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Abstract. Enabling highly secure applications (such as border crossing) with
face recognition requires extensive biometric performance tests through large
scale data. However, using real face images raises concerns about privacy as the
laws do not allow the images to be used for other purposes than originally in-
tended. Using representative and subsets of face data can also lead to unwanted
demographic biases and cause an imbalance in datasets. One possible solution
to overcome these issues is to replace real face images with synthetically gen-
erated samples. While generating synthetic images has benefited from recent
advancements in computer vision, generating multiple samples of the same syn-
thetic identity resembling real-world variations is still unaddressed, i.e., mated
samples. This work proposes a non-deterministic method for generating mated
face images by exploiting the well-structured latent space of StyleGAN. Mated
samples are generated by manipulating latent vectors, and more precisely, we
exploit Principal Component Analysis (PCA) to define semantically meaning-
ful directions in the latent space and control the similarity between the original
and the mated samples using a pre-trained face recognition system. We create
a new dataset of synthetic face images (SymFace) consisting of 77,034 samples
including 25,919 synthetic IDs. Through our analysis using well-established face
image quality metrics, we demonstrate the differences in the biometric quality
of synthetic samples mimicking characteristics of real biometric data. The anal-
ysis and results thereof indicate the use of synthetic samples created using the
proposed approach as a viable alternative to replacing real biometric data.

Keywords: Biometrics, Face recognition, Synthetic Face Image Generation,
Deep learning, StyleGAN

1 Introduction
The popularity of biometric recognition has increased steadily along with the de-

velopment of more accurate and convenient recognition technologies. According to
ISO/IEC 2382-37:2017 [17], biometrics refers to the automated recognition of indi-
viduals based on their biological and behavioural characteristics. In particular, the
human face has proven to be sufficiently unique and an easy-to-capture biometric char-
acteristic, leading to a wide range of real-world applications, including border control,
passport issuance, and civilian ID management. Driven by the promising performance
of current face recognition systems, the Smart Borders program has been initiated
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Fig. 1: Comparison of the intra-identity variation between FRGC v2.0 (top) and Sym-
Face (bottom).

within the European Union to establish the Entry-Exit System (EES) [4], an auto-
mated IT system for registering travellers from third-countries, replacing the current
system of manual stamping of passports. This system aims to help bona fide third-
country nationals travel more easily while also identifying more efficiently over-stayers
and cases of document and identity fraud. To perform automatically, EES will register
the person’s name, type of the travel document and biometric data (face images and/or
fingerprints).

A requirement for deploying biometric recognition at the European borders is com-
plying with the high standards defined in the best practices for automated border
control of the European Border and Coast Guard Agency (Frontex) [6]. The com-
pliance with these guidelines must be validated by conducting large-scale biometric
performance tests which require large datasets. As the collection of real face images
is expensive, time-consuming, and privacy-concerning, generating synthetic face im-
ages has become an attractive and viable alternative. Driven by the advancements in
technology, approaches like StyleGAN and StyleGAN2 [20][21] have shown promises to
create large scale face datasets with unique identities.

While the synthetic image generation approaches are well used in various appli-
cations, the applicability of those images in biometrics is limited. Specifically, the
biometric data used for training algorithms and performance testing need to mimic
the real data with variations in pose, varying expressions, occlusions and illumination
changes reflecting realistic conditions for any particular identity. In essence, each syn-
thetic identity should accompany a set of variations that can compose what is referred
to as mated samples for obtaining comparison scores. Specifically, the synthetic data
should represent intra-class variations similar to bona fide data while preserving the
identity information. The mated samples essentially are required to generate the gen-
uine score distribution to gauge the biometric performance such as False Match Rate
(FMR) and False Non-Match Rate (FNMR). However, despite the recent advancements
of synthetic image generation [20][21], it continues to be a technical issue to create syn-
thetic datasets with mated samples that are representative and comparable to real
face images captured at border control scenarios (e.g. frontal head poses without face
occlusions).
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1.1 Our contributions

This work tackles the above-described challenge by introducing a new technique for
generating synthetic mated samples. More precisely, a pre-trained StyleGAN genera-
tor [20] is utilised to generate synthetic face images of distinct synthetic individuals
(”base images”). Each base image is represented by a latent vector w1×512, acting as a
compressed version of the original image and reflecting the internal data representation
learned by StyleGAN. Motivated by the idea of editing facial attributes by shifting the
corresponding latent vector in a specific direction in the latent space [25], we propose to
generate mated faces in a non-deterministic manner. We assert that such an approach
for attribute editing leads to a better approximation of the natural intra-identity vari-
ation of bona fide mated samples, as can be compared in Figure 1.

