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Abstract 

A synthetic approach to furyl- and benzofuryl-containing building 

blocks utilizing easily accessible substrates is reported. Cascade acid-

catalyzed reactions of 2-methylfuran with α,β-unsaturated carbonyl 

compounds or salicyl alcohols followed by oxidation afford function-

alized furans and benzofurans, respectively. Synthetic potential of 

the obtained products was demonstrated by synthesizing hetaryl-

substituted heterocycles, which may find an application in materials 

chemistry. 
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1. Introduction 

Organic molecules have an opportunity for replacing the 

traditional inorganic compounds in functional materials 

due to their low cost, flexibility in designing physical and 

chemical properties, and simplicity of the manufacturing 

processes [1, 2]. The possibility for the organic compounds 

to act as active components of solar cells [3], optoelec-

tronic devices [4], sensors [5, 6] and other materials [7, 8] 

has been the focus of extensive research.  

The functional properties of heterocyclic architectures, 

which have certain advantages over carbocyclic counter-

parts [9], have been intensively studied [10, 11]. Histori-

cally, thiophene derivatives were among the first to be 

used as substrates to obtain functional materials for or-

ganic electronics [12]. In turn, furans, being oxygen-

containing analogs with better solubility as well as with 

other suitable physicochemical features [13] could com-

pete with thiophenes; however, their use as integral parts 

of functional materials started to be investigated just re-

cently. Thus, the potential applications of furans and ben-

zofurans in photovoltaics [14–16] and optoelectronics [17, 

18] are being evaluated currently with a specific focus on 

hetaryl-substituted systems (Figure 1). 

To date, there are few general synthetic strategies to-

ward furyl- and benzofuryl-containing heterocycles. Usual-

ly, benzofurans are accessed via transition metal-catalyzed 

inter- or intramolecular cyclizations of phenols or their O-

protected derivatives with alkenes and alkynes [19]. Suzuki-

Miyaura cross-coupling is used to obtain target heterocyclic 

motifs possessing both benzofuran [20] and furan [21, 22] 

moieties. The conjugate addition/cyclization has also been 

successfully utilized for the synthesis of substituted furan-

indol conjugates [23]. Heterogeneous catalysis with 

Cu@imine/Fe3O4 nanoparticles [24], graphene oxide with 

cascade addition/cyclization [25] was applied to obtain 

complex heterocyclic molecules with furyl substituents. 

Acid-catalyzed domino reaction of accessible alkylfu-

rans [26] with ambiphilic compounds, comprehensively 

explored by Butin et al., serves as a convenient tool for 

constructing functionalized heterocyclic compounds [27]. 

The Butin reaction yields a wide range of heterocycles that 

possess alkanone fragments, including furans and benzo-

furans. In the present work, we propose a way for the uti-

lization of the Butin reaction products as building blocks 

for construction hetaryl-substituted furans [28] and ben-

zofurans [29] as potential functional molecules. The syn-

thetic design relies on the possibility for the oxidation of 

the alkanone side chain followed by chemical engagement 

of the formed α,β-unsaturated ketone fragment into chem-

ical transformations to obtain novel heterocyclic systems 

[30, 31, 32] (Scheme 1). 

http://chimicatechnoacta.ru/
https://doi.org/10.15826/chimtech.2022.9.4.03
https://orcid.org/0000-0001-5066-4903
https://orcid.org/0000-0003-0952-7215
https://orcid.org/0000-0003-3434-5712
https://orcid.org/0000-0001-8889-9580
mailto:xx@yy.zz
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.15826/chimtech.2022.9.4.03&domain=pdf&date_stamp=2022-7-12


Chimica Techno Acta 2022, vol. 9(4), No. 20229403 ARTICLE 

2 of 6 

 

Figure 1 Furan-based molecules for material chemistry. 

 
Scheme 1 Known synthetic strategies toward hetaryl-substituted furans and benzofurans and our protocol. 

 

2. Experimental 

1H and 13C NMR spectra were recorded with a «Bruker 

Avance III HD 400» (400 MHz for 1H and 101 MHz for 13C 

NMR) spectrometer at room temperature; the chemical 

shifts (δ) were measured in ppm with respect to the sol-

vent (CDCl3, 1Н: δ = 7.26 ppm, 13C: δ = 77.16 ppm). Cou-

pling constants (J) are given in Hertz. Splitting patterns of 

apparent multiplets associated with an averaged coupling 

constants were designated as s (singlet), d (doublet), t 

(triplet), m (multiplet), and br (broadened). GC/MS analy-

sis was performed on an «Agilent 7890В» interfaced to an 

«Agilent 5977А» mass selective detector. Melting points 

were determined with a «Stuart SMP 30». Column chro-

matography was performed on silica gel Macherey Nagel 

(40–63 μm). Reaction progress was monitored by GC/MS 

analysis and thin layer chromatography (TLC) on alumi-

num backed plates with Merck Kiesel 60 F254 silica gel. 

