating Bayesian blocks, OP, and PELT 

within an interactive framework (https://observablehq.com/d/d2cafaa7d8c1e018). In particular, 

this allows users to see how changing the underlying distribution of data and hyperparameters 

affects segmentation. 

We demonstrated how Bayesian blocks can be used to call peaks in transposon calling 

cards, comparing information from a TF-directed experiment against a control dataset to identify 

binding sites. That Bayesian blocks can find peaks with high accuracy and precision, tolerates 

noise, and is robust to hyperparameters makes it an attractive algorithm for this purpose. 

However, peak widths can be broad, for a variety of reasons outlined above. One strategy that 

could enrich for smaller peaks is to set a relatively lax size filter and accept all blocks with a 

minimum enrichment threshold. For example, one might draw quadrants on a plot like Figure 

4.6B and take all blocks in the lower right corner. This would reduce the number of multiple 

comparisons when assessing statistical significance, which in turn may identify loci with weaker 

TF-directed signal. Adjusting the prior on the number of change points may also lead to sharper 

peaks. While we adopted a global prior per chromosome, a more sophisticated approach could be 

to dynamically vary the prior based on local genomic features. Information about chromatin 

state, derived from ChIP-seq and ATAC-seq, could be incorporated into a context-specific prior 
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that favors more aggressive segmentation in promoters and enhancers–where TF binding sites 

are more likely to reside–and decreases sensitivity in heterochromatin. This would balance the 

desire to pinpoint binding sites while minimizing the risk of false positives. 

Our investigation of CpG islands suggests that Bayesian blocks can be competitive with 

HMMs, which is a standard technique for genome segmentation. However, we do not see 

Bayesian blocks replacing HMMs. HMMs can support multiple states, making them arbitrarily 

customizable, and they can encode additional layers of information, such as sequence 

composition. Bayesian blocks is responsive to data density and is better suited for relatively 

simple classifications, such as peak and non-peak regions. Additionally, the speed of the 

algorithm makes it ideal for exploratory analyses that can inform more complex models. 

There are a number of future directions to develop the core algorithm. While here we use 

a piecewise-constant density function as a first-order approximation for TF binding, this 

simplification may not necessarily reflect biological reality. Bayesian blocks, at least with the OP 

algorithm, can also accommodate piecewise linear and exponential density functions. In our 

current implementation, blockify assumes linear chromosomes. However, Bayesian blocks can 

also operate on circular intervals, and this could be applied to analyzing metagenomic and 

mitochondrial genomes. Bayesian blocks can also be extended to two-  or even multi-

dimensional datasets (Scargle, 2002), which could prove useful in clustering single cell RNA-seq 

data. Expanding blockify to use non-Poisson likelihoods could also be useful, as long as block-

additivity is preserved. Many RNA-seq datasets, for example, use the negative binomial 

distribution to model count distributions. A negative binomial likelihood function could be apt 

for discovering genomic “dark matter” like cryptic open reading frames (Wang et al., 2021). 

Finally, as ATAC-seq is another transposase-based assay, Bayesian blocks may be able to infer 
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the optimal width of accessible loci, increasing resolution and possibly better revealing dynamic 

changes. 

4.5 Methods 
All segmentation and peak calling were performed with blockify 0.1.0, which is available at 

https://github.com/arnavm/blockify. The Bayesian blocks algorithm was originally forked from 

astropy 3.2.1 (Robitaille et al., 2013; The Astropy Collaboration et al., 2018) and expanded with 

custom code. We have also implanted Bayesian blocks in JavaScript at 

https://observablehq.com/d/d2cafaa7d8c1e018. The OP and PELT timing analyses were 

performed on a MacBook Pro with a 2.9 GHz Quad-Core Intel Core i7 processor with 16 GB of 

RAM. General data analysis was performed with numpy 1.17.2 (Oliphant, 2015), matplotlib 

3.0.3 (Hunter, 2007), statsmodels 0.11.1 (Seabold and Perktold, 2010), and Python 3.6.  

Yeast Cbf1p, Leu3p, and control calling cards datasets were obtained from (Shively et 

al., 2019). Bulk mouse neuron and astrocyte piggyBac calling cards datasets were obtained from 

(Cammack et al., 2020). We also downloaded all bulk and in vitro calling cards datasets from 

(Moudgil et al., 2020a), as well as in vivo astrocyte and neuron data. Unless otherwise specified, 

segmentation was performed with . For the yeast dataset, peaks were called by 

merging adjacent significant blocks (after Bonferroni correction with an adjusted p-value cutoff 

of 0.05) with a pseudocount of 1: -d 0 -a 0.05 --correction “bonferroni" -c 1. For the sensitivity, 

specificity, and precision analysis of Cbf1p and Leu3p peaks, we used data from (Shively et al., 

2019). Specifically, we used p-value cutoffs of < 1e-5 to call true positive promoters and p > 0.1 

to call true negative promoters. Sensitivity was defined as TP / (TP + FN), specificity was TN / 

(TN + FP), and precision as TP / (TP + FP). Motif locations were found by scanning the sacCer3 

genome with PWMScan (Ambrosini et al., 2018) using the recommended Cbf1p and Leu3p 
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motifs and PWM scores from ScerTF (Spivak and Stormo, 2012). Motif analysis was performed 

using meme-chip (Machanick and Bailey, 2011) with the following settings: “-dna -nmeme 600 -

seed 0 -ccut 250 -meme-mod zoops -meme-minw 4 -meme-nmotifs 5.” Calling card datasets 

were visualized as qBED tracks on the WashU Epigenome Brower (Li et al., 2019; Moudgil et 

al., 2021). 

For the analysis of CpG islands, we first generated a list of all CG dinucleotides in a 

repeat-masked hg19 assembly using kmer.cc 

(https://gist.github.com/arnavm/039e76a34a386a4f29b82682bc8e6c72). We then segmented this 

using blockify ( ). Finally, a block was considered a CpG island if it met the following 

criteria: length greater than 200 bp; minimum GC content of 50%; and a ratio of observed to 

expected CG dinucleotides of at least 0.6 (Gardiner-Garden and Frommer, 1987). When 

comparing length distributions (Figure 4.8), we dropped the first restriction from the Bayesian 

blocks set. A reference set of CpG islands in hg19 was downloaded from the UCSC Genome 

Browser. An orthogonal set of HMM-derived  CpG islands in hg19 was obtained from (Wu et 

al., 2010). CpG methylation data in H1 human embryonic stem cells were derived from (Stevens 

et al., 2013). Mean methylation levels were calculated using deeptools 3.0.1 (Ramírez et al., 

2016). 

4.6 Proofs 
4.6.1 Properties of Poisson point processes 

Let  be a Poisson random variable with value  parameterized by an expected 

value of . Thus,  
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From this, we see that  and . If  is a Poisson process 

defined on the interval  and with rate parameter , the probability of  events within the interval 

is 

 

We can use this equation to calculate the instantaneous probability of an event over an 

infinitesimal interval : 

 

As , the exponential term goes to 1, leaving . This can also 

be seen from the Taylor series expansion of  

	

	

	

 

As , the nonleading terms rapidly go to zero, resulting in . 

4.6.2 Derivation of the Bayesian blocks likelihood function 
Bayesian blocks finds the segmentation that maximizes the global Poisson likelihood. 

The likelihood of a Poisson process parameterized by a mean of  is given by  
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Let  denote the intervals between data points within a block, where . Then, 

the likelihood is the product of the instantaneous probabilities at  and zero events in the 

intervals : 

	

 

We can generalize simplify this by noting that the sum of the intervals  is the length of 

the block and the rest of the terms depend only on the number of data points within the block 

. Thus, 

 

Bayesian blocks requires that the objective function be additive, which we achieve by 

taking the logarithm of the likelihood. 

 

We now need to find the value of  that maximizes the likelihood function. We obtain 

this value by taking the derivative of the likelihood function and solving for zero. 

	

 

The only nontrivial root of this equation is at  . Substituting this into the log-

likelihood equation: 
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This matches Equation 19 from (Scargle et al., 2013). To simplify calculations, we note 

that  and so use the right-hand side of this relationship as the Bayesian 

blocks likelihood function: 

 

4.6.3 Adapting Bayesian blocks to PELT 
PELT enables us to dynamically prune data points, improving the runtime from quadratic to 

linear. To take advantage of this, we have to show that there exists a constant  such 

that , where . The proof of this is as follows:	
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Thus, exists and equals 0. Note that this inequality holds as long as  and 

so must be taken into consideration when implemented. 

4.7 References 
Ambrosini, G., Groux, R., and Bucher, P. (2018). PWMScan: a fast tool for scanning entire 

genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484. 

Burke, J.E., Longhurst, A.D., Merkurjev, D., Sales-Lee, J., Rao, B., Moresco, J.J., Yates, J.R., 

Li, J.J., and Madhani, H.D. (2018). Spliceosome Profiling Visualizes Operations of a Dynamic 

RNP at Nucleotide Resolution. Cell 173, 1014-1030.e17. 

Byung-Jun Yoon, P.P.V. (2004). Identification of CPG islands using a bank of IIR lowpass 

filters. In 3rd IEEE Signal Processing Education Workshop. 2004 IEEE 11th Digital Signal 

Processing Workshop, 2004., (Taos Ski Valley, NM, USA: IEEE), pp. 315–319. 

Cammack, A.J., Moudgil, A., Chen, J., Vasek, M.J., Shabsovich, M., McCullough, K., Yen, A., 

Lagunas, T., Maloney, S.E., He, J., et al. (2020). A viral toolkit for recording transcription 

factor–DNA interactions in live mouse tissues. Proc Natl Acad Sci USA 117, 10003–10014. 

Cang, Z., and Nie, Q. (2020). Inferring spatial and signaling relationships between cells from 

single cell transcriptomic data. Nat Commun 11, 2084. 



183 
 

Cha, R.S., and Thilly, W.G. (1993). Specificity, efficiency, and fidelity of PCR. Genome 

Research 3, S18–S29. 

Chan, T.E., Stumpf, M.P.H., and Babtie, A.C. (2017). Gene Regulatory Network Inference from 

Single-Cell Data Using Multivariate Information Measures. Cell Systems 5, 251-267.e3. 

Chou, S.-P., and Danko, C.G. (2019). AlleleHMM: a data-driven method to identify allele 

specific differences in distributed functional genomic marks. Nucleic Acids Research 47, e64–

e64. 

Cleynen, A., Koskas, M., Lebarbier, E., Rigaill, G., and Robin, S. (2014). Segmentor3IsBack: an 

R package for the fast and exact segmentation of Seq-data. Algorithms Mol Biol 9, 6. 

Desai, V.P., Frank, F., Lee, A., Righini, M., Lancaster, L., Noller, H.F., Tinoco, I., and 

Bustamante, C. (2019). Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal 

Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Molecular Cell 75, 

1007-1019.e5. 

Durbin, R., Eddy, Sean, Krogh, Anders, and Mitchison, Graeme (1998). Biological sequence 

analysis: probabalistic models of proteins and nucleic acids (Cambridge, UK : New York: 

Cambridge University Press). 

Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein, C.B., Zhang, X., 

Wang, L., Issner, R., Coyne, M., et al. (2011). Mapping and analysis of chromatin state dynamics 

in nine human cell types. Nature 473, 43–49. 



184 
 

Fan, Z., and Mackey, L. (2017). Empirical Bayesian analysis of simultaneous changepoints in 

multiple data sequences. Ann. Appl. Stat. 11, 2200–2221. 

Gardiner-Garden, M., and Frommer, M. (1987). CpG Islands in vertebrate genomes. Journal of 

Molecular Biology 196, 261–282. 

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., 

Anastassiou, C.A., Barkan, E., et al. (2019). Classification of electrophysiological and 

morphological neuron types in the mouse visual cortex. Nat Neurosci 22, 1182–1195. 

Greenberg, M.V.C., and Bourc’his, D. (2019). The diverse roles of DNA methylation in 

mammalian development and disease. Nat Rev Mol Cell Biol 20, 590–607. 

Ha, G., Roth, A., Lai, D., Bashashati, A., Ding, J., Goya, R., Giuliany, R., Rosner, J., Oloumi, 

A., Shumansky, K., et al. (2012). Integrative analysis of genome-wide loss of heterozygosity and 

monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative 

breast cancer. Genome Research 22, 1995–2007. 

Hansen, R.S., Thomas, S., Sandstrom, R., Canfield, T.K., Thurman, R.E., Weaver, M., 

Dorschner, M.O., Gartler, S.M., and Stamatoyannopoulos, J.A. (2010). Sequencing newly 

replicated DNA reveals widespread plasticity in human replication timing. Proceedings of the 

National Academy of Sciences 107, 139–144. 

Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95. 

Ish-Horowicz, J., and Reid, J. (2017). Mutual information estimation for transcriptional 

regulatory network inference (bioRxiv). 



185 
 

Jackson, B., Scargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E., San, P., 

Tan, L., and Tsai, T.T. (2005). An algorithm for optimal partitioning of data on an interval. IEEE 

Signal Processing Letters 12, 105–108. 

Jewell, S.W., Hocking, T.D., Fearnhead, P., and Witten, D.M. (2019). Fast nonconvex 

deconvolution of calcium imaging data. Biostatistics. 

Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007). Genome-Wide Mapping of in 

Vivo Protein-DNA Interactions. Science 316, 1497–1502. 

Kakumani, R., Ahmad, O., and Devabhaktuni, V. (2012). Identification of CpG islands in DNA 

sequences using statistically optimal null filters. J Bioinform Sys Biology 2012, 12. 

Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). 

Journal of Bioscience and Bioengineering 96, 317–323. 

Keough, K.C., Shah, P.P., Wickramasinghe, N.M., Dundes, C.E., Chen, A., Salomon, R.E.A., 

Whalen, S., Loh, K.M., Dubois, N., Pollard, K.S., et al. (2020). An atlas of lamina-associated 

chromatin across thirteen human cell types reveals cell-type-specific and multiple subtypes of 

peripheral heterochromatin (bioRxiv). 

Killick, R., and Eckley, I.A. (2014). changepoint: An R Package for Changepoint Analysis. J. 

Stat. Soft. 58. 

Killick, R., Fearnhead, P., and Eckley, I.A. (2012). Optimal Detection of Changepoints With a 

Linear Computational Cost. Journal of the American Statistical Association 107, 1590–1598. 



186 
 

Li, D., Hsu, S., Purushotham, D., Sears, R.L., and Wang, T. (2019). WashU Epigenome Browser 

update 2019. Nucleic Acids Research 47, W158–W165. 

Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. 

Bioinformatics 27, 1696–1697. 

Malekpour, S.A., Pezeshk, H., and Sadeghi, M. (2017). PSE-HMM: genome-wide CNV 

detection from NGS data using an HMM with Position-Specific Emission probabilities. BMC 

Bioinformatics 18, 30. 

Moudgil, A., Wilkinson, M.N., Chen, X., He, J., Cammack, A.J., Vasek, M.J., Lagunas, T., Qi, 

Z., Lalli, M.A., Guo, C., et al. (2020). Self-Reporting Transposons Enable Simultaneous Readout 

of Gene Expression and Transcription Factor Binding in Single Cells. Cell 182, 992-1008.e21. 

Moudgil, A., Li, D., Hsu, S., Purushotham, D., Wang, T., and Mitra, R.D. (2021). The qBED 

track: a novel genome browser visualization for point processes. Bioinformatics 37, 1168–1170. 

Munch, K., and Krogh, A. (2006). Automatic generation of gene finders for eukaryotic species. 

BMC Bioinformatics 7, 263. 

Oliphant, T.E. (2015). Guide to NumPy (Austin, Tex.: Continuum Press). 

Ponger, L., and Mouchiroud, D. (2002). CpGProD: identifying CpG islands associated with 

transcription start sites in large genomic mammalian sequences. Bioinformatics 18, 631–633. 

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., 

Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-

sequencing data analysis. Nucleic Acids Res 44, W160–W165. 



187 
 

Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., 

Ginsburg, A., Price-Whelan, A.M., Kerzendorf, W.E., et al. (2013). Astropy: A community 

Python package for astronomy. Astronomy & Astrophysics 558, A33. 

Scargle, J.D. (1998). Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a New 

Method to Analyze Structure in Photon Counting Data. The Astrophysical Journal 504, 405–418. 

Scargle, J.D. (2002). Bayesian blocks in two or more dimensions: Image segmentation and 

cluster analysis. In AIP Conference Proceedings, (Baltimore, Maryland (USA): AIP), pp. 163–

173. 

Scargle, J.D., Norris, J.P., Jackson, B., and Chiang, J. (2013). STUDIES IN ASTRONOMICAL 

TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS. The 

Astrophysical Journal 764, 167. 

Seabold, S., and Perktold, J. (2010). statsmodels: Econometric and statistical modeling with 

python. In 9th Python in Science Conference, p. 

Shively, C.A., Liu, J., Chen, X., Loell, K., and Mitra, R.D. (2019). Homotypic cooperativity and 

collective binding are determinants of bHLH specificity and function. Proc Natl Acad Sci USA 

116, 16143–16152. 

Spivak, A.T., and Stormo, G.D. (2012). ScerTF: a comprehensive database of benchmarked 

position weight matrices for Saccharomyces species. Nucleic Acids Research 40, D162–D168. 

Stevens, M., Cheng, J.B., Li, D., Xie, M., Hong, C., Maire, C.L., Ligon, K.L., Hirst, M., Marra, 

M.A., Costello, J.F., et al. (2013). Estimating absolute methylation levels at single-CpG 



188 
 

resolution from methylation enrichment and restriction enzyme sequencing methods. Genome 

Research 23, 1541–1553. 

Stumpf, P.S., Smith, R.C.G., Lenz, M., Schuppert, A., Müller, F.-J., Babtie, A., Chan, T.E., 

Stumpf, M.P.H., Please, C.P., Howison, S.D., et al. (2017). Stem Cell Differentiation as a Non-

Markov Stochastic Process. Cell Systems 5, 268-282.e7. 

Tahir, R.A., Zheng, D., Nazir, A., and Qing, H. (2019). A review of computational algorithms 

for CpG islands detection. J Biosci 44, 143. 

Takai, D., and Jones, P.A. (2002). Comprehensive analysis of CpG islands in human 

chromosomes 21 and 22. PNAS 99, 3740–3745. 

The Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M., Günther, H.M., Lim, P.L., 

Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., Dencheva, N., et al. (2018). The Astropy 

Project: Building an inclusive, open-science project and status of the v2.0 core package. AJ 156, 

123. 

Wang, H., Johnston, M., and Mitra, R.D. (2007). Calling cards for DNA-binding proteins. 

Genome Research 17, 1202–1209. 

Wang, H., Mayhew, D., Chen, X., Johnston, M., and Mitra, R.D. (2012). “Calling Cards” for 

DNA-Binding Proteins in Mammalian Cells. Genetics 190, 941–949. 

Wang, M.F.Z., Mantri, M., Chou, S.-P., Scuderi, G.J., McKellar, D.W., Butcher, J.T., Danko, 

C.G., and De Vlaminck, I. (2021). Uncovering transcriptional dark matter via gene annotation 

independent single-cell RNA sequencing analysis. Nat Commun 12, 2158. 



189 
 

Wang, Z., Chu, T., Choate, L.A., and Danko, C.G. (2019). Identification of regulatory elements 

from nascent transcription using dREG. Genome Res. 29, 293–303. 

Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, 

C., McGuire, J.T., Xu, X., Nikbakht, H., et al. (2019). The histone mark H3K36me2 recruits 

DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286. 

Wu, H., Caffo, B., Jaffee, H.A., Irizarry, R.A., and Feinberg, A.P. (2010). Redefining CpG 

islands using hidden Markov models. Biostatistics 11, 499–514. 

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., 

Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based Analysis of ChIP-Seq (MACS). 

Genome Biology 9, R137. 



190 
 

Chapter 5: Self-reporting transposons reveal 
chromosomal compartmentalization 

5.1 Introduction 
The three-dimensional conformation of chromatin can influence gene expression (Fullwood et 

al., 2009; Le Dily et al., 2014). To better understand this process, a number of sequencing-based 

techniques have been developed measuring DNA-DNA contacts and reconstructing spatial 

relationships within the genome (Dekker, 2002; Dostie et al., 2006; Simonis et al., 2006; Zhao et 

al., 2006). Perhaps most well-known is Hi-C (Lieberman-Aiden et al., 2009), a high-throughput 

method to sequence proximal contacts in an unbiased manner. In addition to inspiring several 

derivative techniques (Hsieh et al., 2015; Krietenstein et al., 2020; Quinodoz et al., 2018), Hi-C 

has revealed higher-order chromosomal structures such as compartments (Lieberman-Aiden et 

al., 2009) and topologically-associated domains (Dixon et al., 2012). 

Hi-C, like all bulk assays, creates an averaged representation of genome conformation 

and is therefore most appropriate when studying a pure population of cells. Newer techniques 

have emerged that barcode and capture genomic interactions in individual cells (Arrastia et al., 

2022; Nagano et al., 2013; Ramani et al., 2017).  While these methods are revealing 

organizational heterogeneity within nuclei, they only recover conformation information and are 

still restricted to predefined cell types. Single cell RNA sequencing (scRNA-seq) can be used to 

discover cell types (Cao et al., 2017; Klein et al., 2015; Macosko et al., 2015; Plasschaert et al., 

2018; Zheng et al., 2017) and has fueled multi-omic technologies that link gene expression to 

other genomic processes (Angermueller et al., 2016; Cao et al., 2018; Rooijers et al., 2019; 

Stoeckius et al., 2017). The ability to directly connect transcriptome to genome conformation 
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would greatly advance our understanding of regulatory mechanics in individual cell types, 

especially if this could be deployed in vivo. Unfortunately, no such method currently exists. 

Here we offer one approach to bridging this gap. We have previously developed single 

cell calling cards to map transcription factor binding sites in a cell-type-specific manner 

(Moudgil et al., 2020). This technique relies on self-reporting transposons (SRTs), exogenous 

transposable elements that transcribe their genomic coordinates as mRNA. Thus, transpositions 

can be mapped from scRNA-seq libraries, which also contain cellular transcripts to identify cell 

type. We have shown that this method can be used both in vitro, with plasmid transfection, as 

well as in vivo via viral transduction. 

