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Abstract. Multimodal Keystroke Dynamics has been accurately shown
to increase identification and authentication precision. When expand-
ing this technique with EMG (Electromyography) analysis, a concern
arose regarding a suspected low dynamic range of the EMG data. Thus
a small-scale, multimodal experiment with five subjects was performed
to display its potential, both with natural and strong typing behavior.
This experiment lays the groundwork for a future multimodal Keystroke
Dynamics project with 50–100 subjects. The results suggest that natural
typing behavior gives high quality, and possibly better, data than strong
typing. For 1-session-training, the evaluation shows user identification
accuracy of 93% for natural and 85% for strong typing behavior. Hence,
further research of scale could rely on natural typing behavior as the
standard approach of recording.

Keywords: Keystroke Dynamics · User Identification · EMG · Timing
Analysis · Typing Behavior.

1 Introduction

The experiment presented in this poster captured multimodal data in the form
of (1) Keyboard timing, (2) EMG signals from Myo3 armbands, (3) audio, and
(4) video. More details on timing and audio keyboard analysis background can
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be found in [4]. From this data, timing and EMG data sets were studied to
determine typing behavior effectiveness. Recording of the Keystroke Dynamics
data was exercised in four sessions for each of the five subjects, for each typing
behavior as described in [3]. This resulted in 20 session recordings for each form
of typing. On average these sessions lasted 80 seconds and recorded 25 correct
typings of a predetermined word: ”password”. Ideally, the experiment should
have had a larger subject base. This, however, proved difficult due to the COVID-
19 pandemic and local, physical restrictions.

1.1 Keyboard Timing Analysis

In Keyboard Timing Analysis we measure when each key is pressed down and
when it is released. From that, we can calculate the time a key is held down
(called the duration of that key) and the time elapsed between typing two con-
secutive keys (called latency between the keys). Because the main goal of this
preliminary research was to test the capability to use EMG for identification, we
have only applied simple statistical analysis of the timing data, similar to what
has been done by Pleva et al. in [4]. Besides the Scaled Manhattan Distance
(SMD) that was used in [4], we also implemented the Scaled Euclidean Distance
(SED), as these are rather similar in their implementations.

1.2 EMG Data Analysis

For analysis, the EMG data was loaded from CSV files into a data-handler
for easy access and manipulation. With one Myo armband on each arm, and
each armband producing eight EMG signals, each timestamp consisted of 16
data points. The sampling rate was found to vary between 165–175 Hz, though
it originally was set to 200Hz. In order to compare the two forms of typing
behavior, we chose MFCC (Mel-frequency cepstrum coefficients) [4, 5] with a 2-
second window frame and 0.5-second step size to retrieve features. The MFCC
was performed on each signal individually, with a dynamically adjusted sampling
rate, and then the coefficients were combined in a 1x208 dimension array for
each time frame (16 signals * 13 coefficients).In total, the experiment resulted
in 2806 samples with 208 features, which stem from approximately 140 samples
from each subject per session.

Despite our modest sample size, we hypothesized that the feature extrac-
tion from the MFCC would provide pattern rich samples for neural network
analysis. We experimented with four Keras4 models: GRU (Gated Recurrent
Units), LSTM (Long Short-Term Memory), CNN 1D (one-dimensional Convo-
lution Network), and a basic Feed-Forward-Network for reference. The hypoth-
esis was demonstrated as plausible, as all networks cross-validated performed
above 85%. The highest performing one-dimensional CNN-model was further
used to compare natural and strong typing behavior. This model is composed
of a Conv1D (32 nodes) and MaxPooling1D (5-sized kernel) layer, together with
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a Flatten, Dense (128 nodes), and Dense (5 nodes/classes, Softmax) layer. The
following results are based on parameters batch size and epochs set to 64 and
30 respectively.

2 Results

2.1 Keyboard Timing Results

As mentioned above, we have used the SMD and SED distance metrics to eval-
uate the performance of the timing information. We have tested it on duration
values only, latency values only, as well as the full set of duration and latency
values together. The results are given in Table 1.

Table 1. Performance results from KD timing information

Typing Behavior: Natural Strong

SMD SED SMD SED

Duration only 0.77 0.77 0.49 0.66
Latency only 0.55 0.63 0.74 0.76
All features 0.73 0.78 0.65 0.78

The results in Table 1, even though only based on the typing behavior of 5
persons, seem to indicate that duration values give a better performance when
using natural typing, while latency features perform better for the strong typing
behavior. When using the combination of duration and latency features we see
that the natural typing behavior has a better performance when using SMD
while for SED the performance is the same for both types of typing behavior.

Based on the results of the typing behavior there is no clear advantage in col-
lecting strong typing behavior samples in addition to the normal typing behavior
samples.

2.2 EMG Analysis Results

EMG Data Characteristics. From the raw EMG data, we retrieved impor-
tant characteristics to describe its properties and compared the data from nat-
ural and strong typing behavior. Maximum and Minimum values were studied,
together with the Median, Mean Absolute (MA = 1

n

∑n
t=1 |xt|), and Root Mean

Squared (RMS =
√

1
n

∑n
t=1 x

2
t ) [1, 2]. It shows that on average both were higher

for strong typing behavior: MA 6.9 vs 7.4 and RMS 11.6 vs 12.4.

Identification performance. When comparing the ability for identification
using the best performed CNN 1D, both data sets provided above 85%. When
training on one session the Natural typing behavior scored a good 92.8% while
the Strong typing behavior gave an accuracy of 85.2% (see Fig. 1).
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Fig. 1. The plot is the result of cross-validated session training on each type of typing
behavior. The average of identification accuracy for validation gave a 92.8% vs. 85.2%
with 1-session-training.

3 Discussion & Conclusion

As presented in this paper, the results suggest no clear benefit for further usage
of Strong typing behavior in Multimodal Keystroke Dynamics Analysis. The
indications, however, are not entirely aligned in this view. While EMG sensory
identification shows beneficial results for the exclusive use of Natural typing
behavior, the timing analysis is ambiguous. Based on these findings, we decided
to efficiently allocate resources to Natural typing behavior only. Hence, further
research with Multimodal Keystrokes Dynamics on 50–100 subjects will utilize
this methodology in its recording.
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