The TLC plates were visualized either by UV radiation at a 

wavelength of 254 nm. All the reactions were carried out 

using dried and freshly distilled solvent. 

2.1. General method for synthesis of furans  

A 5 mL microreaction vial equipped with a stirring bar and 

a Teflon cap was charged with unsaturated ketone 1 (1 

mmol), 2-methylfuran (2) (1.5 mmol, 123 mg, 1.5 equiv), 

AcOH (5 mL), and 48% aq. HBr (8.4 mg, 5.6 μL, 5% mol). 

The vial was closed and placed into an aluminum heating 

block preheated to 80 °C, and the mixture was stirred for 

12 h (TLC control). Upon completion, the reaction mixture 

was filtered through a thin layer of silica gel. The solvent 
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was evaporated, and the residue was dissolved in di-

chloromethane (2 ml) and DDQ (1.2 mmol, 272 mg, 1.2 

equiv.) was added. The mixture was stirred at room tem-

perature until full consumption of the starting material 

(TLC control). Upon completion, the reaction mixture was 

subjected to column chromatography on silica gel (eluent: 

dichloromethane/petroleum ether, 1:1).  

2.1.1. (E)-4-(3,5-diphenylfuran-2-yl)but-3-en-2-one (3a) 

Yellow needles. Yield 265 mg (92%); mp = 112–113 °C 

(ethanol). Rf = 0.45 (petroleum ether/ethyl acetate, 3:1). 
1H NMR (400 MHz, CDCl3): δ 7.82–7.75 (m, 2H), 7.51–7.32 

(m, 9H), 6.90 (s, 1H), 6.84 (d, J = 15.6 Hz, 1H), 2.34 (s, 

3H) ppm. 13C NMR (101 MHz, CDCl3): δ 197.6, 155.7, 146.1, 

134.3, 132.5, 129.7, 129.1 (2C), 129.0 (2C), 128.9, 128.5 

(2C), 128.3, 128.1, 124.6 (2C), 124.3, 108.8, 28.1 ppm. GC-

LRMS (EI, m/z): 288 (M+, 100%), 273 ([M–CH3]+), 245 

([M–CH3CO]+).  

2.1.2. (E)-4-(5-(4-methoxyphenyl)-3-phenylfuran-2-yl)but-

3-en-2-one (3b) 

Orange solid. Yield 264 mg (83%); mp = 142–143 °C (etha-

nol). Rf = 0.40 (petroleum ether/ethyl acetate, 3:1). 1H 

NMR (400 MHz, CDCl3): δ 7.73–7.68 (m, 2H), 7.50–7.37 

(m, 6H), 6.98–6.94 (m, 2H), 6.79 (d, J = 15.8 Hz, 1H), 6.76 

(s, 1H), 3.85 (s, 3H), 2.33 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3): δ 197.7, 160.4, 155.9, 145.4, 134.6, 132.6, 129.1 

(2C), 128.5 (2C), 128.3, 128.3, 126.2 (2C), 123.7, 122.6, 

114.5 (2C), 107.4, 55.5, 28.1 ppm. GC-LRMS (EI, m/z): 318 

(M+, 100%), 303 ([M–CH3]+), 275 ([M–CH3CO]+).  

2.1.3. (E)-4-(3,5-bis(4-methoxyphenyl)furan-2-yl)but-3-en-

2-one (3c) 

Brown solid. Yield 261 mg (75%); mp = 137–139 °C (etha-

nol). Rf = 0.28 (petroleum ether/ethyl acetate, 4:1). 1H 

NMR (400 MHz, CDCl3) δ 7.73–7.68 (m, 2H), 7.44 (d, J = 

15.6 Hz, 1H), 7.41–7.37 (m, 2H), 7.02–6.93 (m, 4H), 6.77 

(d, J = 15.6 Hz, 1H), 6.73 (s, 1H), 3.86 (s, 3H), 3.858 (s, 

3H), 2.32 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 197.6, 

160.4, 159.9, 155.9, 145.2, 134.5, 129.8 (2C), 128.4, 126.27 

(2C), 125.1, 123.3, 122.8, 114.7 (2C), 114.6 (2C), 107.5, 55.5 

(2C), 28.1 ppm. GC-LRMS (EI, m/z): 348 (M+, 100%), 333 

([M–CH3]+), 305 ([M–CH3CO]+). 

