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ABSTRACT OF THE THESIS

Computational Imaging Methods for Analysis of DaTScan SPECT Images

by

Hae Sol Moon

Master of Science in Biomedical Engineering

Washington University in St. Louis, May 2020

Research Advisor: Professor Abhinav K. Jha

There is an important need to develop biomarkers to improve the diagnosis and assess the

severity of Parkinson’s disease (PD). The potential to derive such biomarkers from quanti-

tative dopamine transporter scan (DaT-Scan) single-photon emission computed tomography

(SPECT) imaging, in particular the uptake of DaT in the caudate, putamen, and globus

pallidus regions, is highly appealing as imaging is non-invasive and DaTScan is already used

in the management of patients with PD. However, reliable quantification requires reliable

segmentation of these regions in these images. Reliable segmentation is challenging due to

the limited spatial resolution and high image noise in SPECT images and the physiological

variability in these regions. To address this issue, we propose a three-dimensional physics-

guided estimation-based method for segmenting SPECT images. The method implicitly

incorporates the prior distribution of boundaries of caudate, putamen and globus pallidus,

as can be obtained from high-resolution MR images of patients scanned previously, during

the training process. Our approach is guided by the physics of the SPECT imaging, and

thus inherently accounts for the two sources of partial volume effects in SPECT images,

ix



namely limited system resolution and tissue-fraction effects. The proposed method was eval-

uated both qualitatively and quantitatively using highly realistic simulation studies. The

method yielded accurate boundaries of the caudate, putamen, and globus pallidus regions,

provided reliable estimates of the specific binding ratios of these regions, and significantly

out-performed several commonly used segmentation methods. We have implemented geo-

metric transfer matrix (GTM) method that uses this delineated boundary to compensate for

partial volume effects, with the goal of estimating more accurate quantification results.

x



Chapter 1

Introduction

1.1 Non-invasive Brain Imaging

The field of brain imaging stems from an effort to be able to detect and measure physical

phenomena of the neural activity and biochemical reactions and properties of the brain. The

brain is a especially difficult organ to image for numerous reasons. First, because there are

numerous biochemical phenomena inside the brain with various yet unexplored pathways

and corresponding structures and proteins, it is difficult to pin-point a specific phenomena

of interest. Also, the neural connection between neurons and their cooperation are still

not fundamentally understood. The presence of thick human skull makes it difficult for an

imaging source such as light and sound to penetrate and lose information. Thus, an imaging

device that works in small animals may not perform reliably on the human brain due to

thicker and denser skull than that of small animals which creates intense attenuation for

sound, light and radiation-based imaging.

Many efforts have been made to come up with imaging devices to tackle these problems

and to study the brain. One of the first imaging modalities is EEG, which uses electrodes

that are placed on the head of subjects to measure electrical response of neural activities.

By using multiple channels, EEG provides a general understanding of spatial and temporal

neuronal activity from corresponding electrical responses of the neurons. Thus, one can

measure the neural activity with EEG devices and approximate the region responsible of the

brain activities.
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Many other efforts in imaging the brain have been conducted with the development of mag-

netic resonance imaging (MRI), computed tomography (CT), single photon emission com-

puted tomography (SPECT), and positron emission tomography (PET). MRI machines use

magnetic fields to measure different anatomical densities within the brain to acquire im-

ages of the brain structure. Magnetic fields are applied to the subject via coils and excite

the electrons. Depending on the time constant for relaxation of tissue molecules to reach

the equilibrium, MRI machines can detect such differences and allows visualization differ-

ent structures within the brain. With the improvement and development of various MRI

techniques such as neuromelanin sensitive MRI, fMRI and diffusion tensor MRI, researchers

are able to use MRI for more specific study of interest such as imaging the structure of

substantia nigra which has been a challenge with conventional T1 and T2 scans, monitor the

neuronal activity level of brain regions by detecting blood flow into regions, and understand

the connectivity of brain structures [82, 60, 1].

1.2 Nuclear-Medicine Imaging

Nuclear-medical imaging devices such as PET and SPECT are based on radioactive materials

called radionuclides or x-rays to penetrate the bone and tissues to aid understanding of the

biochemical properties at receptor sites, metabolism and functionality of specific tissue or

area of body. The main imaging modalities of the brain in nuclear-medicine imaging include,

SPECT and PET. For brain studies, nuclear-medicine imaging devices have widely been used

due to their ability to penetrate the thick human skull which has been a challenge for many

optical and sound based medical devices such as the OCT and ultrasound. In oncology, with

the usage of radioactivity-labelled molecules that bind to area of metabolic activity, clinicians

are able to acquire numerous information regarding the location, size and heterogeneity of

the tumor. Also, nuclear-medical imaging modalities can achieve diagnostic information

even at the receptor sites which made them especially useful for DA and DAT scanning for

dopaminergic neurodegenerative conditions such as Parkinson’s disease (PD) and dementia

with Lewy bodies [98, 45].

In SPECT scanning, Anger camera rotates 360 degrees around the source of interest to ac-

quire a 3D imaging of emitted gamma rays for about 120 angle points. Whereas in PET, the
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detectors are aligned to form a circular ring around the source without rotation. PET uses

positron emission which after annihilating with an electron, yields two photons in diametri-

cally opposite directions, so that two gamma rays are detected in the detector ring from a

single event. Based on the location of the detectors that are hit by the two gamma rays and

with the calculation of the time difference between the two gamma rays, an approximate

location of the source of gamma rays can be determined.

CT scans are widely used together with nuclear-medicine modalities such as SPECT and

PET. The physics of CT scans are based on X-rays scans for 360 degrees around a subject

to get numerous projection maps of the source similar to those of a SPECT system. The

projection images are reconstructed for 3D image of the source by clinicians. The image

acquired shows different structure of the brain depending on their ability to absorb the X-

ray particles. In brain imaging, such images are used by clinicians to see the signs of head

injuries and brain tumors. Also, the ability of CT scans to clearly differentiate the skull from

other brain tissues allows combination of CT with SPECT or PET scans because in SPECT

and PET, the information of the location of skull is important for attenuation correction due

to information loss by high attenuation coefficient and the thickness of human skull [92].

Figure 1.1: Clinical brain SPECT scanning
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1.2.1 Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography (SPECT) is tomographic imaging system

in nuclear-medicine widely used for diverse clinical and research purposes including in on-

cology, cardiology, and neuroimaging. A SPECT system detects gamma rays from photon

emission of radionuclide tagged tracer distributed throughout the body that is injected into

the subject. The specific tracer binds to or becomes trapped by physiological properties and

during the radioactive decay of radionuclide of the tracer, gamma rays are emitted. The

gamma rays travel and reach the detectors of SPECT.

A SPECT systems has a unique part called collimators. The collimators are stationed in front

of the detectors to allow only gamma rays that are directly parallel to the detector and reach

the scintillation crystals. The scintillation crystals as a main part of the detector, transmit

light when hit by gamma ray particles and the intensity of produced light gets multiplied

in the photo-multiplier tube stationed after the scintillation crystals and following photo-

sensors convert the light into electrical signal to map the projection data [13]. The detection

of gamma rays, which are converted into the electrical signals, allows the mapping and thus,

the understanding of biochemical properties and reactions of interest. A simple schematic of

SPECT imaging starts with the injection of radio-pharmaceutical into the body of subject,

uptake of such radio-pharmaceutical into the regions of interest, data acquisition of SPECT

imaging, and image reconstruction/analysis.

SPECT Simulations

In order to conduct studies in economically and timely efficient manner, in numerous SPECT

research studies, prior to testing on a clinical SPECT scanner, computerized simulations of

SPECT imaging are used. This allows more freedom in experimenting with numerous param-

eters and techniques to acquire ideal SPECT setting on computers. Simulations also allow

modeling population variability. However, in order to achieve a highly realistic simulations,

SPECT physics processes have to be incorporated mathematically such as collimator-detector

response, attenuation and scatter in both simulations and reconstruction protocols [59]. Es-

pecially, the collimator and detector determine resolution of the system. The collimator also
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Figure 1.2: Physics of pinhole SPECT adopted from Aoi et al.[2]

determines the sensitivity of a SPECT scanner. The factors that affect collimator resolu-

tion include distance from the source to collimator, hole size, and hole shape. Typically,

low energy and high resolution collimators (LEHR) are used for DatScan studies and has

around 7.4 mm FWHM at 10 cm [86]. Further, scintillating crystals and photo-multiplier

tube determine the intrinsic resolution. Intrinsic resolution varies between SPECT scanners

but generally is around 4 mm FWHM [86].

