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Article Info  Abstract  

 

 Factorial experiment often involves large data sets and the use of generalized inverse for the 

data analysis. It becomes less manageable as the data increased. The objective of this study is 

to evaluate the accuracy of partitioned design matrix method for two factors multivariate 

design. The design matrix is partitioned into several sub-matrices based on their source of 

variation. The partitioned design matrix method in two factors multivariate is much simpler 

than usual sigma summation method in calculating the sum of product matrix and the degrees 

of freedom. This method could also be used in explaining the derivation of the statistics for 

testing the hypothesis of the equality of the means which corresponds to the source of variation. 
Key Words: 

Partitioned Design Matrix,  

Sum of Product Matrices,  

Degrees of Freedom. 

 

 

 

1. INTRODUCTION 

Analysis of variance can be performed on one or more response variables. For one response variable, it is called 

univariate analysis of variance or often known as ANOVA. Whereas for more than one response variable, it can be 

done in two ways, namely, (1) performing ANOVA on each response variable separately, called multiple ANOVA, 

and (2) through multivariate analysis of variance or called MANOVA [13]. 

Multiple ANOVA is performed if there is no correlation between the response variables. However, multiple 

ANOVA has several drawbacks, for example, (i) it cannot see the effect of several treatment variables on the response 

variable in the form of constructs [3], and (ii) it will increase the possibility of making type I errors, namely rejecting 

𝐻0 when 𝐻0 is true. These shortcomings will have consequences that cause inaccuracies in interpreting the results 

and drawing conclusions [2]. In such conditions, MANOVA can be used as an alternative because with MANOVA, 

the response variable which is a construct can be evaluated in its entirety. 

The calculation of the sum of squares for both univariate and multivariate can be done by using elementary 

algebra notation as well as matrix algebra. However, for the multivariate, the use of elementary algebra will be very 

complex and error-prone. This causes the use of matrix algebra notation as a solution [7]. The calculation process 

using matrix algebra notation can be done simultaneously through matrix operations.  

A popular method for calculating the sum of squares by matrix operations is the General Linear Model (GLM). 

By using this method, the level of the treatment variable is converted into a dummy variable, and the total number of 

squares is calculated using a projection matrix based on the generalized inverse [1]. However, when the data is large, 

the use of generalized inverse will provide a longer calculation process compared to using the usual inverse. To 

overcome this, the partitioned design matrix method can be used [6]. 

The partitioned design matrix method is a method used to determine the number of squares using the GLM with 

the design matrix partitioned according to the source of diversity. So far, the effectiveness of this method still needs 

to be clarified, especially for multivariate two-factor experiments. The purpose of this study was to evaluate the 

accuracy of the partitioned matrix design method in a two-factor multivariate experiment. 
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2. RESULTS AND DISCUSSION 

In a two-factor multivariate experiment, there were n random observations where n ≥ 1 was given to two treatment 

factors, namely A and B. Each treatment factor had the a level and the b level which formed a design with a 

combination of ab treatments. Then a test is carried out to test whether there is a difference in treatment on the p 

variable for the two treatment factors [12]. 

2.1 The Usual Sigma Summation Method 

Two-way balanced multivariate two-factor experimental linear model with a constant effect for the dependent 

variable p is [8] 

 𝐲𝑖𝑗𝑘 = 𝝁 + 𝜶𝑖 + 𝜷𝑗 + 𝜸𝑖𝑗 + 𝜺𝑖𝑗𝑘 = 𝝁𝑖𝑗 + 𝜺𝑖𝑗𝑘 (1) 

where 𝐲𝑖𝑗𝑘 for  𝑖 = 1,2, … , 𝑎;  𝑗 = 1,2, … , 𝑏; 𝑘 = 1,2, … , 𝑛 is the observation vector for the k-th repetition given to 

factor B at the j-th level and factor A at the i-level, 𝝁 is the general average vector, 𝝁𝑖𝑗   is the average vector for factor 

A at the i-level and factor B at the j-level, 𝜶𝑖 is the influence vector for factor A at the i-level, 𝜷𝑗  is the influence 

vector for factor B at the j-th level, 𝜸𝑖𝑗  is vector of the effect of the interaction AB, and 𝜺𝑖𝑗𝑘 is the component vector 

of the error in the k-th repetition observation given to factor B at the j-th level and factor A to the i-level. 

The assumptions needed in this experiment are:  

1. ∑ 𝜶𝑖 = 𝟎𝑎
𝑖=1 ,  is the sum of all effects of factor A equal to zero. 

