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ABSTRACT OF THE THESIS

Regularized Fourier Ptychographic Microscopy

by

Shiqi Xu

Master of Science in Electrical Engineering

Washington University in St. Louis, May 2019

Research Advisor: Professor Ulugbek Kamilov

Quantitative phase image (QPI) is a popular microscopy technique for studying cell mor-

phology. Recently, Fourier ptychographic microscopy (FPM) has emerged as a low-cost

computational microscopy technique for forming high-resolution wide-field QPI images by

taking multiple images from different illumination angles. However, the applicability of FPM

to dynamic imaging is limited by its high data requirement. In this thesis, we propose new

methods for highly compressive FPM imaging using a data-adaptive sparse coding and an

online plug-and-play (PnP) method with non-local priors based on the fast iterative shrink-

age/threshold algorithm (FISTA). We validate the proposed method on both simulated and

experimental data and show that our method is capable of reconstructing images under a

significantly lower data rate.
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Chapter 1

Introduction

Quantitative phase imaging (QPI) based on optical Fourier ptychographic microscopy (FPM)

is a technique for high-resolution, wide field microscopic imaging of semi-transparent cells

[10, 18]. In FPM, a programmable LED array is used to illuminate a sample from different

angles and create a sequence of low resolution (LR) phaseless images[22]. Reconstruction

algorithms are used to computationally combine these LR images into a high resolution (HR)

image that overcomes the space-bandwidth product (SBP) limitation[7]. One disadvantage

of FPM, comparing with traditional microscopes, is the long data acquisition time due to

the need to collect a sequence of images illuminated by multiple LEDs. In the past, sparsely

sampled Fourier ptychography has been proposed to improve the frame rate[5]. However,

high data-reduction schemes may lead to noise and artifacts in the reconstructed image.

Therefore, multiplexed coded illumination has gain popularity, but such method requires

improved objective lenses and cameras due to the combination of bright-field and dark-field

images[17].

Sparse regularization is a standard approach for enhancing image quality, suppressing noise,

and alleviating artifacts. For example, Ren et al. [12] developed an FPM algorithm based

on edge preserving TV. Alternatively, Zhang et al. [21] proposed to use BM3D frames to

mitigate Gaussian and Poisson noise. Recently, data-adaptive sparsifying transforms and

plug-and-play priors [15, 20] have gained popularity in image reconstruction [11]. These

approaches have been shown to improve the quality of image reconstruction by adapting the

transform to the statistics of the observed data.

In this thesis, we propose new image reconstruction methods for FPM based on unsuper-

vised dictionary learning and advanced non-local priors. We additionally achieve efficient

1



processing of the FPM data by using our gradient-based algorithm. We show through sim-

ulations and experiments that our method is capable of reconstructing high-quality images

from highly under-sampled FPM data.
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Chapter 2

Background

In this chapter, we develop important concepts that are related to this thesis. In Section 2.1,

we review the propagation of light in free space and reach some principles of Fourier optics.

Next, we discuss how to form an optical image using lenses In Section 2.1. We then extend

these theories to a microscopy technique called Fourier ptychographic microscopy (FPM).

Finally, we introduce a dictionary learning scheme, which will be used to regularize the FPM

reconstruction.

2.1 Computing Fourier Transforms with Lenses

In this section, we walk through some classic wave properties of light and how it propagates

in free space. An illustration of the setup is shown in fig. 2.1, where a thin lens with a focal

distance of f is placed at z = d cm. f(x, y) is the field at z = 0 cm. g(x, y) is the field at

z = (d + f) cm, which is the back focal plane of the bi-convex thin lens. If we decompose

f(x, y) into plane waves, the field g(x, y) can be related to f(x, y) as [14]

g(x, y) = hl exp
[
jπ

(x2 + y2)(d− f)

λf 2

]
F
( x
λf
,
y

λf

)
, (2.1)

where

hl = (j/λf) exp[−jk(d+ f)]. (2.2)

and F (·) is the Fourier transform of f(·). k is the wavenumber and λ is the wavelength.