The mathematical modeling of the deterministic portion of any imaging system can be

expressed through the formalism g=Hf, where f is the object that is being imaged, and g

is the acquired data from the imaging system. H represents the system response and the

behavior of the imaging system and in a linear discrete-to-discrete system, can be expressed

in a matrix form, also referred to as the system matrix. In order for a simulation method
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to be realistic, it is important to take into accounts of various SPECT imaging physics and

to achieve a reliable digital phantom of the uptake distribution depending on the type of

isotope used in the study.

SPECT Reconstruction

After acquiring the H matrix, an iterative reconstruction method namely maximum likelihood-

expectation maximum (ML-EM) and ordered subset-expectation maximum methods are used

for reconstruction (OS-EM) [51, 28]. The method computes the ratio between measured and

estimated projection and the back projection of the ratio will be multiplied to previous itera-

tion of estimated image to generate image of new iteration. The difference between measured

and estimated projection will be incorporated into each iteration and after a specific itera-

tion, theoretical and measured image will become similar. Thus, it is highly important to

achieve a highly realistic H matrix that incorporates the realistic nature of a SPECT system

configuration into account.

In each iteration of ML-EM, an updated reconstructed image can be explained and mathe-

matically expressed as follows:

Image(k+1) = Image(k) ×Normalized Backprojection of [
measured projection

estimated projection(k)
] (1.1)

f̄ (k+1)
n =

f̄
(k)
n∑M

m′=1Hm′n

M∑
m=1

gm∑N
n′=1Hmn′ f̄

(k)
n′

Hmn (1.2)

1.3 Parkinson’s Disease

Neurodegenerative disorders are characterized by irreversible degeneration of neuronal cells

that deteriorates various functionalities of the brain including cognitive abilities. Parkinson’s

disease is the second most common neurodegenerative disease after Alzheimer’s [19, 63]. The

diagnostic symptoms of PD are rigidity, bradykinesia, akinesia, abnormal posture and resting

tremor [62]. Bradykinesia is the slowing of muscle movement and akinesia represents the loss
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of voluntary muscle movement. Ridgitity refers to stiffness of the muscle. These symptoms

occur due to the inability of the PD patients to relax undesired muscle contraction. Also,

tremor is one of the most commonly associated with patients with PD. A tremor refers to a

rhythmic, oscillating and involuntary movement or shake that occurs in the body [85]. This

behavior also occurs in other motor-related illnesses such as essential tremor, a neurological

disease that causes involuntary tremor when trying to move muscle. However, in PD, tremor

occurs in a resting state, which is known as resting tremor that occurs even when the patients

are at rest. The resting tremor not only occurs in fingers and large muscles such as foot,

hand, leg or arm but also lips, jaw and tongue [30]. The symptoms that are related to motor

functions such as muscle control, balance and movement can be explained by the neuronal

loss in the substantia nigra where most of the dopamine neurons are located, as will be

explained more in detail.

Further, non-motor symptoms such as depression, apathy, sleep disorders and erectile dys-

function are known to occur in patients with PD [6]. It is still unclear the exact pathway

and the cause of such neurodegeneration in PD. In most cases, the diagnosis of PD occurs

after about 50% of dopamine neurons have already been lost [12]. Also, PD is sometimes

misdiagnosed and an accurate diagnosis is challenging [12].

1.3.1 Basal Ganglia

Direct Pathway

Basal Ganglia is a group of structures that includes caudate, putamen, globus pallidus and

midbrain that takes a crucial role in the neuronal circuit of the brain. The basal ganglia is

connected to the motor cortex and the thalamus through inhibitory and excitatory synapses

with GABA and glutamate as neurotransmitters. In a voluntary movement, when a person

tries to move, the motor cortex sends an excitatory signal with the release of glutamates

into the striatum which then inhibits globus pallidus internal (GPi) as the striatum releases

GABA. When GPi is inhibited, the normal inhibitory effect on the the thalamus is also

inhibited which in turn, excites the thalamus. Then, the excited thalamus sends excitatory

signal to the motor cortex and excites the muscles for movement.
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Figure 1.3: Basal ganglia

The substantia nigra has a regulatory role in the direct pathway. The striatum contains D1

dopamine receptors that receive dopamine from substantia nigra. The substantia nigra con-

nects with the inhibitory neurons from striatum and globus pallidus through dopaminergic

neurons in the niagrostriatal pathway. When striatum receives dopamine from substantia

nigra, GPi is more inhibited leading to amplified effect in the direct pathway. Such response

is regulated with the amount of dopamine transported from the substantia nigra to the

striatum.

Indirect Pathway

The indirect pathway of muscle movement mainly occurs to prevent undesirable movement

by inhibiting the execution of thalamus which excites the motor cortex. GPi controls the

thalamus by inhibiting thalamus. Also, the motor cortex excites the striatum and inhibits
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globus pallidus external (GPe), which then inhibits the connection with subthalamic nucleus.

This results in excited subthalamic nucleus that sends excitatory messages to GPi which

inhibits the activity of thalamus by sending out more GABA neurotransmitters. Then,

thalamus sends less excitatory signal to the motor cortex and leads to a decreased muscle

movement. The substantia nigra also plays an important role in the indirect pathway as a

regulator. The substantia nigra sends dopamine which binds to D2 receptors in the striatum.

With the increase of dopamine binding to D2 receptors results in less inhibitory response to

GPe from the striatum in the indirect pathway. The level of dopamine controls the response

of thalamus leading to either increased or decreased muscle movement.

Figure 1.4: Basal Ganglia Pathway adopted from Olanow et al., modified by Delong and
Young et al.[70]

What Happens in Parkinson’s Disease?

In PD, dopaminergic neurons in the nigrostriatal pathway which connects the substantia

nigra and striatum dies due to unknown causes. Similar to Lewy body dementia, in PD,
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there exists an accumulation of abnormal protein bundles called Lewy bodies which form

in the substantia nigra [88]. As the dopaminergic neurons die, less dopamine is transported

from the substantia nigra to the striatum that effects both direct and indirect pathway of

muscle movement. In the direct pathway, the goal is to excite thalamus to induce muscle

movement. However, in PD, due to loss of dopaminergic neurons leading to decreased levels

in the striatum, the thalamus is less activated which leads to reduced muscle movement.

In the indirect pathway, as dopamine levels decrease in the striatum, the ”fine-tuning”

ability of substantia nigra as a regulator of muscle movement is reduced. Thus, the loss of

dopaminergic neurons leads to less dopamine movement from substantia nigra to striatum

and causes loss of the ability to trigger extensive muscle movement and to prevent excessive

movement evident from slow movement and resting tremors of patient’s with PD.

Also, there is an increasing need for clinical investigation of globus pallidus in PD [52, 53, 9,

8, 79]. There has been an observed correlation between DaT reduction in globus pallidus and

resting tremor severity which is one of the distinct symptoms of PD [26]. Studies have found

an increase in F-dopa uptake in GPi in early stages of PD [100]. The authors hypothesized

that the uptake in GPi was increased to maintain a more normal pattern of pallidal output to

ventral thalamus and motor cortex to compensate for the early degeneration of nigrostriatal

dopaminergic neurons. As the disease progressed, uptakes in GPi then gradually decreased.

The authors suggested that the loss of this pathway in PD may be an important step in the

progression of the disease. These findings bring significant interest in quantifying uptake in

globus pallidus.

1.3.2 Diagnostic Techniques

UK PD Society Brain Bank Criteria

The UK PD society brain bank criteria is a widely used clinical diagnostic criteria for PD

developed by PD society brain bank (PDSBB) in London [29]. The criteria begins with

the diagnosis of Parkinsonian Syndrome with bradykinesia, and presence of at least one

of muscular rigidity, 4-6 Hz of rest tremor and postural instability not caused by primary

visual, vestibular, cerebellar or proprioceptive dysfunction [29]. Next step is to perform

exclusion criteria for PD which includes history of repeated strokes, head injury, more than
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one affected relative, presence of cerebral tumor, exposure from MPTP and more [29]. The

final step is the supportive prospective positive criteria for PD. Three or more of the last

criteria step are required for a diagnosis of definite PD as well as the check for the first step

which includes, unilateral onset, presence of rest tremor, disorder progression, asymmetry of

affected side, 70-100 % response to L-Dopa, severe L-Dopa induced chorea and a response

from longitudinal study [29].