2. ∑ 𝜷𝑗 = 𝟎𝑏
𝑗=1 ,  is the sum of all effects of factor B equal to zero. 

3. ∑ 𝜸𝑖𝑗
𝑎
𝑖=1 = ∑ 𝜸𝑖𝑗 =𝑏

𝑗=1 𝟎,  is the sum of all interactions AB equal to zero 

4. 𝜺𝑖𝑗𝑘~𝑁𝑃(𝟎, 𝜮), is an independent observation error with a normal distribution with a mean of zero and a certain 

variance. 

Furthermore, the algebraic formula used to calculate the sum of squares matrix in a two-factor multivariate 

experiment is as follows: 

Correction Factor     : 
( )( )1 1 1 1 1 1 1

t
a b n a b n

ijk ijki j k i j k t

abn abn

= = = = = =

 = =
     

K
F

y y
y y   

Sum of Squares of Factor A  : 
.. ..

1

1 a

ibn =

= −A KH F
t

i i y y   

Sum of Squares of Factor B  : . . . .

1

1 b

jan =

= −B KH Ft

j j y y   

Sum of Squares of Interaction AB : . .

1 1

1 a b

i jn = =

= − − −AB K A BH F H Ht

ij ij y y   

Sum of total squares   : 
1 1 1

a b n

i j k= = =

= − KT Ft

ijk ijk y y   

Sum of Squares error   : 𝐄 = 𝐓 − 𝐇𝐀 − 𝐇𝐁 − 𝐇𝐀𝐁 

 

2.2 The Partitioned Design Matrix Method 

The general linear model (GLM) of equation (1) is as follows: 

 𝐘𝑎𝑏𝑛×𝑝 = 𝐗𝑎𝑏𝑛×(1+𝑎+𝑏+𝑎𝑏)𝛃(1+𝑎+𝑏+𝑎𝑏)×𝑝 + 𝛆𝑎𝑏𝑛×𝑝 (2) 
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where 𝐘𝑎𝑏𝑛×𝑝 is an observation matrix of size 𝑎𝑏𝑛 × 𝑝, 𝐗𝑎𝑏𝑛×(1+𝑎+𝑎𝑏) is a design matrix of size 

𝑎𝑏𝑛 × (1 + 𝑎 + 𝑏 + 𝑎𝑏) which is partitioned into several sub-matrixes, namely [𝐗μ|𝐗α|𝐗β|𝐗αβ]. Each sub-matrix 

can be described as follows:  

 

𝐗μ = 𝟏𝑎×1 ⊗ 𝟏𝑏×1 ⊗ 𝟏𝑛×1 

𝐗α = 𝐈𝑎×𝑎 ⊗ 𝟏𝑏×1 ⊗ 𝟏𝑛×1 

𝐗β = 𝟏𝑎×1 ⊗ 𝐈𝑏×𝑏 ⊗ 𝟏𝑛×1 

𝐗αβ = 𝐈𝑎×𝑎 ⊗ 𝐈𝑏×𝑏 ⊗ 𝟏𝑛×1

and 𝛃(1+𝑎+𝑏+𝑎𝑏)×𝑝 is the model parameter matrix with size (1 + 𝑎 + 𝑏 + 𝑎𝑏) × 𝑝, 𝛃𝑝×(1+𝑎+𝑏+𝑎𝑏)
t = (𝝁, 𝜶1, … , 𝜶𝑎,

𝜷1, … , 𝜷𝑏 , 𝜸11, … , 𝜸1𝑏 , … , 𝜸𝑎𝑏) and 𝛆𝑎𝑏𝑛×𝑝 are experimental error matrices of size 𝑎𝑏𝑛 × 𝑝. Before discussing the 

use of matrix notation on the sum of the squares in each component, we first calculate the projection matrix with the 

general form 𝐌 = 𝐗(𝐗t𝐗)−𝟏𝐗t as follows: 

𝐌μ =
1

𝑎𝑏𝑛
𝐉𝑎×𝑎 ⊗ 𝐉𝑏×𝑏 ⊗ 𝐉𝑛×𝑛 

𝐌α =
1

𝑏𝑛
𝐈𝑎×𝑎 ⊗ 𝐉𝑏×𝑏 ⊗ 𝐉𝑛×𝑛 

𝐌β =
1

𝑎𝑛
𝐉𝑎×𝑎 ⊗ 𝐈𝑏×𝑏 ⊗ 𝐉𝑛×𝑛 

𝐌αβ =
1

𝑛
𝐈𝑎×𝑎 ⊗ 𝐈𝑏×𝑏 ⊗ 𝐉𝑛×𝑛 

The projection matrix multiplication table can be seen in Table 1. 