3



z = 0 cm

f(x,y)

d f

g(x,y)

Figure 2.1: An illustration of focusing plane waves in the focal plane. d and f are the
distances between f(x, y) and the lens, and the lens and g(x, y), respectively

If we make d = f , the exponential term in eq. (2.1) is canceled out, and the relation between

f(x, y) and g(x, y) becomes

g(x, y) = hl F
( x
λf
,
y

λf

)
∝ F

( x
λf
,
y

λf

)
. (2.3)

I.e., the field collected at the back focal plane of a thin lens is proportional to the 2D Fourier

transform of the field at the front focal plane of the lens.
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L2

L1

f1

f1

f2

f2

Object Plane

Fourier Plane

Image Plane

Figure 2.2: An illustration of a imaging system using two lenses, which performs two Fourier
transform; so the image is a spatially filtered replica of the object with a magnification

2.2 Image Formation with Two Lenses

We consider a two-lens system illustrated in fig. 2.4, where the imaging object is placed at

the front focal plane of the first lens L1, and the image is captured at the back focal plane

of the second lens L2. L1 and L2 are separated with (f1+f2). Under Fresnel approximation,

the propagation of light can be modeled as two optical Fourier transform of the object, so

the image is a spatially filtered replica of the object with a magnification, which can be

numerically represented as

y = Mu, (2.4)

where u ∈ RP is the transparency of the object and the matrix M ∈ CQ×P denotes the

diffraction of the light propagating through lenses.
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2.3 Fourier Ptychographic Microscopy

The optical system aforementioned in Section 2.1 is used to create FPM images. The setup

does not involve any moving parts, and a low numerical aperture (NA) objective is typically

used to provide wider field of view (FOV), longer working distance (WD) and larger depth

of field (DOF)[22]. In FPM experiment, a thin slice of two dimensional sample placed at the

front focal plane of the convex lens L1 is illuminated with an approximately monochromatic

plane wave created by an LED source, and the intensity of light field at the back focal plane

of the lens L2 is recorded for each illumination, as illustrated in fig.2.3. As introduced in

the previous section, the propagation of light through a 2f system can be modeled as a

low-passed optical Fourier transform because of the finite NA. FPM utilizes both normal

and oblique illuminations to bypass the frequency limit. Owing to the shift theorem of the

Fourier transform, the modulation of a thin sample by a plane wave with wavevector (kx,ky)

is equivalent to shifting the frequency components of the sample by (kx,ky). Therefore, the

high frequencies can still be preserved after the low-pass filtering. Numerically, the forward

model can be expressed as

b = H(x) =|Mu(x) |2, (2.5)

where x ∈ RP is the phase of the object. The vector u(x) = exp(ix) accounts for the

transmission of the imaging object. The matrix M ∈ CQ×P denotes the diffraction of the

light propagating through lenses; it is implemented by taking the discrete Fourier transform

(DFT) of the object, shifting the frequency spectrum, truncating the low frequency region,

multiplying it by a pupil function in the frequency domain, and taking the inverse DFT.

Finally, the intensity of optical field is recorded with a photonic device.

2.4 Data Adaptive Sparse Representation

Patch-wised dictionary learning has been widely used as a data-adaptive image reconstruc-

tion. Assuming that the image x ∈ RP can be approximated as a linear combination of

6



sampleLED array

L1 L2

Fourier plane
camera

f1 f1 f2 f2

Figure 2.3: An illustration of a FPM imaging system, where an led array is used as illumi-
nation sources.

learned basis vectors, we divide the image into small overlapping patches yj ∈ RKand syn-

thesize each patch with columns of a dictionary D ∈ RK×M

yj ≈ Daj (2.6)

where aj ∈ RM is sparse, i.e,‖aj‖0 � K[6,8]. Thus, for an image x, consisting of n different

patches {y1, ...,yN}, we could formulate the following dictionary learning scheme

min
D,aj

N∑
j=1

1

2
‖Daj − yj‖22 + λ

N∑
j=1

‖aj‖1 s.t. D ∈ C (2.7)

where a1, ..aN are the decomposition coefficients of the signals, and each column of D =

