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1. Introduction

The number of cycles in a graph is an important parameter in graph theory. In-
vestigation on this number and finding suitable bounds for that has a long history
in the literature of graph theory. For instance, this problem was studied for many
classes of graphs such as the ones with a given cyclomatic number, planar graphs,
3-regular graphs and 4-regular graphs. Also, many efforts have been made to bound
this parameter in terms of various other parameters of the graph such as the number
of the vertices and edges (see for example [1], [2], [4], [11] and [14]). It is worth
to mention that counting cycles in graphs has great importance in the study of
networks, in particular social networks. It is also notable to say that from the algo-
rithmic and computational point of view, it is known that counting cycles in graphs
is a NP-complete problem.

Beside graph theory, the theory of hypergraphs (or set systems) is also a major
line of research in combinatorics (see [6], [7], [9], [13], [17] as some classical refer-
ences). These two subjects have intimate interactions to each other. Historically,
considering hypergraphs associated to a graph and using VC-theory and many other
hypergraph theoretic aspects of those hypergraphs for studying that graph has been
among important examples of such interactions. In hypergraph theory, there are
various invariants and parameters associated to a given hypergraph that encode
many information about it. Amongst them, VC-dimension is a very important one.
In numerous papers such as [5], [8], [10], [15], [16], [18], [19], [20], this notion was
considered from different viewpoints. For example, VC-dimensions of many hyper-
graphs associated to a graph (such as the hypergraphs of connected sets of vertices
(edges), paths, neighbourhoods, etc) were related to the study of various features of
the graph. VC-theory was first initiated in the works of Vapnic and Chervonenkis
on the base of the notion of VC-dimension. Then, the theory was developed by dis-
covering important results such as the celebrated Sauer-Shelah lemma. Nowadays,
VC-theory is an important part of many areas of mathematics, computer science
and statistics, in particular, extremal combinatorics, the theory of machine learning
and logic. An interested reader can see [3], [13] and [17] for more information on
combinatorial aspects of the VC-dimension and VC-theory.

During the course of our investigation in this paper, we pursue two main goals.
The first one is to relate (in Subsection 3.1.) the problem of finding suitable bounds
for the number of cycles of a graph to the VC-dimension of its cycle hypergraph
and a few other parameters of the graph and finding new bounds. Note that by
the cycle hypergraph of a graph we mean a hypergraph with the edge set of the
graph as its vertices and the edge sets of the cycles of the graph as its hyperedges.
We will have a hypergraph and VC-theoretic viewpoints in the study of graphs
and their cycle structures and find some upper and lower bounds for the number
of cycles of a graph in terms of the VC-dimension and dual VC-dimension of the
cycle hypergraph as well as some other important graph parameters such as the
nullity of the graph. Through the paper, the machinery of VC-theory, in particular
the celebrated Sauer-Shelah lemma, provides us with some important conceptual
and technical tools. Indeed, our bounds rely on the analysis of the VC and dual
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VC dimensions, the nullity of the graph, transversally witness number of the cycle
hypergraph, and application of this lemma. Also, the notion of twin-freeness of
the cycle hypergraph and our characterization of it come to the picture naturally.
Then, in subsections 3.2. and 3.3., we compute VC-dimension and the mentioned
bounds in some graph classes such as the friendship graphs and wheel graphs and
furthermore, show that in certain graph classes, including these two as well as some
classes of graphs with large edge-density, the given bounds are sharper than many
of the previous ones in the literature such as the ones mentioned in [2] or in a
conjecture by Kiraly in [14]. As the second goal of the paper, on the way to the first
one, we try to elaborate the idea of studying graphs by means of the hypergraphs
associated to them (in here mostly cycle hypergraph) and their parameters.

Organization of the rest of the paper is as follows. We review necessary prelim-
inaries in Section 2. Then, we prove the main results as described above in Section
3.