As the components of the latent vector space can represent various possible seman-
tics, the principal components can be interpreted as semantically meaningful directions
in the latent space of StyleGAN. Concretely, extracting the Principal Components [22]
from a latent vector space of 50, 000 to 512 leads to obtaining semantically meaningful
values. Inspired by such an argument, we create the mated samples by shifting the
latent vectors into the directions given by the most relevant eigenvectors (i.e. the prin-
cipal components). However, as the latent vectors are moved farther from their original
locations, the risk of losing the identity information increases, we, therefore, employ a
pre-trained face recognition system (FR) [5] to obtain the distance between the original
and edited image dynamically to ensure the preservation of identity information from
mated samples for the original identity used for editing. We refer to non-deterministic
face editing as changing multiple semantics in an unsupervised manner, as opposed to
controlled face editing, where specific facial attributes are chosen to be edited.

With such a rationale of our proposed approach, we create a new dataset of face
images with synthetic identities and mated samples for each identity in this work which
we refer to as Synthetic Mated Face Dataset (SymFace Dataset). The dataset consists of
77, 034 samples with an average number of three mated samples per synthetic identity.
To better approximate a semi-controlled capturing environment, images with extreme
characteristics are sorted out, taking into account illumination conditions, head poses
rotation and inter-eye distance. Also, the study concentrates on adult face images due
to the limited training data available from young children and seniors. We refer to
Figure 3 to get an impression of typical images filtered out by our filtering pipeline.

We further evaluate the quality of our proposed synthetic dataset by comparing its
properties to real face images taken from FRGC v2.0 [23]. Among other approaches
for conducting such an analysis, we translate the biometric quality of each image to a
quality score between [0, 100] using Face Quality Assessment Algorithms (FQAAs) [19].
In this context, a high-quality score indicates that the corresponding biometric sample
is well suited for biometric recognition. On the opposite, low-quality scores deteriorate
the recognition accuracy due to the low quality of the input image. This understanding
of biometric quality corresponds to the terminology specified by ISO/IEC 29794-1 [16],
defining the utility of a biometric sample as the prediction of the biometric recognition
performance. In this work, two FQAAs are used for estimating and comparing the
biometric quality: FaceQnet v1 [11] and SER-FIQ [26]. At this point, the reader is
referred to Section 2 to obtain a more detailed description of these methods.
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In the rest of the paper, Section 2 summarises the conceptual ideas of generating
synthetic face images and mated samples. Next, Section 3 provides a detailed descrip-
tion of the proposed PCA-FR-Guided sampling approach. Section 4 details the newly
created SymFace Dataset, and finally, Section 5 gives an overview of the experimental
results, followed by a conclusion about the key findings in Section 6.

2 Related Works
2.1 Synthetic Image Generation

In 2019, Karras et al. [20] presented a style-based generator architecture for gen-
erative adversarial networks (StyleGAN), capable of generating synthetic images with
high resolutions (1024x1024) and realistic appearances. In addition to their proposed
GAN architecture, the authors web crawled high-quality human face images from a so-
cial media platform (Flickr) to create a new dataset (FFHQ), covering a wide variation
of soft biometrics.

Despite the recent success of deep generative networks, most generators are still
operating as black-boxes and lack a deeper understanding of the latent space. To ad-
dress these weaknesses and improve the disentanglement properties of the latent space,
StyleGAN maps initially drawn latent vectors to an intermediate latent space, which
turns out to encode facial features in a more disentangled manner. Further, Adaptive
Instance Normalization (AdaIN) [13] enables to fuse the styles of different faces on
multiple feature levels. Furthermore, stochastic variation is achieved by adding Gaus-
sian noise to the feature maps after each convolution operation to vary fine-grained
details. Recently, StyleGAN2 has been published by the same authors [21], improving
the architectural design and fixing the characteristic artefacts occurring in the synthetic
images generated by StyleGAN.