(d1, ...,dM) is a basis atom. The `1-term in (2.7) promotes sparsity in the coefficients aj,

and λ > 0 is the weight for this penalty. In (2.7), the set

C , {D : ‖dj‖2 = 1 ∀j}, (2.8)

7



…= x …

+ +…=

Figure 2.4: An illustration of how atoms in a dictionary are used to approximate an image

is used to constrain the atoms in the dictionary to avoid scaling ambiguities[9]. Accordingly,

we can rewrite (2.7) as the following optimization problem

min
D,A

1

2
‖DA− P(x)|2F + λ‖A‖1, (2.9)

where P(·) represents a patch-extraction operation and the matrix A = (a1, ..., aN). Notice

that the objective function is nonconvex jointly. Hence, the optimization for this unsuper-

vised learning formulation is usually done alternatively for A and D.
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Chapter 3

Dictionary Learning Regularized FPM

3.1 Problem formulation

The image reconstruction problem can be formulated as the following joint optimization

problem

{x̂, D̂, Â} = argmin
x,D,A

L(x,D,A) (3.1)

L(x,D,A) :=
1

2
‖b−H(x)‖22 +

γ

2
‖DA− P(x)‖2F

+ λ‖A‖1 + τR(x), (3.2)

where x ∈ RP , D ∈ C, and A ∈ RM×N are imaging object, dictionary, and sparse coding

coefficients from Section 2.4. H(·) is the forward operator modeling light propagation, as

discussed in Section 2.3, and P(·) is the patch extraction operator extracting patches from

the object image x. The first quadratic term in (3.2) measures the fidelity with respect

to the physical model. The second quadratic term measures the accuraty of the image

approximation by a linear combination of dictionary atoms, while the `1-term promotes the

sparsity of coding coefficients. The forth term is another regularizer such as isotropic TV

[13]. We next discuss how individual problem is solved. Algorithm 1 summarizes the steps

for solving this joint optimization problem.
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Algorithm 1 Sparsely coded FPM reconstruction

1: input: x̂0, D0 ∈ {DCT}, L measurements bl where l ∈ 1, ...L, step size β, regulariza-
tion parameters γ, λ, τ .

2: set: s0 ← x̂0, q0 ← 1
3: for t = 1, 2, . . . do
4: zt ← st−1 − (β/L)

∑L
l=1∇Dl(x) . eq.(3.5)

5: x̂t ← proxR(zt, βτ)

6: qt ← 1
2

(
1 +

√
1 + 4q2t−1

)
7: st ← x̂t + ((qt−1 − 1)/qt)(x̂

t − x̂t−1)
8: for k = 1, 2, . . . do
9: Ak ← updateA(Ak−1,Dk−1, st, γ, λ) . eq.(3.9)
10: Dk ← updateD(Ak,Dk−1, st, γ, λ) . eq.(3.14)
11: end for
12: end for

3.2 Image Reconstruction

Define Y as the operator that stitches small image patches to form the whole image. We

can re-write the x optimization problem as

x̂ = argmin
x
L(x,D,A) = argmin

x
{D(x) + τR(x)} (3.3)

where

D(x) =
1

2
‖b−H(x)‖22 +

γ

2
‖Y(DA)− x‖22 (3.4)

and R(·) is the isotropic TV operator[13]. τ > 0 controls the strength of the regulariza-

tion. Problem (3.3) is solved using accelerated proximal gradient method[1]. The gradient

expression is given by:

∂

∂x
D(x) = [

∂

∂x
Ψ(x)]Hdiag(Ψ(x))(H(x)− b)

+γ(x− Y(DA)) (3.5)

where

Ψ(x) = Mu(x), [
∂

∂x
Ψ(x)]H = diag(iexp(ix))MH . (3.6)

10



[·]H is the adjoint operator. The proximal operator of R(x) is implemented in the dual-

domain as discussed in [1].