2. Preliminaries

We start to review some notions from graph theory. Through the paper, we use
the notation G = (V (G), E(G)) for representing a graph with vertex set V (G) and
edge set E(G). Also if G′ is a subgraph of G, then by V (G′) and E(G′) we mean
the vertex set and edge set of G′ respectively. For a subset U of the edges of G, by
V (U) we mean the set of the vertices appeared in the edges in U . Also by [U ] we
mean the graph (V (U), U). When clear from the context, we may use U instead of
[U ]. If each of two arbitrary sets A and B is a subgraph or subset of the edges of
G, then by the notation A[B] we mean the subgraph [C] where C is the set of the
edges of A with both ending vertices belonging to V (A)∩V (B). The maximum and
minimum degrees of the vertices of G are denoted by ∆(G) and δ(G) respectively.
By the circumference of G, denoted by circ(G), we mean the size of the longest
cycle in G. For any A ⊆ E(G), by G\A we mean the graph (V (G), E(G)\A). Also
if A is a subgraph of G, then by G \ A we mean the graph (V (G), E(G) \ E(A)).
For any subgraph A and edge e, by A \ e and A − e we mean (V (A), E(A) \ {e}).
Similarly, by A+e and A∪{e} we mean the subgraph (V (A)∪V ({e}), E(A)∪{e}).
By a cut-set in a connected graph we mean a subset of the edges whose removal
makes the graph disconnected. We call an edge of a connected graph a bridge if the
set containing that single edge is a cut-set. We call a graph bridgeless if it has no
bridge. By a minimal cut-set we mean a cut-set whose strict subsets are not cut-sets
anymore. By a cut-vertex in a graph we mean a vertex whose removal increases the
number of the connected components of the graph.

Let T be a spanning tree of a connected graph G. Note that for every edge
e ∈ E(G) \ E(T ), the graph T + e contains a unique cycle denoted by Ce. Each
such cycle Ce is usually called a fundamental cycle of graph G with respect to the
spanning tree T and edge e. On the other hand, for every e ∈ E(T ), the graph T −e
has exactly two connected components. The set of the edges of G with one end in
each of those components is usually denoted by De and is called the fundamental cut
of G with respect to spanning tree T and edge e. The cospanning tree corresponding
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to a spanning tree T of G is the graph (V (G), E(G) \ E(T )).

Definition 2.1. In a connected graph G with n vertices and m edges, by the
nullity of G we mean the parameter null(G) := m− n+ 1.

It is known that for any connected graph G, the parameter null(G) is equal to the
dimension of the null space of the oriented incidence matrix of G.

In the following, we recall the definition of two well-known classes of graphs,
namely, ”wheel graphs” and ”friendship graphs”. We will use them later in the
paper.

Definition 2.2. By the wheel graph Wn of order n > 4, we mean a graph that
consists of a cycle of length n − 1 plus one other vertex which is connected to all
vertices of that cycle and is called the center of the wheel graph.

Definition 2.3. For every t ∈ N, the friendship graph Ft is the graph constructed
by union of t copies of the cycle C3 with a common vertex.

Now we review some notions from the theory of hypergraphs. By a hypergraph
(or set system) (X,F) in this paper we mean a finite set X, which is called the
vertex set (or domain) of the hypergraph, equipped with a family F of subsets of
X called hyperedges. We call |X| and |F| the order and the size of the hypergraph
respectively. For a hypergraph (X,F) and Y ⊆ X define F∩Y := {A∩Y : A ∈ F}.
We call the new hypergraph (Y,F ∩ Y ) the trace of the hypergraph (X,F) on Y .
Also for every A ∈ F , we call A ∩ Y the trace of A on Y . In a hypergraph (X,F),
a subset Y ⊆ X is called shattered by (X,F) if F ∩ Y = P(Y ) where P(Y ) is the
power set of Y . The VC-dimension of (X,F), denoted by V C(X,F) is the largest
integer n such that there exists a subset of X of size n which is shattered by (X,F).

Definition 2.4. For every d ∈ N∪{0}, define the function φd : N→ N by φd(n) :=∑d
i=0

(
n
i

)
for every n > d and φd(n) := 2n for every n < d. Moreover, for every

m ∈ N and d > 1 define φ−1d (m) := min{n : φd(n) > m}.

One can find the following important classical result in [21] or [22].