In StyleGAN and StyleGAN2, synthetic images are generated by randomly sampling
from a known distribution (latent space). If these latent vectors are drawn from tail
regions of the distribution, the quality of the generated face images deteriorates while
the diversity of facial attributes increases. To balance this trade-off, a truncation factor
can be used to stabilise the sampling: the truncated latent code w′ is calculated as
w′ = w̄ + ψ(w − w̄) where w̄ indicates the latent spaces’ center of mass and ψ denotes
the truncation factor. Following the empirical analysis of Zhang et al. [9], we choose
a truncation factor of ψ = 0.75. In [9], the authors have shown that the biometric
performance of synthetic samples generated with StyleGAN and StyleGAN2 are similar
and comparable to bona fide images from FRGC v2.0 [23]. Hence, this work uses
StyleGAN for generating synthetic base images to enable the implementation of PCA-
FR-Guided sampling to operate within the framework of InterFaceGAN [25].

2.2 Mated Sample Generation

Though it has been shown in [9] that single synthetic face images can achieve
comparable performances as bona fide samples for face recognition, mated samples
are more commonly required in biometric performance evaluations. Given a synthetic
base image, mated samples can be derived by editing facial attributes to simulate the
factors of variation present in bona fide samples. With the groundbreaking work of
Shen et al. [25], InterFaceGAN was introduced as a framework enabling editing facial
attributes of synthetic identities through manipulating latent vectors in the latent
space. In this context, the latent space reflects the internal data representation of
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StyleGAN and structures various semantics learned from the training dataset. Further,
the innovative architecture of StyleGAN significantly reduces the entanglement of the
encoded semantics, which provides optimal conditions for controlled modifications on
facial attributes.

The main contribution of InterFaceGAN is based on the observation that the latent
space can be divided into linear subspaces according to binary semantics, such as
”smile” or ”no smile”. Concretely, linear Support Vector Machines (SVMs) [3] are used
to divide the latent space into subspaces for each facial attribute of interest. Once the
SVMs are trained, facial attributes are modified by shifting the latent vectors into the
perpendicular direction of the previously found boundaries, thereby causing continuous
changes. The same principle has been adopted by Colbois et al. [2], who manipulate
yaw angle, illumination, and a smile by approximating the bona fide conditions of
Multi-PIE [7].

2.3 Limitations in State-of-the-art

Although InterFaceGAN generates visually appealing mated samples, their appli-
cability for general biometric performance tests is still limited and understudied. As
shown in Figure 1, mated samples collected in real-world scenarios naturally include
several variations varying at the same time, for instance, pose, illumination, expression
and a combination of them. In contrast, controlled face editing focuses on changing
only a few semantics while leaving others fixed. Therefore, controlled modifications are
useful to determine the vulnerability of face recognition systems for targeted semantics
while only representing a small subset of the potential diversity in bona fide datasets.
Motivated by this observation, we introduce PCA-FR-Guided sampling as a technique
for generating non-deterministic mated samples to either replace or complement exist-
ing test datasets.

3 PCA-FR-Guided Sampling
This section introduces our new method for generating mated samples, which we

refer to as PCA-FR-Guided Sampling. As described in Section 2, semantic modifications
can be caused by moving latent vectors in the latent space. However, this approach still
leaves two questions unanswered: 1) How to choose semantically meaningful directions?
2) How to choose the distance to preserve identities while maximising the intra-identity
variation?

Aiming to find solutions for the aforementioned questions, Figure 2 provides an
overview of the PCA-FR-Guided sampling technique. After generating an initial syn-
thetic dataset with StyleGAN with a truncation factor of ψ = 0.75 (A), PCA is applied
to extract semantically meaningful directions from the corresponding latent vectors
(B). The idea is to extract the latent direction with the most variance, leading to effec-
tive variation after image generation. Finally, the latent vectors are moved along the
principal component axes while adjusting the distance dynamically by measuring the
similarity between the original and the shifted mated sample in a step-wise manner
(C). Algorithm 1 provides a detailed workflow of the PCA-FR-Guided mated sample
generation process proposed in this work.

We specifically employ stepSize and the verification threshold as controlling pa-
rameters to balance the trade-off between intra-class variation and identity-retaining
factor for generated mated samples. In other words, increasing the comparison thresh-
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Fig. 2: Overview of the proposed PCA-FR-Guided Sampling with N = 50, 000 denot-
ing the number of latent vectors concatenated as matrix W to obtain the principal
components (PCs). A detailed workflow is given in Algorithm 1.

old decreases the distance between the original latent vector and the shifted latent
vector, thus generating more similar faces with fewer factors of variation. On the other
hand, decreasing the step size approaches the given threshold with smaller steps, thus
yielding mated samples closer to the desired similarity tolerance 3.