Table 1. Projection matrix multiplication 

 𝐌μ 𝐌α 𝐌β 𝐌αβ 

𝐌μ 𝐌μ 𝐌μ 𝐌μ 𝐌μ 

𝐌α 𝐌μ 𝐌α 𝐌μ 𝐌α 

𝐌β 𝐌μ 𝐌μ 𝐌β 𝐌β 

𝐌αβ 𝐌μ 𝐌α 𝐌β 𝐌αβ 

 

By using matrix notation, the matrix of the sum of squares of each component of the multivariate two-factor 

experiment variance can be written as:  

𝐅𝐊 = 𝐘𝐭𝐌μ𝐘 

𝐇𝑨  = 𝐘𝐭(𝐌α − 𝐌μ)𝐘 

𝐇𝐵  = 𝐘𝐭(𝐌β − 𝐌μ)𝐘 

𝐇𝐴𝐵  = 𝐘𝐭(𝐌αβ − 𝐌α − 𝐌β + 𝐌μ)𝐘 

𝐓 = 𝐘𝒕(𝐈 − 𝐌𝜇)𝐘 

𝐄 = 𝐘𝐭(𝐈 − 𝐌αβ)𝐘 

Theorem 1[11]: 

Let 𝐘𝐭 be a matrix of size 𝑚 × 𝑛 whose columns are independent, with the i-th column having the distribution 

𝑁𝑚(𝝁𝒊, 𝚺), where 𝚺 is positive definite. Suppose that 𝐀 and 𝐁 are symmetric matrices of size 𝑛 × 𝑛 while 𝐂 is a 

matrix of size 𝑘 × 𝑛. Let 𝐌𝐭 = (𝝁𝟏, … , 𝝁𝒏), 𝚽 =
𝟏

𝟐
𝐌𝐭𝐀𝐌, and r = rank(𝐀), then 

(a) 𝐘𝐭𝐀𝐘~𝑊𝑚(𝚺, 𝑟, 𝚽), if 𝐀 is idempotent, 

(b) 𝐘𝐭𝐀𝐘 and 𝐘𝐭𝐁𝐘 are mutually independent if 𝐀𝐁 = 𝐎, 

(c) 𝐘𝐭𝐀𝐘 and 𝐂𝐘 are mutually independent if 𝐂𝐀 = 𝐎. 

By using the properties of the projection matrix and the matrix multiplication table, it can be shown that 

(𝐌α − 𝐌μ), (𝐌β − 𝐌μ), (𝐌αβ − 𝐌α), (𝐌αβ − 𝐌α − 𝐌β + 𝐌μ), (𝐈 − 𝐌αβ), and (𝐈 − 𝐌μ) are symmetric and 

idempotent matrices. Thus, the rank of each matrix is the same as its respective trace [10]. Therefore, we get: 

Degree of freedom of factor A  : tr(𝐌α − 𝐌μ) = 𝑎 − 1 

Degree of freedom of factor B  : tr(𝐌β − 𝐌μ) = 𝑏 − 1 

Degree of freedom of interaction AB   : tr(𝐌αβ − 𝐌α − 𝐌β + 𝐌μ) = (𝑎 − 1)(𝑏 − 1) 
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Degree of freedom of error  : tr(𝐈 − 𝐌αβ) = 𝑎𝑏(𝑛 − 1) 

Total of degree of freedom  : tr(𝐈 − 𝐌μ) = 𝑎𝑏𝑛 − 1 

Based on Theorem 1(a), without lost of generality, if 𝐘 ~ 𝑁𝑝(𝟎, 𝚺), then 𝐇𝑨~𝑊𝑝(𝚺, 𝑎 − 1), 𝐇𝑩~𝑊𝑝(𝚺, 𝑎 − 1), 

𝐇𝑨𝑩~𝑊𝑝(𝚺, (𝑎 − 1)(𝑏 − 1)), and 𝐄~𝑊𝑝(𝚺, 𝑎𝑏(𝑛 − 1)). 