Theorem 2.1. Sauer-Shelah lemma Let (X,F) be a hypergraph with
d := V C(X,F). Then, for every Y ⊆ X we have |F ∩ Y | 6 φd(|Y |).

Corollary 2.1. For every n ∈ N and d ∈ N ∪ {0}, we have φd(n) 6 (n+ 1)d.

Proof.

φd(n) =

d∑
i=0

(
n

i

)
=

d∑
i=0

n!

i!(n− i)!
6

d∑
i=0

ni

i!

6
d∑

i=0

ni
d!

i!(d− i)!
=

d∑
i=0

ni
(
d

i

)
= (n+ 1)d.
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In the following, we define some important notions associated to hypergraphs.

Definition 2.5. By a witness set (or separating set) of a hypergraph (X,F) we
mean a subset W ⊆ X such that for every A,B ∈ F we have A ∩W 6= B ∩W . By
a transversally witness set of the hypergraph, we mean a witness set W such that
every hyperedge in F (except ∅ in the case that ∅ ∈ F) has nonempty intersection
with W . By a minimal transversally witness set we mean a transversally witness
set whose strict subsets are not transversally witness sets anymore. We denote the
smallest size among all minimal transversally witness sets of the hypergraph (X,F)
by twt(X,F) and call it the transversally witness number of (X,F). We denote the
family of all minimal transversally witness sets of (X,F) by minTWT (X,F). Also
we call the hypergraph (X,minTWT (X,F)), the minimal transversally witness
hypergraph of (X,F).

Definition 2.6. Let (X,F) be a hypergraph. Two distinct elements x, y ∈ X are
called twins if every A ∈ F either contains both of x and y or none of them. We
call (X,F) twin-free if there are no such twins x and y in X.

In the following definition, we recall a notion of duality in the hypergraph theory
which we call the hypergraph duality. This notion has been an important tool in
studying hypergraphs in many works in the literature. An interested reader can
refer to for instance, the book [6](Chapter 17) for some more details about that.

Definition 2.7. The hypergraph dual (or simply, dual) of a hypergraph (X,F) is
a hypergraph (X∗,F∗) where X∗ := F and F∗ := {Ax : x ∈ X} where for each
x ∈ X, we define Ax := {A ∈ F : x ∈ A}.

Note that in Definition 2.7, we consider F∗ as a set and not a multiset. In other
words, if Ax = Ay for two x, y ∈ X, then we identify Ax and Ay and they are
counted as one member of F∗ and not two members.

Definition 2.8. Let (X,F) be a hypergraph. By the dual VC-dimension of (X,F),
denoted by V C∗(X,F), we mean the VC-dimension of its dual. In other words,
V C∗(X,F) := V C(X∗,F∗).

3. VC-dimension and bounding the number of cycles in graphs

Investigation of the cycle structure of graphs has been always an important aspect
of the study of graphs and networks. In particular, the problem of counting the
number of cycles, usually denoted by c(G) in a graph G, and bounding c(G) for
different classes of graph has a long history. Finding suitable bounds for c(G) in
terms of the various parameters of the graph was worked out in many papers such
[1], [2], [4], [11] and [14]. It is worth to mention that counting cycles in graphs has
many applications in network theory, in particular social networks.

We first review some classical results concerning bounds on c(G). It was shown
in [1] that m−n+k 6 c(G) 6 2m−n+k−1 for any graph G with n vertices, m edges
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and k connected components. The upper bound was improved in [2] for connected
graphs by showing the following statement.

Theorem 3.1. (Aldred-Thomassen) For any connected graph G we have c(G) 6
15
162m−n+1.

The following statement was conjectured by Kiraly in [14].

Kiraly’s conjecture: There is a constant α such that for any graph G with m
edges c(G) 6 α(1.4)m.

An interested reader can refer to papers such as [4] and [11] to see the results
about the above statement.

In this section, we consider the problem of finding suitable bounds for c(G)
from the perspective of the hypergraph and VC-theoretical viewpoints and give
some bounds for c(G) in terms of the new graph parameters defined in this paper,
namely, the VC-dimension and dual VC-dimension of the cycle hypergraph (as
defined below) and also some other important parameters of the graph such as its
nullity.