United PD Rating Scale

The united PD rating scale (UPDRS) is a scaling system that rates the severity of PD based

on symptoms which ranges from 0 to 199 maximum points. The UPDRS has four parts

including non-motor experiences of daily living, motor experiences of daily living, motor

examination and motor complications [23]. The first part includes psychological symptoms

such as cognitive impairment and hallucination and in part two, motor symptoms including

handwriting and tremors and speech are examined [23]. The first two parts are performed

through an interview with a physician, part three is a structured physical examination for

motor performance and the last section is performed through interview and observation [23].

1.4 Dopamine Transporter SPECT scans

1.4.1 Ioflupane

The loss of dopaminergic neurons is one of the main symptoms of PD. Thus, it is compelling

to investigate metrics that can show the changes of dopaminergic neurons as biomarkers.

Ioflupane (I-123) is a radionuclide that is a cocaine analogue. Cocaine analogues have a

high affinity to dopamine transporters in the presynaptic terminal of dopaminergic neurons

especially found in the striatum [5, 83]. The affinity of I-123 to dopamine receptors depends

on the availability of DaT in the presynaptic terminal which is affected by the severity of

PD. Thus, patients with severe PD will have reduced DaT uptake in the striatum region

and that will be largely asymmetric. Radiologists visually assess SPECT scans as one of the

criteria of the differential diagnosis.
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1.4.2 Image-Analysis-Related Challenges

Various segmentation methods in medical imaging have been developed for numerous pur-

poses. Such methods serve the goal of extracting region of interest such as tumors or lesions.

Also, in MRI images, segmentation methods have been developed to delineate various struc-

tures of the brain. This is made possible by relatively higher resolution and lower noise levels

of MRI images of the brain. A program called Freesurfer is used in this study to segment

T1 MRI images into various regions of the brain such as caudate, putamen, globus pallidus,

grey matter and white matter [20]. However, in nuclear-medicine imaging and especially in

SPECT scans, images are largely distorted due to partial volume effects resulted from high

noise and low resolution of imaging systems. Thus, conventional intensity-based segmenta-

tion methods of SPECT images such as thresholding, gradient-based and MRF-GMM suffer

from low segmentation accuracy because the shape difference between an actual structure of

region of interest and visual shape in SPECT images are quite different. There have been

numerous studies to determine a quantitative biomarker for PD through DaTscan SPECT

but a reliable early detection method and a biomarker that correlates with the progression

and severity of PD have yet to be developed. In many studies, simpler and less accurate

segmentation methods such as thresholding were used and more focus was on the analysis as-

pect instead of the segmentation accuracy. Thus, there is a need for a segmentation method

that accounts for PVEs and a quantification method that also accounts for PVEs. This

study focuses on both aspects of these problems to achieve the goal of accurate quantifica-

tion that largely corrects PVEs. In our study, we focus on achieving accurate segmentations

and use those segmentations to develop a quantitative biomarker for assessing mean uptake

in regions of interest.

1.4.3 Proposal

We propose to address the challenges with analysis of DaTscan SPECT images through

the development of new image analysis methods. In this thesis, we focus on developing

and evaluating these tools in the context of analyzing the caudate, putamen, and globus

pallidus regions thus, developing a robust quantification metric for in vivo phenomena. We

are interested in quantifying the uptake in globus pallidus along with widely studied caudate
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and putamen to investigate the correlation between uptake in globus pallidus and the severity

of PD as well as to advance understanding of pathological role of globus pallidus in PD

[26, 52, 53, 9, 8, 79, 100]. In clinical trials [101, 78, 22, 16, 50], including the seminal

ELLDOPA study [24] and MPTP-treated non-human primate studies [96, 42, 94], striatal

measures did not fully correlate with the severity of PD, thus limiting the effectiveness of

only using striatal uptake as a biomarker to measure or predict the progression of PD.

Thus, a combined analysis of caudate, putamen and globus pallidus, may provide useful

information that hasn’t been explored yet. We first propose a new estimation-based approach

to SPECT segmentation that integrates the physics of SPECT imaging with a learning-

based approach. We observe that the proposed method yields accurate segmentations of the

caudate, putamen, and globus pallidus in brain SPECT images, as evaluated using realistic

simulation studies. The method is described in Chapter 2. In Chapter 3, a PVC method

is developed to address the issues of PVEs in quantification. This approach builds upon an

approach initially proposed in Du et al. and demonstrates promise in the task of PVC from

SPECT images. In summary, this thesis seeks to develop tools to address the challenges of

segmentation and PVC in DaTscan SPECT images, specifically in the context of performing

reliable quantification from the caudate, putamen, and globus pallidus regions of the brain.
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Chapter 2

A physics-guided learning-based

estimation method for fully

automated 3D DaT-Scan SPECT

segmentation1

2.1 Introduction

Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s

disease and is estimated to affect 12 million people worldwide by 2040 [19, 63]. Dopamine

transporter (DaT) SPECT scans are conducted to improve diagnosis, and more specifically,

to separate PD from other Parkinsonian syndromes such as Essential Tremor [83]. For this

purpose, conventionally, DaTscan images are analyzed visually. However, several studies

are investigating whether quantitative uptakes in the striatal regions, i.e. the caudate and

the putamen, can help with more accurate diagnosis [40]. Also, there is significant inter-

est in using quantitative DaT SPECT-derived measures for measuring disease severity in

patients with PD [53, 52, 77]. Moreover, studies have shown evidence of DaT in globus

pallidus (GP) [8, 75] and its correlation to motor severity and progress of PD [53]. For all

these studies, there is a need for methods to quantify regional DaT uptakes from SPECT

1This chapter forms the basis of an article that will be submitted to a journal. Authors include Hae
Sol Moon, Ziping Liu, Richard Laforest, Maria Ponisio and Abhinav K. Jha. Abstracts based on this work
have been accepted to the IEEE International Symposium on Biomedical Imaging 2020 and the Society of
Nuclear Medicine and Molecular Imaging Annual Meeting 2020
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images. Additionally, there is substantial interest in using shape analysis of the caudate

and putamen boundaries to develop biomarkers for PD [89, 76]. Further, texture analysis

of DaTscan images is also being explored [65, 3]. Conducting these quantification, shape

and texture-analysis studies requires reliable segmentation of the caudate, putamen, and GP

regions from DaT-scan SPECT images.

Segmentation in SPECT is challenging in general due to the low resolution and resultant

partial-volume effects (PVEs, high noise and physiological variability between subjects [4,

14]. The problem is further compounded in DaTscan SPECT because of the small sizes of

the caudate, putamen, and GP regions. In fact, the GP is visually almost impossible to

demarcate from SPECT images. The commonly used segmentation procedure for SPECT is

manual delineation by trained readers. However, manual delineation is expensive, tedious,

time consuming, and suffers from intra-and inter-reader variability, especially due to the poor

resolution and high noise in SPECT [33]. To address this issue, several semi-automated

SPECT segmentation methods have been proposed, such as those based on thresholding

[61, 97], edge-detection [61], region-growing [84], and clustering [68]. However, our studies

show that these methods yield limited performance when applied to DaT-scan SPECT. This

was primarily due to the lack of clear boundaries and the relatively low tracer uptake in the

GP region. Often times these existing methods segmented the caudate, putamen and GP

as just one unified region, which limits the ability to quantify regional uptakes from these

regions. A recent study showed that metrics measured from DaTscan SPECT after applying

a semi-automated segmentation method yielded large variabilities, and thus were clinically

not useful [66]. Thus, there remains an important need for improved methods to segment

DaTScan brain SPECT images.

To address this need, we recognize that a major barrier to segment DaTscan SPECT images

into caudate, putamen, and GP is the lack of clear boundaries between these regions in these

images. This arises due to the PVEs in reconstructed SPECT scans. These PVEs have two

sources: limited system resolution and tissue-fraction effects (TFEs). Clinical brain SPECT

systems typically have resolution of the order of ∼ 8 mm, and following reconstruction, the

resolution in the reconstructed image can be around ∼ 12 mm. [90, 10] Thus, structures such

as caudate, putamen and GP, which are close to each other, are significantly affected by the

system-generated blur. Further, due to reconstruction of the image over a finite-sized voxel

grid, it is likely that a voxel contains more than one region. While this is generally an issue
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in medical imaging, the effect is more prominent in SPECT due to the larger reconstructed

voxel sizes.