3.3 Sparse Coding

We consider the problem

Â = argmin
A
L(x,D,A) (3.7a)

= argmin
A

{
1

2
‖DA− P(x)‖2F + λa‖A‖1

}
(3.7b)

where λa = λ
γ
. This optimization can be solved using alternating direction method of

multipliers (ADMM). Rewriting (3.7b) as a suitable form for ADMM, we introduce auxiliary

variable B ∈ RM×N and have

argmin
A,B

{
1

2
‖DA− P(x)‖2F + λa‖B‖1

}
s.t. A−B = 0, (3.8)

which can be solved through following iterations with dual variable U ∈ RM×N [2]:

Ak+1 = argmin
A

{
1

2
‖DA− P(x)‖2F +

ρ

2
‖A−Bk + Uk‖2F

}
(3.9a)

Bk+1 = argmin
B

{
λa‖B‖1 +

ρ

2
‖Ak+1 −B + Uk‖2F

}
(3.9b)

Uk+1 = Uk + Ak+1 −Bk+1. (3.9c)

The sub-problem (3.9b) is solved with shrinkage operation as

Bk+1 = Sλ/ρ(Ak + Uk) (3.10)

where

Sη(X) = sign(X)�max(0, | X | −η). (3.11)

11



The sub-problem (3.9a) can be efficiently solved with following iterations[3]:

{DL,DU} = LU(DDH) (3.12a)

A = P(x)D−1U D−1L (3.12b)

where LU is the lower-upper(LU) matrix decomposition. DL,DU are the permuted lower

triangular matrix and upper triangular matrix factorized from D, respectively.

3.4 Dictionary Update

The dictionary update step can be formulated as solving

D̂ = argmin
D
L(x,D,A) (3.13a)

s.t. ‖di‖22 = 1 for i ∈ {1, 2, 3..M}, (3.13b)

which can be solved in a similar way as sub-problem (3.9a), plus a projection step.

{AL,AU} = LU(AAH) (3.14a)

D = P(x)A−1U A−1L (3.14b)

di =
di
‖di‖22

i ∈ {1, 2, 3..M}, (3.14c)

where AL,AU are the permuted lower triangular matrix and upper triangular matrix fac-

torized from A, respectively.

3.5 Numerical Experiments

The data acquisition setup used here for both simulated and experimental measurement has

been discussed in [18]. A 32×32 surface-mounted LED array with 4 mm pitch is placed 70 mm

above the sample, and 513 nm light with 20 nm bandwidth is used for illumination. The NA

of the objective is 0.2, whilst the achieved synthetic NA is around 0.70, as the sum of objective

12



NA and illumination NA, when central 293 LEDs are used. We conduct and compare

reconstructions with Newton’s method using Tikhonov regularization[18] and gradient-based

method using no regularization, TV regularization, and proposed regularization. During the

sparse coding step, the image is cropped into 16× 16 small patches with sliding step-size of

one pixel. The 256 dictionary atoms are initialized with first 256 DCT bases.

3.5.1 Simulated Data

We simulate the measurements on 10 images chosen from the USC-SIPI Image Database[19]

using the forward model discussed in (2.5) using 12, 16, and 24 LEDs. The images are resized

to 1000× 1000. The LED positions are carefully selected to yield approximately equivalent

SBP, which is a key evaluation of the throughput of an optical imaging system[7,22]. Gaus-

sian noise with standard deviation σ = 0.05×max(b) is added to the measurement. Figure

3.1 exemplifies the reconstructed image of Lenna from 16 measurements. The reconstructed

image with no regularization is severely contaminated by the granular speckle noise. Al-

though TV regularization successfully suppresses this noise, some high-frequency details are

also lost due to the piece-wise constant assumption. Table 3.1 lists the signal to noise ratio of

reconstruction results from simulation using 12, 16, and 24 LEDs. As expected, on average

the proposed method gives highest SNR images than other regularization approaches. The

hyper-parameters for each method are selected such that the method gives the highest SNR.