Definition 3.1. Let G be a graph. By the cycle hypergraph of G, we mean the
hypergraph (E(G), CYC(G)) where CYC(G) := {E(C) : C is a cycle in G}.

The hypergraph theory (or the theory of set systems) is one of the central
areas of research in combinatorics. In this theory, there are various features and
notions associated to a given hypergraph and the hypergraph is usually studied from
the viewpoints of those notions. VC-dimension and more generally, VC-theoretic
features are among the most important aspects of a hypergraph. We have mentioned
a brief history of VC-theory and the notion of VC-dimension and its connection to
graphs in the introduction of the paper. In Subsection 3.1. below, we give some
upper and lower bounds for the number of cycles of graphs by applying Sauer-Shelah
lemma and utilizing VC-dimension and dual VC-dimension of the cycle hypergraph.
Also in subsections 3.2. and 3.3., we will see that for certain classes of graphs, our
bounds are sharper than some of the previous ones in the literature such as the ones
in [2] and [14].

3.1. Some new upper and lower bounds for the number of cycles of
graphs

We want to start analysing the number of cycles of graphs by using the notion
of VC-dimension. We first prove a general statement for hypergraphs and use it
later. We remind that the notion of dual hypergraph and notations such as Ax

was defined in Definition 2.7. In the remaining of the paper, unless specifically
mentioned otherwise, we consider 2 as the base of the logarithm in the notation log.

Proposition 3.1. Let (X,F) be a hypergraph with F 6= ∅. Then, the following
hold.
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1. Let S be such that ∅ 6= S ⊆ X. Assume that S is shattered by the hypergraph
(X,F).

Then, for every x ∈ S, we have |S| 6 1 + log |Ax|.

2. We have V C(X,F) 6 1 + log r where r := max{|Ax| : x ∈ X}.

3. We have |F| 6 2twt(X,F). Moreover, if ∅ 6∈ F , then |F| 6 2twt(X,F) − 1.

Proof. 1) Define d := |S|. Fix some x ∈ S and let H be the family of subsets of
S containing x. It is clear that |H| = 2d−1. Since S is a shattered set, there is
a subfamily U ⊆ F with |U| = 2d−1 such that U ∩ S = H. Thus, every A ∈ U
contains x. It follows that U ⊆ Ax. Therefore, |Ax| > |U| = 2d−1 which follows
that d 6 1 + log |Ax|.

2) We may assume that V C(X,F) > 0 since otherwise the result would be clear.
Let S ⊆ X be a shattered set with size V C(X,F). Then, by using Part 1 of the
present proposition, we have V C(X,F) = |S| 6 1 + log r.

3) Let W be a transversally witness set of size twt(X,F). Then, by the definition
of transversally witness sets, for every A,B ∈ F we have A∩W 6= B∩W . It follows
that |F| = |F ∩W | 6 |P(W )| = 2twt(X,F). Moreover, if ∅ 6∈ F , then since W is
a transversally witness set, we have ∅ 6∈ F ∩W . It implies that |F| = |F ∩W | 6
|P(W )| − 1 = 2twt(X,F) − 1.

The following statement provides a relationship between the dual VC-dimension
of the cycle hypergraph of any graph G and the parameter circ(G), the size of the
longest cycle of G.

Corollary 3.1. Let G be a graph containing at least one cycle and
d∗ := V C∗(E(G), CYC(G)). Then, 2d

∗−1 6 circ(G).

Proof. It is not very hard to see that by applying Proposition 3.1(2) for the hyper-
graph (E(G)∗, CYC(G)∗), which is the dual hypergraph of the cycle hypergraph, we
have d∗ 6 1 + log (circ(G)). The result follows.

The following two theorems, which are among the main results of this paper,
give upper and lower bounds for the number of cycles in a graph in terms of the
VC-dimension and the dual VC-dimension of the cycle hypergraph and some other
parameters. In particular, the following theorem gives an upper bound for the
number of cycles in terms of two important notions of VC-dimension and nullity.