4 Synthetic Mated Face (SymFace) Dataset
This section describes the structure of our synthetic mated face dataset (SymFace)

and the reference dataset used for the comparison part in Section 5.

Each mated sample is generated based on a synthetic face image randomly gener-
ated by StyleGAN. As StyleGAN was trained using images crawled from social media,
the diversity of the generated images roughly corresponds to approximate capturing
scenarios ”in the wild”. As described in section 2.1, a truncation factor of ψ = 0.75 was
chosen to generate 50,000 unique identity images with high resolutions of 1024x1024
pixels and this is referred to as base images.

However, not all images generated from StyleGAN satisfy the minimum criteria
needed for biometric applications. For instance, in a border-crossing scenario, fac-
tors such as minimum inter-eye distance (IED), illumination metrics, predicted head
poses [1], and estimated ages [27] are needed in accordance to ISO/IEC TR 29794-
5:2010 [15] and ICAO 9303 [14]. Accounting for this, we discard all such images not
meeting the criteria of minimum inter-eye distance (IED), illumination metrics, pre-
dicted head poses [1], and estimated ages [27]. The SymFace Dataset thus has a total of
25,919 images which we deem as usable for further analysis in this work, and a sample
of such images that are eliminated by our filtering pipeline is illustrated in Figure 3.
As it can be observed from Figure 3, despite these images looking visually pleasing,
they fail to meet the quality standards with respect to ISO/IEC TR 29794-5:2010 [15]
and ICAO 9303 [14].

3 We have chosen stepSize = 0.2 and threshold = 0.8 empirically, considering the quality of
the mated samples and the algorithm’s efficiency. However, other values can also be used
on application scenarios.
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input: latentV ectors, N, stepSize, threshold, Generator
components = PCA(latentV ectors);
for w in latentV ectors do

img = Generator(v);
for c in components do

i = 1;
do

w moved = shift in lspace(w, c, stepSize · i);
mated img = Generator(w moved);
recognised = ArcFace(img,mated img, threshold);
i = i + 1;
if recognised then

save(mated img);

while recognised;

end

end
Algorithm 1: PCA-FR-Guided sampling algorithm for generating mated-samples.

Fig. 3: Low quality images filtered out by our filtering pipeline - from left to right: IED,
illumination, pitch angle, yaw angle, age.

Finally, the filtered base images are used as a basis for generating two mated samples
for each synthetic identity by using our proposed PCA-FR-Guided sampling technique.
Though we selected the first and second principal components, our experiments indi-
cate that each of the 512 principal components can be used to obtain semantically
meaningful mated samples. In addition, we apply InterFaceGAN to create three ad-
ditional datasets, each of which includes mated samples with single semantics edited
(yaw angle, illumination quality, and smile).

SymFace FRGC v2.0 Illumination Quality Smile Yaw

# Base Images 50,000 / 50,000 50,000 50,000

- Filtering 25,919 / 25,919 25,919 25,919

+ Mated Samples 77,757 24,025 77,757 77,757 77,757

- Filtering 77,034 17,919 74,183 74,574 60,504

Table 1: Dataset sizes in different development stages after applying our filtering
pipeline and generating mated samples.
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4.1 Reference Biometric Dataset

Further, we employ FRGC v2.0 [23] as a reference dataset, including 24,025 bona
fide images captured in constrained conditions that resemble the image quality in a
border-crossing scenario. Finally, we analyse biometric use cases of the SymFace dataset
by studying the characteristics and comparing the same against the FRGC v2.0 dataset.
A concise overview of the above-described datasets is given in Table 1, listing the
number of samples counted during different development stages. Moreover, Figure 4
presents example images extracted from all datasets, annotated with quality scores
obtained by SER-FIQ and FaceQnet v1.

Fig. 4: Examples images of bona fide and synthetic images evaluated in Section 5.