3.5.2 Experimental Data

We further evaluate the proposed method on human cells. Figure 3.2 and Figure 3.3 ex-

amplify the resconstructed images of human cervical adenocarcinoma epithelial (HeLa) cells

and human osteosarcoma epithelia(U2OS) cells. Reconstructions using 293 measurements

with Newton’s method discussed in [17] are presented as reference. In reconstructed HeLa

images using 16 measurements with no regularization, we can clearly see grating artifacts

as reported in[5]. Despite that TV regularization is able to reduce the noise in the image,

it results in blocky artifacts. A similar situation is observed for reconstructions of U2OS

cells. Additionally, we have tested the method in [17] using 16 measurements; however, the

13



Table 3.1: SNR values for reconstructed images from different number of measurements in
dB

12 meas. 16 meas. 24 meas.

Image NoReg TV Proposed NoReg TV Proposed NoReg TV Proposed

Lenna 10.74 15.05 15.61 11.06 12.89 16.02 11.68 14.51 16.34
Elaine 10.36 15.51 15.80 10.33 15.75 16.94 11.14 15.81 16.44
Cameraman 12.70 16.60 18.14 12.42 17.77 19.70 12.63 16.96 18.18
Barbara 7.01 7.67 9.06 7.16 7.76 9.10 7.53 9.14 9.54
House 9.82 11.95 13.19 9.78 12.45 13.78 10.91 13.22 13.81
Male 10.04 11.33 12.82 10.28 11.55 13.38 10.81 11.55 13.31
Boat 9.92 12.41 13.97 9.94 13.04 14.23 10.61 13.02 14.42
Peppers 11.66 14.67 17.05 11.80 15.25 18.00 12.49 14.67 18.58
Westconcord 10.71 11.88 13.79 10.73 12.15 14.00 11.75 13.72 14.63
Clock 12.47 17.06 17.54 12.63 17.32 16.31 12.80 17.48 18.83

Average 10.54 13.41 14.70 10.61 13.69 15.23 11.24 14.01 15.41

method failed to reconstruct meaningful images so we ommitted the corresponding results

from the figure.
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200μm

-1.0

1.5

12.89 dB

11.06 dB

16.02 dB

Original NoReg

TV Proposed

(a) (b)

(c) (d)

Figure 3.1: Comparison of reconstruction results for Lenna from 16 measurements. (a)
shows the original images. (b), (c), and (d) present results using no regularization (NoReg),
TV regularization (TV) and proposed regularization (Proposed), respectively. Each image
is labeled with its SNR value with respect to the original image.
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Figure 3.2: Comparison of four algorithms on experimental HeLa dataset. (a) shows the
reconstruction with 293 measurements using the Newton’s method with Tikhonov regular-
izaiton[17]. (b), (c) and (d) present results using 16 measurements with no regularization,
TV regularization and proposed regularization, respectively.
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Figure 3.3: Comparison of reconstruction results for U2OS cells. (a) shows the reconstruction
with 293 measurements using Newton’s method with Tikhonov regularizaiton[17]. (b), (c)
and (d) present results with 16 LEDs using NoReg, TV, and Proposed, respectively.
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Chapter 4

Advanced Priors Beyond

Optimization

4.1 Denoiser as a Prior

The idea, origianlly proposed by Venkatakrishnan et. al., was to regularize the image re-

construction by denoising[20]. Rather than compute the proximal operator of a written cost

function, we use a more general denoising operator denoiseσ(·) to remove artifacts from the

image, termed plugin-and-play priors (PnP) for reconstruction[15,16].

An theoretical convergence of PnP-ISTA was given in the recent paper by Yu et.al. [15],

which argues that PnP-ISTA converges to a fixed point at the rate of O(1/t) if denoiseσ(·)
is a θ-averaged operator. Here, we shift the online PnP-ISTA to online PnP-FISTA ( PnP-

FISTA-Online) for better convergence rate, and discuss its advantages over the PnP-FISTA

using full gradient( PnP-FISTA-Full).
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Algorithm 2 PnP-SGD