In our prior work, we focused primarily on the piggyBac transposase. Now, we analyze 

the distribution of Sleeping Beauty (SB) SRTs in HCT-116 cells. We find that SB transposition is 

non-uniform across the genome, but this only becomes apparent at the megabase scale. Variation 

in SB activity follows the same pattern as chromosomal compartmentalization, with greater 

transposition seen in the transcriptionally active compartment A. This correlation is strong 

enough that we can call compartments from SB transposition itself. We provide several 

benchmarks to confirm the precision of our assignments. Finally, we quantify how accurately we 

can identify compartments in the limit of sparse data. These analyses lay the foundation for a 

potentially powerful, albeit unconventional, method for jointly measuring gene expression and 

genome topology at the single cell level. 

5.2 Results 
5.2.1 Sleeping Beauty SRTs are not uniformly distributed across the genome 
Sleeping Beauty (SB) has previously been shown to have little chromatin preference (Yoshida et 

al., 2017), a finding we confirmed with a much larger dataset generated from self-reporting 
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transposons (SRTs) (Moudgil et al., 2020). However, at that time our analysis was focused on 

enhancers and super-enhancers, which are found at a scale of 103 to 105 bases (Whyte et al., 

2013). Genomic DNA is hierarchically organized into organizational layers such as nucleosome 

clutches and chromatin fibers which are dynamically modulated by transcription and during 

differentiation (Ricci et al., 2015). Moreover, the nucleus is itself a highly heterogenous 

organelle containing numerous phase-separated subdivisions (Hnisz et al., 2017; Klein et al., 

2020; Padrón et al., 2019; Sabari et al., 2018) . Thus, while SB may have little transpositional 

variation at small length scales, it was unclear if this uniformity was preserved more globally. 
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Figure 5.1: SB insertion densities are correlated with chromosomal compartment. (A) Raw insertions and 
insertion density profiles for SB SRTs in HCT-116 cells. (B) ChIP-seq for post-translationally modified histones. 
(C) Blocks of genomic DNA statistically enriched and depleted for SB insertions can be used to reconstruct 
chromosomal compartments. Hi-C compartmentalization and contact matrix are also shown. 
 

We re-analyzed the SRT dataset and found that, on large length scales (106 to 107 bases), 

SB transposition is indeed non-uniform (Figure 5.1A). Insertions appear to fall into alternating 

regions of high and low, with graded transitions between them visible in the insertion track. 

While the density of insertions within a region seems constant, the variegation between adjacent 
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regions is only apparent when juxtaposed on such a large scale. Finally, it is worth noting that 

these high- and low-SB regions form relatively long and contiguous segments, with few 

interruptions. 

To better understand factors contributing to this non-uniform transposition, we cross-

referenced our insertion data against published modified histone chromatin immunoprecipitation 

sequencing (ChIP-seq) data. We observed that regions with high SB insertion frequency tended 

to also have higher levels of the epigenetic marks H3K27ac, H3K4me1, and H3K36me3. These 

modifications are frequently associated with actively transcribed regions of the genome 

(Lawrence et al., 2016). Conversely, regions with comparatively lower transposition rates were 

enriched for the repressive marks H3K9me3 and H3K27me3, with the latter most prominently 

seen flanking the former. We conclude that, in a broad sense, the local density of SB 

transposition is positively correlated with whether genomic DNA is likely to be transcribed. 

5.2.2 Densities of Sleeping Beauty SRTs reveal chromosomal compartments 
One level of nuclear organization binarizes chromosomal sequences into one of two 

compartments, “A” and “B”. These states are typically inferred from high-throughput assays, 

such as Hi-C, and reflect intrachromosomal contact frequencies (Lieberman-Aiden et al., 2009). 

Namely, “A” compartment sequences are more likely to be in close spatial proximity to one 

another (similarly for “B” compartment sequences) and are less likely to be near “B” 

compartment sequences. Moreover, compartment A tends to be centrally located in the nucleus 

and transcriptionally active, while the compartment B is found along the nuclear periphery and is 

less likely to be transcribed (Therizols et al., 2014). 

Since SB insertions show density changes on the megabase scale, and these changes 

correlate with transcriptionally informative epigenetic marks, we hypothesized that the variation 
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seen in SB insertion density reflects the underlying chromosomal compartmentalization. To test 

this, we analyzed published Hi-C data (Rao et al., 2017) and identified chromosomal 

compartments (Durand et al., 2016). We then measured the distribution of insertion densities in 

A and B compartments. We observed that the density of insertions is indeed higher in A 

compartments over B compartments (Figure 5.2A). Although the magnitude of this effect is 

modest, the differences are not likely by chance (Mann-Whitney U p-value < 10-9). Thus, we 

conclude that SB is biased by chromosomal compartmentalization. 

 

Figure 5.2: Comparison of SB insertion densities by compartment. (A) Distribution of insertions per kilobase 
per million mapped insertions (IPKM) in A and B compartments as inferred by Hi-C. (B) Distribution of IPKM in 
SB+ and SB– compartments. Horizontal lines represent medians of the distributions. * Mann-Whitney U p-value < 

10-9. 
 

Since we observed such a striking connection between compartment state and insertion 

density, we wondered whether it was possible to identify chromosomal compartments from SB 

insertions alone. We first used a density-based approach (Chapter 4) to segment the genome into 

regions of extreme enrichment or depletion for SB insertions (Figure 5.1C). We then smoothed 
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these data using the same fixed-width bins as the Hi-C chromosomal compartments. To 

differentiate our analysis from the Hi-C-based compartments, we annotate our states as either 

SB+ or SB–, to reflect high- and low-density regions, respectively. 

Visual inspection of SB compartments reveals close concordance with Hi-C 

compartments (Figure 5.1C). The Rand index, a metric used to evaluate the similarity between 

two segmentations (Truong et al., 2020), was 0.757 between SB and Hi-C compartments, 

considerably better than chance (0.5). In addition, the distributions of insertion densities within 

SB compartments is both qualitatively similar to those within Hi-C compartments and 

significantly different between SB+ and SB– states (Figure 5.2B; Mann-Whitney U p-value < 10-

9). To functionally validate our findings, we compared the genome-wide enrichments in ChIP-

seq signals between SB+ and SB– compartments. The latter showed greater average intensities 

for the repressive marks H3K9me3 and H3K27me3 (Figure 5.3A-B) than the former. We 

observed the opposite trend for activating marks, with SB+ being enriched for H3K27ac, 

H3K4me1, and H3K36me3 (Figure 5.3C-E). Thus, SB compartments appear to demarcate 

transcriptionally active and inactive domains. 
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Figure 5.3: Functional validation of SB compartments. Differential enrichment in SB+ and SB– compartments 
for (A) H3K9me3 ChIP-seq, (B) H3K27me3 ChIP-seq, (C) H3K27ac ChIP-seq, (D) H3K4me1 ChIP-seq, (E) 
H3K36me3 ChIP-seq, (F) LaminB1-DamID, (G) early replicating DNA, and (H) late replicating DNA. The units for 
the y-axis in A-F is log2 fold-change; in G-H, it is normalized coverage. 
 

The B compartment is often associated with the nuclear lamina, which serves to anchor 

and organize chromatin (van Schaik et al., 2019). We quantitated the enrichment of LaminB1, a 

major lamina component, in SB+ and SB– compartments. LaminB1 signal was greater in SB– 

compartments than SB+ (Figure 5.3F), suggesting that former is likely to be interacting with the 

nuclear lamina. Lamina-associated domains are among the last regions of the genome to replicate 

(Hansen et al., 2010). Cross-referencing our annotations with replication timing data revealed 

that SB+ compartments are more likely to replicate early and SB- compartments more likely to 
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replicate late (Figure 5.3G-H). This is additional evidence that SB transposition rates can 

discriminate chromosomal compartments. Furthermore, it supports the notion that SB densities 

reflect genome organization. 

In addition to the nuclear lamina, the nucleolus is also an organizational focus for the 

nucleus. In particular, nucleolus organizer regions (NORs) on the short arms of the acrocentric 

autosomes help form the nucleolus (van Sluis et al., 2019). We investigated if SB can access 

NORs and whether insertion densities would resemble SB+ or SB– compartments. NORs are 

rich in ribosomal DNA (rDNA) repeats and therefore difficult to assemble. As such, only one 

NOR is present in the human reference genome. Our analysis revealed few insertions, classifying 

it as part of an SB– compartment (Figure 5.4). This suggests that SB does not readily penetrate 

the nucleolus, though we consider this finding preliminary. The repetitive nature of NORs makes 

it difficult to align reads to them, which would also result in reduced insertion densities. As 

genome assemblies and aligners continue to improve (Miga et al., 2020), it may be possible to 

confirm this finding with across multiple NORs. 

 

Figure 5.4: SB compartment analysis of a nucleolus organizing region (NOR). Left, NOR on chromosome 21. 
Right, euchromatic locus in SB+ compartment for comparison. 
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5.2.3 Inferring compartmentalization from sparse Sleeping Beauty data 
We have recently shown that SRTs can be recovered from single cell RNA-seq (scRNA-seq) 

libraries and can be stratified by cell type (Moudgil et al., 2020). This raises the possibility that 

SB SRTs could also be recovered from scRNA-seq libraries, enabling simultaneous 

identification of cell identity and cell-type-specific chromosomal compartmentalization. 

However, single cell genomic libraries tend be much sparser than their bulk counterparts. To 

predict how accurately single cell SB libraries could identify compartments, we downsampled 

our bulk SB dataset and measured the Rand index against a range of Hi-C compartment 

resolutions (Figure 5.5A). We were able to call compartments with greater accuracy than 

chance–corresponding to a Rand index above 0.5–with as few as 30,000 insertions, though in 

practice we expect this to be an extreme lower bound. SB is a highly active transposase and we 

should be able to routinely collect at least 100,000 insertions per single cell library, yielding a 

minimum Rand index of 0.68. As single cell technologies improve, or by increasing the number 

of cells analyzed, we may be able to push the Rand index closer to 0.75 at the coarsest scales. 

We also quantitated, separately, our sensitivity to A and B compartments (Figure 5.5B-C). In the 

range of a few hundred thousand insertions, SB insertions are about equally sensitive to A and B 

compartments (69-77% and 66-69%, respectively). We conclude that in single cells SB insertion 

profiles can be a reasonably accurate way to measure cell type-specific genome organization. 
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Figure 5.5: Downsampling analysis of SB compartments. (A) Rand index of similarity between Hi-C and SB 
compartments at a range of resolutions and library sizes. (B) Sensitivity of downsampled SB insertions to 
compartment A. (C) Sensitivity of downsampled SB insertions to compartment B. 

5.3 Discussion 
While Sleeping Beauty (SB) has previously been reported to have little chromatin preference 

(Yoshida et al., 2017), a more recent analysis claims that it has a modest bias towards 

transcriptionally active regions (Sultana et al., 2019). Here, we confirm the latter trend, finding 

that SB insertion profiles tend to align with chromosomal compartments. Regions with increased 

SB density tend to overlap with compartment A, which itself is positively correlated with gene 

expression. Conversely, we observed that regions depleted for SB insertions coincided with 

compartment B. What is remarkable about these findings is that we were able to infer two-

dimensional spatial correlations from one-dimensional transposition data. Interestingly, other 

groups have also attempted to reconstruct compartments from epigenetic data  but from more 

established techniques like ChIP-seq and the assay for transposase-accessible chromatin (ATAC-

seq) (Fortin and Hansen, 2015; Zhu et al., 2016). 
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Figure 5.6: Model of transposase activity as function of sub-nuclear localization. White line represents genomic 

DNA. 
 

Compartment A has been previously found to be more centrally located in the nucleus, 

enabling it to, among other things, replicate earlier in the cell cycle (Therizols et al., 2014). 

Compartment B, in contrast, tends to accumulate around the periphery, associating with the 

nuclear lamina (Ramani et al., 2016). Our data further suggests a spatial model of transposase 

activity, with transposition efficiency decreasing radially away from the nucleus’s center (Figure 

5.6). Indeed, this has already been suggested for LINE-1 retrotransposons (Sultana et al., 2019). 

We reanalyzed published piggyBac transposition data in light of our findings. Although 

piggyBac has particular localization preferences at the sub-compartmental level (Moudgil et al., 

2020; Yoshida et al., 2017), globally it deposits transposons in a similar pattern to SB (data not 

shown). Thus, this framework may be generally applicable to many transposases. Quantitatively 

developing this model may enhance our understanding of native transposases and could better 

inform analyses of exogenous assays, such as transposon calling cards (Wang et al., 2012). 
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SRTs can be recovered from scRNA-seq libraries, which enables joint identification of 

cell type and cell-specific transpositions. Aggregated piggyBac transposition profiles have led to 

new insights into cell-type-specific regulatory processes (Moudgil et al., 2020). In a similar 

fashion, single cell recovery of SB SRTs could illuminate chromosomal compartmentalization 

resolved by cell type. Compartments can be dynamic, switching over the course of cellular 

differentiation (Criscione et al., 2016; Dixon et al., 2015). While our downsampling analysis 

suggests that single cell analyses of SB compartments can be reasonably accurate, these metrics 

were measured in a single cell line at steady state. Future work should explore whether SB 

transposition, particularly from single cells, is sensitive to changes in compartmentalization. The 

most straightforward approach would be in vitro perturbation with a small molecule (Kantidze et 

al., 2019) or in a cell culture model of differentiation (Reimer et al., 2021).  

5.4 Methods 
Sleeping Beauty SRT data in HCT-116 cells were obtained from (Moudgil et al., 2020). Raw 

insertion data were first segmented using blockify 0.2.1 (Chapter 4) to identify contiguous blocks 

with piecewise-constant density. We next determined whether a block was either enriched or 

depleted for insertions by performing one-tailed Poisson hypothesis tests. Specifically, we ran 

“blockify call,” using a Bonferroni-adjusted p-value threshold of 0.05, a pseudocount of 0, and a 

merge window of 0, and setting the “measure” parameter to either “enrichment” or “depletion.” 

The null hypothesis we used was that insertions should be uniformly distributed with respect to 

all TA dinucleotides (SB’s insertion motif) across the genome. Finally, to determine SB+ and 

SB– compartments, we partitioned the genome into non-overlapping, fixed width windows; 

intersected each window with the sets of enriched and depleted blocks; and calculated an average 

score per window. The score was calculated by assigning to each base a value: 1 if it overlapped 



203 
 

an enriched block, –1 if it overlapped a depleted block, and 0 otherwise. The window score was 

then the sum of all scored bases divided by the length of the window. From this, SB+ windows 

were those with positive scores and SB– windows were those with negative scores. For the 

sparsity analysis, downsampling was performed using blockify using a random seed of 0.  

Hi-C data were obtained from GEO datasets SRR6107782-SRR610781 and were 

processed using juicer (Durand et al., 2016) with the following settings: “-q general -l general -s 

MboI -Q 10080 -L 10080.” Data were aligned to the hg38 human genome assembly and 

visualized on the UCSC Genome Browser. ChIP-seq data and processing steps were taken from 

(Moudgil et al., 2020). Processed DamID and LMNB1-DamID data were downloaded from the 

4D Nucleome Data Portal (the 4D Nucleome Network et al., 2017), accession numbers 

4DNFI9XJQPIZ and 4DNFIMFJN73W, respectively (van Schaik et al., 2020). Aligned early and 

late Repli-seq datasets were also downloaded from the 4D Nucleome Data Portal, accession 

numbers 4DNFIBQM2JE2 and 4DNFIA5J1HN7, respectively. Epigenomic profile plots were 

generated using deeptools 3.0.0 (Ramírez et al., 2016). General data analysis and visualization 

was performed using numpy 1.16.2 (Oliphant, 2015), scipy 1.2.1 (Virtanen et al., 2020), 

matplotlib 3.0.3 (Hunter, 2007), statsmodels 0.8.0 (Seabold and Perktold, 2010), and Python 

3.6.5. 
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Chapter 6: Future directions 
 

The self-reporting transposon (SRT) is fascinating in that it broadcasts a traditional, DNA-based 

signal–genomic location–into mRNA, allowing it to be detected, mapped, and read out alongside 

bulk and single RNA-seq data. There are several future directions and potential applications for 

this technology. While some of these have been mentioned in previous chapters, they are 

collected here, expanded in scope and number. 

6.1 Future directions for piggyBac transposon calling cards 
In its current form, SRTs rely on the constitutive expression of a strong promoter (EF-1a) to 

generate self-reporting transcripts. This is useful for maximizing sensitivity across a range of cell 

types (Cammack et al., 2020) but could perturb local gene expression. Strong promoters can 

function as local enhancers (Medina-Rivera et al., 2018). The number of calling cards deposited 

per cell is relatively small (50-100) and while we do not expect widespread dysregulation of 

gene expression, we cannot eliminate the possibility of calling cards altering transcription of 

native genes. One way to mitigate this concern would be to use an inducible promoter (Qin et al., 

2010), pulsing with the inducer just before collecting cells to minimize perturbation. 

Silencing of promoters is another concern with sustained transcription of transgenes. 

Long-term expression can lead to methylation of promoters, decreasing expression over time. 

We did not suffer from appreciable silencing in either our short-course in vitro experiments 

(Moudgil et al., 2020) nor in long-term experiments with intracranial calling cards (Cammack et 

al., 2020). However, we were not specifically looking for silencing nor can we guarantee that it 

will not happen in the future. Ubiquitous chromatin-opening elements (UCOEs) are cis-
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regulatory sequences that are resistant to DNA methylation and have been used to counteract 

silencing of lentiviral transgenes (Nair et al., 2011; Saunders et al., 2015; Zhang et al., 2007, 

2010). Including a UCOE in the SRT could help maintain expression over longer time courses. 

Finally, it may be worth considering non-Pol II promoters to drive SRTs. The simplest 

solution is to include a viral T7 RNA polymerase (RNAP) promoter just before the terminal 

repeat. Libraries could then be prepared from genomic DNA following an in vitro transcription 

reaction. This approach, already in use to amplify single cell genomes (Chen et al., 2017a), 

would evade the issues of ectopic enhancement and promoter silencing. The inclusion of the T7 

RNAP promoter in Ty5 retrotransposons could also help bring SRTs to yeast calling cards 

(Mayhew and Mitra, 2016). There may also be uses for SRTs containing RNA polymerase III 

promoters, such as the popular U6 sequence for synthesizing Cas9 guide RNAs (Cong et al., 

2013; Mali et al., 2013). However, this would only work with transposons that do not have 

polythymidine tracts in their terminal repeats. 

One of the drawbacks of bulk RNA calling cards is the necessity for multiple biological 

replicates to build up statistical power. In DNA calling cards, this was accomplished using a 

polyclonal pool of donor plasmids containing different internal barcodes. This feature was 

dropped in our initial development of the SRT because of the prohibitive distance between the 

barcode and the transposon-genome junction. Recent work by Matthew Lalli demonstrates that 

the piggyBac terminal repeat can be mutated to generated barcoded vectors (Lalli et al., 2021). 

Moreover, structural analysis of the piggyBac transpososome revealed partial duplication of the 

terminal repeat can increase transposition efficiency (Chen et al., 2020). While these plasmids 

will immediately benefit bulk calling cards protocols, they may eventually be useful in single 

cell calling cards to further enhance our ability to recover SRTs. 
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Individual transcription factors often bind in complexes. For example, we showed that 

BAP1 calling cards can recover the motif of YY1, a known binding partner (Moudgil et al., 

2020). Multiplexing calling cards to record the binding of several TFs would provide further 

mechanistic insight into the binding and activity of TF collectives. One way to achieve this is to 

use multiple transposase families, with each transposase fused to a different TF. Since 

transposons are specifically transposed by their cognate transposase, the localization of a given 

transposon would unequivocally reflect a single TF’s binding specificity. This strategy may be 

difficult in practice because not all transposases tolerate fusion (see below). Alternatively, 

multiple TF-piggyBac fusions could be deployed at once in vitro and deconvolved with single 

cell calling cards. This approach requires each fusion to be barcoded by a TF-specific barcode 

sequence in the 3’ untranslated region (UTR) downstream of the transposase (assuming the TF is 

fused at the N-terminus). Viral transduction of these fusions at a low multiplicity of infection 

(MOI) would ensure that a cell surviving selection received a single TF-piggyBac fusion. Single 

cell RNA-seq analysis of the piggyBac transcripts would be able to detect the TF barcode and 

identify which construct was delivered to each cell. SRT insertions could then be stratified by 

cells sharing the same TF. This would reveal TF co-binding patterns at a pseudobulk level. 

Similar approaches are already used in single cell CRISPR perturbation experiments (Datlinger 

et al., 2017; Dixit et al., 2016). 

We and others have characterized piggyBac’s inordinate affinity for bromodomain 

proteins, particularly the coactivator BRD4 (Gogol-Döring et al., 2016; Moudgil et al., 2020; 

Yoshida et al., 2017). Western blot analysis of bromodomain truncations showed that it is the C-

terminal domains of the bromodomain and extra-terminal motif (BET) proteins BRD2, BRD3, 

and BRD4 that directly interact with piggyBac (Gogol-Döring et al., 2016). Intriguingly, this is 
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the same part of BRD4 that is intrinsically disordered and is thought to play a role in 

cooperatively forming intranuclear transcriptional condensates (Sabari et al., 2018). Even more 

provocative is that piggyBac itself has disordered regions at its N- and C-termini (Figure 1). This 

suggests a potential target to wean piggyBac of its bromodomain affinity. If successful, these 

new transposases would have greater redirectability by TFs and resolve sharper peaks. They may 

also be useful for gene therapy, a field that has been frustrated by the inability of transposases to 

deliver transgenes with targeted site specificity (Tipanee et al., 2017; Vargas et al., 2016).  

 
Figure 6.1: Predicted disorder for the hyperactive piggyBac transposase. The core catalytic domain lies between 
residues 130-522 (Morellet et al., 2018). 
 

The C-terminal domain of piggyBac, while predicted to be disordered (Figure 6.1), is 

necessary for binding the terminal repeat sequences (Morellet et al., 2018). In contrast, little is 

known about the N-terminus and its function. In addition to the first 110 residues being 
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disordered, the first 80 or so resemble an acidic activation domain (Alex Holehouse, personal 

communication). Based on these observations, there are number of possible experiments to try. 