Generation of Non-Deterministic Synthetic Face Datasets Guided by Identity Priors 9

5 Experimental Results
The biometric utility of the synthetic database, especially for mated samples, can

be evaluated by measuring the biometric performance or by validating the quality of
the samples according to well-established face image quality metrics. We employ both
approaches by first evaluating the Face quality assessment algorithms (FQAAs) on the
newly created SymFace Dataset and compare it against similar characteristics of the
FRGC v2.0 dataset. We then evaluate the mated and non-mated comparison score
distributions obtained by applying the pre-trained VGGFace2 [24] face recognition
model to verify the biometric utility by analysing the score distribution. We provide a
summary of the employed FQAAs for the convenience of the reader.
5.1 Face Image Quality Assessment

Face quality assessment algorithms (FQAAs) are used as indicators of how the
quality of a face image contributes to the overall accuracy of a face recognition system.
In this work, two representative FQAAs are utilised to evaluate the generated mated
samples’ biometric quality:

– FaceQnet v1 is a deep learning-based FQAA proposed by Hernandez-Ortega et
al. [11], aiming to predict the general utility of a face image, independent of a spe-
cific face recognition system. For the quality score prediction, a pre-trained network
of ResNet-50 [10]is fine-tuned as a feature extractor on a small subset of the VG-
GFace2 dataset [24], including 300 subjects. FaceQnet v1 follows a supervised learn-
ing approach, which means that the ground truth quality scores are required for
fine-tuning the model. However, finding representative quality scores that accurately
reflect general utility criteria is a challenging task. Therefore, the authors propose to
determine the utility of an image by comparing it to an ICAO 9303 [14] compliant
image, knowing that the sample with unknown image quality can only cause low
comparison scores. The performance of FaceQnet v1 has been benchmarked against
other FQAAs and proven competitive in the ongoing quality assessment evaluation
of the National Institute of Standards and Quality (NIST)[8].

– SER-FIQ [26] is an unsupervised technique that is not dependent on previously
extracted ground truths for training a prediction model. Compared to FaceQnet v1,
which outputs the general utility of a face image, SER-FIQ focuses on predicting
the utility for a specific face recognition system. More precisely, the quality scores
are based on the variations of face embeddings stemming from random subnetworks
of a face recognition model. The authors argue that a high variation between the
embeddings of the same sample functions as a robustness indication, which is as-
sumed to be synonymous with image quality. The computational complexity of SER-
FIQ increases quadratically with the number of random subnetworks, which leads
to a trade-off between the efficiency of the algorithm and the expected accuracy
of the quality predictions. In this work, we are following the authors’ recommen-
dation, choosing N = 100 stochastic embeddings. The comparison of the authors
against state-of-the-art FQAA approaches indicates that SER-FIQ significantly out-
performed alternative methods.

The distributions of the quality scores predicted with FaceQnet v1 and SER-FIQ
are shown in Figure 5. On the left, the well-aligned curves indicate that the average
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biometric quality across the evaluated datasets is nearly identical. However, looking
at the SER-FIQ quality scores reveals a discrepancy between the distributions of the
synthetic and bona fide images. We explain this observation with a wider range of yaw
angles present in the synthetic datasets, a factor known by the authors of SER-FIQ
to decrease the utility estimations [26]. The same behaviour is reflected by the left-
shifted purple curve, thereby validating the negative impact of yaw angle variations
on the biometric quality. Overall, the analysis of the utility scores does not reveal
significant differences between bona fide and synthetic images. Moreover, except for
yaw angle manipulations, these differences even vanish when comparing only synthetic
datasets. Hence, the biometric quality of mated samples generated with PCA-FR-
Guided sampling and InterFaceGAN are similar as both are products of the same
generator. Further, the generation of mated samples has not deteriorated the biometric
quality, as indicated by the overlapping areas to the base image distributions.
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Fig. 5: Quality score distributions of two FQAAs: FaceQnet v1 (left) and SER-FIQ
(right).

To further investigate the credibility of the FQAAs, Error-vs-Discard Character-
istic (EDC) curves are shown in Figure 6. EDCs are commonly used to compare the
performance of multiple FQAAs as suggested by the third version of ISO/IEC WD
29794-1:2021 [18]. For each face comparison, a paired quality score is defined as the
minimum of the single quality scores predicted with the FQAAs. Finally, EDC curves
are obtained by measuring the FNMRs by increasingly discarding the lowest quality
images from the test set. Hence, decreasing EDC curves indicate lower misclassification
rates; thus, the underlying FQAA could predict the biometric quality.