1: input: x0 = s0, γ > 0, σ > 0, {qk}k∈N, and B ≥ 1
2: for k = 1, 2, . . . do
3: zk ← sk−1 − γ∇̂d(sk−1)
4: xk ← denoiseσ(zk)
5: sk ← xk + ((qk−1 − 1)/qk)(x

k − xk−1)
6: end for

4.2 Proposed Method

In this section, we introduce our PnP-FISTA-Online for Fourier ptychographic micrsocopy

(FPM) reconstruction. In FPM, the data-fidelity term d

d(x) = E[dj(x)] =
1

J

J∑
j=1

dj(x), (4.1)

contains a large number of component functions, where each dj only depends on a subset

of the measurementsy. The gradient of d(x) is calculated from the expected value of the

gradient of each measurement

∇d(x) = E[∇dj(x)] =
1

J

J∑
j=1

∇dj(x). (4.2)

The key idea of our method, summarized in Algorithm 2, is to approximate the gradient at

each iteration with the expectation of B components from its subset

∇̂d(x) =
1

B

B∑
b=1

∇djb(x), (4.3)

with B � J . Moreover, j1, . . . , jB are independent random variables that are distributed

uniformly over {1, . . . , J}.
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4.3 Numerical Validation

In this section, we present results on both simulated and experimental data. We consider

two representative denoisers: a edge-preserving isotropic TV[13] operator and a non-local

BM3D[4] denoiser.

4.3.1 Simulated Data

We quantitatively analyze the performance of the proposed method by reconstructing six

gray-scale images (Cameraman, House, Jet, Lenna, Pepper and Woman) chosen from the

USC-SIPI Image Database[19] using the forward model discussed in (2.5). The measurements

were corrupted by an additive Gaussian noise (AWGN) corresponding to 40 dB of input SNR.

Figure 4.1 shows the visual reconstruction results of the cameraman image, labeled with

the average SNRs obtained from the reconstruction results from six images using different

algorithm. We observe that the advanced non-local plugin prior (BM3D) gives superior

results than the edge-preserving TV. Figure 4.2 demonstrates the reconstructed image SNR

evolution with respect to time. We conclude that the BM3D-online method converges near

to the BM3D-full method at a much faster speed with respect to time.

4.3.2 Real Data

We use the same experimental setup and samples discussed in Section 3.5. Reconstruction

results of the human cervical adenocarcinoma epithelial (HeLa) cells are presented in fig.4.3.

Each image has the resolution of 1000 × 1000 pixels. We use a batch size of B = 60

measurements. We see that under no regularization, some unnatural features are presented,

such as the horizontal streaking artifacts. Both TV and BM3D mitigate this artifact , but

the TV method generate blockiness in the cell, while online-BM3D algorithms improve the

visual quality in general.
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Original NoReg-online

TV-online BM3D-online

18.48dB

19.42dB 19.47dB

Figure 4.1: Comparison of reconstruction results for Cameraman using batch size B = 60.
(a) shows the original images. (b), (c), and (d) present results using no regularization
(NoReg), TV regularization (TV) and PnP-BM3D (BM3D) regularization, respectively.
Each image is labeled with the average SNR value from six images for the algorithm used
with respect to the original image.
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Figure 4.2: Comparison of reconstruction time between BM3D-full and BM3D-online. The
BM3D-online uses a batch size B = 60. The BM3D-full use all 293 measurements.

NoReg-online TV-online BM3D-online

Figure 4.3: Comparison of reconstruction results for HeLa cells using batch size B = 60. (a),
(b), and (c) present results using no regularization (NoReg), TV regularization (TV) and
PnP-BM3D (BM3D) regularization, respectively.
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Chapter 5

Conclusion

To conclude, in this thesis, we propose novel dictionary learning and online plug-and-play

algorithm for the regularized FPM reconstruction. Numerical experiments demonstrate that

our methods are able to reconstruct high quality phase of the unstained cells quantitatively

with highly under-sampled data. We show that unsupervised dictionary learning and PnP-

BM3D are able to remove the artifacts while preserve the details of an image. Moreover,

we demonstrates that our online PnP algorithm converges to a near-optimal point faster in

time than the full gradient one. The work can be extended to other convex and non-convex

inverse problems with advanced plugin priors.
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