2.2. General method for synthesis of benzofurans  

To a solution of salicyl alcohol 4 (0.5 mmol) in dichloro-

ethane (2 mL) was added 2-methylfuran (2) (0.75 mmol, 

61.5 mg, 1.5 equiv.) and trifluoromethanesulfonic acid 

(0.05 mmol, 7.5 mg, 0.1 equiv.). The resulting mixture was 

stirred at 80 °C until full consumption of the starting ma-

terial (TLC control, ca. 1 h). Upon completion, the reaction 

mixture was filtered through a thin layer of silica gel, and 

DDQ (0.6 mmol, 136 mg, 1.2 equiv.) was added. The mix-

ture was stirred at room temperature until full consump-

tion of the starting material (TLC control). Upon comple-

tion, the reaction mixture was subjected to column chro-

matography on silica gel (eluent: ethyl acetate/petroleum 

ether, 1:20).  

2.2.1. (E)-4-(3-phenylbenzofuran-2-yl)but-3-en-2-one (5a)  

Orange solid. Yield 127 mg (97%); mp = 102–104 °C (etha-

nol). Rf = 0.56 (petroleum ether/ethyl acetate, 1:1). 1H 

NMR (400 MHz, CDCl3) δ 7.67–7.63 (m, 1H), 7.56–7.40 (m, 

8H), 7.31–7.26 (m, 1H), 6.98 (d, J = 15.7 Hz, 1H), 2.35 (s, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 197.6, 155.2, 148.5, 

131.3, 129.7 (2C), 129.3 (2C), 128.6, 128.6, 128.5, 127.3, 

127.2, 126.9, 123.7, 121.1, 111.7, 28.6 ppm. GC-LRMS (EI, 

m/z): 262 (M+), 247 ([M–CH3]+), 219 ([M–CH3CO]+, 100%) 

[33]. 

2.2.2. (E)-4-(4,7-dimethoxy-3-phenylbenzofuran-2-yl)but-3-

en-2-one (5b) 

Yellow solid. Yield 135 mg (84%); mp = 166–167 °C (etha-

nol). Rf = 0.49 (petroleum ether/ethyl acetate, 1:1). 1H 

NMR (400 MHz, CDCl3) δ 7.42–7.33 (m, 5H), 7.26 (d,  

J = 15.7 Hz, 1H), 6.91 (d, J = 15.7 Hz, 1H), 6.76 (d,  

J = 8.6 Hz, 1H), 6.47 (d, J = 8.6 Hz, 1H), 3.94 (s, 3H),  

3.60 (s, 3H), 2.22 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 197.7, 149.3, 148.4, 145.6, 140.2, 131.4, 130.9 (2C), 128.4, 

128.2, 127.9 (2C), 127.5, 126.7, 119.9, 110.0, 104.1, 57.1, 

56.0, 28.7 ppm. GC-LRMS (EI, m/z): 322 (M+, 100%), 307 

([M–CH3]+), 279 ([M–CH3CO]+).  

2.2.3. (E)-4-(5-methoxy-7-methyl-3-phenylbenzofuran-2-

yl)but-3-en-2-one (5c)  

Brown solid. Yield 133 mg (87%); mp = 135–136 °C (etha-

nol). Rf = 0.55 (petroleum ether/ethyl acetate, 1:1). 1H 

NMR (400 MHz, CDCl3) δ 7.57–7.44 (m, 6H), 6.96 (d,  

J = 15.7 Hz, 1H), 6.88–6.85 (m, 2H), 3.80 (s, 3H), 2.55 (s, 

3H), 2.35 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 197.7, 

156.8, 149.4, 148.9, 131.7, 129.6 (2C), 129.3 (2C), 128.8, 

128.5, 128.4, 127.4, 126.8, 122.9, 117.6, 100.2, 56.1, 28.3, 

15.2 ppm. GC-LRMS (EI, m/z): 306 (M+), 291 ([M–CH3]+), 

263 ([M–CH3CO]+, 100%). 

2.3. General method for synthesis of pyrroles  

To a solution of furan 3a or benzofuran 5a (0.4 mmol) in 

dioxane (3 mL) was added TosMIC (0.8 mmol, 156 mg, 

2 equiv.) and Cs2CO3 (0.8 mmol, 260 mg, 2 equiv.). The 

resulting suspension was stirred at 60 °C until full con-

sumption of the starting material (TLC control, ca. 24 h). 

Upon completion, the reaction mixture was poured into 

water (200 mL) and extracted with ethyl acetate 

(3×20 mL). Combined organic phase was dried over anhy-

drous Na2SO4, filtered and concentrated under reduced 

pressure. Crude concentrated extract was subjected to 

column chromatography on silica gel (eluent: ethyl ace-

tate/petroleum ether, graduate elution from 1:5 to 1:2).  