Conventional segmentation methods are designed as classifiers, in that they classify a voxel

as belonging to a certain region. Thus, they are inherently unable to account for the TFEs.

To address this issue in the context of segmenting oncological 2-D PET images, Liu et al.

[58, 57] have proposed an estimation-based segmentation method. The method instead of

classifying a pixel as tumor or background, estimates the fractional area that the tumor

occupies within each pixel. We now propose to extend this technique in the context of

segmenting multiple regions, namely the left and right caudate, putamen and GP, from 3-D

SPECT images. The estimation-based segmentation technique is a Bayesian approach, and

as shown later, requires a distribution of the fractional volumes that the caudate, putamen,

and GP regions occupy in each voxel. To obtain this distribution, we use the fact that these

regions are separately visible on T1-weighted MR images, where they can be easily delineated.

Since the T1-weighted MR images are anatomical, this provides the anatomical fractional

volumes in each voxel for the different regions. The proposed method uses this distribution

to estimate the posterior mean of the fractional volumes of the caudate, putamen, and GP

regions from the DaT-scan SPECT images. These estimates yield the segmentations of these

regions over a continuous non-voxelized grid, analogous to segmentation of a high-resolution

image.

This paper is organized in the following sections. In Section 2.2, we provide the theoretical

formalism, implementation, and evaluation of the proposed method. An important compo-

nent of the evaluation study is investigating the performance of the method when there is a

mismatch between the distribution learned from the MR image population and the SPECT

image. We investigate the sensitivity of the method to these mismatches. The results are

presented in Sec. 2.3. Finally, the implications of the results along with limitations and

future directions are presented in Sec. 2.4, followed by the conclusions in Sec. 2.5.
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2.2 Methods

2.2.1 Theory

Problem formulation

Let f(r) describe the DaT tracer distribution within the brain for a patient injected with

this tracer, where r is a 3D vector denoting spatial location. Consider a SPECT system that

images this 3D tracer distribution and yields sinogram data. The sinogram data is input to

a reconstruction method, yielding a reconstructed image f̂ consisting of M voxels. Denote

the process of obtaining the reconstructed image from the original tracer distribution by the

operator Θ : L2(R3) → EM . Our objective is to segment the reconstructed image into K

regions, in this case, the left and right caudate, putamen, and GP regions, with the rest of

the region labeled as the background. Typically this is performed by labeling each voxel

in the reconstructed image to one region. However, as mentioned above, this segmentation

is unable to account for tissue-fraction effects. Thus, we instead frame the segmentation

problem as estimating the fractional volume occupied by the kth region in each voxel of the

reconstructed image f̂ .

Let the support of the kth region be given by φk(r). Mathematically,

φk(r) =

1, if region k occupies location r.

0, otherwise.
(2.1)

Also, let the distribution of tracer uptake within the support of each region be given by

fk(r). Then f(r) can be described as follows:

f(r) =
K∑
k=1

fk(r)φk(r). (2.2)
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Next, define the voxel function ψm(r) as

ψm(r) =

1, if r lies within the mth voxel.

0, otherwise.
(2.3)

Let V denote the total volume of each voxel. The fractional volume occupied by the kth

region in the mth voxel, denoted by videal,k,m, is given by

videal,k,m =
1

V

∫
φk(r)ψm(r)d3r. (2.4)

Estimating the fractional volumes within each voxel thus requires estimating the values of

φk(r) from f̂ . This is an ill-posed problem due to the null functions of the Θ operator. One

way to alleviate the ill-posedness is to incorporate prior distribution about φk(r). However,

this requires access to the distribution of f(r), or at least φk(r), at infinitely high resolution.

Liu et al. [58] proposed a simulation-based strategy for this purpose, where in the context

of oncological PET, they simulated tumors at very high resolution. However, their strategy

required simulating tumors and then validating their realism.

In our problem, we benefit from the availability of existing MR image populations, which can

be used to provide the distribution of φk(r) at relatively higher resolution. More specifically,

the anatomical structures of the caudate, putamen and GP regions are distinguishable on

MR images due to the higher resolution of MRI. The MR images can thus be segmented to

yield the support of these regions. Thus, from previously acquired MR images, a distribution

of the support of these regions can be obtained.

Denote the MR image by an N -dimensional vector fMR, where N > M . The voxel function

for this image is denoted as ψMR
m (r). Assume that this image has been segmented into K

distinct regions. For each region, we define a N -dimensional vector φMR
k , which denotes the

mask for that region. The elements of this vector are defined as follows:

φMR
k,i =

1, if voxel i in the MR images is assigned to region k.

0, otherwise.
(2.5)
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A high-resolution estimate of the fractional volume occupied by the kth region in the mth

voxel of the SPECT image, denoted by vk,m, is then given by

vk,m =
1

V

M∑
m′=1

φMR
k,m′

∫
d3r ψMR

m′ (r)ψm(r). (2.6)

We frame our problem as the task of estimating {vk,m, k = 1, 2, . . . K,m = 1, 2, . . .M} from

the reconstructed SPECT images.

Estimation technique

Denote the estimate of vk,m by v̂k,m. Denote the vector {vk,m,m = 1, 2, . . .M} by vk, and

the estimate of vk by v̂k. To compute v̂k from the reconstructed SPECT image f̂ , we first

need to define a cost function. The values of vk,m and v̂k,m lie between 0 and 1. Thus, if we

treat these values as probabilities, the binary cross entropy (BCE) between vk,m and v̂k,m

automatically incorporates this constraint on the range of these values [11]. Therefore, the

BCE loss, denoted by lBCE(vk,m, v̂k,m), and given by the equation below is chosen as the basis

of the cost function:

lBCE(vk,m, v̂k,m) = vk,m log(v̂k,m) + (1− vk,m) log(1− v̂k,m). (2.7)

The cost function, denoted by C(vk, v̂k), minimizes the negative of the BCE loss between

vk,m and v̂k,m over all M voxels, averaged over the ensemble of true values vk,m and the noise

in the imaging process. The cost function is then given by:

C(vk, v̂k) = −
M∑

m=1

∫ ∫
p(f̂ , vk,m)lBCE(vk,m, v̂k,m)dvk,md

M f̂ . (2.8)
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We use Bayes theorem to expand p(f̂ , vk,m) and replace the expression from Eq. (2.7) in the

cost function (Eq. (2.8). This yields:

C(vk, v̂k) = −
M∑

m=1

∫
p(f̂)

∫
p(vk,m|f̂) [vk,m log(v̂k,m) + (1− vk,m) log(1− v̂k,m)] dvk,md

M f̂

= −
M∑

m=1

∫
p(f̂)

∫
p(vk,m|f̂) [vk,m{log(v̂k,m)− log(1− v̂k,m)}+ log(1− v̂k,m)] dvk,md

M f̂

=
M∑

m=1

∫
p(f̂)

[
{log(v̂k,m)− log(1− v̂k,m)}

∫
p(vk,m|f̂)vk,mdvk,m + log(1− v̂k,m)

]
dM f̂ .

(2.9)

The term p(f̂) is always positive. Thus, the cost function is minimized by setting

∂

∂v̂k,m

[
{log(v̂k,m)− log(1− v̂k,m)}

∫
p(vk,m|f̂)vk,mdvk,m + log(1− v̂k,m)

]
= 0. (2.10)

The solution is given by

v̂∗k,m =

∫
p(vk,m|f̂)vk,mdvk,m. (2.11)

This is simply the posterior mean estimate of vk,m. Thus, by developing an optimization

routine that minimizes the loss function in Eq. (2.7), we can estimate the fractional volume

that a region occupies in each voxel. From this estimate, the segmented boundaries of the

different regions can be obtained, as we define later. We first describe the procedure to

develop such an optimizer.

2.2.2 Implementation

An encoder-decoder-based architecture was implemented to minimize the cost function de-

fined in Eq. (2.7). The auto-encoder was input the 3D SPECT images and corresponding

ground-truth masks for training. On being trained, the network, when input a 3D SPECT

image, estimates the fractional volumes of the of left and right caudate, putamen and GP,

which are then used to define the 3D delineations of these regions. The network architecture
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is shown in Fig. 2.1. The architecture is similar to a modified U-net as proposed in Leung

et al. [54], but with some differences. The major difference is that the argmax layer is not

present. This allows the network to output a continuous valued estimate of the fractional

volume within each voxel, as a number between 0 and 1. This network design is similar to

other networks that are designed for estimation-based tasks, such as those for denoising [11]

and reconstruction [69]. The detailed architecture is shown in Appendix A. We implemented

this approach in 3D instead of conducting slice-by-slice segmentation or patch-based training

[41] to provide the maximal amount of global contextual information per patient image.

