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Abstract. We investigate how far the approach of searching for APN
functions by expanding their univariate representation can be pushed.
We present some theoretical tricks that can be used to speed up the
search up to EA-equivalence. We conduct systematic experiments over
F28 and F29 and partition the resulting functions using the differential
spectrum of their orthoderivatives. We find one new APN instance over
F28 . We also find 15 APN instances over F28 and 19 APN instances
over F29 that are CCZ-inequivalent to the known infinite APN families.
We see that they have differential spectra corresponding to known APN
instances, but observe that the representatives that we obtain are signif-
icantly simpler than the known ones. We thus conclude that polynomial
expansion deserves to be investigated in more detail.

Keywords: APN functions · differential uniformity · polynomial expan-
sion.

1 Introduction

An (n, n)-function is a mapping with n input bits and n output bits. Nonlinear
components of block ciphers are typically modeled as (n, n)-functions, and their
properties are crucial for the security of the ciphers. One of the most powerful
known attacks is differential cryptanalysis [2]. The best resistance to it is pro-
vided by APN (almost perfect nonlinear) functions which also have many other
connections to mathematics and computer science (see e.g. [6] for a comprehen-
sive survey).

Finding APN functions is difficult and many computational procedures have
been developed, e.g. [1], [3], [11]. These typically exploit a representation or some
property of the functions, and have produced thousands of CCZ-inequivalent
APN instances. A disadvantage is that these procedures (and their implementa-
tion) can be complicated. A more serious drawback is that the obtained functions
often have a very complicated form, which makes it difficult to e.g. generalize
them into infinite constructions.

Some of the earliest known polynomial APN functions (e.g. [7] or [8]) were
found by polynomial expansion. This amounts to adding terms to the polynomial
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representation of a function F , and checking whether the resulting functions are
APN. This method is easy to implement, and produces functions with a simple
representation upon success. Despite this, it has not been considered seriously in
the literature. In particular, no well-documented results exist showing how far
it can be taken, and what searches have been performed.

In this abstract, we report on our computational results of applying polyno-
mial expansion to some known APN functions over F28 and F29 . We obtain many
APN functions in this way, and use the differential spectra of the orthoderiva-
tives [5] to partition them into classes. We find 16 classes in F28 and 19 classes
in F29 of APN functions that are CCZ-inequivalent to representatives from the
known infinite families. In the case of F28 , one of the classes is completely new.
The remaining classes match those of known APN instances (found by e.g. the
method from [1] or [11]), but our representatives have a significantly simpler rep-
resentation (for instance, only 5 instead of 44 terms). When the initial function
that we expand is a monomial, we introduce some theoretical tricks that can be
used to restrict the choice of coefficients (up to EA-equivalence) and significantly
speed up the search.

We thus conclude that the polynomial expansion approach can still produce
useful results, and deserves to receive more attention that it currently does.

2 Background and notation

An (n, n)-function, or vectorial Boolean function, is a map from the finite field
F2n to itself. Any (n, n)-function can be uniquely represented as a univariate

polynomial of the form F (x) =
∑2n−1

i=0 aix
i for ai ∈ F2n . The largest binary

weight of an exponent i with ai 6= 0 is called the algebraic degree of F ,
denoted deg(F ). If deg(F ) ≤ 1, we say that F is affine, and if deg(F ) = 2, we
say that F is quadratic. An affine F with F (0) = 0 is called linear.

For an (n, n)-function F , we denote by δF (a, b) the number of solutions x ∈
F2n to F (a+x)+F (x) = b for a ∈ F2n and b ∈ F2n . The differential uniformity
of F is δF = maxa,b∈F2n ,a6=0 δF (a, b). The lower the value of δF , the more resistant
F is to differential attacks. Clearly, δF ≥ 2 for any (n, n)-function F . If δF = 2,
we say that F is almost perfect nonlinear (APN).