First, generating a set of N-terminal piggyBac truncations would elucidate which residues, if any, 

are necessary for transposition. Similar work has already been done but was complicated by the 

inclusion of additional peptide tags (Lalli, personal communication). Arginines are thought to 

favor condensation and the N-terminus of piggyBac is rich in them (Holehouse, personal 

communication). To see if they contribute to piggyBac’s bromodomain affinity, they could be 

mutated to lysines. Hydrophobicity is another sequence property that contributes to disorder 

(Holehouse, personal communication), so to test its contribution to piggyBac’s behavior, the 

hydrophobic amino acids can be mutated to either serine or glycine would abolish. Collectively, 

these experiments should provide a reasonable starting point for understanding the role of 

piggyBac’s N-terminus. 

It is curious that N-terminus of piggyBac should resemble an acidic activation domain 

such as that of the yeast TF Gcn4p (Staller et al., 2018). From where did this domain originate? 

Was it part of an ancestral piggyBac transposase or was it co-opted from gene shuffling over 

evolutionary time? Molecular evolutionary analyses of various piggyBac-like and piggyBac-

derived genes showed poor conservation of the N-terminal domain (Bouallègue et al., 2017; 

Sarkar et al., 2003). Intrinsically disordered regions, however, are challenging for multiple 

sequence alignment algorithms (Vriend et al., 2016). A more sophisticated approach, taking into 

account the disordered behavior, may prove more fruitful. Then there is the question of function: 

what fitness advantage does such a domain confer to piggyBac? It is not unreasonable that 

transposing into highly transcribed regions, especially in the germline, maximizes the chances of 

propagating to the next generation. Interestingly, two of the point mutations used to generate 
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hyperactive piggyBac (I30V and S103P; (Yusa et al., 2011)) fall within the N-terminal 

disordered region. These residues may have been under balancing selection in wild type 

piggyBac to minimize mutagenic burden. Finally, we can ask whether this domain has any ability 

to transactivate expression. Why the transposase should benefit from such activity is not clear, 

but neither is the possibility something we can rule out. Perhaps piggyBac has evolved a 

transcriptionally inactive mimic to other activation domains, leading it to active loci without 

necessarily perturbing gene expression itself. Complementation assays involving the exchange of 

piggyBac’s and Gcn4p’s acidic domain, coupled to either growth assays or a reporter gene (Liu 

et al., 2020; Shively et al., 2019), would be one approach to answering this question. 

Murine leukemia virus (MLV) also has an insertion profile strongly biased by 

bromodomain proteins (Gogol-Döring et al., 2016; Yoshida et al., 2017). MLV and other 

retroviruses have been extensively scrutinized because of their promise to deliver gene therapies 

and the notable adverse reactions they have caused in clinical trials (Bushman, 2007; Hacein-

Bey-Abina, 2003; Hacein-Bey-Abina et al., 2003). Recently, a comparative analysis across 

gammaretroviruses revealed a conserved motif at the integrase C-terminus that mediated the 

association with bromodomains (El Ashkar et al., 2014). Deletion of these residues, or a single 

point mutation (W390A), largely abrogated the bromodomain preference (El Ashkar et al., 

2014). Furthermore, fusing other chromatin-binding domains to this mutant MLV could redirect 

integrations (El Ashkar et al., 2017). These achievements are viral parallels to our goal of 

redirecting piggyBac. Out of curiosity, we aligned the conserved BET interaction motif of 

Moloney MLV (MMLV) against the first 110 residues of piggyBac and hyperactive piggyBac 

(Figure 2). We found that the end of piggyBac’s N-terminus does contain residues resembling 

MMLV’s BET interaction motif. Most intriguing is the preserved tryptophan residue (denoted by 
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the asterisk) that is critical for MMLV’s association with bromodomains. Therefore, targeted 

mutagenesis of these residues may offer an alternative path to disassociating piggyBac from 

BETs and, consequently, enhancing redirection by TFs. 

 
Figure 6.2: Alignment of MMLV's BET interaction motif against piggyBac. Multiple sequence alignment of 
Moloney murine leukemia virus’s (MMLV) BET interaction motif against a portion of the N-termini of piggyBac 
(PBase) and hyperactive piggyBac (HyPBase) transposases. Conserved residues are colored using the ClustalX 
palette (blue: hydrophobic; red: positively charged). The asterisk denotes the critical tryptophan necessary for 
MMLV’s BET interaction. 
 

6.2 Future directions for Sleeping Beauty transposon calling 
cards 
We used Sleeping Beauty’s broad and considerably (though not completely) uniform insertion 

profile to identify patterns of chromosomal compartmentalization. There is certainly room for 

continued computational and biological work to, respectively, improve compartment assignment 

and study dynamic changes in genome organization. There is also the opportunity to 

simultaneously multiplex both piggyBac and Sleeping Beauty SRTs in the same cells, leading to 

triple measurements characterizing cell identity, enhancer usage and/or TF binding sites, and 

compartmentalization. 

Furthermore, Sleeping Beauty’s ability to deposit transposons so widely across the 

genome may have additional applications. One long-standing question regarding SRTs is 

whether there exist cryptic polyadenylation signals in intergenic regions that terminate RNA 

polymerase II transcription. Distributing Sleeping Beauty SRTs widely, amplifying self-reporting 

transcripts, and then sequencing full-length molecules (Gonzalez-Garay, 2016; Gupta et al., 



219 
 

2018) would determine if, and to what extent, non-templated adenines are being added post-

transcriptionally. Genomic sequence near the start of such tails could then be analyzed for 

cryptic polyadenylation signals. This approach could also be used to screen for cryptic splicing 

signals. Finally, full-length reads from single cell Sleeping Beauty libraries may yield sufficient 

coverage to identify structural variants, offering another option to connect genotype to 

transcriptome. 

6.3 Industrial applications for SRTs 
While we developed SRTs in an academic setting, it is a useful exercise to consider whether 

SRTs have any applications in industry. One can view SRTs as a set of positional, heritable 

barcodes. Collectively, they should uniquely identify individual clones. One biological use for 

this is in lineage tracing, which is discussed in detail further below. A related application may be 

as a way of confirming the provenance of biological samples. 

In recent years, synthetic yeast strains have been created capable of synthesizing 

pharmaceuticals and other commercially important chemicals at scale (König et al., 2015; Liu et 

al., 2019; Walker and Pretorius, 2018). As the central reagent here is a living, replicating 

organism, there are concerns about how to protect it as intellectual property (König et al., 2015). 

With the cost of sequencing ever decreasing accompanied by efforts to expand the scope of DNA 

synthesis (Boeke et al., 2016), there may come a time when copying and printing DNA on 

demand is trivially easy, enabling the theft and counterfeiting of genomic commodities. A small 

number of SRTs distributed across a genome may offer some protection as these elements could 

serve as a randomly generated checksum. The probability that two yeast strains independently 

tagged with SRTs sharing identical insertion coordinates is virtually zero. This would make it 

easier for manufacturers to prove the authenticity of their creations. Moreover, copying and 
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synthesizing SRTs may be prohibitively expensive since they naturally contain repetitive 

sequences. Clinical samples could similarly be tagged with SRTs to generate sample-specific 

ensemble barcodes. Instead of sequencing genomic variants, which can be used to uniquely 

identify individuals (Erlich et al., 2018; Harmanci and Gerstein, 2018), the locations of SRTs 

would authenticate patient-derived DNA. Without context, these data are simply random 

numbers. Thus, SRTs may add a layer of additional security around potentially sensitive 

information. 

6.4 Tagmentation-free SRTs 
One of the bottlenecks of preparing bulk RNA calling cards libraries is the tagmentation of self-

reporting transcripts. Commercial Tn5 enzyme is expensive and while there are protocols for in-

house purification (Picelli et al., 2014), it is a non-trivial process. Generating cost efficient, high-

quality libraries that precisely map the transposon-genome junction would make calling cards 

even more approachable to new users and allow us to increase the scale of our experiments. Here 

are three proposals for tagmentation-free alternatives for mapping SRTs. 
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Figure 6.3: Alternative SRT library strategies without tagmentation. (A) Reverse transcription with tailed 
random hexamers. (B) Random chain termination of in vitro transcription. (C) Next-generation or in situ sequencing 
with semi-random padlock probes. 
 

The first strategy involves reverse transcription (RT) with random hexamers instead of a 

polythymidine primer (Figure 6.3A). The hexamers would be tailed with a constant sequence 

that forms a universal priming site (Mäki and Tiirola, 2018). The other primer would bind near 

the end of the terminal repeat to minimize the risk of  PCR template switching (Kanagawa, 

2003). Since libraries are random, a smear of product sizes should be seen on a gel. Shorter 

products can be enriched by increasing the concentration of hexamers (2006). Advantages of this 

approach are cost, ease, and detection of the entire transcriptome if bulk RNA-seq is 
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simultaneously needed. The latter is also a major drawback as SRT-specific amplification would 

be occurring against a background of all RNA. This could necessitate more amplification cycles, 

increasing the risk of PCR artifacts. 

Another idea is to transcribe in vitro from an internal T7 RNAP promoter but use chain 

termination to create a random library (Figure 6.3B). This approach is inspired by bio-orthogonal 

click chemistry approaches for generating RNA-seq libraries (Routh et al., 2015, 2017). A small 

amount of rNTPs containing a 3’ azide group (AzNTPs) would be mixed into the reaction. The 

elongating T7 polymerase would incorporate one of these at random and be unable to extend 

further. A second oligonucleotide, encoding a universal priming sequence and capped with a 5’ 

alkyne moiety, would then be introduced. The click reaction would selectively and efficiently 

ligate the azide group to the alkyne, resulting in a triazole linkage. RT proceeds from the 

universal priming site upstream to the SRT followed by a junction-specific PCR. Advantages of 

this approach include the basal amplification of SRTs by T7 and the robustness of the click 

reaction. One downside is that the concentration of AzNTPs would have to be carefully titrated 

to get libraries that are long enough to capture the junction but short enough to sequence. 

Polymerase read-through of the triazole linkage is not particularly efficient (Routh et al., 2017), 

but this could be addressed by designing the RT primer to extend past the linkage with a small 

number of degenerate bases, acting as a splint oligonucleotide (Datlinger et al., 2019). 

A third approach, aimed at integrating single cell calling cards with in situ sequencing 

techniques (Alon et al., 2020; Fürth et al., 2019; Lee et al., 2015), is to generate rolling circle 

colonies (rolonies) that linearly amplify the transposon-genome junction (Figure 6.3C). In situ 

sequencing typically uses highly specific padlock probes to achieve this (Chen et al., 2017b), 

which rely on two arms that hybridize to known sequences with or without a gap between them. 
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These ends are then ligated together and amplified with phi29. The problem for SRTs is that only 

one end, the transposon terminal repeat, has a fixed sequence, while the other is unknown. The 

solution we propose is to create a semi-random padlock probe: one end anneals near the end of 

the SRT while the other ends in a random hexamer. RT would start at the hexamer, proceed 

toward the 5' end of the probe which is phosphorylated and ligate it closed into a loop of single 

stranded DNA (ssDNA). To ensure that the hexamer binds at some minimum distance from the 

end of the transposon, dSpacer (abasic) residues could be added to the 5' end, then removed with 

Endonuclease VIII or APE1. The rolony can be used directly for in situ sequencing, enabling 

simultaneous readout of the transcriptome, SRTs, and spatial position of single cells; or, 

alternatively, the probe could be used to generate next-generation sequencing libraries from 

universal priming sites. To our knowledge, such a padlock design has not been reported, making 

it a riskier way to proceed. 

6.5 Expanding the palette of self-reporting transposons 
In this work, we developed self-reporting piggyBac and Sleeping Beauty transposons. That we 

were able to readily create these modified transposons suggests that the self-reporting paradigm 

may generalize to several transposases systems, provided that the terminal sequences do not 

contain a polyadenylation signal. We discuss several specific options below. 

6.5.1 Mos1 
Mos1 is a widely-used transposase for invertebrate transgenesis, particularly in Caenorhabditis 

elegans (Frøkjær-Jensen et al., 2008). Like Sleeping Beauty, it transposes into TA dinucleotides. 

Unlike Sleeping Beauty, however, Mos1 tolerates peptide fusions and can be redirected 

(Maragathavally et al., 2006). Rational design of Mos1 mutants identified a variant that is up to 

800 times more active than wild-type Mos1 (Germon et al., 2009). Sequence changes to the 
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canonical Mos1 transposon can also lead to more efficient transposition (Jaillet et al., 2012): 

replacing the 5' inverted terminal repeat (ITR) with another copy of the 3' ITR increased 

transposition rates 20-fold. However, Mos1 shows markedly reduced activity in mammalian cells 

(Germon et al., 2009), though there are conflicting reports (Trubitsyna et al., 2017). One culprit 

could be post-translational modifications Specifically, phosphorylation of S170 alters subcellular 

localization and drastically decreases transposition rate (Bouchet et al., 2014). The S170A 

mutant showed some activity but the pseudophosphorylated S170D mutant did not. It is not clear 

how the S170A mutant would behave in mammalian cells. Milder substitutions like S170V or 

S170C that  better preserve the size of the residue and prevent phosphorylation could also be 

effective, especially in conjunction with the rationally designed hyperactive version (Germon et 

al., 2009). 

6.5.2 Tol2 
Tol2 is a popular transposase for zebrafish transgenesis (Ni et al., 2008). The transposase itself 

would likely not tolerate fusions as even small peptide tags abolish activity (Meir et al., 2011). 

However, undirected Tol2 appears to preferentially insert into regions enriched for the epigenetic 

marks H3K4me3 and H3K27me3 (Yoshida et al., 2017). These loci are thought to mark bivalent 

domains termed “poised” enhancers that are being primed for future activation (Bernstein et al., 

2006). Single cell calling cards with Tol2 SRTs could identify poised loci during development or 

other dynamic processes. Such an analysis would likely have to be performed simultaneously 

with piggyBac single cell calling cards as it also has an affinity for H3K4me3 but not for 

H3K27me3 (Yoshida et al., 2017). Therefore, Tol2 peaks that do not overlap piggyBac peaks 

would most likely represent bivalent loci. Although we started developing Tol2 SRTs, molecular 

refinements to the protocol are necessary (Nicolas Ledru, personal communication). 
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6.5.3 LINE-1 
Until now, we have focused on cut-and-paste transposases. However, copy-paste transposases 

can be uniquely powerful for certain applications. The best-known example is likely the LINE-1 

(L1) retrotransposon (Garcia-Perez et al., 2015; Han and Boeke, 2005; Paço et al., 2014; Singer 

et al., 2010), which has been engineered for increased activity (An et al., 2006; Han and Boeke, 

2004). The copy-paste activity of LINE-1 allows it to monotonically increase in number over 

time. This can be valuable for TF binding studies, particularly those at steady-state equilibrium, 

as it means donor elements are no longer limiting in number. This property may also make it 

easier to work in difficult-to-transfect systems: in theory, as long as few copies are introduced, 

they can be propagated indefinitely.  

One of the challenges facing self-reporting L1 transposons is that, upon reintegration into 

the genome, the transposon truncates toward the 5’ end, often in the middle of the ORF2 gene 

(An et al., 2006; Sultana et al., 2019). This breakpoint would indicate the junction between the 

transposon and the genome (SRTs could not point in the opposite direction due to the presence of 

a polyadenylation signal). Unfortunately, the lack of a constant sequence for priming the SRT 

PCR makes it difficult to enrich for insertions. One potential solution is inspired by our single 

cell calling cards protocol for piggyBac (Figure 6.4). 
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Figure 6.4: Proposed workflow for mapping L1 SRTs. pA: polyadenylation signal; PAS: polyadenine stretch. 
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The parental L1 SRT contains a reporter gene split by an artificial intron in the opposite 

orientation. Transcription of L1 removes the intron in derived copies; upon integration, the 

reporter gene can be properly transcribed and translated. The reporter’s transcripts would contain 

the truncated ORF2 gene as part of its 3’ UTR before encountering either a cryptic 

polyadenylation signal or a genomic polyadenine stretch (PAS). RT would proceed as per our 

bulk RNA calling card protocol (Appendix 2) followed by a few cycles of SRT amplification. 

One difference is that we would use a biotinylated primer at one end. The resulting products 

would then be captured on streptavidin-coated beads where they would be tailed with a 

dideoxynucleotide triphosphate (ddNTP). Since all sequence upstream of the breakpoint is 

unnecessary, we could direct Cas9 in vitro to cut these with a set of tiled gRNAs (Gu et al., 

2016). This would eliminate most ORF2 sequence but preserve a small portion next to the 

breakpoint for quality control. We then would ligate a splinkerette adapter containing a next-

generation sequencing primer onto the molecule. Due to the ddNTP, the adapter is added at the 

5’ end, ensuring we only sequence from ORF2 into the genome. A series of nested PCRs 

finalizes the library. Although involved, putting this protocol into practice would maximize the 

information yield of L1 SRT libraries. 

6.5.4 Helraiser 
Helraiser is a new transposase and the only known functional member of the Helitron family 

(Grabundzija et al., 2016, 2018). Helitrons are thought to replicate in a copy-paste fashion but, 

unlike retrotransposons, they do not proceed through an RNA intermediate (Feschotte and 

Wessler, 2001; Kapitonov and Jurka, 2001, 2007; Pritham and Thomas, 2015). Instead, the 

transposase nicks one strand of transposon DNA at one of the terminal sequences and use a 

rolling circle strategy to peel off a single strand of transposon DNA (Grabundzija et al., 2018). 
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This circular ssDNA intermediate can either transpose into genomic DNA, inserting into AT 

dinucleotides, or can be used to generate a complementary strand, creating a double-stranded 

transposon circle (Grabundzija et al., 2018; Kosek et al., 2021). Repeated cycles of peeling and 

pasting into the genome increase copy number over time. 

One application for which Helraiser may be uniquely suited is lineage tracing. Since 

SRTs are vertically transmitted, their genomic coordinates can be seen as a heritable barcode of 

clonal origin. The cumulative set of self-reporting Helitrons in a cell should, in theory, 

completely describe its lineage. With cut-and-paste transposases, the risk is that SRTs may move 

around during the recording window, degrading clonal information (Figure 6.5A). We simulated 

lineage reconstruction with copy-paste SRTs, cut-and-paste SRTs, and binary CRISPR-based 

recorders (McKenna et al., 2016). We found that copy-paste SRTs were the most accurate, 

especially as the per-generation mutation rate increased (Figure 6.5B). Cut-and-paste SRTs, 

assuming a fixed population without re-transfection, came second and were slightly better than 

CRISPR recorders. Thus, copy-paste SRTs can be an accurate way to infer lineages and may be 

worth pursuing, particularly for whole organism cellular phylogenies. One advantage that 

Helraiser may have over LINE-1 is that, since the former was derived from the bat genome 

(Grabundzija et al., 2016), it may face fewer endogenous genome defense mechanisms in human 

or mouse cells (Ariumi, 2016).  
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Figure 6.5: Lineage tracing with self-reporting transposons. (A) Schematic of binary CRISPR recorders, cut-
and-paste SRTs, and copy-paste SRTs during lineage recording. (B) Accuracy of computational simulations 
modeling mutation of CRISPR recorders, cut-and-paste SRTs, and copy-paste SRTs. X-axis is the per-generation 
mutation rate. Accuracy, as measured by the Robinson-Foulds distance (Salvador-Martínez et al., 2019), is on the y-
axis. 
 

Although we have created a self-reporting Helitron, there is some concern about 

transposition rate. For lineage tracing, ideally there would be exactly one new insertion per cell 

cycle. However, in our hands, transposition is much slower. Our calling cards experiments in cell 

culture typically last only a few days, while other groups characterized Helraiser activity over a 

month-long time course (Grabundzija et al., 2016, 2018). Perhaps Helitron transposition starts 

slow but ramps up over time. Another open question is what components regenerate the Helitron 

strand complementary to the single stranded circular intermediate. If that is a rate-limiting step, 

finding ways to accelerate its synthesis may lead to faster transposition and, consequently, better 

resolved lineages. 

6.5.5 Final thoughts 
There are a number of other transposases active in vertebrate systems, such as Minos, Passport, 

and Himar1 (Ni et al., 2008). The latter has recently been shown to tolerate fusions and can be 

strongly redirected in bacteria but additional validation is needed in mammalian cells. (Chen and 

Wang, 2019). Tn7 is a bacterial transposase with exquisite site specificity with reduced, but 

incompletely characterized, activity in human cells (Bainton, 1993; Kuduvalli, 2005). Tn5, the 

bacterial transposase used in the assay for transposase-accessible chromatin (ATAC-seq) 

(Buenrostro et al., 2013) has very low activity in live mammalian cells but synthetic dimers can 



230 
 

increase transposition efficiency (Blundell-Hunter et al., 2018). Finally, it is possible that the set 

of transposases we know of represents a fraction of the diversity present in nature. A shotgun 

metagenomics approach (Quince et al., 2017) to discover new enzymes may uncover even more 

redirectable, versatile, or otherwise intriguing transposases to explore. 

6.6 The ecology of chromatin 
The “ecology of the genome” was coined over twenty years ago, and later expounded upon, to 

describe how endogenous transposable elements live in, and interact with, the genome in ways 

akin to how plants and animals engage with ecosystems (Brookfield, 2005; Kidwell and Lisch, 

1997). I argue there also exists an ecology of chromatin, encompassing the multifaceted and 

heterogeneous interactions between proteins and DNA. Euchromatin and heterochromatin, for 

example, are populated by different sets of proteins, are rooted by different post-translational 

epigenetic marks, and support different regulatory activities. Here, we employed transposases, 

tethered and free-range, to traverse this landscape. This work suggests the need to reevaluate 

what “accessibility” means for a transposase. Individual enzymes clearly show varying affinities 

for genomic regions at scales larger than traditionally “accessible” loci. To add, both piggyBac 

and Sleeping Beauty demonstrate how careful analyses of undirected transpositions can reveal 

distinct aspects of genomic regulation. As researchers embrace these tools, and as the tools 

become increasingly refined, it will be exciting to see what genomic wonders transposases, these 

navigators of the nucleus, discover. 
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Appendix 1: Mammalian Calling Cards 
Quick Start Guide 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.xurfnv6) 

A1.1 Abstract 
Transposon calling cards can identify transcription factor (TF) binding sites. This involves fusing 

your favorite TF (YFTF) to the hyperactive piggyBac transposase (HyPBase). This is delivered 

to cells in conjunction with a piggyBac transposon. The TF will visit sites in the genome and 

YFTF-HyPBase will deposit transposons near binding sites. We then generate sequencing 

libraries to map the genome-wide localization of transposons. Finally, we identify significant 

clusters of insertions to identify TF binding sites. 

