
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In the present paper, two subclasses MSpq,λ(b;A,B) and MKpq,λ(b;A,B)
of meromorphic multivalent functions by using q-derivative operator are defined in
the punctured unit disc. Also, several properties including convolution properties, the
necessary and sufficient condition and coefficient estimates for these subclasses are
derived.
Key words: Meromorphic p-Valent functions, Hadamard product (or convolution),
Subordination between analytic functions, q-derivative operator.

1. Introduction and definitions

Let Σp denote the class of meromorphic functions of the form

f(z) = z−p +

∞∑
k=1

akz
k−p (p ∈ N),(1.1)

which are analytic and p-valent in the punctured unit disc U∗ = U\{0}, where
U = {z : z ∈ C, |z| < 1}. Let g and f be two analytic functions in U, then function
g is said to be subordinate to f if there exists an analytic function w in the unit
disk U with w(0) = 0 and |w(z)| < 1 such that g(z) = f(w(z)) (z ∈ U). We denote
this subordination by g ≺ f . In particular, if the function f is univalent in U the
above subordination is equivalent to g(0) = f(0) and f(U) ⊂ g(U).
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Quantum calculus, or q-calculus is the subject of an extend investigation based
on the different applications recognized for it over notable mathematical fields and
in expansion to centrality to hypothetical physics. Recently, numerous authors have
presented modern classes of analytic functions utilizing q-calculus. The q-calculus
is an ordinary calculus without notion of limit point. The application of q-calculus
was initiated by Jackson [6, 7, 8] to begin with investigated q-calculus applications,
efficiently creating q-derivative and q-integral. By making use of q-calculus various
functions classes in Geometric Function Theory are introduced and investigated
from different view points and perspectives (see [1], [12], [17], [18], [22], [26] and
references therein). Purpose of this paper is to introduce and study two subclasses
of p-valent meromorphic functions by applying q-derivative operators in conjunction
with the principle of subordinations.

For 0 < q < 1, the q-derivative of a function f is defined by (see [5, 6, 7, 8])

Dqf(z) =
f(qz)− f(z)

(q − 1)z
(z ∈ U),(1.2)

provided that f
′
(0) exists.

From (1.2), it can be easily obtained that

Dqf(z) =
−[p]q
qpzp+1

+

∞∑
k=1

[k − p]qakzk−p−1,

where

[k]q =
1− qk

1− q
.

As q→ 1−, [k]q → k and limq→1− Dqf(z) = f
′
(z). Also, we have

[k + p]q = [k]q + qk[p]q = qp[k]q + [p]q,

[k − p]q = q−p[k]q − q−p[p]q,
[0]q = 0, [1]q = 1.

For f ∈ Σp given by (1.1) and g ∈ Σp given by

g(z) = z−p +

∞∑
k=1

bkz
k−p (p ∈ N),

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z−p +

∞∑
k=1

akbkz
k−p = (g ∗ f)(z).

Motivated essentially due to the work of Aouf [15], Seoudy et al. [16], Srivastava
et al. [25], the following two subclasses of Σp by using the q-derivative operator Dq

and the principle of subordination between analytic functions are define:
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Definition 1.1. Let 0 < q < 1, −1 ≤ B < A ≤ 1, 0 ≤ λ < 1 and b ∈ C\{0}. A
function f belonging to Σp is said to be in the class MSpq,λ(b;A,B) if it satisfies

1− 1

b

[
zDqf(z)

(1− λ
qp )f(z)− λ

[p]q
zDqf(z)

+
[p]q
qp

]
≺ 1 +Az

1 +Bz
.(1.3)

Definition 1.2. Let 0 < q < 1, −1 ≤ B < A ≤ 1, 0 ≤ λ < 1 and b ∈ C\{0}. A
function f belonging to Σp is said to be in the class MKpq,λ(b;A,B) if it satisfies

1− 1

b

[
zDq

(
zDqf(z)

)
(1− λ

qp )
(
zDqf(z)

)
− λ

[p]q
zDq

(
zDqf(z)

) +
[p]q
qp

]
≺ 1 +Az

1 +Bz
.(1.4)

We also conclude from the above definitions that

f ∈MKpq,λ(b;A,B)⇔ − qp

[p]q
zDqf ∈MSpq,λ(b;A,B).(1.5)

It may be pointed out here that these classes generalizes several previously
studied function classes. We deem it proper to demonstrate briefly the relevant
connections with some of the well-known classes. Indeed, we have

(i) MSpq,0(b;A,B) =MS∗p,q(b;A,B) and
MKpq,0(b;A,B) =MKp,q(b;A,B) (see [9]);

(ii) limq→1−MS1q,0(b; 1,−1) = ΣS(b) and

limq→1−MK1
q,0(b; 1,−1) = ΣK(b) (see [2]);