Two (n, n)-functions F andG are CCZ-equivalent (Carlet-Charpin-Zinoviev-
equivalent) if there exists an affine permutation A of F2n × F2n mapping the
graph {(x, F (x)) : x ∈ F2n} of F to the graph of G. CCZ-equivalence is the
most general known relation preserving APN-ness, and so APN functions are
typically classified up to CCZ-equivalence. A special case of CCZ-equivalence
is EA-equivalence. We say that F and G are EA-equivalent (extended affine
equivalent) if A1◦F ◦A2+A = G for some affine A1, A2, A with A1 and A2 being
permutations. Two quadratic APN functions are CCZ-equivalent if and only if
they are EA-equivalent [9]. Furthermore, most of the known APN functions are
quadratic, or CCZ-equivalent to quadratic (see e.g. [6] for a general survey, or
[4] for a survey of the known infinite constructions). Thus, in practice, it is often
enough to test EA-equivalence.
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The orthoderivative πF is a function uniquely associated with a quadratic
APN function F . If F and G are EA-equivalent (and hence also CCZ-equivalent),
then so are πF and πG [5]. The multiset of the values of δF (a, b) through all
a, b ∈ F2n is called the differential spectrum of F , and is invariant under EA-
equivalence. The differential spectra of the orthoderivatives are a very strong
invariant for quadratic APN functions that has almost the same distinguishing
power as an EA-equivalence test [5].

3 Polynomial expansion

Consider an initial (n, n)-function F . We conduct an exhaustive search over all
functions of the form F+c1x

i1 + · · ·+cKxiK for a natural number K and all pos-
sible coefficients cj and exponents ij . We restrict the exponents to quadratic ones
since we use the orthoderivatives to distinguish between inequivalent functions,
and they are only defined for quadratic APN functions; furthermore, most of the
known APN functions are quadratic, so the probability of finding non-quadratic
ones in this way is very low. For small values of K, we consider all coefficients
cj ∈ F2n . When the search becomes too slow, we restrict the coefficients to a
subfield of F2n . We do not perform searches with coefficients restricted to F2

since all quadratic APN functions with binary coefficients over F2n have been
classified for n ≤ 9 [10].

When F is a monomial, we can speed up the search as follows. Let F (x) = xd

and G(x) = xd + cxi. Composing L1 ◦F ◦L2 with L1(x) = x/ad and L2(x) = ax
for 0 6= a ∈ F2n , we obtain the EA-equivalent G′(x) = xd + cai−dxi. Thus, the
coefficient of the first expansion term can be multiplied by ai−d for 0 6= a. Thus,
having tried c, we can ignore all coefficients of the form cai−d for 0 6= a ∈ F2n .
Similarly, we can take L1(x) = x2 and L2(x) = x2

n−1

, and obtain the EA-
equivalent G′′(x) = xd+c2xi. Thus, c can be raised to any power of 2. Restricting
the coefficient of the first term in this way significantly reduces the search space,
and allows us to perform e.g. searches with K = 5 terms in F29 when the
initial function is a monomial, while in the case of polynomials, we must restrict
ourselves to K = 4 terms due to long running times.

4 Computational results

We consider as an initial function F a single representative from each CCZ-class
represented by the quadratic infinite APN families. In the case of n = 8, we
run searches with coefficients in F28 for up to 3 terms when F is a monomial,
and up to 2 terms otherwise. Restricting the coefficients to F24 , we attempt to
add 4 terms, and with coefficients in F22 we are able to go up to 6 terms. All
running times are within 100 hours; pushing the search further may be possible,
but would require considerable computational effort.

We find 16 classes (according to the orthoderivative’s differential spectrum)
CCZ-inequivalent to the known infinite families. Among these, the function
x3 + βx18 + βx66 + β2x132 (where β is primitive in F22) is completely new,



4 M. H. Aleksandersen, L. Budaghyan, and N. S. Kaleyski

having differential spectrum of the orthoderivative 038196, 222008, 44608, 6456, 812

(with the multiplicity of each element written in superscript). The remaining 15
differential spectra match those of known APN instances; however, our repre-
sentations are significantly shorter and better structured than the known ones in
many cases. For instance, one of our representatives, viz. x5 +x9 +βx17 +βx65 +
β2x170x80 + βx96 + x144, has 7 terms, with coefficients in F22 . It is equivalent to
a known instances obtained in [1] having 36 terms with various coefficients.

For F29 , the situation is similar. For coefficients in F29 , we go up to 2 terms,
and then restrict the coefficients to F23 . We can go up to 5 terms for monomi-
als (using the simplification described above) and up to 4 terms when the initial
function is a polynomial. The running times are within 600 hours. We find 19 or-
thoderivative differential spectra that are not represented by the known infinite
APN families. All of them correspond to known instances but some of our repre-
sentatives are significantly simpler. For instance, one of the functions in [1] has
44 terms, while our representative can be written as x3 +γx10 +x17 +γx66 +x80,
with γ primitive in F23 .

Due to space limitations, we do not provide a full list of the representatives
that we find here; one is available in the first author’s master thesis, or online at
https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_

via_polynomial_expansion_in_small_dimensions.
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