A1.2 Guidelines 
These experiments are intended to introduce you to the calling cards assay. We recommend 

following them to establish baseline confidence in your transcription factor constructs before 

proceeding to your favorite model system. Alternatively, if you just wish to use the 

directed piggyBac transposase, you can use this protocol to familiarize yourself with our 

molecular workflow. 

A1.3 Materials 
Name Catalog # Vendor 
Lipofectamine 3000 L3000015 Thermo Fisher Scientific 

 
• pRM1258/pENTR_myc-hypPBase: This Gateway entry vector contains the HyPBase 

gene. It is convenient to make the YFTF-HyPBase fusions in this vector because you can 
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easily port the fusion into a variety of other plasmids for AAV packaging, homologous 

recombination into the Rosa26 locus, etc. 

• pRM1114/CMV_HyPBase: This is our standard positive control transposase plasmid. 

For some experiments it may be more convenient to make your YFTF-HyPB fusion in 

this construct. 

• pRM1304/PB_SRT_Rz_Puro: This is a piggyBac self-reporting transposon (SRT) 

encoding a puromycin resistance gene. Cells transfected with this plasmid and HyPBase 

survive puromycin selection. 

• pRM1535/SRT_tdTtomato. This is a piggyBac self-reporting transposon (SRT) donor 

encoding a tdTomato fluorescent reporter. Cells transfected with this plasmid and 

HyPBase can be sorted for based on high fluorescence signal. 

• pRM1294/BrokenHeart: This plasmid is a reporter of piggyBac transposase activity. It 

encodes the DsRed fluorescent protein gene interrupted by a piggyBac transposon. When 

cells are co-transfected with BrokenHeart and piggyBac, the transposon is removed and 

the DsRed reading frame is restored. These cells fluoresce brightly, while cells 

transfected with BrokenHeart alone will not fluoresce. 

• A non-fluorescent control, or "empty," plasmid. This can be something you use regularly 

in-house or a commercially available plasmid, such as NEB's pUC19 vector (#N3041S). 

• Optional: a GFP expression plasmid as a transfection control. This can be something used 

routinely in your lab or a commercially available vector, such as Addgene #54767. 

• HCT-116 cells. Stocks may be obtained from ATCC (#CCL-247) if necessary. 
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A1.4 Steps 
A.1.4.1 Cloning and Sequence Validation of YFTF-HyPBase Fusions 
1. Make C- and N- terminal fusions of your favorite transcription factor (YFTF) with HyPBase. 

It is important to include a linker sequence between these genes. We strongly recommend the 

following amino acid linker sequence: KLGGGAPAVGGGPKAADK. We have tested many and 

have found this sequence works best. It is often convenient to make these fusion constructs by 

using In-Fusion (Clontech/Takara) or Gibson (NEB) cloning to drop YFTF into 

pRM1258/pENTR_myc-hypPBase. We do not have good antibodies to the piggyBac 

transposase, so we recommend designing your construct so that the chimeric protein is tagged 

with myc. 

2. Validate the constructs. Perform restriction digest analysis on the plasmid with at least 3 

restriction enzymes to make sure there were no gross rearrangements. Next, Sanger sequence the 

full chimeric gene, or alternatively perform Illumina sequencing on the whole plasmid. It is 

important to do the restriction digest and EITHER of the sequencing stratgies. 

3. (Only required for Gateway strategy). Move the chimeric gene from the pENTR vector to an 

expression vector. 

A1.4.2 Functional Validation of YFTF-HyPBase Fusions 
4. After creating the YFTF-HyPBase and HyPBase-YFTF fusions, the next steps are to validate 

them. First we will assess whether the fusions retain piggyBac transposase activity. We 

recommend transforming HCT-116 cells with the YFTF fusions and the BrokenHeart transposon 

along with appropriate controls. BrokenHeart plasmid is available from Addgene (#86950). 

Empty plasmid can be any vector that does not have transposase or transposon sequence, e.g. 

pUC19, pBluescript, etc. We recommend using Lipofectamine 3000 (following manufacturer's 
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instructions) to deliver 1 µg total DNA to approximately 200,000 cells in each well of a 6-well 

plate. The following table summarizes each condition and the expected results. 

Condition Empty 
plasmid 

pRM1294 
BrokenHeart 

pRM1114 
CMV_HyPBase 

YFTF-
HyPBase 

HyPBase-
YFTF 

Red 
cells? Notes 

Negative 
control 0.5 µg 0.5 µg NA NA NA None  

Positive 
control NA 0.5 µg 0.5 µg NA NA Many  

YFTF-
HyPBase NA 0.5 µg NA 0.5 µg NA Some Perform in 

duplicate 
HyPBase-
YFTF NA 0.5 µg NA NA 0.5 µg Some Perform in 

duplicate 
 
Optional control #1 -- a "lipofection only" negative control. This is not a bad idea, particularly if 

you are new to lipofections or are testing a new cell line and are concerned about toxicity. These 

cells should show high viability and no fluorescence signal. If these cells are viable but cells 

transfected with DNA are not, it may indicate issues with plasmid isolation (e.g. endotoxin 

contamination). 

Optional control #2 -- a GFP expression plasmid could be transfected in parallel to estimate 

overall transfection efficiencies. 

5. The second validation will test whether the YFTF-fusions successfully redirect piggyBac 

insertions near YFTF binding sites. Since piggyBac inserts into TTAAs, we would like to be able 

to distinguish unique insertions into the same TTAA.  For this reason, we recommend 6 

replicates per condition, at least for your two “test” samples, and the unfused piggyBac (1 6-well 

plate each, 3 total). In addition, we recommend running one well as a transposon-only negative 

control and one well as a mock lipofection negative control. Here we will use puromycin 

selection to obtain cells with transpositions. Once again, we will work with HCT-116 cells. 

Condition Empty 
plasmid 

pRM1304 
PB_SRT_Rz_Puro 

pRM1114 
CMV_HyPBase 

YFTF-
HyPBase 

HyPBase-
YFTF 

Alive 
cells? Notes 
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No 
transfection 
control 

1 µg NA NA NA NA None 

No 
colonies 
after 
selection 

SRT only 
control 0.5 µg 0.5 µg NA NA NA None 

No 
colonies 
after a few 
days 

Positive 
control NA 0.5 µg 0.5 µg NA NA Many Perform 6 

replicates 
YFTF-
HyPBase NA 0.5 µg NA 0.5 µg NA Some Perform 6 

replicates 
HyPBase-
YFTF NA 0.5 µg NA NA 0.5 µg Some Perform 6 

replicates 
We typically split each well 1:1 and transfer to a 10 cm dish after 24 hours. We add puromycin 

to a final concentration of 2 µg/ml after cells have seeded, typically 6-8 hours after transferring. 

Media is replenished every two days. All replicates are cultured separately. Cells are harvested 

after the SRT-only control transfectants are dead. 

A1.4.3 Calling Card Library Preparation 
6. Calling card libraries can now be made from successfully selected cells. For first-time users, 

we recommend following the bulk calling card protocol for making libraries (Appendix 2). 

7. (Advanced) Depending on your application, you may also be interested in making single cell 

calling card libraries (Appendix 3). 

A1.4.4 Sequencing, Analyzing, and Visualizing Calling Card Data 
8. If your library preparation has been successful, you are ready to sequence your calling card 

libraries. We have successfully sequenced libraries on the Illumina MiSeq, MiniSeq, HiSeq, and 

NextSeq platforms. Due to relatively low sequence complexity, we typically run our libraries 

with 50% PhiX genome spiked in. 



246 
 

A1.4.5 Next Steps 
9. If you've made it this far and your data look great, congratulations! One or both of the YFTF 

fusions have worked and successfully enriched for insertions near YFTF binding sites. You may 

now wish to repeat the above experimental workflow with your model systems, or try different 

transgenesis techniques (e.g. electroporation, nucleofection, viral transduction). Otherwise, you 

are now ready to move into your model system and study YFTF binding. Please let us know if 

you have any difficulties and we will do our best to provide assistance. 
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Appendix 2: Bulk Calling Cards Library 
Preparation 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.xwhfpb6) 

A2.1 Abstract 
This protocol describes how to create calling card libraries from bulk RNA. This protocol 

assumes you have successfully transformed cells with piggyBac self-reporting transposons and 

either undirected piggyBac transposase or your favorite transcription factor (YFTF) fused 

to piggyBac. Your cells are now ready for RNA extraction, SRT amplification, and library 

preparation.  

A2.2 Guidelines 
Please read this protocol in its entirety before starting. For several steps, it may help to pre-

program your thermocycler with the listed settings. 

Please read and familiarize yourself with the manuals for the QIAGEN RNEasy Plus 

Mini Kit and the Nextera XT Tagmentation Kit. The instructions are meant to summarize those 

workflows; however, when in doubt, please refer to the manufacturer's instructions for guidance. 

Ensure that you have performed multiple (i.e. 8-12), independent replicates of your 

experiment before proceeding. The calling card assay relies on the clustering of multiple nearby 

insertions to identify TF binding sites. Some regions of the genome may have relatively few 

insertion sites for the transposase. Therefore, doing multiple independent replicates increases the 

statistical power to discriminate between a true binding site and background noise. 
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This protocol is meant to describe how we prepare calling card libraries. While it is 

possible that another kit or component could equally suffice, we have not tested any substitutions 

and do not officially support deviations from this protocol. This document enumerates what we 

have had success with and is a starting point from which we can best help troubleshoot. 

A2.3 Materials 
Name Catalog # Vendor 
Agencourt Ampure XP A63880 Beckman Coulter 

dNTP  639125 Takara 

2x Kapa HiFi Hotstart Readymix  KK2602 Kapa Biosystems 

Maxima H Minus Reverse Transcriptase (200 
U/uL) 

EP0752 Thermo Fisher 
Scientific 

Qubit dsDNA HS Assay Kit Q32851 Thermo Fisher 
Scientific 

Capillary electrophoresis instrument (e.g. Agilent 
Tapestation 4200) 

  

RNEasy Plus Mini Kit 74134 Qiagen 

2-mercaptoethanol 21985023 Gibco - Thermo Fisher 

Qubit RNA HS Assay Kit Q32852 Thermo Fisher 
Scientific 

RNaseOUT™ Recombinant Ribonuclease Inhibitor 10777019 Thermo Fisher 
Scientific 

RNase H M0297S New England Biolabs 

Nextera XT DNA Library Preparation Kit  FC-131-1024 Illumina, Inc. 

High Sensitivity D1000 Reagents 5067-5585 Agilent Technologies 

High Sensitivity D1000 ScreenTape 5067-5584 Agilent Technologies 

 

Primers 

>SMART_dT18VN 

AAGCAGTGGTATCAACGCAGAGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

VN 

>SRT_PAC_F1 
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CAACCTCCCCTTCTACGAGC 

>SRT_tdTomato_F1 

TCCTGTACGGCATGGACGAG 

>SMART 

AAGCAGTGGTATCAACGCAGAGT 

>Raff_ACTB_F 

CCTCGCCTTTGCCGATCCG 

>Raff_ACTB_R 

GGATCTTCATGAGGTAGTCAGTCAGGTCC 

Barcoded piggyBac primers, for example: 

>OM-PB-ACG (barcode sequence is underlined) 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA

TCTACGTTTACGCAGACTATCTTTCTAG 

You should have multiple barcoded primers. See Table 2.4 for more examples. 

Indexed Nextera N7 primers, for example: 

>Nextera_N701 (index sequence is underlined) 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG 
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You should have multiple indexed primers. These can be either official Nextera indexes 

or custom, lab-specific indexes. For a comprehensive list of official Nextera indexes, consult the 

Illumina Adapter Sequences Document. 

These primers can be ordered purified by standard desalting. 

Other reagents 

• Ethanol (96-100%) 

• Ethanol (70%) 

• Molecular biology grade water (ddH2O) 

A2.4 Steps 
A2.4.1 RNA Extraction with QIAGEN's RNEasy Plus Mini Kit 
1. Harvest cells. Process each replicate independently. Do not overload gDNA Eliminator 

columns. If you have more than 107 cells, split cells in half and process on two columns, then 

merge the RNA pools. Adherent cells may have to be dissociated using trypsin or a cell scraper. 

Pellet cells by centrifuging at 300g for 5 minutes. Aspirate all of the supernatant. 

2. Add Buffer RLT Plus (with added 2-mercaptoethanol) to the pellet. Use the following table as 

a guide. 

# cells Buffer RLT Plus 

< 5e6 350 µl 
5e6 to 1e7 600 µl 
Note the volume used here 

Mix by vortexing or pipetting. 
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3. Homogenize the lysate by vortexing briefly, then letting rest on bench for 1 minute. 

Alternatively, cells can be homogenized using QIAshredder spin columns or by repeatedly 

passing through a 20-gauge needle. 

4. Transfer lysate to a gDNA Eliminator spin column placed in a 2 ml collection tube. Centrifuge 

for 30 seconds at ≥ 8,000g. Ensure no liquid remains on the column membrane. Repeat 

centrifugation if necessary. Keep the flow-through and discard the column. 

5. Add 1 volume (i.e. 350 or 600 µl) 70% ethanol to the flow-through and mix by pipetting. 

6. Transfer up to 700 µl of the sample to an RNEasy spin column placed in a 2 ml collection 

tube. Spin for 15 seconds at ≥ 8,000g. Discard the flow-through. If sample volume was greater 

than 700 µl, centrifuge sample in successive batches on the same column, discarding the flow-

through at every step. 

7. Add 700 µl of Buffer RW1 to the column and spin for 15 seconds at ≥ 8,000g to wash. 

Discard flow-through. 

8. Prepare DNase solution by adding 10 µl of DNaseI to 70 µl of Buffer RDD for each sample. 

Add 80ul of DNase solution to each column. Incubate at room temperature for 15 minutes. 

9. Add 350 µl of Buffer RW1 to the column and spin for 15 seconds at ≥ 8,000g to wash. 

Discard flow-through. 

10. Add 500 µl of Buffer RPE to the column. Spin for 15 seconds at ≥ 8,000g. Discard flow-

through. 

11. Repeat Step 9 but spin for 2 minutes. Discard the flow-through and the collection tube. 

12. Place the spin column in a new collection tube and centrifuge for 1 minute at ≥ 8000g.  
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13. Place the spin column in a new 1.5 ml collection tube. Add 40 µl RNase-free water to the 

column and spin for 1 minute at ≥ 8,000g to elute RNA. RNA can be stored at –80ºC. 

14. Dilute 1 µl of RNA in 9 µl of ddH2O and quantitate using the Qubit RNA HS Assay Kit. 

A2.4.2 cDNA Synthesis 
15. For cDNA synthesis, continue processing each replicate separately. Prepare the reverse 

transcription (RT) reaction mix: 

• 2 µg total RNA 

• 1 µl of 50 µM SMART_dT18VN primer 

• 1 µl of 10 mM dNTPs 

• Raise to 14 µl with ddH2O 

Incubate RT mix at 65 °C for 00:05:00 

Place on ice for 1 minute 

16. Create 1x Maxima RT buffer: 

• For 5 or fewer samples, combine 1 uL of 5X Maxima RT buffer with 4 uL of ddH2O. 

• Mix by pipetting and store on ice. 

17. Create a 0.5x Maxima RT H Minus enzyme dilution: 

• Mix an equal volume of Maxima RT H Minus Enzyme with the 1x Maxima RT buffer 

made in step 16 (e.g. 2 uL of Enzyme + 2 uL of 1x buffer). 
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You will need 1 uL of the 0.5x enzyme dilution for every sample being processed. Avoid 

pipetting volumes < 1 uL. 

18. Add the following to the RT mix: 

• 4 µl 5X Maxima RT Buffer 

• 1 µl RNaseOUT 

• 1 µl of 0.5X Maxima RT H Minus enzyme (1:1 mixture of 1X Maxima RT Buffer and 

Maxima RT H Minus enzyme = 100 U) 

Mix by pipetteing and incubate at 50 °C for 01:00:00 

19. Heat inactivate the reaction by incubating at 85 °C for 00:10:00 

20. Clean up reaction using 1 µl RNase H and incubating at 37 °C for 00:30:00 

Digestion with RNase H removes the complementary RNA strand from the DNA-RNA 

first strand duplex. This is thought to aid amplification of longer cDNA molecules (> 1 kb) 

21. cDNA can be stored at –20ºC 

A2.4.3 Amplification of Self-Reporting Transcripts 
22. This PCR will specifically amplify self-reporting transcripts from cDNA libraries. Prepare 

the following solution: 

• 25 µl 2X Kapa HiFi HotStart ReadyMix 

• 1 µl of 25 µM Reverse Primer (SMART) 

• 2 µl of cDNA 
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• 21 µl of ddH2O 

• 1 µl of Forward Primer, either: 

• 25 µM SRT_PAC_F1 primer, if using PB-SRT-Puro 

• 25 µM SRT_tdTomato_F1, if using PB-SRT-tdTomato 

This PCR can be run as half-size reactions by halving each of the listed volumes. If you 

find yourself doing this PCR repeatedly, this can be a way to decrease costs. 

If you have multiple replicates, amplify them separately. 

23. Perform PCR using the following thermocycling parameters: 

• 95ºC for 3 minutes 

• 20 cycles of: 

o 98ºC for 20 seconds 

o 65ºC for 30 seconds 

o 72ºC for 5 minutes 

• 72ºC for 10 minutes 

• 4ºC forever 

24. At this point, gel electrophoresis can be performed to check the quality of amplification. We 

recommend running 5 uL of the PCR product from step 23 on 1% TAE agarose gel. The 

expected product is a smear extending from ~1 kb up to 5 kb. 
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Figure A2.1: Representative products of SRT amplification. 1% TAE gel showing expected products of SRT 
amplification. Left: the first 12 lanes are biological replicates of a calling card experiment, while the thirteenth is a 
no template control. The calling card libraries appear as smears extending up to 5 kb. Right: amplification of β-actin 
with Raff_ACTB_F and Raff_ACTB_R from the same RT product as the SRT samples produces the expected 626-
bp product. The ladder is NEB's 1 kb Plus (previously, 2-Log) DNA Ladder (#N3200S). 
 

As a control, we recommend that the constitutive β-actin gene be amplified in parallel to 

the calling card libraries in steps 22 and 23. The control amplification uses the same PCR mix 

and thermocycler settings as step 22 and 23, but replaces the calling card forward and reverse 

primers with human β-actin primers (sequence provided in Materials as Raff_ACTB_F and 

Raff_ACTB_R). The expected product of the B-actin amplification is 626 bp (see Figure 1 

in https://doi.org/10.2144/97233st02). 

A2.4.4 Purification of PCR Products 

25. Vortex AMPure XP beads to resuspend them. Beads should be brought to room temperature 

for at least 30 minutes prior to use. 

26. Add 30 µl beads to each 50 µl PCR mixture (0.6x ratio; if you did a half-size PCR, add 15 µl 

beads). Mix by pipetting 10 times until evenly dispersed. 

27. Incubate at room temperature for 00:05:00 

28. Place on a magnetic rack for 2 minutes. Aspirate supernatant and discard. 
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29. Add 200 µl of freshly-prepared 70% ethanol and incubate ≥ 30 seconds. Aspirate supernatant 

and discard. 

30. Repeat Step #29. 

31. Air dry the pellet at room temperature for 2 minutes. 

32. Remove the tube from the magnetic rack. Add 20 µl ddH2O to elute PCR products. Mix by 

pipetting until evenly dispersed. Incubate off the rack for 2 minutes. 

33. Place on magnetic rack for 1 minute, or until supernatant is clear. 

34. Transfer supernatant to new tube. Create a 1:10 dilution and quantitate using the Qubit 

dsDNA HS Assay Kit. 

Expected concentration of product should be 10-20 ng/µl. 

A2.4.5 Generation of Bulk Calling Card Libraries 

35. The tagmentation protocol fragments the long PCR products into libraries suitable for 

sequencing. This protocol is based on the standard Drop-seq library preparation workflow. 

Continue processing each replicate independently. 

36. Preheat thermocycler to 55 °C 

37. Take 1 ng of PCR product and resuspend in a total of 5 µl ddH2O in a PCR strip tube. 

38. Add 10 µl of Nextera Tagment DNA (TD) Buffer and 5 µl of Amplicon Tagment Mix 

(ATM). Pipette to mix and briefly spin down; bubbles are normal. Incubate at 55 °C for 00:05:00 
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39. Add 5 µl of Neutralization Tagment (NT) Buffer. Pipette to mix and briefly spin down; 

bubbles are normal. Incubate at room temperature for 00:05:00 

40. Add the following to each PCR tube in order: 

• 15 µl Nextera PCR Mix (NPM) 

• 8 µl ddH2O 

• 1 µl of 10 µM barcoded piggyBac primer (e.g. OM-PB-ACG) 

• 1 µl of 10 µM indexed Nextera N7 primer (e.g. Nextera_N701) 

Each replicate should be identifiable by its barcode-index combination. It would be ideal 

if each replicate had a unique barcode and a unique index assigned to it. For some experimental 

setups, that may not be feasible. One option might be to assign a different index for different 

conditions/treatments, and within a condition/treatment, assign different barcodes to each 

replicate. 

41. Perform PCR using the following thermocycling parameters: 

• 95ºC for 3 minutes 

• 13 cycles of: 

o 95ºC for 10 seconds 

o 50ºC for 30 seconds 

o 72ºC for 30 seconds 

o 72ºC for 5 minutes 
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• 4ºC forever 

42. Purify PCR libraries using AMPure XP beads. Vortex AMPure XP beads to resuspend them. 

Beads should be brought to room temperature for at least 30 minutes prior to use. 

43. Add 35 µl beads to each 50 µl PCR mixture (0.7x ratio). Mix by pipetting 10 times until 

evenly dispersed. 

44. Incubate at room temperature for 00:05:00 

45. Place on a magnetic rack for 2 minutes. Aspirate supernatant and discard. 

46. Add 200 µl of freshly-prepared 70% ethanol and incubate ≥ 30 seconds. Aspirate supernatant 

and discard. 

47. Repeat Step #46. 

48. Air dry the pellet at room temperature for 2 minutes. 

49. Remove the tube from the magnetic rack. Add 11 µl ddH2O to elute PCR products. Mix by 

pipetting until evenly dispersed. Incubate off the rack for 2 minutes. 

50. Place on magnetic rack for 1 minute, or until supernatant is clear. Transfer supernatant to 

new tube. 