Figure 2.1: The auto-encoder architecture for performing the segmentation of the DaTScan
SPECT images. The network is input a 3D SPECT image, and outputs the estimated
fractional volumes of the different regions.

The method was implemented on systems with NVIDIA Titan RTX GPU and NVIDIA V100

graphics processing unit (GPU) cards, allowing effective training with 3D images. Tensorflow

1.10.0 was used with Keras. Also, Python 3.7 programming language was used.

2.2.3 Evaluation of the proposed method

Evaluation of the proposed method requires access to DaT-scan SPECT images where the

ground-truth boundaries of the various regions are known. One approach to conduct such a

study is to have ground-truth boundaries defined by expert readers. However, this approach

is likely erroneous with SPECT as the manual delineations are not guaranteed to be accurate

due to the PVEs in SPECT. In fact, the GP is manually almost impossible to delineate on

the SPECT scan. Further, the boundary between the caudate and putamen is unclear. All

these factors make obtaining manual delineations nonviable. Another evaluation approach is
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a setup where both the MR and DaT-scan SPECT images for a certain set of patients were

acquired. However, such images are difficult to obtain due to the lack of joint SPECT/MR

systems. In some cases, SPECT and MR images from different scanners may be available.

However, using these images requires assuming that the MR and SPECT scans are perfectly

aligned, which is not guaranteed. Further, this approach assumes similarity of the functional

boundary on the SPECT and the anatomical boundary on the MR image.

To address these issues, we perform this evaluation in a more controlled setting through

realistic clinically guided simulation studies where the above-mentioned assumptions do not

need to be made. In these studies, clinical MR images are used to generate clinically realistic

SPECT images by modeling the physics of SPECT. This process inherently ensures that the

MR-defined ground-truth boundaries of the various regions in the generated SPECT images

are known and that the images are aligned perfectly. Further, this approach allows us to

precisely and quantitatively study the effects of misalignment between the SPECT and MR

images, and the mismatch between the MR functional and SPECT anatomical boundaries.

Note that while this strategy requires simulation of SPECT system, the true distribution of

the fractional volumes of the different regions is not simulated and is obtained directly from

clinical studies. In this section, we describe the process followed to rigorously evaluate the

proposed method using this simulation-based approach.

Generating realistic SPECT images

A total of 600 T1-weighted MR images from the Open Access Series of Imaging Studies

(OASIS)-3 [48] and Alzheimer’s Disease Neuroimaging Initiative (ADNI) [74] databases were

used. These images were segmented into grey matter, white matter, caudate, putamen

and GP for both left and right hemispheres using the Freesurfer software. The delineation

was performed in Montreal Neurological Institute (MNI) space into 256× 256× 256 voxels

with voxel size of 1 mm. The resulting delineations of MR images yielded 600 anatomical

templates of the brain. Next, an in vivo distribution of DaT activity ratios in the different

regions of the brain, as obtained from clinical data in Lee et al. [53], was defined. For each

anatomical template, this distribution was sampled to determine the DaT activity ratios in

the various regions. This process ensured clinically realistic variability of activity uptake

for the different subjects. At the end of this process, we had a digital phantom population
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of 600 patients with anatomical templates directly obtained from clinical data and tracer

distributions guided by clinical data.

This ground-truth tracer distribution was used to generate realistic DaT-scan SPECT im-

ages. A SPECT system modeling a DaT-scan study with 123-Ioflupane tracer and a low-

energy high-resolution (LEHR) collimator was simulated. System parameters were similar

to a GE Discovery 670 (GE Healthcare, Haifa, Israel). The simulation process modeled the

various aspects of SPECT imaging, including the finite extent of the collimator, the finite

energy and spatial resolution of the detectors and the photon attenuation. The number of

total counts was scaled down to clinically realistic value of 2 million counts [15], to which

Poisson noise was added. The noisy projection data were reconstructed using an iterative

3D order-subsets expectation-maximization (OS-EM) algorithm with 4 iterations and 8 sub-

sets, as in typical SPECT reconstruction protocols. The OSEM technique compensated for

attenuation and collimator-detector response. The reconstructed images were of dimensions

128×128×128. The images were reconstructed at two voxel sizes, namely 2 mm and 4 mm.

This was done to study the performance of the segmentation method for these two clinically

relevant voxel sizes and evaluate the sensitivity of our method to voxel size. The overall

process to generate the SPECT images is summarized in Fig. 2.2.

Figure 2.2: Workflow to simulate the SPECT images. DaT activity distribution map in
relevant regions was attained from clinical data and structural boundaries from MR images.
The digital phantom was then used for highly realistic SPECT simulation and 3D OS-EM
reconstruction to generate reconstructed images.
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Training and evaluation strategy

The 600 reconstructed 3D SPECT images were divided into two independent sets of 500

training images and 100 testing images. The training images were used to train the proposed

method, while the testing images were used for qualitatively and quantitatively evaluating

the performance of the method. The performance of the method was compared with several

commonly used methods that have been used for SPECT segmentation. These included a

Markov random fields-Gaussian mixture model (MRF-GMM)-based method [33, 38, 91], an

active-contour-based technique, namely Snakes, [43], a thresholding-based technique, namely

40% SUV-max thresholding [46] and finally a state-of-the-art U-net-based technique [54] For

the first three segmentation methods, the 40% SUV-max, Snakes and MRF-GMM, a manual

input, which could be a seed voxel or an initial boundary estimate, was provided to the

segmentation technique. The proposed method and the U-net-based method did not require

any user inputs, and were fully automated.

Quantitative evaluation on the segmentation tasks was performed using metrics that eval-

uated spatial overlap and shape similarity. Note that the output from the segmentation

method is an estimate of the fractional volume, which is a number between 0 and 1. Con-

ventional segmentation methods typically assign a voxel to only a single class. For these

methods, the spatial overlap is quantified using Dice similarity coefficient (DSC) and Jac-

card similarity coefficient (JSC). Since our method yields a number between 0 and 1, we

used the fuzzy analog of these metrics, namely the fuzzy DSC (fDSC) and fuzzy JSC (fJSC),

as defined in Taha et al [95]. Higher values of these metrics indicate a more accurate seg-

mentation. Also, the similarity in shapes between the true and estimated segmentations was

quantified using the Hausdorff distance (HD) [31]. HD measures the maximum deviation be-

tween the predicted and true segmentation boundaries. Thus, lower value of HD represents

higher shape similarity.

Studying effect of mismatch between MR and SPECT images

The proposed approach is trained in a setting where the alignment of the SPECT image

with the corresponding MR images and the similarity of the MR anatomical and SPECT

functional boundaries are enforced by default. However, a new SPECT image to which
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this trained network is applied may not necessarily satisfy these conditions. For example,

the new SPECT image may be misaligned compared to the MR images in the training set.

Similarly, there may be a mismatch between the SPECT functional and the MR anatomical

boundaries. To evaluate the sensitivity of our method to these sources of mismatch, we

conducted the experiments as described in the next two sub sections.

Misalignment between MR and SPECT images: Our network was trained using a

clinical MR population that was registered on the MNI space. In a realistic scenario, it may

be possible that the SPECT scan of a new patient may be misaligned with this space. To

simulate this effect, we evaluated the performance of our method when input SPECT test

images were misaligned compared to the MR image population. A total of 100 test images

were misaligned by rotating them in steps of 2 degrees, for up to a maximal rotation of ±10◦.

The misalignment was introduced in the x-y plane. The sensitivity of the network to this

misalignment was quantified using the fDSC metric.

Mismatch between functional SPECT and anatomical MR boundaries: The MR

images provide the anatomical boundaries of the caudate, putamen, and GP regions. In

contrast, the SPECT images provide the functional boundaries of these regions. In SPECT

images of patients with higher severity of PD, the functional boundary of the putamen is

typically smaller on the lower side of putamen in an axial view often asymmetrically [72].

As patients with PD progress, it has been observed that the affected putamen changes from

a bean shape to a smaller size and circular shape in the SPECT image. In other words,

it appears that the functional boundary of putamen is smaller. Further, uptake in the GP

is typically non-existent in patients with more severe PD [52]. Thus, in summary, there is

a potential of mismatch between the functional boundaries as defined on the SPECT and

the anatomical boundaries as defined on the MR images. This is as shown in example in

Fig. 2.5. We investigated the sensitivity of our method to this mismatch. For this purpose,

in the test set, we simulated SPECT images with no uptake in the GP and progressively

reduced functional size of the putamen, corresponding to different levels of disease severity.