(iii) limq→1−MS1q,0(b;A,B) = ΣS∗0 (b;A,B) and

limq→1−MK1
q,0(b;A,B) = ΣK0(b;A,B) (see [3]);

(iv) limq→1−MS1q,0(b;A,B) = ΣS∗(b;A,B) and

limq→1−MK1
q,0(b;A,B) = ΣK(b;A,B) (see [4]);

(v) limq→1−MS1q,0[(1− α)e−ιµcosµ; 1,−1] = ΣSµ1 (α) and

limq→1−MK1
q,0[(1 − α)e−ιµcosµ; 1,−1]=ΣKµ1 (α)(µ ∈ R, |µ| < π

2 , 0 ≤ α <
1) (see [14]).

In the present investigations, we derive several properties including convolution
properties, the necessary and sufficient condition and coefficient estimates for func-
tions belonging to the subclasses MSpq,λ(b;A,B) and MKpq,λ(b;A,B). The inspi-
ration of this paper is to renovate and generalize already known results.
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2. Main Results

Unless otherwise mentioned, we assume throughout this section that 0 < q < 1,
−1 ≤ B < A ≤ 1, 0 ≤ λ < 1, b ∈ C\{0} and θ ∈ [0, 2π).

Theorem 2.1. If f ∈ Σp, then f ∈MSpq,λ(b;A,B) if and only if

zp

[
f(z) ∗

1 +
{(

1− λ
qp

)
M(θ)−

(
q + λ

qp[p]q

)}
z

zp(1− z)(1− qz)

]
6= 0 (z ∈ U∗),(2.1)

where

M(θ) =
e−ιθ +B

(A−B)bqp
.(2.2)

Proof. It is easy to verify that for any function f ∈ Σp

f(z) ∗ 1

zp(1− z)
= f(z)(2.3)

and

f(z) ∗
1−

(
q + 1

[p]q

)
z

zp(1− z)(1− qz)
= − qp

[p]q
zDqf(z).(2.4)

First, if f ∈ MSpq,λ(b;A,B), in order to prove that (2.1) holds we will write (1.3)
by using the definition of the subordination, that is

− qp

[p]q

zDqf(z)

(1− λ
qp )f(z)− λ

[p]q
zDqf(z)

=
1 +

[
B + (A−B)b q

p

[p]q

]
w(z)

1 +Bw(z)
(z ∈ U∗),

where w is a Schwarz function, hence

zp
[
− qp

(
1 +Beιθ

)
zDqf(z)(2.5)

−
(

[p]q +
(
B[p]q + (A−B)bqp

)
eιθ
)(

(1− λ

qp
)f(z)− λ

[p]q
zDqf(z)

)]
6= 0.

Now from (2.3) and (2.4), we may write (2.5) as

zp
[(

1+Beιθ
)(

f(z) ∗

{
1−

(
q + 1

[p]q

)
z
}

[p]q

zp(1− z)(1− qz)

)
−{[p]q+(B[p]q

+(A−B)bqp)eιθ}
{

(1− λ

qp
)
(
f(z)∗ 1

zp(1− z)

)
+
λ

qp

(
f(z)∗

{
1−

(
q + 1

[p]q

)
z
}

zp(1− z)(1− qz)

)}]
6= 0,

(z ∈ U∗)
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which is equivalent to

zp
[
f(z)∗

1 +
{

(1− λ
qp ) 1+Beιθ

(A−B)bqpeιθ
− (q + λ

qp[p]q
)
}
z

zp(1− z)(1− qz)
[
−(A−B)bqpeιθ

]]
6= 0

or

zp

f(z) ∗
1 +

{
(1− λ

qp ) e−ιθ+B
(A−B)bqp − (q + λ

qp[p]q
)
}
z

zp(1− z)(1− qz)

 6= 0 (z ∈ U∗),

which leads to (2.1), which proves the necessary part of Theorem 2.1.
Reversely, suppose that f ∈ Σp satisfies the condition (2.1). Since it was shown in
the first part of the proof that assumption (2.1) is equivalent to (2.5), we obtain
that

− qp

[p]q

zDqf(z)

(1− λ
qp )f(z)− λ

[p]q
zDqf(z)

6=
1 +

[
B + (A−B)b q

p

[p]q

]
eιθ

1 +Beιθ
(z ∈ U∗),(2.6)

and let us assume that

ϕ(z) = − qp

[p]q

zDqf(z)

(1− λ
qp )f(z)− λ

[p]q
zDqf(z)

and ψ(z) =
1 +

[
B + (A−B)b q

p

[p]q

]
z

1 +Bz
.

The relation (2.6) means that

ϕ(U∗) ∩ ψ(∂U∗) = Ø.