A2.4.6 Final Quantitation and Sequencing 

51. Create a 1:10 dilution of each final library. Measure concentrations using the Qubit dsDNA 

HS Assay Kit or on a TapeStation device with a High Sensitivity D1000 ScreenTape. Libraries 

should be smoothly distributed between 300-60 bp. 
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Expected concentration of product should be 2-4 ng/µl. 

 
Figure A2.2: Representative TapeStation trace of bulk calling card libraries. This sample was run on a High 
Sensitivity D5000 ScreenTape. 
 
52. Libraries can be sequenced on any Illumina sequencing platform. Due to the low complexity 

nature of calling card libraries, we recommend adding PhiX at a final concentration of 50%. 

Bulk calling card libraries only use the information from read 1 for mapping insertions. 

Therefore, single-end sequencing should be sufficient, with at least 75 bp for read 1. An index 1 

read will also be necessary for demultiplexing samples. 
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Appendix 3: Single Cell Calling Cards 
Library Preparation 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.xwifpce) 

A3.1 Abstract 
This protocol describes how to create calling card libraries from single cell RNA. We assume 

you have successfully transformed cells with piggyBac self-reporting transposons and either 

undirected piggyBac transposase or your favorite transcription factor (YFTF) fused to piggyBac. 

We also assume you have optimized the dissociation protocol for your specific cells or tissues 

and can generate single cell suspensions. 

A3.2 Guidelines 
Please read this protocol in its entirety before starting. For several steps, it may help to pre-

program your thermocycler or heat block with the listed settings. While single cell calling card 

(scCC) libraries can, in principle, be generated from any poly(A)-based scRNA-seq method, this 

protocol specifically describes how to proceed from 10x Chromium 3' scRNA-seq libraries. 

Please obtain all additional kits, reagents, and equipment as specified in the 10x Chromium 

Single Cell 3' User Guide. 

The components in this protocol are sensitive to repeated freeze-thaw cycles, specifically 

the modified primers for amplifying self-reporting transcripts and the components of the Nextera 

Mate Pair Library Prep kit. We recommend pipetting the primers (at 100 µM) and kit buffers 

(CB: Circularization Buffer 10X; ERP3: End Repair Mix; ATL2: A-Tailing Mix; LIG2: Ligation 
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Mix; STL: Stop Ligation Buffer; EPM: Enhanced PCR Mix) into five-use aliquots and storing at 

–20ºC until needed. Sterilize the Axygen 1.7 ml tubes in an autoclave. 

In bulk calling cards, we recommend collecting 8-12 independent biological replicates to 

ensure sufficient statistical power for identifying true binding sites. This is not necessary in 

single cell calling cards, where each cell is barcoded and is thus considered an independent 

replicate. 

This protocol is meant to describe how we prepare calling card libraries. While it is 

possible that another kit or component could equally suffice, we have not tested any substitutions 

and do not officially support deviations from this protocol. This document enumerates what we 

have had success with and is a starting point from which we can best help troubleshoot. 

A3.3 Materials 
Name Catalog # Vendor 
dNTP  639125 Takara 

2x Kapa HiFi Hotstart Readymix  KK2602 Kapa Biosystems 

Dynabeads M-280 Streptavidin 11205D Thermo Fisher 
Scientific 

Maxima RT 5X Buffer Provided with 
EP0752 

Thermo Fisher 
Scientific 

Maxima H Minus Reverse Transcriptase (200 U/uL) EP0752 Thermo Fisher 
Scientific 

High Sensitivity D5000 ScreenTape 5067-5592 Agilent Technologies 

High Sensitivity D5000 Reagents 5067-5593 Agilent Technologies 

RNaseOUT™ Recombinant Ribonuclease Inhibitor 10777019 Thermo Fisher 
Scientific 

High Sensitivity D1000 Reagents 5067-5585 Agilent Technologies 

High Sensitivity D1000 ScreenTape 5067-5584 Agilent Technologies 

Chromium Single Cell 3′ Library & Gel Bead Kit v2 120267 10x Genomics 

Chromium Single Cell A Chip Kit 1000009 10x Genomics 

Chromium i7 Multiplex Kit 120262 10x Genomics 

Nextera Mate Pair Library Prep Kit FC-132-1001 Illumina, Inc. 

1.7 ml Axygen Maxymum Recovery Microcentrifuge 
Tubes 

MCT-175-L-C Axygen 

Covaris T6 (6 x 32 mm) glass tubes 520031 Covaris 

Covaris Snap-Cap - Teflon Silicone Septa 8 mm 520042 
 

Ficoll PM-400 17030010 Ge Healthcare 
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NEBuffer 2 (10X) B7002S New England Biolabs 

 
Primers 

All primers should be resuspended in Low TE Buffer (10 mM Tris-HCl ph 8.0, 0.1 mM EDTA) 

at a final concentration of 100 µM and stored at –20ºC. 

The following primers should be purified by HPLC and stored as 5 µl aliquots: 

>Bio_Illumina_Seq1_scCC_10X_3xPT 

/5Phos/ACACTCTTTCCC/iBiodT/ACACGACGCTCTTCCGA*T*C*T 

>Bio_Long_PB_LTR_3xPT 

/5Phos/GCGTCAATTTTACGCAGAC/iBiodT/ATCTTTC*T*A*G 

These primers should be purified by PAGE: 

>scCC_PB_CustomRead2 

CGTGTAGGGAAAGAGTGTGCGTCAATTTTACGCAGACTATCTTTCTAG 

>scCC_CustomIndex1 

GAGACTGGCAAGTACACGTCGCACTCACCATGA 

These primers can be purified by standard desalting: 

>scCC_P5_adapter 

AATGATACGGCGACCACCGAGATCTTCACTCATTCCACACGACTCCTTGCCAGTC

TC*T 
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>scCC_P7_adapter 

/5Phos/GAGACTGGCAAGTACACGTCGCACTCACCATGA[index]ATCTCGTATGCCG

TCTTCTGCTTG 

Note that you can replace [index] with an 8-10 bp sequence for multiplexing samples. For more 

guidance, consult the Illumina Adapter Sequences Document. 

>scCC_P5_primer 

AATGATACGGCGACCACCGAGATC 

>scCC_P7_primer 

CAAGCAGAAGACGGCATACGAGAT 

>10x_TSO 

AAGCAGTGGTATCAACGCAGAGTACATrGrGrG 

Equipment 

• 10x Chromium Controller 

• Thermocycler for PCR 

• Heat blocks or programmable thermoshaker 

• Covaris AFA Ultrasonicator, model S2, S220, or E220. 

Other reagents 

• Consult the 10x Chromium Single Cell 3' User Guide for scRNA-specific consumables 
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• Ethanol (96-100%) 

• ddH2O 

A3.4 Steps 
A3.4.1 Single Cell Barcoding and Reverse Transcription 
1. Prepare cells for isolation and encapsulation in gel bead emulsions (GEMs). If your 

experiment involves a piggyBac transposase with PB-SRT-Puro transposons, cells that have 

survived selection should be dissociated and resuspended in solution. If you are 

using piggyBac with PB-SRT-tdTomato, we recommend using FACS to isolate tdTomato-

positive cells, running cells transfected with PB-SRT-tdTomato alone as a gating control. 

2. Follow 10x's instructions for GEM Generation & Barcoding, with this modification: 

• Step 1.1: Replace the RT Primer with an equivalent volume of Low TE Buffer. In v3 

chemistry, The RT primer has been renamed Template Switch Oligo. 

Proceed with Steps 1.2–1.5 as instructed: loading the Single Cell 3' chip, running the controller, 

transferring GEMs, and reverse transcription. 

Incubate the RT reaction under standard conditions. 

• Set lid temperature to 53 °C 

• 00:45:00 53 °C 

• 00:05:00 85 °C 

• Hold at 4 °C 
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3. Step 2.1: clean the GEM-RT mixture using the Recovery Agent and DynaBeads MyOne 

Silane per 10x's instructions. At the final elution stage, add 36.5 µl Elution Solution I to the tube, 

mix by pipetting, and incubate at room temperature for 1 minute. Place the tube in a 10x 

Magnetic Separator in the Low position until the solution turns clear. Transfer 36 µl of the eluted 

sample to a new tube. 

4. Divide the eluate into two 18-µl aliquots. These can be stored at –20ºC until needed. One 

aliquot will be used for scRNA-seq library preparation, while the other will be used to generate 

scCC libraries. 

A3.4.2 Single Cell RNA-seq Library Preparation and Sequencing 
5. To continue preparing scRNA-seq libraries, we need to add the template switch 

oligonucleotide to first strand synthesis products from the RT reaction. Take one of the 18 µl 

aliquots and thaw on ice. 

6. Prepare the following 1X master mix: 

• 20 µl Maxima 5X RT buffer 

• 20 µl 20% w/v Ficoll PM-400 

• 10 µl 10 mM dNTPs 

• 2.5 µl RNaseOUT 

• 2.5 µl 100 µM 10x_TSO 

7. To the mix, add 18 µl of first strand RT product and 22 µl H2O. Add 5 µl Maxima H– RTase 

to the reaction, flick to the mix, and centrifuge briefly.  
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8. Incubate: 

• 00:30:00 25 °C 

• 01:30:00 50 °C 

• 00:05:00 85 °C 

9. Clean up following 10x's post GEM-RT Cleanup protocol, starting with the addition of 

DynaBeads MyOne Silane (Step 2.1, part D). Clean samples per manufacturer's instructions. 

10. Complete cDNA amplification and library construction according to the 10x's instructions 

(Steps 2.2–3.7). For each sample, record which index sample index was used for the final PCR. 

Quantiate each library by running a 1:10 dilution on an Agilent TapeStation High Sensitivity 

D1000 ScreenTape. 

11. Finished scRNA-seq libraries can be pooled and sequenced on Illumina MiSeq, NextSeq, 

HiSeq, and NovaSeq platforms. 

A3.4.3 Amplification of Self-Reporting Transcripts 
12. To prepare single cell calling cards libraries, we start by amplifying self-reporting transcripts 

from the other aliquot of first-strand synthesis product. As before, thaw the remaining 18 µl 

aliquot on ice. 

13. Prepare a PCR primer cocktail in a PCR tube: 

• 5 µl of 100 µM Bio_Illumina_Seq1_scCC_10X_3xPT primer 

• 5 µl of 100 µM Bio_Long_PB_LTR_3xPT primer 

• 10 µl of Low TE Buffer 
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Mix by vortexing and spin down briefly. This cocktail can be stored at –20ºC. 

14. Prepare the following PCR mix in PCR tube: 

• 25 µl of 2X Kapa HiFi Hotstart Readymix 

• 18 µl of first-strand synthesis product 

• 6 µl of ddH2O 

• 1 µl of PCR primer cocktail 

Keep on ice until ready for PCR. 

15. Perform PCR using the following thermocycling parameters: 

• 98ºC for 3 minutes 

• 20 cycles of: 

o 98ºC for 20 seconds 

o 67ºC for 30 seconds 

o 72ºC for 5 minutes 

o 72ºC for 10 minutes 

• 4ºC forever. 

The number of cycles may need to be adjusted depending on the cell type and number of cells 

represented in the library. If uncertain, you can use 9 µl of first-strand synthesis product as 

template, reserving the other 9 µl for another round of PCR with more cycles as needed.  
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A3.4.4 Purification of PCR Products 
16. Vortex AMPure XP beads to resuspend them. Beads should be brought to room temperature 

for at least 30 minutes prior to use. 

17. Add 30 µl beads to the 50 µl PCR mixture (0.6x ratio). Mix by pipetting 10 times until 

evenly dispersed. 

18. Incubate at room temperature for 00:05:00 

19. Place on a magnetic rack for 00:05:00 

Aspirate supernatant and discard. 

20. While the tube is still on the rack, add 200 µl of 70% ethanol and incubate ≥ 30 seconds. 

Aspirate supernatant and discard. 

21. Repeat Step #20 

22. Air dry the pellet at room temperature for 00:02:00 

23. Remove the tube from the magnetic rack. Add 40 µl QIAGEN Elution Buffer to elute PCR 

products. Mix by pipetting until evenly dispersed. Incubate off the rack for 00:05:00 

24. Place on magnetic rack for 00:05:00 or until supernatant is clear. Transfer supernatant to new 

1.7 ml tube. 

25. Take 1 µl of the eluate and dilute in 9 µl of ddH2O to make a 1:10 dilution. Quantitate on 

TapeStation using a High Sensitivity D5000 ScreenTape. Measure the molar concentration of the 

sample, taking everything from 250 bp to 7000 bp. Ideally, the diluted sample will be at least 750 

pM, corresponding to 7.5 nM for the original eluate. If you kept half of the template aside, you 
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can increase the number of PCR extension cycles until you get to a minimum of 7.5 nM of 

product. 

This is what a representative TapeStation trace looks like. The library should be smooth and 

unimodal. 

 
Figure A3.1: Representative TapeStation trace of SRT amplification from 10x 3' scRNA-seq library. 
 

A3.4.5 Single Cell Calling Cards – Circularization 
26. Thaw an aliquot of CB – Circularization Buffer 10X on ice. 

27. Add the following components to a new 1.7 ml tube in this order: 

1. 300 fmol self-reporting transcripts from Step 25 

2. ddH2O up to a total of 268 µl 

3. 30 µl CB 

4. 2 µl Circularization Ligase 
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To calculate what volume of eluate corresponds to 300 fmol, divide 300 by the molar 

concentration (in nM) of the eluate. For example, if the concentration is 10 nM, 300 fmol/10 nM 

= 30 µl, and consequently you would need 238 µl ddH2O. If you have less than 300 fmol total, 

you may proceed but might need to make adjustments at the final PCR step. If you do not have a 

way to quantitate the molarity of your solution, we have observed that 300 fmol of self-reporting 

transcripts is (very) approximately 200 ng. 

We strongly encourage you to calculate the volume of SRT solution based on molarity, not by 

mass. The circularization reaction is sensitive to starting concentration. If overloaded, it can lead 

to excess intermolecular ligations and, subsequently, increased noise with respect to the 

assignment of insertions to cell types. 

Mix by flicking the tube and spin down briefly. Incubate at 30 °C overnight (12-16 hours). 

A3.4.6 Single Cell Calling Cards – Exonuclease and Setup 
28. Add 9 µl of PS1 – Exonuclease directly to the overnight circularization mixture. Flick to mix, 

spin down, and incubate as following: 

• 00:30:00 37 °C 

• 00:30:00 70 °C 

29. While the exonuclease digestion proceeds, prepare for the rest of the library preparation. Fill 

a large ice bucket with ice. Thaw, on ice, aliquots of: 

• STL – Stop Ligation Buffer 

• ERP3 – End Repair Mix 



271 
 

• ATL2 – A-tailing Mix 

• LIG2 – Ligation Mix 

• EPM – Enhanced PCR Mix 

Also thaw the following oligonucleotides: 

• scCC_P5_adapter (100 µM) 

• scCC_P7_adapter (100 µM) 

• scCC_P5_primer (25 µM) 

• scCC_P7_primer (25 µM) 

Finally, thaw NEBuffer 2 

30. While the exonuclease incubates, anneal the scCC adapters. Prepare the following mixture in 

a PCR tube, using a different indexed scCC_P7_adapter for each sample: 

• 4.5 µl scCC_P5_adapter 

• 4.5 µl scCC_P7_adapter 

• 1 µl NEBuffer 2 

31. Anneal scCC adapters in a thermocycler using the following settings: 

• 95ºC for 5 minutes 

• 70ºC for 15 minutes 
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• Ramp down to 25ºC as slowly as possible 

• 25ºC for 5 minutes 

• 4ºC forever 

scCC adapters can be kept on ice until needed. 

Adapters should be prepared fresh. NEBuffer 2 contains magnesium salts which can promote 

DNase activity, leading to degradation of adapters. 

32. Prepare the streptavidin-coated magnetic beads. These instructions are for 1 sample; up to 5 

can be prepared in a single 1.7 ml tube. Resuspend Dynabeads M-280 by vortexing briefly. 

33. Transfer 20 µl of beads to a clean 1.7 ml tube. 

34. Place on a magnetic rack for 1 minute. Once clear, aspirate and discard supernatant. 

35. Add 40 µl BBB – Bead Bind Buffer. Incubate for 1 minute, then aspirate and discard 

supernatant. 

36. Repeat Step #35. 

37. Remove from rack and add 300 µl BBB. Beads can be stored at room temperature until 

needed. 

38. The exonuclease digestion should be complete by now. Add 12 µl STL – Stop Ligation 

Buffer. Flick to mix and centrifuge gently. 
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A3.4.7 Single Cell Calling Cards – Shearing and Capture 
39. Transfer the entire sample (now approximately 320 µl) to a Covaris T6 tube. Add ddH2O as 

necessary to fill to the top, then cap the tube. Check to make sure there are no air bubbles. 

40. Shear DNA on a Covaris ultrasonicator. Here are recommended settings for various models 

(we have tested this protocol on the E220): 

Model S2 S220 E220 
Peak Power Intensity N/A 240 200 
Intensity 8 N/A N/A 
Duty Cycle/Factor 20% 20% 20% 
Cycles Per Burst 200 200 200 
Time 40 40 40 
Temperature 6 6 6 
Recommended shearing settings for preparing scCC libraries 

41. Transfer the sample to a new 1.7 ml tube. Add 300 µl of bead solution to the sheared DNA. 

42. Incubate 20 °C 00:15:00 

If incubating on a thermoshaker, shake at 1000 RPM. Otherwise, flick to mix every 2 minutes. 

43. Centrifuge briefly (5-10 seconds), then place on a magnetic rack for 1 minute. Discard the 

supernatant. 

44. Wash 4 times with BWB – Bead Wash Buffer: 

• Add 200 µl BWB 

• Remove from rack, flick to mix, and spin down briefly (1-2 seconds) 

• Place on rack for 30 seconds 

• Discard supernatant 
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45. Wash 2 times with RSB – Resuspension Buffer: 

• Add 200 µl RSB 

• Remove from rack, flick to mix, and spin down briefly 

• Place on rack for 30 seconds 

• Discard supernatant 

For the second wash, do not discard supernatant until ready to add the master mix in the next 

step. 

Repeat for a total for 4 washes 

A3.4.8 Single Cell Calling Cards – End Repair, A-Tailing, and Adapter 
Ligation 
46. Prepare master mixes for End Repair and A-Tailing as follows. 

1X End Repair Master Mix: 

• 40 µl ERP3 – End Repair Mix 

• 60 µl ddH2O 

1X A-Tailing Master Mix: 

• 12.5 µl ATL2 – A-Tailing Mix 

• 17.5 µl ddH2O 

47. Discard all supernatant from the DNA sample. Centrifuge briefly, then place on a magnetic 

rack. 
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48. Use a 10 µl pipette to aspirate any residual supernatant. 

49. Add 100 µl End Repair reaction mix, remove from the rack, flick to mix, and centrifuge 

briefly (do not allow beads to pellet). 

50. Incubate 30 °C 00:30:00 

If incubating on a thermoshaker, shake at 1000 RPM, to prevent beads from settling. 

51. Centrifuge briefly (5-10 seconds), then place on a magnetic rack for 1 minute. Discard the 

supernatant. 

52. Wash 4 times with BWB – Bead Wash Buffer: 

• Add 200 µl BWB 

• Remove from rack, flick to mix, and spin down briefly (1-2 seconds) 

• Place on rack for 30 seconds 

• Discard supernatant 

Repeat for a total for 4 washes 

53. Wash 2 times with RSB – Resuspension Buffer: 

• Add 200 µl RSB 

• Remove from rack, flick to mix, and spin down briefly 

• Place on rack for 30 seconds 

• Discard supernatant 
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For the second wash, do not discard supernatant until ready to add the master mix in the next 

step. 

54. Discard all supernatant from the DNA sample. Centrifuge briefly, then place on a magnetic 

rack. Use a 10 µl pipette to aspirate any residual supernatant. 

55. Add 30 µl A-Tailing reaction mix, remove from the rack, flick to mix, and centrifuge briefly 

(do not allow beads to pellet). 

56. Incubate 37 °C 00:30:00 

If incubating on a thermoshaker, shake at 1000 RPM, to prevent beads from settling. 

57. Add the following components in order to the A-tailing mix: 

• (30 µl A-tailing reaction) 

• 2.5 µl LIG2 – Ligation Mix 

• 4 µl ddH2O 

• 1 µl annealed scCC adapter 

Flick to mix and centrifuge briefly (do not allow beads to pellet). 

58. Incubate 30 °C 00:10:00 

59. Add 5 µl STL – Stop Ligation Buffer. Flick to mix. 

60. Centrifuge briefly (5-10 seconds), then place on a magnetic rack for 1 minute. Discard the 

supernatant. 



277 
 

61. Wash 4 times with BWB – Bead Wash Buffer: 

• Add 200 µl BWB 

• Remove from rack, flick to mix, and spin down briefly (1-2 seconds) 

• Place on rack for 30 seconds 

• Discard supernatant 

Repeat for a total for 4 washes 

62. Wash 2 times with RSB – Resuspension Buffer: 

• Add 200 µl RSB 

• Remove from rack, flick to mix, and spin down briefly 

• Place on rack for 30 seconds 

• Discard supernatant 

For the second wash, do not discard supernatant until ready to add the master mix in the next 

step. 

A3.4.9 Single Cell Calling Cards – Final PCR and Purification 
63. Prepare a 1X PCR master mix in a new 1.7 ml tube: 

• 20 µl EPM – Enhanced PCR Mix 

• 28 µl ddH2O 

• 1 µl scCC_P5_primer (25 µM) 
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• 1 µl scCC_P7_primer (25 µM) 

64. Discard all supernatant from the DNA sample. Centrifuge briefly, then place on a magnetic 

rack. Use a 10 µl pipette to aspirate any residual supernatant. 

65. Add 50 µl PCR reaction mix to the sample and pipette to mix. Transfer to PCR tubes. 

66. Incubate in a thermocycler with the following settings: 

• 98ºC for 30 seconds 

• 15 cycles of: 

o 98ºC for 10 seconds 

o 60ºC for 30 seconds 

o 72ºC for 2 minutes 

• 72ºC for 5 minutes 

• 4ºC forever. 

If you started with less than 300 fmol of self-reporting transcripts, you can increase the number 

of extension cycles here. More cycles will increase the risk of artifacts, however, so we 

recommend increasing by the minimum necessary to obtain reasonable sequencing libraries. The 

most we have pushed this PCR is to 17 extension cycles. 