All 100 test subjects were used in this study. In each test subject, the functional boundary

of the putamen was reduced compared to the anatomical boundary in steps of 10%, to up to

90%. In this study, only functional boundaries are affected and anatomical boundaries are

not changed
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2.3 Results

2.3.1 Qualitative evaluation

We first present representative qualitative results that provide context to the quantitative

findings discussed in the next section. The segmentation boundaries estimated using the

different methods for 2 mm voxel size SPECT images are shown in Fig. 3.1. The proposed

method closely matched the ground-truth boundary. This is shown more clearly using the

zoomed results in Fig. 2.4. These figures also illustrate the challenging nature of the segmen-

tation task, as due to PVEs, the boundary between the different regions is highly blurred.

As a result of this, the 40% SUV-max and active-contours method were not even able to seg-

ment the various regions separately. The MRF-GMM technique could segment three regions

but the overlap between the predicted and the ground truth was not that high. In contrast,

the proposed method yielded accurate segmentation of all the individual regions.

In Fig. 2.5, a visual comparison of performance of proposed segmentation method is provided

for a healthy and a diseased patient. In the healthy patient, the anatomical and functional

boundaries match. In the diseased patient, the functional boundary of the putamen is

reduced and there is no uptake in the GP. The proposed segmentation method yielded a

similar delineation as the true functional boundary in both these cases. Also, note that the

proposed segmentation method did not yield a functional boundary for the GP region, thus

correctly reflecting the zero-valued uptake in the GP and further demonstrating the accuracy

of the proposed method.

2.3.2 Quantitative evaluation

In our qualitative results, we observed that the 40% SUV-max and Snakes methods were

unable to separately segment caudate, putamen and GP regions. Thus, in the quantitative

evaluations, the resultant total regions of striatal and pallidal region were used for 40%

SUV-max and Snakes methods. In other words, since these methods provided a single

combined segmentation of these regions, the combined regions were used for the quantitative

studies. The top row in Fig. 2.6 shows that for the voxel size of 2 mm, the proposed method
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Figure 2.3: Visual comparison of the segmentation methods

outperformed other segmentation methods on the basis of the fDSC, fJSC, and HD metrics

(p value <0.01). Also, the proposed method yielded a fDSC close to 0.8 for all the regions,

thus indicating an accurate segmentation [105]. The existing semi-automated methods were

highly inaccurate for the caudate and GP regions. While the proposed and the U-net-

based methods were more accurate for these regions, the proposed method significantly

outperformed the U-net-based method (p value <0.01).

Similar results were seen for the reconstructed images with voxel size of 4 mm on each

side, as shown in the bottom row of Fig. 2.6. Further, the values of fDSC, fJSC and HD

remained relatively unchanged in going from 2 mm voxel size to 4 mm voxel size for the

proposed method. This indicates the relative insensitivity of the method to change in voxel

sizes. In contrast, the performance of the U-net-based method, which does not model TFEs,

significantly deteriorated for the higher voxel size. This was because the proposed method

accounts for the TFEs unlike the U-net-based method.
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Figure 2.4: 3D segmentation of the proposed method and comparison with the ground truth.
The upper slice shows an axially upper slice and lower slice shows axially lower slice of the
current slice.

28



Figure 2.5: 3D segmentation of the proposed method for visual comparison of normal activity
and affected DaT levels where a asymmetrically reduced activity in the putamen is simulated.

Figure 2.6: Comparison of the fDSC, fJSC, and HD from left to right respectively obtained
using the five segmentation methods that allows separate segmentation for images with 2 mm
voxel size (top row) and 4 mm voxel size (bottom row).
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The accuracy of the proposed method when the MR and SPECT images were misaligned is

shown in Fig. 3.2. The proposed method continued to yield accurate segmentation between

−4 and 4 degree of misalignment. Also, for larger misalignment, while the performance of

the proposed method was slightly affected, the fDSC values were still close to 0.8 for both

2 mm and 4 mm voxel sizes, indicating a good segmentation accuracy.

Figure 2.7: The accuracy when MR and SPECT images are mis-registered. The left figure
shows results with 2 mm voxel size and right figure shows results with 4 mm voxel size.

The sensitivity of the method to mismatch between the functional boundary and the MR-

defined anatomical boundary is shown in Fig. 2.8. As the available functional boundary

decreased, the fDSC scores reduced. However, the proposed method yielded more than 0.7

DSC value for up to the case where the functional boundary of the putamen was 40% of the

anatomical boundary.

2.4 Discussions

Overall, the results demonstrate the efficacy of the proposed method in reliably segment-

ing the caudate, putamen, and GP regions from DaT-scan SPECT images. The ability of

segmenting the small-sized GP region in particular, is distinctive as the GP is visually al-

most impossible to demarcate on the SPECT images. It is well known that the GP plays

an important role in the movement-related direct and indirect pathways of basal ganglia
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Figure 2.8: The figure shows results with 2 mm voxel size on the left and 4 mm voxel size
on the right with asymmetrically reduced functional uptake in the left and right putamen.

[49]. There has been interest in studying the plasticity of the nigro-pallidal pathway [100].

Quantification of the DaT uptake in the pallidal regions may provide new insights on this

plasticity. Several post-mortem studies have shown evidence of DaT uptake in the pallidal

regions [8, 75] DaT-scan SPECT studies provide a mechanism to study these effects in vivo

but this has been hindered by the lack of tools to segment the pallidal regions on the SPECT

images. Our results show that the proposed method can help to address this challenge. Thus,

this result opens up a new and important research frontier on analysing the functional char-

acteristics of the GP region in patients with Parkinson’s disease. Additionally, the method

also provides an accurate delineation of the caudate and putamen regions in the SPECT

images. This provides tools to conduct shape analysis of these regions, which may lead to

new biomarkers for diagnosis and measuring severity of Parkinson’s disease.

We observe from Fig. 2.6 that the proposed method outperforms several existing segmenta-

tion methods, including a U-net-based approach [54]. The U-net based approach also learns

anatomical variability and PVEs arising due to limited system resolution, but does not ac-

count for the TFEs, unlike the proposed method. An increase in the voxel size in SPECT

increases the TFEs. Thus, the proposed method performs better than other segmentation

methods especially when the voxel size is larger. This explains the larger difference in the

DSC and JSC values between the proposed and the U-net-based method when the recon-

structed images have 4 mm voxel size. The higher accuracy of the proposed method at 4 mm
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voxel size is especially significant as many clinical DaT SPECT scans are recommended and

conducted with 4 mm voxel sizes [15]. Next, we also observe in Fig. 2.6 that an increase in

the voxel size from 2 mm to 4 mm did not affect the DSC of the proposed method, but the

DSC of the U-net-based approach decreased by more than 10%. This provides evidence that

the proposed approach is relatively robust to changes in voxel size. This again demonstrates

that accounting for TFEs provides distinct and clinically relevant advantages to this method

compared to existing methods.

Another class of methods to segment the striatal regions in DaTscan SPECT images have

been those that use the MR images acquired from a different scanner [77]. These methods

have not been evaluated on the task of segmenting GP. Further, these methods require that

both SPECT and MR images of the same patient be available, which is typically not the

case, and even when available, is likely from a different time point. While there has been

some recent progress in the area of developing simultaneous SPECT/MR systems [32], no

clinical simultaneous SPECT/MRI systems are currently available. In contrast, the proposed

method does not require the corresponding MR image from the patient to perform the

segmentation and works on stand-alone SPECT images.

We also observe that the proposed method is accurate even when there is some degree of

mismatch between the SPECT and MR images. While this observation may seem confound-

ing at first, note that the proposed method estimates the posterior mean of the fractional

volumes that a region occupies within a voxel. This posterior mean depends on the input

test SPECT image that is being segmented. Thus, the performance of the method is not nec-

essarily effected when the mismatch between the training and test set is small. Developing a

theoretical formalism that can quantify the tolerability of this mismatch is an important re-

search frontier. Nevertheless, our results in Fig. 3.2 show that for up to 10% of misalignment

between SPECT and MR images, the performance of the method is relatively robust. This

is encouraging as the main challenge occurs when the degree of misalignment is small, since

that is visually difficult to identify. In contrast, higher degrees of misalignment are visually

easier to identify, and thus, in those cases, the SPECT images can be first registered to the

MR MNI space. After registration, there may still be small degrees of misalignment, but

our results show that this would not affect the performance of the method. Similarly, our

results in Fig. 2.8 show that the method yields accurate segmentation even when the func-

tional boundary is only 40 % of the anatomical boundary. Clinically, functional boundaries
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lower than these are typically not observed [71]. Thus, this result provides evidence that the

proposed method is relatively robust to mismatches between the functional and anatomical

boundaries for clinically relevant purposes.