Thus, the simply connected domain is included in a connected component of C\ψ(∂U∗).
Therefore, using the fact that ϕ(0) = ψ(0) and the univalence of the function ψ, it
follows that ϕ(z) ≺ ψ(z), which implies that f ∈ MSpq,λ(b;A,B). Thus, the proof
of Theorem 2.1 is completed.

Theorem 2.2. If f ∈ Σp, then f ∈MKpq,λ(b;A,B) if and only if

zp
[
f(z) ∗

1− [{(q + λ
qp[p]q

)− (1− λ
qp )M(θ)}(1− 1

[p]q
) + 1+q

[p]q
+ q2]z

zp(1− z)(1− qz)(1− q2z)
(2.7)

−
{(1− λ

qp )M(θ)− (q + λ
qp[p]q

)}(q + 1
[p]q

)qz2

zp(1− z)(1− qz)(1− q2z)

]
6= 0

where z ∈ U∗ and M(θ) is given by (2.2).

Proof. From (1.5) it follows that f ∈ MKpq,λ(b;A,B) if and only if − qp

[p]q
zDqf ∈

MSpq,λ(b;A,B). Then from Theorem 2.1, the function − qp

[p]q
zDqf ∈MSpq,λ(b;A,B)

if and only if

zp
[
− qp

[p]q
zDqf ∗ g(z)

]
6= 0, (z ∈ U∗),(2.8)
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where

g(z) =
1 +

{(
1− λ

qp

)
M(θ)−

(
q + λ

qp[p]q

)}
z

zp(1− z)(1− qz)
.

On a basic computation we note that

Dqg(z) =
g(qz)− g(z)

(q − 1)z

=
−[p]q + [1 + q + [p]qq

2 + {(q + λ
qp[p]q

)− (1− λ
qp )M(θ)}([p]q − 1)]z

qpzp+1(1− z)(1− qz)(1− q2z)

+
{(1− λ

qp )M(θ)− (q + λ
qp[p]q

)}(q + q2[p]q)z
2

qpzp+1(1− z)(1− qz)(1− q2z)

and therefore

− qp

[p]q
zDqg(z)

=
1−

[{
(q + λ

qp[p]q
)− (1− λ

qp )M(θ)
}(

1− 1
[p]q

)
+ 1+q

[p]q
+ q2

]
z

zp(1− z)(1− qz)(1− q2z)

−

{
(1− λ

qp )M(θ)− (q + λ
qp[p]q

)
}

(q + 1
[p]q

)qz2

zp(1− z)(1− qz)(1− q2z)
.

Using the above relation and the identity(
− qp

[p]q
zDqf(z)

)
∗ g(z) = f(z) ∗

(
− qp

[p]q
zDqg(z)

)
,

it is simple to check that (2.8) is identical to (2.7). Thus, the proof of Theorem 2.2
is completed.

Theorem 2.3. A necessary and sufficient condition for the function f defined by
(1.1) to be in the class MSpq,λ(b;A,B) is that

1+

∞∑
k=1

(
1− λ

qp

)(
e−ιθ +B

)
[k]q +

(
1− λ[k]q

qp[p]q

)
(A−B)bqp

(A−B)bqp
akz

k 6= 0 (z ∈ U∗).(2.9)

Proof. From Theorem 2.1, we find that f ∈ MSpq,λ(b;A,B) if and only if (2.1)
holds.
Since

1

zp(1− z)(1− qz)
=

1

zp
+(1+q)z1−p+(1+q+q2)z2−p+(1+q+q2+q3)z3−p+···, (z ∈ U∗),
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hence

1 +
{(

1− λ
qp

)
M(θ)−

(
q + λ

qp[p]q

)}
z

zp(1− z)(1− qz)
=

1

zp
+

∞∑
k=1

(
1 +

{(
1− λ

qp
)
M(θ)− λ

qp[p]q

}
[k]q

)
zk−p,

where M(θ) is given by (2.2).
Now a simple computation shows that (2.1) is identical to (2.9). Thus, the proof of
Theorem 2.3 is completed.

Theorem 2.4. A necessary and sufficient condition for the function f defined by
(1.1) to be in the class MKpq,λ(b;A,B) is that

1+

∞∑
k=1

(
1− λ

qp

)(
e−ιθ +B

)
[k]q +

(
1− λ[k]q

qp[p]q

)
(A−B)bqp

(A−B)bqp

(
1− [k]q

[p]q

)
akz

k 6= 0(2.10)

(z ∈ U∗).

Proof. From Theorem 2.2, we find that f ∈MKpq,λ(b;A,B) if and only if (2.7) holds.