67. Vortex AMPure XP beads to resuspend them. Beads should be brought to room temperature 

for at least 30 minutes prior to use. 

68. Place PCR tubes on a magnetic rack for 1 minute. Transfer 50 µl of supernatant to new tubes. 



279 
 

69. Add 35 µl beads to the 50 µl PCR mixture (0.7x ratio). Flick to mix and centrifuge briefly. 

70. Incubate at room temperature for 00:05:00 

71. Place on a magnetic rack for 00:05:00 

Aspirate supernatant and discard. 

72. Add 200 µl of 70% ethanol and incubate ≥ 30 seconds. Aspirate supernatant and discard. 

73. Repeat Step #72 

74. Air dry the pellet at room temperature for 00:02:00 

75. Remove the tube from the magnetic rack. Add 25 µl RSB – Resuspension Buffer to elute 

PCR products. Mix by pipetting until evenly dispersed. Incubate off the rack for 00:05:00 

76. Place on magnetic rack for 00:05:00 or until supernatant is clear. Transfer supernatant to new 

1.7 ml tube. 

77. Make a 1:10 dilution of the eluate and quantitate on TapeStation using a High Sensitivity 

D1000 ScreenTape. Measure the molar concentration of the sample, taking everything from 200 

bp to 1300 bp. 

This is what a representative TapeStation trace looks like. The library should be smooth and 

unimodal, peaking between 500-700 bp. Occasionally, you may see a primer-dimer peak. 

However, as scCC libraries are sequenced from the middle and not the ends, the primer-dimer 

product will not sequence on the Illumina flow cell. 
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Figure A3.2: Representative TapeStation trace of scCC libraries. 

A3.4.10 Single Cell Calling Cards – Sequencing 
78. Single cell calling cards libraries use a mix of standard and custom primers for sequencing 

and rely on dual-indexing for proper demutiplexing. We have sequenced scCC libraries on 

Illumina NextSeq 500 machines, using v2 Reagent Cartridges. These libraries use the standard 

Illumina primers BP10 and BP14 for read 1 and index 2, respectively. Read 1 sequences the cell 

barcode and unique molecular index (UMI), while index 2 reads into the terminal repeat of 

the piggyBac transposon, confirming that molecules successfully circularized. 

In addition, we use the custom sequencing primers scCC_PB_CustomRead2 and 

scCC_CustomIndex1 for read 2 and index 1, respectively. Read 2 anneals at the end of the 

transposon and sequences into the genome. The first six base pairs typically begin "GGTTAA", 

which are the terminal two base pairs of the piggyBac repeat followed by the insertion site 

tetramer. The remainder of the read is genomic DNA sequence. Index 1 sequences the sample-

specific sequence on the scCC adapter and is used to demultiplex libraries. 
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Due to the low complexity nature of calling card libraries, we recommed adding PhiX at a final 

concentration of 50%. 

79. While index 1 should be sufficient to demultiplex libraries, we have observed a biphasic 

response when sequencing scCC libraries at low and high concentrations. At low library 

concentrations, (e.g., 1-2%) the index 1 read generates high-quality reads and can demultiplex 

libraries; however at higher concentrations (i.e., 50%) the index 1 read can fail, yielding all N's. 

If this happens, libraries can be demultiplexed by the index 2 read alone: scCC reads that have 

successfully circularized will have "GCGTCAAT" as the index 2 sequence. 

After this, scCC reads can be assigned to specific samples using the cell barcodes obtained from 

the corresponding scRNA-seq libraries. Different libraries may, by chance, have cells that share 

the same cell barcode. Typically, these represent a very small fraction of cells (< 1% per library) 

and we discard these reads and cells from downstream calling cards and scRNA-seq analyses, 

respectively. 
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Appendix 4: Processing Bulk Calling Card 
Sequencing Data 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.xwjfpcn) 

A4.1 Abstract 
Here we present a computational pipeline for processing bulk RNA calling card data. These data 

will have been generated from transfection/-duction of either undirected piggyBac transposase or 

your favorite transcription factor (YFTF) fused to piggyBac. Multiple biological replicates 

should have been generated, each with a unique combination of primer barcode and index 

sequences. This workflow demonstrates how to analyze a single replicate; the workflow can be 

parallelized on distributed computing architectures (e.g. slurm). 

A4.2 Guidelines 
Please make sure you have installed the required software and packages (see Materials section). 

This protocol describes how to analyze a SINGLE biological replicate from a bulk RNA calling 

cards* experiment. Multiple replicates (e.g. 10-12) should be analyzed in each experiment to 

distinguish independent transposition events into the same insertion site. This is essential for 

adequate statistical power to detect transcription factor binding sites. Each replicate can be 

processed following this protocol, making appropriate changes to the primer barcode sequence 

and/or the index sequence(s). Data from multiple calling card replicates can be pooled at the end 

into a single file. 
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*If you are unfamiliar with calling card libraries, we recommend reading our quick start 

guide (Appendix 1) and our library preparation protocol (Appendix 2). 

A4.3 Materials 
The following external programs are required: 

• cutadapt (≥ 1.16) 

• samtools (≥ 1.9) 

You will need a genomic aligner. Here we will use novoalign, but in theory any aligner should 

be sufficient (e.g. bowtie2, GATK, STAR, etc.). Also, you will need a .2bit version of the 

genome sequence you are aligning to; these are readily available from the UCSC Genome 

Browser. (They can also be generated from a FASTA file using the faToTwoBit utility) 

The following programs are optional, but highly recommended: 

• bedtools (≥ 2.27) 

• bedops (≥ 2.4) 

In addition, this workflow calls some calling card-specific scripts, which use Python 3. It is 

recommended that your Python installation be relatively up-to-date (i.e. ≥ 3.4). To check your 

python version, type  

python -V 

You will need to install the following Python modules: 

• numpy 
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• pandas 

• pysam 

• twobitreader 

All of these packages are available on PyPI and can be installed via pip: 

pip install numpy pandas pysam twobitreader 

(If Python3 is not the default on your system, replace pip with pip3) 

Finally, these are the calling card-specific scripts you will need, all of which are available 

on GitHub: 

• TagBam.py 

• AnnotateInsertionSites.py 

• BamToCallingCard.py 

A4.4 Steps 
A4.4.1 Preamble 
1. The objective of this protocol is to take sequencing reads from a calling cards library and 

process them into a .ccf file. A CCF file is a modified BED file (BED3+3) that concisely 

enumerates every transposition event in the sequenced library. 

CCF files typically have six columns: 

• chrom: chromosome 

• start: beginning coordinate of the insertion site 
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• end: ending coordinate of the insertion site; since piggyBac inserts into TTAA's, this 

typically spans the motif itself. 

• count: the number of reads supporting this insertion 

• strand: + or -, indicating which strand was targeted (optional but highly recommended) 

• barcode: a string identifying the library from which this insertion originated (optional but 

highly recommended) 

This workflow will walk through how to perform quality control, alignment, filtering, and 

processing of calling card sequencing libraries to generate a CCF file. This file can then be used 

in downstream applications, such as visualization on the (legacy) WashU Epigenome 

Browser (instructions here), and as input for peak calling. 

2. To illustrate the workflow, let's say that we have performed bulk RNA calling cards on our 

favorite transcription factor (YFTF) in a human cell line. We have prepared libraries from 10 

biological replicates of cells transfected with wild-type piggyBac transposase, and 10 replicates 

of cells with YFTF-piggyBac. We have sequenced these libraries and now need to map these 

insertions across the genome. 

We will consider a single replicate; the workflow can then be repeated for all remaining 

replicates. At the end we can combine the data from the 10 piggyBac replicates, and the 10 

YFTF-piggyBac replicates, respectively, into a single CCF file each. 

3. In this example, we will be analyzing a single replicate from the wild-type piggyBac libraries: 

PBase_rep1. The read 1 sequencing file is PBase_rep1_L001_R1_001.fastq.gz 
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For bulk RNA calling card libraries, only read 1 is analyzed, as it contains the junction between 

the transposon and genome. 

This biological replicate had GAT as its primer barcode and CTCACGGTGA as its index 

sequence. It was prepared by PCR ligation with the following primers: 

>OM-PB-GAT (barcode in bolded) 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC

TGATTTTACGCAGACTATCTTTCTAG 

>Nextera_N7_CTCACGGTGA (index in bold; note the reverse complement orientation) 

CAAGCAGAAGACGGCATACGAGATTCACCGTGAGGTCTCGTGGGCTCGG 

Thus, each read 1 should begin with GATTTTACGCAGACTATCTTTCTAG. 

A4.4.2 Adapter Trimming 
4. The purpose of this step is to check that reads have (1) the appropriate primer barcode 

sequence and (2) the transposon sequence is correct and ends in TTAA, piggyBac's insertion 

motif. If these conditions are true, those bases are trimmed (hard clipped), to facilitate genomic 

alignment. Only reads with perfect matches to the barcode and transposon sequence are carried 

forward. 

cutadapt \ 

-g ^GATTTTACGCAGACTATCTTTCTAGGGTTAA \ 

--minimum-length 1 \ 

--discard-untrimmed \ 
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-e 0 \ 

--no-indels \ 

-o PBase_rep1_trimBC.fastq.gz \ 

PBase_rep1_L001_R1_001.fastq.gz 

Typically 70-90% of reads will pass this filter, although there may be sample-dependent 

variation. 

5. Next, we re-examine the passing reads and trim any reads that end in the Nextera adapter that 

was added during tagmentation. This step reduces the amount of non-genomic bases, which 

should accelerate alignment. Only a small fraction (5-10%) typically have any adapter sequence 

at all, so virtually every read will pass this filter. 

cutadapt \ 

-a 

CTGTCTCTTATACACATCTCCGAGCCCACGAGACTCTCACGGTGATCTCGTATGCCGTCTTCTG

CTTG \ 

--minimum-length 1 \ 

-o PBase_rep1_trimmed.fastq.gz \ 

Base_rep1_trimBC.fastq.gz 

The index sequence has been emphasized in bold, but if you are processing libraries with many 

index different indexes, you can replace the bolded sequence with N's (keeping the length same). 

cutadapt can handle degenerate bases in adapters. 
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A4.4.3 Alignment 
6. Now that our reads are trimmed, we are ready to align them to the genome. This step can be 

done with any aligner; we typically use novoalign, so that is what we will demonstrate here. 

novoalign \ 

-d hg38.nvx \ 

-f PBase_rep1_trimmed.fastq.gz \ 

-n 40 \ 

-o SAM \ 

-o SoftClip > PBase_rep1_trimmed.sam 

The "-n 40" flag tells novoalign to align only the first 40 bases of the read. We have found that 

this reduction can increase the speed of alignment with minimal impact on total number of 

insertions recovered. Faster aligners (e.g. bowtie2, GATK, STAR) may not need this setting. 

7. After alignment, we filter out reads that mapped to multiple locations in the genome (e.g. in a 

repetitive element) and convert to the more space-efficient BAM format. 

samtools view \ 

-bS -h -F 260 \ 

PBase_rep1_trimmed.sam | \ 

samtools sort - -o PBase_rep1_mapped.bam 
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A4.4.4 Annotation 
8. The BAM format provides a flexible way to annotate reads through the use of short tags. 

These tags remain with the reads in the BAM file, which makes for a simple and portable archive 

of a calling card experiment. We use the following custom tags: 

• XP: primer barcode 

• XJ: index 1 sequence 

• XK: index 2 sequence (optional; reserved for future use) 

• XI: insertion site annotation 

• XZ: adjacent sequence (to verify transposase motif) 

9. First, we will annotate reads with the XP tag for the primer barcode GAT. 

python TagBam.py \ 

--tag XP:Z:GAT \ 

PBase_rep1_mapped.bam \ 

PBase_rep1_tagged.bam 

10. Next, we will annotate reads with the XJ tag for the index sequence CTCACGGTGA. 

python TagBam.py \ 

--tag XJ:Z:CTCACGGTGA \ 

PBase_rep1_tagged.bam \ 

PBase_rep1_tagged2.bam 
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11. Lastly, we will annotate reads with respect to the insertion site. This script checks each read 

to make sure that it maps next to the piggyBac insertion site motif TTAA. Remember, this part of 

read 1 was trimmed in step 4. By double checking that the read maps next to a genomic TTAA, 

we add an extra layer of specificity to the alignment. The sequence of the adjacent bases will also 

be annotated with the XZ tag. Reads that pass will be annotated with the insertion site 

coordinates in the XI tag and written to the output file. 

python AnnotateInsertionSites.py \ 

--transposase PB \ 

-f \ 

PBase_rep1_tagged2.bam \ 

hg38.2bit \ 

PBase_rep1_final.bam 

You can provide a path to the .2bit file if your genome references are in another directory. 

A4.4.5 Finishing Up 
12. To finish, we first index the BAM file. 

samtools index PBase_rep1_final.bam 

13. Next, clean up intermediate files. 

rm PBase_rep1_trimBC.fastq.gz 

rm PBase_rep1_trimmed.fastq.gz 
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rm PBase_rep1_trimmed.sam 

rm PBase_rep1_mapped.bam 

rm PBase_rep1_tagged.bam 

rm PBase_rep1_tagged2.bam 

14. Lastly, convert the BAM file to a CCF file. 

python BamToCallingCard.py \ 

-b XP XJ \ 

-i PBase_rep1_final.bam \ 

-o PBase_rep1_final.ccf 

This will use the combination of primer barcode and index sequence (XP and XJ, respectively) to 

identify insertions derived from different biological replicates. 

Here is an example of a CCF file: 

chr1 28575  28579 2  + GCA/TCGCCACCC 
chr1 28575  28579 10 + TAG/GAGGTACAG 
chr1 28575  28579 1  + GAT/GAGGTACAG 
chr1 31191  31195 1  + GCA/TCGCCACCC 
chr1 31191  31195 49 + TAG/TCGCCACCC 
chr1 46620  46624 5  + CTA/GAGGTACAG 
chr1 54136  54140 42 - GCA/TCGCCACCC 
chr1 54818  54822 16 - CTA/TCGCCACCC 
chr1 57829  57833 6  - CGT/GAGGTACAG 
chr1 58414  58418 40 + CTA/TCGCCACCC 
 

A4.4.6 Notes 
15. This workflow described how to process a SINGLE biological replicate. After each replicate 

has been processed, CCF files can be combined to consolidate all insertions from a given 
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experiment. For example, to combine data from all replicates from our wild-

type piggyBac libraries, we can use cat and bedops (preferred): 

cat \ 

PBase_rep1_final.ccf \ 

PBase_rep2_final.ccf \ 

PBase_rep3_final.ccf \ 

PBase_rep4_final.ccf \ 

PBase_rep5_final.ccf \ 

PBase_rep6_final.ccf \ 

PBase_rep7_final.ccf \ 

PBase_rep8_final.ccf \ 

PBase_rep9_final.ccf \ 

PBase_rep10_final.ccf | sort-bed - > PBase.ccf 

Similarly, CCFs from the YFTF replicates can be combined: 

cat YFTF-PBase_rep*_final.ccf | sort-bed - > YFTF-PBase.ccf 

The concatenated CCF files can also be sorted using bedtools: 

cat PBase_rep*_final.ccf | bedtools sort -i - > PBase.ccf 

Or, using the standard shell sort command: 
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cat PBase_rep*_final.ccf | sort -k1V -k2n -k3n > PBase.ccf 

16. Analogously, we can combine BAM files from biological replicates into a single archival-

quality BAM file for an entire experiment: 

samtools merge PBase.bam PBase_rep*_final.bam 

17. Ideally, each biological replicate will have a unique primer barcode AND unique index 

sequence. However, sometimes this is not possible. If so, each replicate should be identifiable 

from a unique combination of primer barcode and index sequence. If multiple replicates share an 

index, their reads will be found in the same FASTQ file. This is okay as step 3 can separate each 

replicate based on an exact match to the primer barcode sequence. In that case, you will have to 

provide the same input file to step 4 multiple times, each with a different primer barcode at the 

start of the adapter. 
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Appendix 5: Processing Single Cell Calling 
Card Sequencing Data 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.4phgvj6) 

A5.1 Abstract 
Here we present a computational pipeline for processing single cell calling card (scCC) data. 

These data will have been generated from single cell RNA-seq libraries following transfection/-

duction of either undirected piggyBac transposase or your favorite transcription factor (YFTF) 

fused to piggyBac. This workflow demonstrates how to process scCC sequencing data derived 

from a 10x Chromium-based scCC library; the workflow can be parallelized on distributed 

computing architectures (e.g. slurm). 

A5.2 Guidelines 
Please make sure you have installed the required software and packages (see Materials section). 

This protocol describes how to analyze a single cell calling cards* (scCC) experiment. These 

libraries are derived from single cell RNA-seq libraries (scRNA-seq). Currently, we only support 

10x Chromium 3'-based libaries. Unlike bulk calling card libraries, in which we require multiple 

replicates (e.g. 10-12), each cell in a scCC library is considered a replicate. Sensitivity is driven 

by the total number of insertions recovered, which is directly proportional to the number of 

transformed cells in the scRNA-seq library. Therefore, we advise processing as many cells as 

feasible to maximize discovery of transcription factor binding sites. 
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*If you are unfamiliar with calling card libraries, we recommend reading our quick start 

guide (Appendix 1) and our scCC library preparation protocol (Appendix 3). 

A5.3 Materials 
The following external programs are required: 

• cutadapt (≥ 1.16) 

• samtools (≥ 1.9) 

• cellranger (≥ 2.1.0) 

You will need a .2bit version of the genome sequence you are aligning to; these are readily 

available from the UCSC Genome Browser. (They can also be generated from a FASTA file 

using the faToTwoBit utility) 

The following programs are optional, but highly recommended: 

• bedtools (≥ 2.27) 

• bedops (≥ 2.4) 

In addition, this workflow calls some calling card-specific scripts, which use Python 3. It is 

recommended that your Python installation be relatively up-to-date (i.e. ≥ 3.4). To check your 

python version, type  

python -V 

You will need to install the following Python modules: 

• numpy 
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• pandas 

• pysam 

• twobitreader 

All of these packages are available on PyPI and can be installed via pip: 

pip install numpy pandas pysam twobitreader 

(If Python3 is not the default on your system, replace pip with pip3) 

Finally, these are the calling card-specific scripts you will need, all of which are available 

on GitHub: 

• TagBam.py 

• AnnotateInsertionSites.py 

• BamToCallingCard.py 

• UMIFilter.py 

• FilterUniqueBarcodes.py 

• FilterBAMByBarcodes.py 

• FilterCCFByBarcodes.py 

A5.4 Steps 
A5.4.1 Preamble 
1. The objective of this protocol is to take sequencing reads from single cell calling cards (scCC) 

library and process them into a CCF (calling card format; .ccf) file. A CCF file is a modified 
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BED file (BED3+3) that concisely enumerates every transposition event in the sequenced 

library. 

CCF files typically have six columns: 

• chrom: chromosome 

• start: beginning coordinate of the insertion site 

• end: ending coordinate of the insertion site; since piggyBac inserts into TTAA's, this 

typically spans the motif itself. 

• count: the number of reads supporting this insertion 

• strand: + or -, indicating which strand was targetted (optional but highly recommended) 

• barcode: a string identifying the library or cell from which this insertion originated. For 

scCC, this is the sequence of the cell barcode. 

Each line of the final .ccf file represents an independent calling card insertion, and the value in 

the cell barcode column specifies in which cell this insertion was observed. If your sample is 

heterogeneous, you may find that your cells can be grouped into biologically meaningful clusters 

(e.g. different cell types) based on their scRNA-seq expression profiles. In this case, you will 

have assigned cell barcodes to each cluster, and can use this information to split the .ccf file to 

generate insertion profiles for each cluster (see Step 19). These split .ccf files can then be used to 

identify differentially bound loci, or for visualization of TF binding in different clusters. 

This workflow walks through how to perform quality control, alignment, filtering, and 

processing of single cell calling card sequencing libraries to generate a .ccf file. This file can 
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then be used in downstream applications, such as visualization on the (legacy) WashU 

Epigenome Browser (instructions here), and as input for peak calling. 

2. To illustrate the workflow, let's say that we have performed scCC on our favorite transcription 

factor (YFTF) in a human cell line. We have prepared scRNA-seq and scCC libraries from 

10,000 cells transfected with wild-type piggyBactransposase and 10,000 cells transfected with 

YFTF-piggyBac. Both the wild-type and YFTF transfectants were loaded across two wells each 

of a Chromium chip. 

 
Figure A5.1: Example of a 10x Chromium chip loaded for a single cell calling cards experiment. 
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This image illustrates our example experiment. Two wells have been loaded with piggyBac-

transfected cells in Row 1 (blue) and two wells with YFTF-piggyBac transfectants (pink). The 

remaining wells, in grey, were empty (loaded with 50% glycerol). After emulsion generation, the 

resulting libraries–in the row marked by the triangle–were kept separate and processed according 

to the scCC molecular protocol. 

3. scCC analysis requires two separate sequencing runs: one for the scRNA-seq library (which 

will be used for dimensionality reduction and cell type identification) and one for the scCC 

library (to assign insertions to specific cells). The scRNA-seq library can be sequenced using 

10x's standard recommendations and processed using cellranger. We will assume this step has 

already been completed. This step establishes a set of high-quality cell barcodes from each 

library; we will cross-reference these with the scCC library to assign insertions to specific cells. 

4. The scCC library should have been sequenced as recommended in our scCC molecular 

workflow. Specifically, on a dual indexed-compatible Illumina sequencer; we prefer to sequence 

these libraries on an Illumina NextSeq 500 with 50% phiX, allocating 26 bases to read 1, 50 

bases to read 2, and 8 bases each to index 1 and index 2. Although scCC libraries should be 

demultiplexable with unique index sequences, this does not always work and the index 1 read 

can fail, reporting all N's. If this happens, reads from all libraries will be mixed together. We can 

identify scCC reads from phiX and other artifacts by demultiplexing with the index 2 read 

(should be GCGTCAAT). To further identify reads from the constituent libraries, we will 

demultiplex using the cell barcode. 
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5. In this example, we will be analyzing scCC sequencing run demultiplexed using index 2 only. 

The read 1 file will contain the cell barcode and UMI, while read 2 will contain the junction 

between the transposon and the genome. The read 1 and read 2 files are, respectively: 

• PB_YFTF-PB_combined_R1_001.fastq.gz 

• PB_YFTF-PB_combined_R2_001.fastq.gz 

Read 1 is 26 bases long: the first 16 bases comprise the cell barcode, while the final 10 bases are 

the UMI. 