Theorem 3.2. Let G be a connected graph with n vertices and m edges and at least
one cycle. Also let d := V C(E(G), CYC(G)). Then, the following upper bounds hold
for the number of cycles.

c(G) 6 φd(null(G)) 6 (null(G) + 1)d 6 (null(G) + 1)1+log s, (∗)

where s is the largest number of appearances of an edge in the cycles of G.
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Proof. First, for every transversally witness set W ⊆ E(G) of the hypergraph
(E(G), CYC(G)), define dW := V C(W,FW ) where FW := CYC(G) ∩ W . For
every minimal transversally witness set W of (E(G), CYC(G)) we have |FW | =
|CYC(G)| = c(G). So by using Sauer-Shelah lemma (Theorem 2.1), we have c(G) =
|FW | 6 φdW

(|W |). It follows that

c(G) 6 min({φdW
(|W |)

: W is a minimal transversally witness set of (E(G), CYC(G))}).

Now we consider the structure of the minimal transversally witness sets in the fol-
lowing claim.
Claim. A subsetA ⊆ E(G) is a minimal transversally witness set of (E(G), CYC(G))
if and only if A is the edge set of a cospanning tree of G.
Proof of Claim: First assume that A ⊆ E(G) is the edge set of a cospanning tree
T0 of G. So, since E(G) \ A is the edge set of a tree, the edge set of every cycle
of G has a nonempty intersection with A. We recall that for any spanning tree T
of a graph, the edges of the cospanning tree of T correspond to the fundamental
cycles with respect to T which in turn correspond to the elements of a basis for the
cycle space of the graph as a vector space over the field Z2. We call the vector in
the cycle space of G corresponding to an edge e ∈ A by an A-fundamental vector
of the cycle space of G and denote it by ue. Hence, every cycle C in G, being
viewed as a vector in the cycle space, is a unique linear combination (with coeffi-
cients from Z2) of the A-fundamental vectors of the cycle space of G. In such linear
combination, call those A-fundamental vectors having coefficient 1 in the combi-
nation by the generating A-fundamental vectors of the cycle C. It is easily seen
that any two different cycles of G have different sets of generating A-fundamental
vectors. It is also not very difficult to observe that, for every cycle C of G and edge
e ∈ A, we have e ∈ E(C) ∩ A if and only if ue belongs to the set of generating
A-fundamental vectors of C. Combining these facts, for any two cycles C1 and C2

we have E(C1) ∩ A 6= E(C2) ∩ A. It follows that A is a witness set for the hyper-
graph (E(G), CYC(G)). So, since as mentioned above E(C)∩A 6= ∅ for every cycle
C, the set A is a transversally witness set for the cycle hypergraph. Moreover, for
every e ∈ A, A \ {e} has empty intersection with the edge set of some cycle (indeed
the cycle Ce, the fundamental cycle with respect to the spanning tree on E(G) \ T0
and edge e). So, A \ {e} is not a transversally witness set. It follows that A is a
minimal transversally witness set for the hypergraph (E(G), CYC(G)).

For the other direction, assume that A ⊆ E(G) is a minimal transversally witness
set for the cycle hypergraph of G. So A has at least one common edge with every
cycle of G. It follows that E(G) \A does not contain any cycle, or in other words is
the edge set of a forest. Therefore, it is not hard to verify that A contains the edge
set of some cospanning tree S. Now by the proof of the other direction mentioned
above, the edge set of S is a transversally witness set for the cycle hypergraph. So,
since A is a minimal transversally witness set, A must be the same as the edge set
of S. It follows that A is the edge set of a cospanning tree of G. Claim �

By using the above claim, for any minimal transversally witness set W of the
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hypergraph (E(G), CYC(G)), we have |W | = null(G). So, by combining the above
facts, we have c(G) 6 φdW

(null(G)) for any minimal transversally witness set W .
Also it is easy to see that dW 6 d. It implies that φdW

(null(G)) 6 φd(null(G)).
Therefore, first two inequalities of (∗) are followed by combining these with Corollary
2.1.

Furthermore, one can observe that s = max{|Ae| : e ∈ E(G)} (see Definition 2.7
for the notation Ae in the context of the dual systems). So, by Proposition 3.1(2),
we have d 6 1 + log s. Hence, (null(G) + 1)d 6 (null(G) + 1)1+log s. This completes
the proof.