Our study has some limitations. The first limitation is that the method was evaluated using

simulation studies. While the simulations used clinical MR images as anatomical templates,

were clinically guided and highly realistic, they may have not been able to account for all

sources of population variability and account for all aspects of the imaging physics. Evalua-

tion using physical-phantom and patient-data-based studies can help address this limitation.

Evaluation using physical phantoms will model all aspects of the system instrumentation.

Similarly, evaluation with clinical datasets will account for any missed sources of population

variability. This is an important area of future study. Another limitation is that in this

manuscript, we focused on the task of segmenting the caudate, putamen and GP regions in

the DaT-scan images and considered the rest of the region as background. However, post-

mortem studies indicate DaT uptake in other regions in the basal ganglia such as the nucleus

accumbens and substantia nigra [93]. Also, the GP can itself be separate into two parts,

namely the internal and the external GP. Results from this study motivate extending the

proposed approach to consider these segmentation tasks. Finally, in our simulation studies,

we assume that the uptake within the various regions is uniform. However, the tracer uptake

within the putamen may be heterogeneous in patients with PD. Modeling this heterogeneity

and evaluating the performance of the proposed segmentation method in the presence of this

heterogeneity are important research areas.

2.5 Conclusions

An estimation-based fully automated method to segment the caudate, putamen, and globus

pallidus regions from 3D DaT-scan SPECT images has been proposed. The method accounts

for both sources of partial-volume effects in SPECT images, namely system-generated blur

and tissue-fraction effects. Essentially, the method estimates the posterior mean of the

fractional volume that the different regions occupy in each voxel, a distribution of which

can be obtained from existing MR image populations. Rigorous evaluation using realistic

simulation studies conducted with clinically derived data demonstrated that the method
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provided accurate delineation of the caudate, putamen and GP for 3D DaTscan SPECT

images. The method outperformed existing methods including a U-net-based approach, and

was relatively insensitive to the choice of two different voxel sizes. Further, the method

was robust to misalignments between the SPECT test image and MR image populations,

and mismatches between the MR anatomical boundary and the functional boundary in

the SPECT test image. Overall, the results provide strong evidence of the efficacy of the

segmentation method and motivate further evaluation with physical phantoms and patient

data.
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Chapter 3

Compensating for partial volume

effects in DaTscan SPECT

3.1 Introduction

A major challenge to quantitative DaTscan imaging is the partial volume effects that are

present in DaTscan SPECT images. Due to limited collimator-detector response of the

system, structures smaller than 3 times of FWHM are more prone to PVEs [103, 17]. The

issue is compounded when these small regions are adjacent to each other, as is the case with

DaTscan SPECT where the caudate, putamen, and globus pallidus (GP) are often lying

next to each other [103, 17]. Also, tissue fraction effects (TFEs) due to generally larger

voxel sizes in SPECT add to the PVEs. These limitations often lead to large bias in brain

SPECT when performing quantitative studies [103, 18, 17]. In previous SPECT simulations

and quantification of regions, there has been a reported underestimation of uptake within

region of interest that was especially significant as the size of structures decreased [103].

This occurred because of PVEs related to the spatial resolution of the imaging system [103].

To compensate for these effects, a partial volume compensation method has been previously

introduced by Rousset et al [81]. The method used a geometric transfer matrix (GTM) to

calculate the spill over effects of an ROI and surrounding regions and incorporated these

effects for correction of mean uptake value [81]. In previous studies, application of this

method led to significantly lower biases. [18, 17]. In these studies, acquiring a ground-truth

mask for the region of interest (ROI) was needed. However, in clinical settings, ground-truth

ROIs and accurate segmentation of ROIs may not be available. The segmentation method
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proposed in Chapter 2 provides a mechanism to address this issue. We now propose a novel

PVC technique that builds upon the segmentation technique proposed in Chapter 2.

Figure 3.1: (A) Original true activity distribution. (B) The spilling out effect. (C) Spilling
in effect due to spilling out from (B). (D) Resulted measured image. Original figure from
Soret et al. [87]

3.2 Methods

3.2.1 Theory for Continuous GTM Method

Let f(r) denote the true tracer activity distribution over K number of distinct tissue com-

ponents each with a ROI denoted by χi(r).

f(r) =
K∑
i=1

λiχi(r). (3.1)

Consider imaging this tracer distribution through a SPECT system with field of view of

Sf . The SPECT imaging process can be described as a linear operator. Also SPECT

reconstruction methods that sufficiently compensate for image-degrading processes can be

described as approximately linear [34]. Here we assume that the SPECT system and the

reconstruction operator can be together described as a linear operator. Let hm(r) denote

the M-dimensional kernel of this linear operator. Let θ̂m is the reconstructed SPECT image
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resulted from tracer distribution f(r).

θ̂m =

∫
Sf

d3rhm(r)f(r). (3.2)

Let r′ denote the 3D spatial coordinate in the reconstructed image space. The reconstructed

image f̂(r′) is represented in discrete space with the voxel expansion function given by φm(r′)

and combined with Eq. 3.2 to represent reconstructed image continuous space.

f̂(r′) =
M∑

m=1

θ̂mφm(r′) (3.3)

=

∫
Sf

d3r
M∑

m=1

hm(r)φm(r′)f(r) (3.4)

=

∫
Sf

d3rk(r′, r)f(r). (3.5)

where,

k(r′, r) =
M∑

m=1

hm(r)φm(r′). (3.6)

Substituting Eq. 3.1 into Eq. 3.5, yields

f̂(r′) =
K∑
i=1

λi

∫
Sf

d3rk(r′, r)χi(r). (3.7)

Denote the volume and mean estimated activity uptake in the jth ROI by Vj and λ
′
j. Then,

λ′j =
1

Vj

∫
Sf

d3r′f̂(r′)χj(r) (3.8)

=
1

Vj

N∑
n=1

λi

∫
Sf

d3r′χj(r
′)

∫
Sf

d3rk(r′, r)χi(r). (3.9)
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where in the second step, we substitute the expression from Eq. 3.7. For simplicity of

notation, we define the weight coefficients wji.

λ′j =
N∑

n=1

λiwji. (3.10)

where from Eq. 3.9, wji is defined

wji =
1

Vj

∫
Sf

d3r′χj(r
′)

∫
Sf

d3rk(r′, r)χi(r) (3.11)

=
1

Vj

∫
Sf

d3r′χj(r
′)

∫
Sf

d3r
M∑

m=1

hm(r)φm(r′)χi(r). (3.12)

For simplicity, we define wji in operator notation. Denote the SPECT projection and recon-

struction operators by P and R. Let D† represents the adjoint of the discretization operator.

This adjoint operator is given by

[D†θ̂] =
M∑

m=1

θ̂mφm(r). (3.13)

Then, wji is given by

wji =
1

Vj
ROIj · D†{R{P{ROIi}}}. (3.14)

With this definition for the weight coefficient, using Eq. 3.10, the activity uptake in the jth

ROI from the reconstructed image can be written in matrix form as follows:
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
λ′1

λ′2
...

λ′N

 =


ω11 ω21 · · · ωN1

ω12 ω22 · · · ωN2

...
...

. . .
...

ω1N ω2N · · · ωNN



λ1

λ2
...

λN



Denote the vectors [λ1 . . . λN ] and [λ′1 . . . λ
′
N ] by Λ and Λ′, respectively. Also, denote the

matrix consisting of the weights by W . Then, the above equation can be written in vector

notation as follows:

Λ′ = Wλ. (3.15)

Therefore, to estimate λ, we can simply taken the inverse of the W matrix. In other words

Λ = W−1Λ′. (3.16)

3.2.2 Evaluation of the Proposed Method

To quantitative evaluate the proposed PVC method, we first used the segmentation method

proposed in Chapter 2 to calculate the average mean uptake of caudate, putamen and globus

pallidus regions from the reconstructed images for both hemispheres. However, the proposed

segmentation did not include segmentation of the background region of the brain. Thus, the

segmentation of the background wass estimated by subtracting regions of caudate, putamen

and globus pallidus from a normalized reconstructed image. This allowed a fair estimation

of the background with only using already available reconstructed images and segmentations

from the proposed method.