Read 2 is 50 bases long: the first 2 bp will contain transposon sequence (GG) followed by the 

4bp TTAA insertion site; the rest of the read is genomic sequence (and maybe some P7 adapter). 

A5.4.2 Adapter Trimming 
6. We first ensure that read 2 begins with GGTTAA. If it does, those bases are trimmed (hard 

clipped) to facilitate genomic alignment. Only reads with perfect matches are carried forward. 

cutadapt \ 

-g ^GGTTAA \ 

-o PB_YFTF-PB_combined-trim1_R2_001.fastq.gz \ 

-p PB_YFTF-PB_combined-trim1_R1_001.fastq.gz \ 

--minimum-length 1 \ 

--discard-untrimmed \ 

-e 0 \ 
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--no-indels \ 

PB_YFTF-PB_combined_R2_001.fastq.gz \ 

PB_YFTF-PB_combined_R1_001.fastq.gz 

Typically 70-90% of reads will pass this filter, although there may be sample-dependent 

variation. 

7. Next, we re-examine the passing reads and trim any reads that end in the P7 adapter that was 

added during scCC library preparation. This step reduces the amount of non-genomic bases, 

which should accelerate alignment. Only a small fraction (5-10%) typically have any adapter 

sequence at all, so the majority of reads pass this filter. 

cutadapt \ 

-a 

AGAGACTGGCAAGTACACGTCGCACTCACCATGANNNNNNNNNATCTCGTATGCCGTCTTCTGC

TTG \ 

-o PB_YFTF-PB_S1_L001_R2_001.fastq.gz \ 

-p PB_YFTF-PB_S1_L001_R1_001.fastq.gz \ 

--minimum-length 1 \ 

PB_YFTF-PB_combined-trim1_R2_001.fastq.gz \ 

PB_YFTF-PB_combined-trim1_R1_001.fastq.gz 
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Here, NNNNNNNNN indicates where the index 1 sequence would be. The N's do not have to be 

replaced as cutadapt can tolerate ambiguous bases. 

For running cellranger in next step, the input FASTQ filenames MUST conform to the following 

pattern: 

[Sample Name]_S1_L00[Lane Number]_[Read Type]_001.fastq.gz 

[Read Type] is R1 or R2. [Lane Number] can be varied; for simplicity, we use L001 here. 

A5.4.3 Alignment 
8. Now that our reads are trimmed, we are ready to align them to the genome. At the same time, 

we need to perform error-correction on our cell barcode and UMI sequences. We will use 

cellranger, as it can perform both whole-genome alignment and barcode curation at once. We 

need to specify the directory where the trimmed FASTQ files can be found. Note that this 

directory should be "flat", i.e have no subdirectories. 

cellranger count \ 

--id=PB_YFTF-PB_map_scCC \ 

--fastqs=fastq_dir/ \ 

--transcriptome=/opt/refdata-cellranger-GRCh38-3.0.0 \ 

--sample=PB_YFTF-PB \ 

--expect-cells=5000 \ 

--nosecondary \ 

--chemistry=SC3Pv2 \ 
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--localcores=16 \ 

--localmem=30 

A few notes on this command: 

• --id= will specify the output directory that will be created. This will be familiar to 

anyone who was worked with cellranger before. 

• --expect-cells= is an estimate for how many cells are present in the libray. This is 

much more important for scRNA-seq libraries than scCC libraries, and so can probably 

be safely excluded. 

• --nosecondary skips the dimensionality reduction step of the cellranger pipeline. We 

are only concerned with mapping insertions to the genome. 

• --chemistry= specifies the chemistry of the 10x kit. We prefer to explicitly specify 

this. Here, we used version 2 of the single cell 3' kit. The scCC workflow should also be 

immediately compatible with v3 chemistry. 

• --localcores= and --localmem=30 specify machine settings. Here, we used 16 

cores and 30 GB of memory. These can be adjusted to fit your setup. 

cellranger automatically performs barcode whitelisting and error-correction of UMIs, which are 

encoded in the program's output .bam file. The CB tag contains the read's verified cell barcode, 

and the UB tag denotes the corrected UMI. A full description of cellranger BAM tags can be 

found here. 

9. We then filter mapped reads for primary alignments, to eliminate multi-mapped reads: 
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samtools view \ 

-b -h -F 260 \ 

-o PB_YFTF-PB_map_scCC_uniq.bam \ 

PB_YFTF-PB_map_scCC/outs/possorted_genome_bam.bam 

A5.4.4 Annotation 
10. We then filter mapped reads for primary alignments, to eliminate multi-mapped reads: 

samtools view \ 

-b -h -F 260 \ 

-o PB_YFTF-PB_map_scCC_uniq.bam \ 

PB_YFTF-PB_map_scCC/outs/possorted_genome_bam.bam 

11. Now we will annotate reads with respect to the insertion site. This script checks each read to 

make sure that it maps next to the piggyBac insertion site motif TTAA. Remember, this part of 

read 1 was trimmed in step 5. By double checking that the read maps next to a genomic TTAA, 

we add an extra layer of specificity to the alignment. The sequence of the adjacent bases will also 

be annotated with the XZ tag. Reads that pass will be annotated with the insertion site 

coordinates in the XI tag and written to the output file. 

python AnnotateInsertionSites.py \ 

--transposase PB \ 

-f \ 
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PB_YFTF-PB_map_scCC_uniq.bam \ 

hg38.2bit \ 

PB_YFTF-PB_map_scCC_tagged.bam 

You can provide a path to the .2bit file if your genome references are in another directory. 

12. We perform one last quality control check on the processed scCC reads. Since scCC libraries 

involve intramolecular circularization, there is a small chance that concatamerization can occur. 

These would appear as singleton events where a cell barcode and UMI are linked to an insertion 

in a different cell. To guard against this, we require all insertions in a given cell (i.e. sharing the 

same cell barcode) to have at least two different UMIs each. This yields libraries with excellent 

specificity (see e.g. Figure 2.13B) 

python UMIFilter.py \ 

-p 10x \ 

-i PB_YFTF-PB_map_scCC_tagged.bam \ 

--verbose \ 

-o PB_YFTF-PB_map_scCC_final.bam 

13. Finally, we convert this BAM file to a (sorted) CCF file. The sorting step relies on bedops; 

see here for alternatives. 

python BamToCallingCard.py \ 

-b CB \ 
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-i PB_YFTF-PB_map_scCC_final.bam \ 

-o PB_YFTF-PB_map_scCC_unsorted.ccf 

sort-bed PB_YFTF-PB_map_scCC_unsorted.ccf > PB_YFTF-

PB_map_scCC_final.ccf 

A5.4.5 Demultiplexing 
14. At this point, PB_YFTF-PB_map_scCC_final.bam contains all insertions from all cells in 

our single cell library, both from the wild-type piggyBac transfectants and the YFTF-

piggyBac transfectants. How can we determine which insertions came from which library? We 

will use the cell barcodes to further demultiplex the CCF file. 
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Figure A5.2: Demultiplexing scCC libraries. 
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This figure summarizes Steps 15-18, wherein we use the cell barcodes (obtained from the 

respective scRNA-seq libraries) to demultiplex the combined scCC .bam file, generate .ccf files 

from each library, and finally create master .ccf files for each condition (i.e. piggyBac and 

YFTF-piggyBac treatments). 

15. In step 2, we prepared our 10x libraries by loading four wells of the Chromium chip: two for 

wild-type PB, and two for YFTF-PB. Let us call these libraries PB-1, PB-2, YFTF-1, and YFTF-

2; further, assume that we have completed the scRNA-seq portions of the scCC workflow, 

including analysis with cellranger. For each of these four libraries, we can get a list of high-

quality barcodes. 

After cellranger has finished, each library's cell barcodes can be found in the following locations, 

respectively: 

PB-1/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv 

PB-2/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv 

YFTF-1/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv 

YFTF-2/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv 

Starting with cellranger v3, the barcodes.tsv file may be gzipped (barcodes.tsv.gz). If that is the 

case, you will need to unzip before proceeding (gunzip barcodes.tsv.gz) 

16. Since GEM generation was performed independently for each sample, there is a small chance 

(see note below) that the same cell barcode was captured more than once across libraries. This 

could, in theory, confound interpretation of TF binding, as a shared cell barcode may belong to 

cells of different types or states. While the effect of these is likely small, we recommend 
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discarding shared barcodes between libraries. The following command takes in a set of barcode 

files; for each, an output file is created containing the subset of unique barcodes found only in 

the respective input file. 

python UMIFilter.py \ 

-i PB-1/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv \ 

PB-2/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv \ 

YFTF-1/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv \ 

YFTF-2/outs/filtered_gene_bc_matrices/hg38/barcodes.tsv \ 

-o PB-1_unique_barcodes.txt \ 

PB-2_unique_barcodes.txt \ 

YFTF-1_unique_barcodes.txt \ 

YFTF-2_unique_barcodes.txt 

Note that this can command can take in any number of input files (2, 3, 4, 5, etc.). The only 

requirements are: (1) a matched list of output files is provided; and (2) the input barcode files 

contain one barcode per line. 

For the curious: the probability of a shared barcode (i.e. barcode collision) between two 10x 

scRNA-seq libraries is quite small, but is dependent on library size. For two libraries of 5,000 

cells each, the probability is < 1%. As the number of libraries increases, the probability of 

collision increases approximately. We have filtered unique cell barcodes across as many as six 

libraries and have discarded no more than 5% of total cell barcodes. 
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17. Now that we have a list of cell barcodes unique to each library, we can demultiplex our 

calling card BAM file. The example show is for PB_1 but can be generalized to all samples. 

python FilterBAMByBarcodes.py \ 

-i PB_YFTF-PB_map_scCC_final.bam 

-b PB-1_unique_barcodes.txt \ 

-o PB-1_scCC_final.bam 

We can now convert this BAM file to CCF output. 

python BamToCallingCard.py \ 

-b CB \ 

-i PB-1_scCC_final.bam \ 

-o PB-1_scCC_unsorted.ccf 

We can also combine the two wild-type piggyBac libraries into a single, sorted CCF file. (The 

second step requires bedops; see here for alternative sorting commands). 

cat PB-1_scCC_unsorted.ccf PB-2_scCC_unsorted.ccf | sort-bed - > 

PB_scCC_final.ccf 

cat YFTF-PB-1_scCC_unsorted.ccf YFTF-PB-2_scCC_unsorted.ccf | 

sort-bed > YFTF-PB_scCC_final.ccf 
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18. At last, we have a CCF file containing all insertions across all (unique) cells in a scCC 

experiment. This file can be further visualized on the WashU Epigenome Browser and used as 

input for peak calling. Here is an example of scCC CCF output. 

chr1 29884  29888 3 + GCATGATCAGACGTAG-1 
chr1 30355  30359 4 - CAGCTGGTCGCAAACT-1 
chr1 32116  32120 11 - GTGTGCGAGCTTCGCG-1 
chr1 32303  32307 674 + GTCGTAAAGGTAGCTG-1 
chr1 33031  33035 2 - TTAGTTCTCAACACTG-1 
chr1 33031  33035 21 + GCAATCAGTGGTTTCA-1 
chr1 33031  33035 25 + GCACTCTAGTAGCCGA-1 
chr1 33031  33035 98 + GTTTCTACAGACGCAA-1 
chr1 33169  33173 26 - CAAGAAAGTACAGCAG-1 
chr1 34572  34576 4 - CGTTCTGCAAATTGCC-1 

A5.4.6 Notes 
19. In the course of analzying your scRNA-seq data, you may find biologically meaningful 

clusters and may wish to identify differentially bound loci. Let us suppose that in the your 

analysis of the YFTF-PB transfectants, you find two clusters of cells (Alfa and Bravo) and wish 

to stratify insertions specific to each cluster. If the cell barcodes in each cluster are in 

Barcodes_Alfa.txt and Barcodes_Bravo.txt, we can directly filter insertions from the YFTF-PB 

CCF file, instead of going back to the BAM file. 

python FilterCCFByBarcodes.py \ 

-i YFTF-PB_scCC_final.ccf \ 

-b Barcode_Alfa.txt \ 

-o YFTF-PB_scCC_Alfa.ccf 

python FilterCCFByBarcodes.py \ 

-i YFTF-PB_scCC_final.ccf \ 
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-b Barcode_Bravo.txt \ 

-o YFTF-PB_scCC_Bravo.ccf 

Note that if the input CCF file is sorted, the output file should automatically be sorted as well. 

20. Currently, the scCC pipeline does not support 10x scRNA-seq libraries merged 

using cellranger aggr. Guidance on this will be provided in the future. 
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Appendix 6: Calling Peaks on piggyBac 
Calling Card Data 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.bb9xir7n) 

A6.1 Abstract 
This protocol describes how to all peaks on mammalian calling card data using either undirected, 

or transcription factor fusions, to the piggyBac transposase. It is applicable for both bulk as well 

as single cell calling card data. 

A6.2 Guidelines 
Please make sure you have installed the required software and packages (see Materials section). 

This protocol describes how to go from a CCF file, the processed output of a calling cards 

experiment, to a set of peaks enriched for transcription factor (TF) binding. If you are unfamiliar 

CCF files, we recommend reading our bulk or single cell calling card data processing protocols 

first. We assume that you have performed either bulk calling cards (with sufficient replicates) or 

single cell calling cards with undirected piggyBac (to map BRD4 binding) and, optionally, with a 

TF-piggyBac fusion for your favorite TF (YFTF). To identify peaks in BRD4 binding, you 

should prepare a single CCF containing insertions from all replicates of 

undirected piggyBac calling cards. To call peaks on YFTF peaks, you will need two CCF files: 

one from all replicates of undirected piggyBac experiments, and one from all replicates of YFTF-

piggyBac experiments. 
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A6.3 Materials 
This protocol requires a FASTA file for your genome of interest (e.g. hg38.fa) and the following 

script: 

• kmer.cc 

In addition, this workflow relies on some calling card-specific scripts, which use Python 3. It is 

recommended that your Python installation be relatively up-to-date (i.e. ≥ 3.4). To check your 

python version, type: 

python -V 

You will need the following Python modules: 

• numpy 

• pandas 

• scipy 

• statsmodels 

• pybedtools 

• astropy 

All of these packages are available on PyPI and can be installed via pip: 

pip install numpy pandas scipy statsmodels pybedtools astropy 

(If Python3 is not the default on your system, replace pip with pip3) 

These are the calling card-specific scripts you will need, all of which are available on GitHub: 
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• SegmentCCF.py 

• CCFIdeogram.py 

• BBPeakCaller_TF.py 

• BBPeakCaller_BRD4.py 

The following programs are optional, but highly recommended: 

• bedtools (≥ 2.27) 

• bedops (≥ 2.4) 

A6.4 Steps 
A6.4.1 Preprocessing 
1. Before calling peaks on calling card data, it is useful to create a file listing the location of 

every TTAA tetramer in the genome. The piggyBac transposase inserts almost exclusively into 

this motif. Morever, we use the presence of a TTAA adjacent to a mapped read as an internal 

quality check when creating CCF files. This section will walk you through how to quickly find 

all TTAAs in a genome. 

2. Compile the kmer.cc program as follows: 

g++ kmer.cc -o kmer 

The result should be a C++ executable in your directory called kmer. 

3. This program takes as input a FASTA file and k-mer and outputs a BED file of all exact 

matches to that k-mer. Here we use it to find all exact matches to the 4-mer TTAA. 
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Download or copy to your working directory a FASTA file of your genome of interest. Using the 

latest human genome build as an example: 

./kmer hg38.fa TTAA > hg38_TTAA.bed 

The file hg38_TTAA.bed now lists all TTAA's in hg38.fa. 

It is important that the FASTA file that you use in this step is the same FASTA sequence used 

for aligning calling card reads. For example, if you mapped to a repeat-masked genome earlier, 

you should supply a repeat-masked FASTA file here. 

4. (Optional) More recent builds of the human and mouse genomes contain unplaced contigs and 

alternate haplotypes. You maybe interested in restricting your analysis to the "canonical" 

chromosomes (e.g. 1-22, X & Y for humans). Here is a simple way to filter only "canonical" 

TTAAs: 

grep -v '_' hg38_TTAA.bed > hg38_TTAA_canon.bed 

(If you are being nitpicky, this file will include TTAAs on the mitochondrial chromosome, but 

we have not found this to be a problem for peak calling). 

If you filter only "canonical" TTAAs, it is important that you also filter your CCF file so it 

contains only insertions mapping to "canonical" chromosomes. The above command can be used 

to do so. If you do not do this, you may get "divide by zero" errors in subsequent steps. 

5.	The TTAA file only needs to be generated once per genome. Afterwards, all experiments 

using the same reference genome can use the same TTAA file. 
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A6.4.2 Bayesian Blocks 
6. The core of calling peaks in calling card data is Bayesian blocks. This algorithm, originally 

developed in astrophysics, segments one-dimensional datasets into regions of piecewise-constant 

density. We use it to initially partition the genome into intervals, where each interval contains a 

constant rate of piggyBac insertions. These intervals are referred to as blocks; two adjacent 

blocks are characterized by different insertion rates and, accordingly, different insertion 

densities. One attractive reason for using Bayesian blocks is that it can find a mathematically 

optimal partition of the data into blocks. Peak calling then proceeds by testing each block to see 

if it contains more insertions than expected by some background model. 

This much overview of Bayesian blocks is sufficient to understand peak calling. For more 

details, we recommend reading the original paper (Scargle et al. 2013) or this blog post by Jake 

VanderPlas. 

7. We generate a list of blocks from CCF files, but these files must first be sorted. Here are three 

ways to sort CCF files, in order of preference: 

Using bedops: 

sort-bed sample.ccf > sample_sorted.ccf 

Using bedtools: 

bedtools sort -i sample.ccf > sample_sorted.ccf 

Using the standard shell sort command: 

sort -k1V -k2n -k3n sample.ccf > sample_sorted.ccf 

For the remainder of this protocol, we assume your CCF files are already sorted. 
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A6.4.3 Calling BRD4 Peaks 
8. Here we will describe how to call BRD4 peaks from undirected piggyBac insertions. Our 

sample file is HCT-116_PBase.ccf, which contains insertions from 10 replicates of bulk RNA 

calling cards in the HCT-116 cell line. This file contains 1.5 million insertions: 

wc -l HCT-116_PBase.ccf 

1521048 HCT-116_PBase.ccf 

9. We start by creating creating blocks from the CCF file. To do this, we use the SegmentCCF.py 

script: 

python SegmentCCF.py HCT-116_PBase.ccf | sed -e '/^\s*$/d' > 

HCT-116_PBase.blocks 

The output file is a BED-formatted list of blocks inferred by Bayesian blocks. The piped sed 

command simply removes blank lines. 

You may see a warning about false positive rates for event data, as well as possibly a dividing by 

zero warning. These are automatically generated by astropy, the library which contains the 

Bayesian blocks algorithm and can be safely ignored. We have successfully called peaks with the 

blocks generated despite these warnings. 

Segmenting the CCF file is often the most time-consuming step. The Bayesian blocks algorithm 

has quadratic runtime complexity. If one CCF file has twice as many insertions as another, the 

former is expected to take roughly four times longer to segment as the latter. 
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10. We then provide the CCF and blocks files, as well as the TTAA file, to 

BBPeakCaller_BRD4.py, which tests each block for statistical significance. This script performs 

the following steps: 

1. Divide the number of insertions by the number of TTAAs in the TTAA file. This defines 

a global rate parameter (r) under a null model assuming a uniform distribution of 

insertions. 

2. For each block b, count the number of TTAAs in b and multiply it by r. This value 

specifies the expected number of insertions in b if insertions were uniformly distribution 

(denoted λb). 

3. For each block b, let xb be the number of observed insertions in the block. The script then 

performs a one-tailed Poisson significance test on the block. This is calculated as the 

probability of observing xb insertions or more in the block parametrized by a Poisson 

distribution with expected value λb. 

4. Multiple hypothesis correction is performed (based on user preferences). 

5. Finally, blocks that pass multiple hypothesis correction are polished and written to file. 

The output file is in BED format. 

11. BBPeakCaller_BRD4.py takes four required positional arguments: CCF file, blocks file, 

TTAA file, and output filename. An example command would look like this: 

python BBPeakCaller_BRD4.py HCT-116_PBase.ccf HCT-

116_PBase.blocks hg38_TTAA_canon.bed HCT-116_PBase_peaks.bed 
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This command WILL NOT RUN as written because it does not specify how peaks should be 

thresholded. See Step 12 for details. 

12. Required flag: 

BBPeakCaller_BRD4.py has one required flag which specifies the statistical threshold for 

filtering blocks. There are two options for this: a straight p-value cutoff or with a multiple 

hypothesis correction method. The former is specified by the –p flag; the value supplied to it 

must be the –log10 transformation of the desired p-value. 

Example: select only those blocks with p < 10-9 

-p 9 

Alternatively, you can control for multiple hypotheses at a desired alpha level. This is specified 

by the –a flag and the value supplied is not transformed. If this option is used, you must supply a 

method (–m) of multiple hypothesis correction. Valid methods are listed here. 

Example: Bonferroni correction at an alpha of 0.05 

-a 0.05 -m bonferroni 

Example: Benjamini-Hochberg correction at false discovery rate of 10% 

-a 0.1 -m fdr_bh 

Remember: You must use EITHER –p OR –a –m for the program to run. 

BRD4 peaks may require choosing a p-value cutoff that is more stringent than, for example, 

Bonferroni correction. This appears to scale with size of the dataset: with more insertions, a more 
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stringent cutoff is needed. To guide settling on an optimal p-value, we recommend calling peaks 

at a variety of cutoffs, visualizing CCF data and peak files (eg. on the WashU Epigenome 

Browser), and choosing a value whose peak boundaries reasonably accord with insertion 

densities. 

Optional flags: 

Mutliple significant blocks may occur in close proximity to one another. If you want to merge 

these into larger peaks, you can specify a distance (–d). Significant blocks within this distance 

will be merged together. 

Example: merge blocks within 12.5 kb 

-d 12500 

Finally, while the primary output of BBPeakCaller_BRD4.py is a list of peaks in BED format, 

an intermediate filename (-i) can be supplied to write information about each block and it's p-

value. This file will be written in CSV format. 