When 𝐀~𝑊𝑝(𝚺, 𝑚) and 𝐁~𝑊𝑝(𝚺, 𝑛) also 𝐀 and 𝐁 are independent, then Λ =
A

A + B
has a Wilks' lambda 

distribution with parameters  𝑝, 𝑚 and 𝑛 [4].  The eigenvalue of 𝐀−1𝐁  is 𝜆1 > ⋯ > 𝜆𝑝,  where 𝐀~𝑊𝑝(𝚺, 𝑚)  is 

independent of 𝐁~𝑊𝑝(𝚺, 𝑛, 𝚽) and 𝑠 = min(𝑝, 𝑛), then three test statistics can be used, namely: 

𝑉 = tr[(𝐄 + 𝐇)−1𝐇] = ∑
𝜆𝑖

1 + 𝜆𝑖

𝑠

𝑖=1

   ;     𝑈 = tr(𝐄−1𝐇) = ∑ 𝜆𝑖

𝑠

𝑖=1

  

and the largest root [5, 8]. The biggest square root statistic is  

𝜃 =
𝜆1

1 + 𝜆1
 

where 𝜆1 is the largest eigenvalue of 𝐀−1𝐁 [4].   

To verify that the sum of squares of errors is independent of each matrix of the sum of the squares of the 

principal effects and their interactions, Theorem 1(b) can be applied and it can be checked with the help of the 

projection matrix multiplication table, that is (𝐈 − 𝐌αβ)(𝐌α − 𝐌μ) = 𝟎, (𝐈 − 𝐌αβ)(𝐌β − 𝐌μ) = 𝟎, and 

(𝐈 − 𝐌αβ)(𝐌αβ − 𝐌α − 𝐌β + 𝐌μ) = 𝟎.  

It can be concluded that   

1. To test the main effect of factor A, reject the null hypothesis if the value 
A

 =
+

E

E H
 is less than the value of 

𝛬𝑝,𝑎𝑏(𝑛−1),𝑎−1 or when ( )
1

1

tr
1

s
i

A A

i i

V




−

=

 = + =
  +

E H H , ( )1

1

tr
s

A i

i

U −

=

= =E H , and 1

11





=

+
has a 

relatively large value,  

2. To test the main effect of factor B, reject the null hypothesis if the value 
B

 =
+

E

E H
is smaller than the value 

of 𝛬𝑝,𝑎𝑏(𝑛−1),𝑏−1 or when ( )
1

1

tr
1

B

s
i

B

i i

V




−

=

 = + =
  +

E H H , ( )1

1

tr
s

B i

i

U −

=

= =E H , and 1

11





=

+
 has a  

relatively large value,  

3. To test the main effect of the AB factor, reject the null hypothesis if the value 
AB

 =
+

E

E H
 is smaller than the 

value of 𝛬𝑝,𝑎𝑏(𝑛−1),(𝑎−1)(𝑏−1) or when ( )
1

1

tr
1

i
BAB

s

A

i i

V




−

=

 = + =
  +

E H H , ( )1

1

tr
s

AB i

i

U −

=

= =E H , and 

1

11





=

+
 has a relatively large value.  

 

3. NUMERICAL EXAMPLE  

The example used in the multivariate two-factor experimental design is taken from the book “Methods of Multivariate 

Analysis” by Rencher [9]. Table 2 shows the data on chickpeas, which are the results of four variables, namely 𝑦1 = 

early harvest, 𝑦2 = initial specific leaf area (SLA), 𝑦3 = total yield, 𝑦4 = average SLA. The factors used are planting 

date (A) and variety (B). 
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Before completing the solution using the usual sigma addition method or the partitioned design matrix, the 

correlation test on the response variables was first tested using the Bartlett test. The following is a correlation matrix 

of response variables and Bartlett's test obtained using the R program: 

𝑅 = [

1.000

-0.848

-0.848

1.000
0.870

-0.501

-0.924

0.603

    

0.870

-0.924

-0.501

0.603
1.000

-0.698

-0.698

1.000

] 

𝜒ℎ𝑖𝑡
2 = − [𝑁 − 1 −

2𝑝 + 5

6
] ln|𝑅| = 236.4434 

Because  𝜒ℎ𝑖𝑡
2 = 236.4434 > 𝜒0.05,6

2 = 12.592, it can be concluded that at the 5% level, there is not enough 

evidence to accept 𝐻0. This conclusion means that the response variables correlate so that the analysis process can 

be continued. 