Since

1

zp(1− z)(1− qz)(1− q2z)
=

1

zp
+(1+q+q2)z1−p+(1+q+2q2+q3+q4)z2−p

+ (1 + q+ 2q2 + 2q3 + 2q4 + q5 + q6)z3−p + · · ·,
(z ∈ U∗),

hence

1−
[{(

q + λ
qp[p]q

)
− (1− λ

qp )M(θ)
}(

1− 1
[p]q

)
+ 1+q

[p]q
+ q2

]
z −

{
(1− λ

qp )M(θ)−
(
q + λ

qp[p]q

)}(
q + 1

[p]q

)
qz2

zp(1− z)(1− qz)(1− q2z)

=
1

zp
+

∞∑
k=1

(
1 +

{(
1− λ

qp
)
M(θ)− λ

qp[p]q

}
[k]q

)(
1− [k]q

[p]q

)
zk−p,

(z ∈ U∗)
where M(θ) is given by (2.2).
Now a simple computation shows that (2.7) is identical to (2.10). Thus, the proof
of Theorem 2.4 is completed.

Theorem 2.5. If f ∈ Σp satisfies the inequality

∞∑
k=1

[∣∣1− λ

qp
∣∣[k]q

(
1 + |B|

)
+
∣∣b(1− λ[k]q

qp[p]q

)∣∣(A−B)qp
]
|ak| < (A−B)|b|qp(2.11)

then f ∈MSpq,λ(b;A,B).
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Proof. Since∣∣∣∣∣∣1 +

∞∑
k=1

(
1− λ

qp

)(
e−ιθ +B

)
[k]q +

(
1− λ[k]q

qp[p]q

)
(A−B)bqp

(A−B)bqp
akz

k

∣∣∣∣∣∣
≥ 1−

∣∣∣∣∣∣
∞∑
k=1

(
1− λ

qp

)(
e−ιθ +B

)
[k]q +

(
1− λ[k]q

qp[p]q

)
(A−B)bqp

(A−B)bqp
akz

k

∣∣∣∣∣∣
≥ 1−

∞∑
k=1

∣∣1− λ
qp

∣∣(1 + |B|
)
[k]q +

∣∣b(1− λ[k]q
qp[p]q

)∣∣(A−B)qp

(A−B)|b|qp
|ak| > 0.

Thus, the inequality (2.11) holds and our result follows from Theorem 2.3.

Using similar arguments to those in the proof of Theorem 2.5, we may also prove
the next result.

Theorem 2.6. If f ∈ Σp satisfies the inequality

∞∑
k=1

[∣∣1− λ

qp
∣∣(1+|B|

)
[k]q+

∣∣b(1− λ[k]q
qp[p]q

)∣∣(A−B)qp
](

1− [k]q
[p]q

)
|ak| < (A−B)|b|qp

(2.12)
then f ∈MKpq,λ(b;A,B).

Remarks: Note that the results obtained in the present paper provide us a lot of
interesting particular cases by assigning different values to the involved parameters,
some illustration are given here:
(i) Taking p = 1, q → 1−, λ = 0, b = 1 and eιθ = x in Theorem 2.1 and 2.2 we get
the results of Ponnusamy [13].
(ii) Taking p = 1, q → 1−, λ = 0, b = (1−α)e−ιµcosµ (µ ∈ R, |µ| < π

2 , 0 ≤ α < 1),
A=1, B=-1 and eιθ = x in Theorem 2.1 we get the result of Ravichandran et al .
[14].
(iii) Taking p = 1, q → 1− and λ = 0 in Theorem 2.1 and 2.2, our results matches
with Aouf [3] and Bulboacă et al . [4].
(iv) Taking p = 1 in Theorem 2.1 and 2.2 our results matches with Mostafa et al .
[11].
(v) Taking λ = 0 in Theorem 2.1 to 2.6 our results matches with Kant et al . [9].

3. Conclusions

By the use of Q-calculus, we have introduced two subclasses MSpq,λ(b;A,B) and

MKpq,λ(b;A,B) of meromorphic multivalent functions by using q-derivative operator
linked to a punctured unit disc. We learned about some key issues, such as convolu-
tion properties, the necessary and sufficient condition and coefficient estimates for
the newly defined subclasses. We also pointed out several important correlations
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between our findings and those which were considered in previous studies. Recently,
some published articles that deal with q-derivative operator have also attracted re-
searchers. In these articles authors find interesting results by using the principles
of q-derivative operator for meromorphic harmonic functions, partial sums of mero-
morphically starlike functions, normalized holomorphic and bi-univalent functions
in the open unit disk. See ([10],[21],[23],[24]).

As pointed out in the survey-cum-expository review paper by Srivastava ([18], p.
340), any attempt to produce the so-called (p, q)-variation of the q-results, which
we have presented in this paper, will be trivial and inconsequential because the
additional parameter p is obviously redundant or superfluous. Also see ([19], p.
1511-1512, [20], p. 18).
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