Example: write an intermediate file for the HCT-116 PBase dataset 

-i HCT-116_PBase_intermediate.csv 

13. The blocks file, in addition to being used to call peaks, can also be used to calculate 

normalized insertion densities across the genome. This is done using the CCFIdeogram.py script, 

which takes as input a CCF file and a blocks file and outputs a bedgraph file. Each entry in the 

bedgraph file is a block and the numerical value for each block is the number of insertions in that 

block per million mapped insertions per kilobase (IPKM). 
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python CCFIdeogram.py HCT-116_PBase.ccf HCT-116_PBase.blocks 

HCT-116_PBase.bedgraph 

This script is named after ideograms because the resulting bedgraph files, when visualized as 

densities, create banding patterns that resemble karyotyped chromosomes. 

14. Let's put this all together. Here is the command to recreate our analysis from our recent 

preprint: 

python BBPeakCaller_BRD4.py -p 30 -d 12500 HCT-116_PBase.ccf 

HCT-116_PBase.blocks hg38_TTAA_canon.bed HCT-116_PBase_peaks.bed 

This generates a BED file containing nearly 2000 peaks. 

wc -l HCT-116_PBase_peaks.bed 

1939 HCT-116_PBase_peaks.bed 

15. Here is the output of our sample analysis as visualized on the WashU Epigenome Browser. 

The top track is the raw CCF data. The next track is the per-block insertion densities as 

calculated by CCFIdeogram.py. The third track is the same as the second but with in-browser 

smoothing (15 px). We then show peak boundaries at a variety of p-value thresholds, in order of 

increasing stringency. Notice how peaks grow, merge, shrink, and vanish at different cutoffs. 

The dark blue peaks track corresponds to the threshold used in the previous step. BRD4 and 

H3K27ac data, marks of enhancers and super-enhancers, are shown for reference. 
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Figure A6.1: Example of a BRD4-directed calling cards peak. 
 

A6.4.4 Calling TF Peaks 
16. Peak calling on TF-directed piggyBac insertions is similar to calling BRD4 peaks. The major 

distinction is in the choice of background model. With undirected piggyBac, the background is 

modeled as a uniform distribution of the observed number of insertions. For TF-

directed piggyBac, however, the background is the undirected piggyBac dataset from the same 

cell line or system. 

For this example, we will use HCT-116_SP1-PBase.ccf. This file was generated from 10 

replicates of bulk RNA calling cards with SP1-piggyBac in HCT-116 cells. The control file is the 

undirected piggyBac data from the same system, i.e. HCT-116_PBase.ccf. 

wc -l HCT-116_SP1-PBase.ccf 

410588 HCT-116_SP1-PBase.ccf 

17. As before, we start by creating creating blocks from the CCF file: 
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python SegmentCCF.py HCT-116_SP1-PBase.ccf | sed -e '/^\s*$/d' > 

HCT-116_SP1-PBase.blocks 

The same notes from Step 9 apply here as well. 

18. We then provide the CCF and blocks files, as well as the background CCF file, to 

BBPeakCaller_TF.py, which tests each block for statistical significance. This script performs the 

following steps: 

1. Divide the number of insertions in the TF CCF file by the number of insertions in the 

background CCF file. This defines a global scaling parameter (s). This enables us to 

account for library size differences between the TF-directed and undirected control 

libraries.  

2. For each block b, count the number of insertions from the background CCF file in b and 

multiply it by s, then add a pseudocount c. This value specifies the normalized expected 

number of insertions in b from the undirected control experiment (denoted λb). 

3. For each block b, let xb be the number of insertions from the TF-directed CCF file. The 

script then performs a one-tailed Poisson significance test on the block. This is calculated 

as the probability of observing xb insertions or more in the block parametrized by a 

Poisson distribution with expected value λb. 

4. Multiple hypothesis correction is performed (based on user preferences). 

5. Finally, blocks that pass multiple hypothesis correction are polished and written to file. 

The output file is in BED format. 
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19. BBPeakCaller_TF.py takes four required positional arguments: TF-directed CCF file, TF-

directed blocks file, undirected CCF file, and output filename. An example command would look 

like this: 

python BBPeakCaller_TF.py HCT-116_SP1-PBase.ccf HCT-116_SP1-

PBase.blocks HCT-116_PBase.ccf HCT-116_SP1-PBase_peaks.bed 

This command WILL NOT RUN as written because it does not specify how peaks should be 

thresholded. See Step 20 for details. 

20. Required flag: 

BBPeakCaller_TF.py has one required flag which specifies the statistical threshold for filtering 

blocks. There are two options for this: a straight p-value cutoff or with a multiple hypothesis 

correction method. The former is specified by the –p flag; the value supplied to it must be the –

log10 transformation of the desired p-value. 

Example: select only those blocks with p < 10-9 

-p 9 

Alternatively, you can control for multiple hypotheses at a desired alpha level. This is specified 

by the –a flag and the value supplied is not transformed. If this option is used, you must supply a 

method (–m) of multiple hypothesis correction. Valid methods are listed here. 

Example: Bonferroni correction at an alpha of 0.05 

-a 0.05 -m bonferroni 

Example: Benjamini-Hochberg correction at false discovery rate of 10% 
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-a 0.1 -m fdr_bh 

Remember: You must use EITHER –p OR –a –m for the program to run. 

Optional flags: 

Multiple significant blocks may occur in close proximity to one another. If you want to merge 

these into larger peaks, you can specify a distance (–d). Significant blocks within this distance 

will be merged together. 

Example: merge blocks within 250 bp 

-d 250 

Peaks are composed of one or more blocks. Bayesian blocks draws block boundaries halfway 

between adjacent insertions. This can, in some cases, lead to unnecessarily wide peaks. 

The refine (–r) flag constrains the block edges so that they start and end at insertions. This, in 

turn, helps increase the resolution of peak calls. 

Peaks can be further filtered based on a size threshold. You can specify a minimum (–

n) and maximum (–x) size bound on reported peaks. 

Example: report all peaks less than 5 kb in length 

-x 5000 

Example: report only peaks between 100 and 500 bp in length 

-n 100 -x 500 
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TF-piggyBac fusions redirect, but do not abolish, piggyBac's natural affinity for BRD4. This is 

why TF-directed experiments must use an undirected calling card experiment as a control. This 

can also pose a challenge for peak calling: whereas most TF's have narrow, sharp peaks, BRD4 

can bind much broader stretches of the genome. Peak calling may not completely eliminate this 

signal, which is typically reflected in large, but statisically significant, peaks. Broad peaks can 

also occur in the shoulder regions flanking a TF binding site, likely from "spillover" of insertions 

by the increased local concentration of transposase. 

A simple way to increase peak specificity is to threshold on peak size. In our experience, in a 

number of cell lines with a variety of TFs, 5 kb is a reasonable upper bound for filtering peaks. 

This threshold is greater than the median peak sizes we have observed, which lets us preserve the 

majority of called peaks. 

By default, the pseudocount added to all peaks is 1. This value (–c) can be changed if desired. 

Example: use a pseudocount of 0.1 

-c 0.1 

Finally, while the primary output of BBPeakCaller_TF.py is a list of peaks in BED format, 

an intermediate filename (-i) can be supplied to write information about each block and it's p-

value. This file will be written in CSV format. 

Example: write an intermediate file for the HCT-116 SP1-PBase dataset 

-i HCT-116_SP1-PBase_intermediate.csv 
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21. As before, TF-directed CCF files can also be used to create insertion density tracks, 

following the instructions in Step 13. 

22. Let's put this all together. This command calls peaks from SP1-PBase at a false discovery 

rate of 5%, merging significant blocks within 250 bp, refining block edges, and outputing all 

peaks less than 5 kb in length: 

python BBPeakCaller_TF.py -a 0.05 -m fdr_bh -d 250 -r -x 5000 

HCT-116_SP1-PBase.ccf HCT-116_SP1-PBase.blocks HCT-116_PBase.ccf 

HCT-116_SP1-PBase_peaks.bed 

This generates a BED file containing around 5600 peaks. 

wc -l HCT-116_SP1-PBase_peaks.bed 

5615 HCT-116_SP1-PBase_peaks.bed 

23. Here is the output of our sample analysis as visualized on the WashU Epigenome Browser. 

The top track are the undirected insertions, followed by the SP1-directed insertions. The next 

track is the per-block insertion densities for the SP1-PBase data with in-browser smoothing (3 

px). Finally, we plot peak boundaries at a variety of p-value thresholds, in order of decreasing 

stringency. Notice how peaks grow, merge, shrink, and vanish at different cutoffs. The dark blue 

peaks track corresponds to the threshold used in the previous step. The dark blue track shows all 

significant peaks at 5% FDR less then 5 kb in length. The light blue track shows all peaks 

without size restriction. Notice how imposing a maximum peak size filters out potentially 

artifactual peaks. 
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Figure A6.2: Example of an SP1-directed calling cards peak. 
 

A6.4.5 Final Thoughts 
24. BBPeakCaller_TF.py can also be used to call differential peaks between two different 

undirected or TF-directed calling card datasets, such as between cell types or treatments. In this 

use case, one sample serves as the "background" for the other. For example, let's imagine that we 

have done one undirected (a.k.a. BRD4) calling cards experiment on cells treated with DMSO 

and another treated with dexamethasone. To identify peaks that are enriched in the 

dexamethasone condition, we could call: 

python BBPeakCaller_TF.py -p 9 -d 12500 DEX.ccf DEX.blocks 

DMSO.ccf DEX_peaks.bed 

Since these tests are one-tailed, to find peaks that are enriched in the other direction, i.e. in the 

DMSO condition, we simply swap the datasets: 

python BBPeakCaller_TF.py -p 9 -d 12500 DMSO.ccf DMSO.blocks 

DEX.ccf DMSO_peaks.bed 

25. The output of these peak calling scripts are BED files listing peak coordinates only. They do 

not annotate the peaks themselves. There are a number of programs for secondary analyses: 
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• Peaks can be annotated with overlapping and nearest genes using HOMER. 

• Peaks can be connected to putative genetic targets using GREAT. 

• De novo motif analysis on peaks can be done with either HOMER or MEME. 

26. For guidance on how to visualize calling card data, see our Appendix 7. Documentation is 

also available from the WashU Epigenome Browser. 
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Appendix 7: Visualizing Calling Card Data 
on the WashU Epigenome Browser 

(A version of this appendix has been published on protocols.io: 

https://doi.org/10.17504/protocols.io.bca8ishw) 

A7.1 Abstract 
This document explains how to visualize calling card insertions as wells as density and peak 

tracks on the WashU Epigenome Browser. 

A7.2 Guidelines 
Please make sure you have installed the required software and packages (see Materials section). 

This protocol describes how to visualize calling card data, such as raw insertions (in a CCF file), 

insertion densities (bedgraph file), and peaks (BED file). Ideally, you will be able to store files 

on a publicly-accessible webserver. This requires enabling Cross-Origin Resource Sharing 

(CORS). If this is not possible, data files can also be directly uploaded from your computer to the 

browser. This approach is described in the second half of the protocol. 

A7.3 Materials 
If you are hosting files on a server, you will require the following software package: 

• htslib 

A7.4 Steps 
A7.4.1 Introduction 
1. During the course of a calling card experiment, or after all the analysis has been said and done, 

you may want to visually inspect the data. These can be the raw insertions (stored as a CCF file), 
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insertion densities (as a bedgraph file), or the peak boundaries (as a BED file). Instructions for 

generating these kinds of files can be found in the following protocols: 

• Processing Bulk RNA Calling Card Sequencing Data (Appendix 4) 

• Processing Single Cell Calling Card Sequencing Data (Appendix 5) 

• Calling Peaks on piggyBac Calling Card Data (Appendix 6) 

2. The WashU Epigenome Browser natively supports visualizing CCF files as a calling card 

track. In addition, it supports standard genomic file formats such as BED, bedgraph, bigWig, and 

HiC. This allows us to compare and contrast calling card data to popular genomic assays like 

ChIP-seq, DNase-seq, ATAC-seq, and Hi-C. 

There are two ways load data onto the browser: 

1. Hosting your data on a publicly-accessible server and letting the browser fetch the data. 

2. Directly uploading text files to the browser. 

The first method is preferred: track information and preferences can be stored in a simple text 

file, which can then be shared with collaborators. This saves the effort and cost of moving 

around potentially large datasets. Instead, the data remains in one place and can be accessed by 

anyone from anywhere. 

The second option can be used if a public server is not available to you, or if you want to rapidly 

look at files that are already on your computer. 

3. For this protocol, we will use the following files: 
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• HCT-116_PBase.ccf, a file of raw calling card insertions 

• HCT-116_PBase.bedgraph, a file of calling card insertion densities across the genome 

• HCT-116_PBase_peaks.bed, a file of peaks inferred from calling card data 

A7.4.2 Uploading Data from an External Server 
4. BED, bedgraph, and CCF files are all text-based formats. Before being hosted on an external 

server, these files must be compressed and indexed. This allows for fast, random-access to the 

data. For this step, make sure you have installed htslib (see Materials). 

To compress the file: 

bgzip HCT-116_PBase.ccf 

This will compress the original file, creating HCT-116_PBase.ccf.gz 

To index the compressed file: 

tabix -p bed HCT-116_PBase.ccf.gz 

This will create an index file, HCT-116_PBase.ccf.gz.tbi 

Both HCT-116_PBase.ccf.gz and HCT-116_PBase.ccf.gz.tbi should be copied to a publicly-

accessible webserver. These steps also apply to bedgraph and BED files. 

5. Next, we create a JSON file. JSON is a generic standard describing objects and their 

properties. Here, we use it to describe each track, its data, and any options we may want to 

customize. The JSON file is plain text; it is recommended that you use a text editor (e.g. 

Sublime, Atom, Visual Studio Code, vim/emacs, etc.) instead of a word processor (e.g. Microsoft 

Word) to create this file. 
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We will create HCT-116_PBase.json for our data. Here is the structure of a JSON file for a 

single track depicting calling card data: 

[ { "type":"callingcard", 

"url":"https://htcf.wustl.edu/files/xXl8ZAXy/HCT-

116_PBase.ccf.gz", "name":"piggyBac insertions", 

"showOnHubLoad":"true", "options":{ "color":"#3182bd", 

"height":100, "logScale":"log10", 

"markerSize":3, 

"opacity":[100], 

"show":"all", "sampleSize":1000, 

}, 

}, 

] 

All tracks in the JSON file must be between the square brackets [...]. Curly braces {...} and 

commas separate invidual tracks, and within a track, another set of curly braces may be used to 

specify grouped options. Let's consider each of these entries in turn: 

"type":"callingcard", 

This specifies the track type, which in this case is a calling card track. 

"url":"https://htcf.wustl.edu/files/xXl8ZAXy/HCT-

116_PBase.ccf.gz", 



335 
 

This points to the web address where your data are stored. Note that this must point to the 

compressed file. The browser will automatically located the index file. (If the index file is not 

present, it will throw an error). 

"name":"piggyBac insertions", 

This is the track label. 

"showOnHubLoad":"true", 

This specifies whether the track should be display immediately after the JSON file has been 

uploaded. The default value is "false." 

There are also a number of options that can be specified to customize the track appearance. 

While all of them can be changed after the tracks have been loaded, specifying them in the JSON 

file helps to record and reproduce settings. Note that these only need to be set if you wish to 

override defaults. 

"color":"#f4916c", 

This sets the color of the individual calling card markers. The default is blue. 

"height":100, 

This sets the height of the track in pixels. The default is 40. 

"logScale":"log10", 

This transforms the y-axis from a linear scale to a logarithmic scale. By default, the track uses a 

linear scale, but for calling card experiments we recommed using a logarithmic scale. 
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"markerSize":3, 

This is the radius of the marker in pixels. The default value is 3. 

"opacity":[100], 

This specifies the opacity of the markers, which can help emphasize data-dense regions. This 

takes an integer value between 0 and 100. The value supplied must be in square brackets. The 

default value is 100. 

"show":"all", "sampleSize":1000, 

This pair of options specify whether the browser should display all data points, or simply a 

random subsample. If there are many (e.g. thousands) of data points in view, it can slow down 

your web browser. Subsampling can help preserve a global representation of your data while still 

remaining responsive and memory-friendly. The "show" option can take two values: "all" 

(default) or "sample." The former draws all data points. If the latter is specified, then the 

"sampleSize" option is applied. This number determines how many points to subsample and is 

set to 1000 by default. 

6. We can also add the bedgraph and BED files to the JSON: 

[ { "type":"callingcard", 

"url":"https://htcf.wustl.edu/files/xXl8ZAXy/HCT-

116_PBase.ccf.gz", "name":"piggyBac insertions", 

"showOnHubLoad":"true", "options":{ "color":"#3182bd", 

"height":100, "logScale":"log10", 

"markerSize":3, 
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"opacity":[100], 

"show":"all", "sampleSize":1000, 

}, 

}, 

{ "type":"bedgraph", 

"url":"https://htcf.wustl.edu/files/xXl8ZAXy/HCT-

116_PBase.bedgraph", "name":"HCT-116 PBase density", 

"showOnHubLoad":"true", "options":{ "color":"#3182bd", 

"height":50, 

}, 

}, 

{ "type":"bed", 

"url":"https://htcf.wustl.edu/files/xXl8ZAXy/HCT-116_PBase.bed", 

"name":"HCT-116 PBase peaks", "showOnHubLoad":"true", "options": 

{ "color":"#3182bd", 

"height":20, "displayMode":"density", 

} 

}, 

] 
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Many options have the same names and settings as the calling card track. A complete list of 

options for bedgraph and BED tracks can be found here. 

7. Now we can upload this file to the browser and visualize it. Go to the homepage and select the 

appropriate genome: 
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Figure A7.1: WashU Epigenome Browser splash page. 
 
8. Once the genome has loaded, click on the blue "Tracks" button and select "Custom tracks." 
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Figure A7.2: Custom tracks pane. 
 
9. Select the second tab, "Add Custom Data Hub." 

 
Figure A7.3: Load custom data hub. 
 
Clicking on the second dialog box ("Choose datahub file") will open a filesystem navigator 

window. Find the JSON file on your system and upload it. 

Upon successful upload, you should see a table listing the uploaded tracks: 
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Figure A7.4: Successfully uploaded data hub. 
 
10. After closing the custom track pane (with the red X in the upper right corner), all three tracks 

should be visible: 

 
Figure A7.5: Default view after uploading data hub. 
 
Note that the gencodeV29 track has been removed for this screenshot. 
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A7.4.3 Uploading Local Data Files 
11. As an alternative to hosting your data externally, you can directly upload text-based data 

files, including CCF, bedgraph, and BED. If you choose this option, your files should not be 

compressed. Also, for very large files, this approach may slow down your browser. 

12. Click on the blue "Tracks" button and select "Text track." 

 
Figure A7.6: Text track pane. 
 
13. Select "callingcard" from the dropdown menu, then click on the "Choose Files" button. 

Select one or more CCF files to upload. The browser will then load the tracks; this may take a 

few moments, depending on the size of the file(s). 
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Figure A7.7: Uploading a calling cards text file. 
 
14. After the tracks have been loaded, close the pane by clicking on the red X in the top right 

corner. When directly uploading text files, tracks will be rendered with default options. 

 
Figure A7.8: Default view after uploading text file. 
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These steps can be repeated for BED and bedgraph files. 

A7.4.4 Interacting with the Calling Card Track 
15. The calling card track was designed for interactive exploration. This is chiefly accomplished 

by a rollover box that appears as the mouse cursor nears a data point. An approximate location is 

at the top of the pane, while the bottom lists the read count, strand, and barcode for each 

insertion: 

 
Figure A7.9: Hovering over a calling cards insertion. 
 
16. Right clicking on the calling card track will bring up a preference pane, where tracks can be 

dynamically customized: 
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Figure A7.10: Calling cards customization pane. 
 
Similar preference panes exist for the BED and bedgraph tracks. 
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17. This example showcases all the different options available for calling card tracks, such as 

color, marker size, opacity, and subsampling: 

 
Figure 11: Various customizations applied to calling card tracks. 
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Appendix 8: Online Resources 
A8.1 Links to Online Resources 
Computational analyses are a necessary aspect of modern biology and this thesis would not have 

been possible without custom, task-specific software. While a number of software repositories 

and other online resources are mentioned throughout the text, we have collected them here for 

easy reference: 

• Main calling cards repository: https://github.com/arnavm/calling_cards 

o This houses scripts referenced in Chapter 2 and Appendices 4-6. Additional 

scripts are provided specifically for use on the High-Throughput Computing 

Facility (HTCF) cluster at Washington University in St. Louis. Finally, this 

repository also has several notebooks that detail the single cell analyses in 

Chapter 2. 

• WashU Epigenome Browser with Calling Card support: https://github.com/arnavm/eg-

react 

o This fork of the new WashU Epigenome Browser incorporates code for 

visualizing the calling card track (Appendix 7). These edits have since been 

merged back into the main branch of the WashU Epigenome Browser. 

• Legacy WashU Epigenome Browser with Calling Card support: 

https://github.com/arnavm/eg 
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o This was the original fork of the WashU Epigenome Browser that originated the 

calling card track. While it has been superseded by the previous repository, 

references to this version can be found in Chapter 2. 

• Blockify: https://github.com/arnavm/blockify 

o This repository contains the source code for blockify, a genomic segmentation 

algorithm based on Bayesian blocks (Chapter 4). 

o A packaged version of this code is available from the Python Package Index: 

https://pypi.org/project/blockify/. 

o Accompanying documentation can be found at https://blockify.readthedocs.io/ 

• Mirror of the calling cards repository: https://gitlab.com/arnavm/calling_cards 

o This is a fork of the main calling cards codebase on GitHub. One key difference is 

that this repository has a Ref folder containing data files that are fetched in 

blockify’s unit tests. 

• Transposon calling cards protocols: https://www.protocols.io/workspaces/calling-cards/ 

o This folder contains online versions of transposon calling cards protocols 

(Appendices 1-7). 

• kmer.cc: https://gist.github.com/arnavm/039e76a34a386a4f29b82682bc8e6c72 

o This is a fast program for finding exact sequence matches in a genome and is 

referenced in Appendix 6. 
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• Multi-modal scRNA-seq figure: https://github.com/arnavm/multimodal-scRNA-seq 

o This repository contains the multi-modal scRNA-seq figure graphic referenced in 

Chapter 1 as well as links to relevant references. 
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