Table 2. Data of chickpeas 

𝑆 𝑉  𝑦1 𝑦2 𝑦3 𝑦4 𝑆 𝑉  𝑦1 𝑦2 𝑦3 𝑦4 

1 1 1 59.3 4.5 38.4 295 3 1 1 68.1 3.4 42.2 280 

2 60.3 4.5 38.6 302 2 68.0 2.9 42.4 284 

3 60.9 5.3 37.2 318 3 68.5 3.3 41.5 286 

4 60.6 5.8 38.1 345 4 68.6 3.1 41.9 284 

5 60.4 6.0 38.8 325 5 68.6 3.3 42.1 268 

1 2 1 59.3 6.7 37.9 275 3 2 1 64.0 3.6 40.9 233 

2 59.4 4.8 36.6 290 2 63.4 3.9 41.4 248 

3 60.0 5.1 38.7 295 3 63.5 3.7 41.6 244 

4 58.9 5.8 37.5 296 4 63.4 3.7 41.4 266 

5 59.5 4.8 37.0 330 5 63.5 4.1 41.1 244 

1 3 1 59.4 5.1 38.7 299 3 3 1 68.0 3.7 42.3 293 

2 60.2 5.3 37.0 315 2 68.7 3.5 41.6 284 

3 60.7 6.4 37.4 304 3 68.7 3.8 40.7 277 

4 60.5 7.1 37.0 302 4 68.4 3.5 42.0 299 

5 60.1 7.8 36.9 308 5 68.6 3.4 42.4 285 

2 1 1 63.7 5.4 39.5 271 4 1 1 69.8 1.4 48.4 265 

2 64.1 5.4 39.2 284 2 69.5 1.3 47.8 247 

3 63.4 5.4 39.0 281 3 69.5 1.3 46.9 231 

4 63.2 5.3 39.0 291 4 69.9 1.3 47.5 268 

5 63.2 5.0 39.0 270 5 70.3 1.1 47.1 247 

2 2 1 60.6 6.8 38.1 248 4 2 1 66.6 1.8 45.7 205 

2 61.0 6.5 38.6 264 2 66.5 1.7 46.8 239 

3 60.7 6.8 38.8 257 3 67.1 1.7 46.3 230 

4 60.6 7.1 38.6 260 4 65.8 1.8 46.3 235 

5 60.3 6.0 38.5 261 5 65.6 1.9 46.1 220 

2 3 1 63.8 5.7 40.5 282 4 3 1 70.1 1.7 48.1 253 

2 63.2 6.1 40.2 284 2 72.3 0.7 47.8 249 

3 63.3 6.0 40.0 291 3 69.7 1.5 46.7 226 

4 63.2 5.9 40.0 299 4 69.9 1.3 47.1 248 

5 63.1 5.4 39.7 295 5 69.8 1.4 46.7 236 

Factor A is the date of planting and factor B is variety. The results of data analysis on a multivariate two-factor 

experiment using the usual sigma addition method can be seen as follows:  

Sum of squares of Factor A : 𝑯𝐴 = [

728.790
−352.488

−352.488
195.865

690.115
−4563.785

−370.454
2187.423

    

690.115
−370.454

−4563.785
2187.423

747.776
−4741.505

−4741.505
33469.383

]  
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Sum of squares of Factor B : 𝑯𝐵 = [

124.521
−16.135

−16.135
4.866

32.098
1008.583

−4.756
−137.958

    

32.098
−4.756

1008.583
−137.958

8.402
261.548

261.548
8188.233

]  

Sum of squares of interaction AB : 𝑯𝐴𝐵 = [

30.295
−6.027

−6.027
4.912

2.956
130.710

−2.904
−38.988

    

2.956
−2.904

130.710
−38.988

5.867
59.665

59.665
1887.767

]  

Sum of total squares  : 𝐓 = [

895.502
−374.596

−374.596
217.807

725.062
−3378.872

−379.716
2004.457

    

725.062
−379.716

−3378.872
2004.457

775.702
−4379.272

−4379.272
50790.983

]  

Sum of squares error  : 𝐄 = [

11.896
0.054

0.054
12.164

−0.108
45.62

−1.602
−6.020

    

−0.108
−1.602

45.620
−6.020

13.656
41.020

41.020
7245.600

]  

Then the respective degrees of freedom (db) are:  