In Figure 6, all EDC curves share the same decreasing trend. However, the orange
curves (FRGC v2.0) are steeper, indicating that both FQAAs are more accurate in
predicting the biometric quality of bona fide images than synthetic samples. One reason
for this observation might be rooted in an increased intra-identity variation of the
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bona fide images, which is still challenging to mimic with synthetic substitutes. This
assumption fits with the analysis of the mated comparison scores presented in the
following subsection.
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Fig. 6: EDC curves based on paired quality scores derived with FaceQnet v1 (left) and
SER-FIQ (right). False non-match rates are computed with ArcFace [5].

5.2 Biometric Performance
After evaluating the biometric quality with dedicated FQAAs, the synthetic face

images are further assessed in Figure 7, visualising the comparison score distributions.
The non-mated comparison score distributions of all synthetic datasets are clearly below
the vertically marked threshold, therefore indicating that the proportion of non-mated
lookalikes is not significantly increased compared to non-mated bona fide samples.
However, the mated comparison scores reveal more significant differences between the
datasets. It is visible that the thick orange curve (FRGC v2.0) is heavier tailed on
the left side than all synthetic mated distributions. Again, this observation re-validates
the findings of the last subsection, tracing back the differences to a lower similarity of
mated samples caused by varying facial attributes. Moreover, the mated comparison
scores of the synthetic datasets reveal minor differences: While our proposed PCA-
FR-Guided sampling performs similar to the controlled manipulation of smiles, editing
yaw angles widens the span of mated comparison scores significantly. Overall, the well-
separated distributions of mated and non-mated comparison scores lead us to conclude
that either editing single (InterFaceGAN) or multiple (PCA-FR-Guided sampling) se-
mantics can be promising for generating synthetic datasets for biometric performance
tests. In addition, a quantitative analysis, measuring the Kullback-Leibler Divergences
between the distributions presented in this section, is provided in Table 2 and Table 3
(appendix).
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Fig. 7: Mated and non-mated comparison scores computed with VGGFace2 [24]. Thick
solid line represents the kernel density curve of mated comparison scores, Thick dotted
line represents the non-mated comparison scores and black dashed line represents the
threshold @ FMR= 0.1% on LFW [12] dataset. Note that our base image dataset
includes a single image per identity, therefore only depicting the non-mated comparison
score distribution.
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6 Conclusion and Future Work
To solve the privacy-related issue with real datasets and overcome the shortage of

training data, we introduce PCA-FR-Guided sampling for generating mated samples in
a non-deterministic manner. Unlike controlled face image editing techniques operating
in the latent space, we apply PCA to find semantically meaningful directions. While
moving latent vectors into these directions, the identity of the underlying face image is
preserved by progressive supervision with a pre-trained face recognition system. With
the newly created Synthetic Mated samples dataset (SymFace Dataset) with 77,034
images, we have evaluated state-of-the-art face quality assessment algorithms and bio-
metric comparison score analysis to validate the applicability of the proposed approach.
The well-separated distributions between mated and non-mated comparison scores in-
dicate that synthetic mated samples generated with PCA-FR-Guided sampling are well
suited for biometric performance tests. Furthermore, the analysis of face quality and
the comparison scores is comparable to observations made in real datasets, indicating
the usefulness of the proposed approach.

Although this work has illustrated to include synthetic samples in face recognition
performance tests, we emphasise the open challenge to mimic the full extent of intra-
identity variation measurable in bona fide datasets. Future works should also focus
on an exploratory analysis of the different principal components, thereby exploring
the latent space of StyleGAN and strengthening the understanding of the internal
data representation. We foresee using the proposed approach to reduce the need for
large training sets and minimise the demographic bias by diversifying latent space in
synthetic generation schemes.
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Appendix

Datasets PCA-FR Illumination Quality Smile Yaw

FRGC v2.0
SER-FIQ 1.17 1.19 1.13 3.25
FaceQnet v1 0.11 0.12 0.11 0.13

Base Images
SER-FIQ 0.02 0.01 0.01 0.27
FaceQnet v1 0.01 0.01 0.01 0.01

Table 2: KL-Divergences between quality score distributions in Figure 5.

Datasets PCA-FR Illumination Quality Smile Yaw

FRGC v2.0
Mated 0.42 0.79 0.17 0.72
Non-mated 0.27 0.28 0.32 0.33

Base Images
Mated / / / /
Non-mated 0.01 0.20 0.02 0.01

Table 3: KL-Divergences between comparison score distributions in Figure 7.
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