2.3.1. 1-(4-(3,5-diphenylfuran-2-yl)-1H-pyrrol-3-yl)ethan-1-

one (6) 

Colorless oil. Yield 116 mg (89%). Rf = 0.41 (petroleum 

ether/ethyl acetate, 1:1). 1H NMR (400 MHz, CDCl3) δ 9.57 

(br. s, 1H), 7.77–7.70 (m, 2H), 7.45–7.36 (m, 5H),  

7.31–7.25 (m, 3H), 7.24–7.19 (m, 1H), 6.96 (s, 1H), 6.79 (t, 

J = 2.3 Hz, 1H), 2.23 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 194.7, 153.0, 143.5, 133.9, 130.8, 128.8 (2C), 
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128.5 (2C), 127.5, 127.3 (2C), 126.7, 125.3, 125.3, 124.9, 

123.8 (2C), 121.8, 114.0, 106.8, 28.1 ppm. GC-LRMS (EI, 

m/z): 327 (M+, 100%), 312 ([M–CH3]+), 284 ([M–

CH3CO]+).  

2.3.2. 1-(4-(3-phenylbenzofuran-2-yl)-1H-pyrrol-3-yl)ethan-

1-one (7)  

Colorless oil. Yield 114 mg (95%). Rf = 0.33 (petroleum 

ether/ethyl acetate, 1:1). 1H NMR (400 MHz, CDCl3) δ 9.42 

(br. s, 1H), 7.56–7.50 (m, 1H), 7.38–7.33 (m, 1H),  

7.33–7.27 (m, 2H), 7.25–7.09 (m, 6H), 6.58–6.51 (m, 1H), 

2.10 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 193.9, 154.7, 

146.9, 133.1, 129.2 (2C), 128.9, 128.7 (2C), 127.1, 125.8, 

124.6, 124.5, 122.9, 122.0, 120.1, 119.0, 113.7, 111.4, 

28.3 ppm. GC-LRMS (EI, m/z): 301 (M+, 100%), 286 ([M–

CH3]+), 258 ([M–CH3CO]+).  

3. Results and discussion 

We began our research with evaluating the possibility of 

synthesizing the target α,β-unsaturated carbonyl com-

pounds with furyl substituent at β-position. To this end, 

we utilized a recently reported acid-catalyzed domino re-

action of 2-methylfuran (2) with unsaturated ketones 1 

that led to the formation of furylalkanones A (Scheme 2). 

We screened various oxidants in order to obtain respective 

unsaturated products 3 from alkanones A [34–36] and 

found that DDQ in the amount of 1.2 equiv. effectively in-

duced the desired transformation affording compounds 3 

with high yields. The oxidation step could be coupled with 

the acid-catalyzed domino reaction with the only require-

ment to change the solvent after passing the initial reac-

tion mixture through a pad of silica gel. The developed 

method was evaluated by synthesizing three examples of 

the target molecular architecture. 

In order to obtain the target benzofuryl-containing un-

saturated ketones 5, we employed another acid-catalyzed 

domino reaction, namely, a reaction of salicyl alcohols 4 

with 2-methylfuran (2) [29] (Scheme 3). The oxidative 

conditions found for the synthesis of compounds 3 from 

alkanone intermediates appeared to be suitable for obtain-

ing the benzofuran counterparts 5. The oxidation step was 

also integrated into the process without the need to switch 

the solvent, and the resulting products 5a-c were obtained 

with high yields. 

The presence of a highly reactive α,β-unsaturated ke-

tone fragment in the structure of the synthesized com-

pounds opens prospect for applying the products 3 and 5 

as building blocks for obtaining the furyl- and benzofuryl-

containing heterocycles. To demonstrate this possibility, 

we performed the reaction of the compounds 3a and 5a 

with TosMIC upon activation with a base [37–40]. The 

reaction afforded respective pyrroles 6 and 7 with high 

yields (Scheme 4). The structure of the compounds 6 and 7 

represents a general furyl/benzofuryl-substituted hetero-

cyclic motif. Importantly, well-explored chemical behav-

iour of the acetyl group and free pyrrolic nitrogen pos-

sessed by the final compounds could be utilized for further 

structural modifications. 

 
Scheme 4 Synthesis of pyrroles 6 and 7. 

 
Scheme 2 Synthesis of furans 3. 

 
Scheme 3 Synthesis of benzofurans 5. 
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4. Conclusions 

We developed a protocol for the synthesis of functionalized 

furans and benzofurans starting from easily available pre-

cursors. The obtained products could serve as building 

blocks for designing potential furan- and benzofuran-based 

heterocyclic functional molecules for organic electronics. 
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