𝑑𝑏[𝐴] = 𝑎 − 1 = 4 − 1 = 3 

𝑑𝑏[𝐵] = 𝑏 − 1 = 3 − 1 = 2 

𝑑𝑏[𝐴𝐵] = (𝑎 − 1)(𝑏 − 1) = (4 − 1)(3 − 1) = (3)(2) = 6 

𝑑𝑏[𝑒𝑟𝑟𝑜𝑟] = 𝑎𝑏(𝑛 − 1) = (3)(4)(5 − 1) = 48 

𝑑𝑏[𝑡𝑜𝑡𝑎𝑙] = 𝑎𝑏𝑛 − 1 = (4)(3)(5) − 1 = 59 

The results of hypothesis testing can be seen in Table 3: 

Table 3. The results of the four test statistics and the F test approach 

 𝜦 𝜽 𝑽 𝑼 

Factor A Stat. Test 0.001 0.993 2.359 146.107 

𝑭 121.36 1515.135 44.2 725.122 

𝑭𝑡𝑎𝑏𝑙𝑒 1.824 2.589 1.820 1.95 

Factor B Stat. Test 0.066 0.920 1.104 11.670 

𝑭 32.68 123.034 14.77 134.209 

𝑭𝑡𝑎𝑏𝑙𝑒 2.579 2.589 2.036 2.20 

Interaction 

AB 

Stat. Test 0.135 0.729 1.334 3.501 

𝑭 4.95 18.354 3.84 6.345 

𝑭𝑡𝑎𝑏𝑙𝑒 1.577 2.33 1.577 1.58 

To test the effect of factor A, it has been found that the results of the F test approach from the four test statistics 

have a value greater than the value of 𝐹𝑡𝑎𝑏𝑙𝑒, so there is not enough evidence to accept 𝑯𝟎𝑨. This means that at the 

5% level of significance, factor A, namely the date of planting, has a significant effect on initial yield, initial specific 

leaf area (SLA), total yield, and average SLA. Furthermore, to test the effect of factor B and interaction AB can be 

done in the same way so that it is obtained that there is not enough evidence to accept 𝑯𝟎𝑩 and 𝑯𝟎𝑨𝑩. Therefore, it 

can be concluded that at the 5% level of significance, factor B, namely the variety has a significant influence on the 

initial yield, initial (SLA), total yield, and average SLA and there is also an interaction between planting date and 

variety. 

While the results of data analysis using a partitioned design matrix obtained with the help of the R program are 

as follows: 
Source  DF     SSP.1    SSP.2     SSP.3     SSP.4 Lambda Pillai  Lawley   Roy 

              728.79 -352.488   690.115 -4563.785                             

  A     3   -352.488  195.865  -370.454  2187.423  0.001  2.359 146.107 0.993 

             690.115 -370.454   747.776 -4741.505                             
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           -4563.785 2187.423 -4741.505 33469.383                             

                                                                               

             124.521  -16.135    32.098  1008.583                             

  B     2    -16.135    4.866    -4.756  -137.958  0.066  1.104   11.67  0.92 

              32.098   -4.756     8.402   261.548                             

            1008.583 -137.958   261.548  8188.233                             

                                                                              

              30.295   -6.027     2.956    130.71                             

 AB     6     -6.027    4.912    -2.904   -38.988  0.135  1.334   3.501 0.729 

               2.956   -2.904     5.867    59.665                             

              130.71  -38.988    59.665  1887.767                             

                                                                              

              11.896    0.054    -0.108     45.62                             

Galat   48     0.054   12.164    -1.602     -6.02                             

              -0.108   -1.602    13.656     41.02                             

               45.62    -6.02     41.02    7245.6                             

                                                                              

             895.502 -374.596   725.062 -3378.872                             

Total   59  -374.596  217.807  -379.716  2004.457                             

             725.062 -379.716   775.702 -4379.272                             

           -3378.872 2004.457 -4379.272 50790.983 

From the results of testing the influence of factor A, factor B, and interaction AB above, it can be seen that the 

four test statistics of each factor obtained using a partitioned design matrix have the same results as calculations using 

the usual sigma addition method. Therefore, that the results of each F-test approach will also be the same. It can be 

concluded that the partitioned design matrix method has the same effectiveness and accuracy as the usual sigma 

addition method. 

 

4. CONCLUSION 

The calculation of the sum of squares and degrees of freedom matrix in a multivariate two-factor experiment 

using the partitioned design matrix method is much straightforward than the usual sigma addition method. The use 

of a partitioned design matrix is operationally simple because in this method the design matrix used is partitioned 

into several sub-matrixes and has a similar shape that can be represented as Kronecker multiplication. In addition, 

there is no need to use generalized inverse matrices. One can use ordinary inverse matrices instead. 
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