The segmented masks of regions are projected and reconstructed using the same simulation

and reconstruction protocol that are used for DaTScan images. Then by using the recon-

structed images of the segmented regions and continuous GTM method, corrected mean

uptakes of the regions are calculated for both 2 mm and 4 mm voxel sizes. The experiment

was performed for the 100 test subjects described in Chapter 2.
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3.3 Results

As shown in Table 3.1, the percent bias of caudate improved from ∼ 47% to ∼ 34 %, that of

putamen improved from ∼ 27 % to ∼ 15 % for 2 mm voxel size. The percent bias of globus

pallidus and background also improved, but the improvement wasn’t significant. Also, the

PVC results for voxel size of 4 mm is shown in Table 3.2. The percent bias of caudate

improved significantly from ∼ 44% to ∼ 11 %, that of putamen improved from ∼ 23 % to ∼
12 %. Similarly to results of 2 mm voxel size, the correction didn’t have significant effect on

the percent bias of globus pallidus and the background. Generally, the uncorrected percent

bias for 2 mm voxel size was marginally larger than that of 4 mm voxel size DaTScan images.

Uncorrected Bias (%) Corrected Bias (%)
Left Caudate 46.7419 31.7106

45.4816 48.0022 30.2190 33.2022
Left Putamen 26.1385 13.9927

24.6306 27.6465 12.0097 15.9756
Left Globus Pallidus 23.6298 22.5707

20.6010 26.6587 19.4549 25.6866
Right Caudate 48.0064 36.664

46.6916 49.3212 35.2706 38.0573
Right Putamen 28.0093 16.503

26.5426 29.4761 14.6159 18.3900
Right Globus Pallidus 23.7889 22.6295

20.7527 26.8251 19.4832 25.7757
Background 43.0431 40.3054

37.4962 48.5900 34.4820 46.1289

Table 3.1: The uncorrected bias and corrected bias in percentage of mean uptake values
for both left and right caudate, putamen, globus pallidus and the background for DaTScan
images with 2 mm voxel size are shown

3.4 Discussions and Conclusion

The improved segmentation results from Chapter 2 has a lot of potential for direct analysis

of the segmented regions of the caudate, putamen and globus pallidus.
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Uncorrected Bias (%) Corrected Bias (%)
Left Caudate 43.6016 10.5099

42.6330 44.5702 9.2155 11.8043
Left Putamen 22.2876 12.824

20.7849 23.7902 11.2412 14.4067
Left Globus Pallidus 22.7521 21.8267

20.3022 25.2019 19.0842 24.5692
Right Caudate 44.2827 12.4345

43.2589 45.3065 11.0338 13.8353
Right Putamen 23.843 12.0203

22.3781 25.3079 10.4671 13.5735
Right Globus Pallidus 23.6498 24.2659

21.0415 26.2580 21.4030 27.1288
Background 51.7421 50.898

47.0170 56.4673 46.0639 55.7322

Table 3.2: The uncorrected bias and corrected bias in percentage of mean uptake values
for both left and right caudate, putamen, globus pallidus and the background for DaTScan
images with 4 mm voxel size are shown

Figure 3.2: Plot for the percent bias comparison between corrected and uncorrected results
for 2 mm voxel size on the left and 4 mm voxel size on the right

The quantification results of caudate and putamen improved significantly with PVC method

using GTM based on proposed segmentation as shown in Table 3.1 and Table 3.2. The

PVC results for 4 mm voxel size improved more significantly than those of 2 mm voxel size
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similarly with the segmentation results in Chapter 2. This improvement is clinically relevant

as most clinical DaTScan protocols are conducted to create ∼ 4 mm pixel size images [15].

However, the results with globus pallidus and the background didn’t improve as significantly.

This motivates the need for even more improved PVC methods. An interesting direction is

extending a perturbation-based GTM (pGTM) approach as proposed in Du et al. [17] . The

pGTM approach has been observed to yield improved performance on PVC by attempting to

account for the non-linearity of the reconstruction operator. Extending this approach for a

continuous estimate of the region boundary can further improve quantification performance

and is an important research frontier.

In summary, the proposed PVC method integrated with the segmentation method shows

significant potential for improving estimates of uptake within regions of interest from the

DaTscan SPECT images, that it does not need the ground truth boundaries of the region

of interest as needed in previous studies [17, 87, 81]. Also, the method is fully automated as

it does not require any manual segmentation of the different regions in the SPECT image.
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Chapter 4

Conclusions and Future work

4.1 Overview

This study has been conducted in order to address in an important need for developing

biomarkers to improve diagnosis and measure the severity of PD. The key goal was to

achieve reliable quantification of uptake from the DaTscan SPECT images. Reliable quan-

tification from reconstructed images requires an accurate segmentation of these regions. This

was a challenge for DaTScans due to the limited spatial resolution, partial volume effects,

high noise, physiological variability and small size of the regions of interest. To address

these issues, we developed a 3D physics-guided estimation-based method by integrating the

prior distribution acquired from MR images for DaTScan SPECT image segmentation. A

Bayesian approach that estimates the posterior-mean of the fraction volume that a partic-

ular regions of interest occupy within each voxel of a SPECT image was developed. The

method was implemented using an auto-encoder that was optimized and trained with 500

images and tested on 100 images. The method yielded quantitatively and qualitatively im-

proved segmentation results outperformed previously developed methods, and was relatively

insensitive to different types of mismatch between the training and testing. Following this,

a geometric transfer matrix (GTM)-based approach was extended to perform partial volume

compensation (PVC) from the DaTscan SPECT images. A GTM method for partial volume

compensation used the segmented masks estimated from the proposed segmentation method

and provided significantly improved estimate of average uptake in the striatum region.
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4.2 Evaluation with Physical-Phantom Study

As mentioned in Chapter 2, an important research frontier is validating the segmentation

method using physical-phantom studies. For this purpose, we have collaborated with 3D

printing lab at Mallinckrodt Institute of Radiology for designing and printing 3D physical

brain phantom that has separate tracer fillable regions for caudate, putamen, globus pallidus

and the background as shown in Fig 4.1 [64]. The physical phantom experiment, where we

would fill different regions with different Ioflupane uptake values and scan with a SPECT sys-

tem available at Washington University School of Medicine, could help validate the proposed

method.

Figure 4.1: Printed brain phantom

4.3 Evaluation with Patient Studies

It is important to perform a patient study for final validation of the proposed method if

clinical data is available. This would require obtaining at large number of clinical DaTScan

images. There is an open database from Parkinson’s progression marker initiative (PPMI)

where hundreds of DaTScan images are available. This database provides a resource to

evaluate the proposed methods.
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Figure 4.2: Axial DaTScan image from PPMI. Image adopted from PPMI website [64]

4.4 Performing Quantification with List-mode Data

Another challenge in evaluation with patient data is the lack of ground-truth quantitative

values. This lack of ground-truth data is generally an issue in evaluating quantitative imaging

methods. To address this issue, no-gold-standard (NGS) evaluation techniques have been

developed [36, 39, 34, 37, 35, 47, 27]. In this thesis, we explored the use of existing NGS

evaluation procedures for evaluating the DaTscan SPECT image analysis methods. However,

the performance of these methods was limited. More recently, a novel NGS evaluation

procedure has been developed [56] that addresses some of the limitations of the existing

NGS evaluation techniques. Developing and evaluating this NGS evaluation procedure for

quantitatively evaluating the proposed segmentation method with patient data is another

important research direction.

4.5 Shape and Texture Analysis

As shown in Chapter 2, significantly improved segmentation accuracy of caudate, putamen

and globus pallidus has potential for several practical implications. First, because previous

shape and texture analysis methods of DaTScan images were conducted using simple and less

reliable segmentation methods such as thresholding, the improved segmentation accuracy of

the proposed method could help and improve predicted outcome of these studies [89, 76].
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Also, separate segmentation of caudate, putamen and globus pallidus could lead to separate

shape analysis of different regions of the brain which could be more advantageous that

evaluating the striatum as a whole. Further, significantly improved percent bias of mean

uptake for caudate and putamen have potential for future usage and further validation.
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