The following statement gives a lower bound for the number of cycles in terms
of the (dual) VC-dimension. We remind that the notation φ−1d∗ in the following
theorem was defined in Definition 2.4.

Theorem 3.3. Let G be a connected graph and let d∗ := V C∗(E(G), CYC(G)).

1. If the hypergraph (E(G), CYC(G)) is twin-free (see Part 2 for a characteriza-
tion of this property for the cycle hypergraphs), then we have

(i) c(G) > φ−1d∗ (m),

Also in terms of the parameters m and ` we have

(ii) c(G) > 2
log m

1+log ` − 1,

where ` := circ(G) is the size of the longest cycle of G.

2. The hypergraph (E(G), CYC(G)) is twin-free if and only if either G is 3-edge-
connected or it has a bridge edge e such that two connected components of
G \ {e} are 3-edge-connected.

Proof. 1) We consider the dual hypergraph of the cycle hypergraph, namely,
(E(G)∗, CYC(G)∗) and use the notations of Definition 2.7. Since (E(G), CYC(G))
is assumed to be twin-free, for any two e1, e2 ∈ E(G), their corresponding mem-
bers of the dual hypergraph, namely Ae1 and Ae2 are distinct. It implies that
m = |CYC(G)∗|. Now by applying Sauer-Shelah lemma (Theorem 2.1) on the dual
hypergraph we get m = |CYC(G)∗| 6 φd∗(|E(G)∗|) = φd∗(c(G)). It follows that
φ−1d∗ (m) 6 c(G), which establishes (i).

Moreover, by using Corollary 3.1, we have d∗ 6 1 + log `. So, combining this
fact with previous ones we get

m 6 φd∗(c(G)) 6 φ1+log `(c(G)) 6 (1 + c(G))1+log `,
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where we have used Corollary 2.1 in the last inequality. It follows that 2
log m

1+log ` −1 6
c(G) which establishes (ii).

2) We first show the direction from left to right. If (E(G), CYC(G)) is twin-
free, then G has at most one bridge since any two bridges are twins in the cycle
hypergraph since they both belong to no cycle. Now, as in the first case, assume
that G has no bridge. We again use twin-freeness to show that in this case G
is 3-edge-connected. Assume the opposite. Since G has no bridge, it is 2-edge-
connected. So, since G is assumed to not be 3-edge-connected, it must contain a
cut-set of size exactly 2, say {e1, e2}. Now it is easy to see that every cycle of G
either contains both e1 and e2 or contains none of them. Hence, e1 and e2 are
twins. This is a contradiction. Therefore, in this case G is 3-edge-connected. As
in the second case, we assume that G has exactly one bridge e. So, each of the
two connected components of G \ {e} are 2-edge-connected. Now, one can repeat
the above argument for each of those components of G \ {e}, showing that they are
both 3-edge-connected.

Now we prove right to left side. Fix two arbitrary edges e1 and e2 of G. It is
enough to show that they are not twins in the cycle hypergraph of G. If one of e1 or
e2, say e1, is a bridge, then by using the assumptions, e1 would be the only bridge
of G. So, in this case we are done since e1 is not twin with any other edge of G,
in particular e2, since e1 is the only edge not belonging to any cycle of G. Hence,
we may assume that none of e1 and e2 are bridge edges. Let T be any spanning
tree containing e1 but not e2. By using the assumptions, the fundamental cut of G
with respect to the spanning tree T and edge e1 contains at least 3 edges. Thus,
at least one of those edges is different from e1 and e2. We denote that edge by e3.
Obviously, e3 6∈ E(T ). Now T + e3 contains a unique cycle (which is indeed the
fundamental cycle Ce1) and that cycle contains e1 but not e2. Therefore, e1 and e2
are not twins in the cycle hypergraph. Now we can conclude that the hypergraph
(E(G), CYC(G)) is twin-free.

3.2. Examples of some classes with improved bounds

In this part, we will give some examples of graph classes in which the bounds given
in this paper for the number of cycles are sharper than several earlier bounds in
the literature. Indeed, comparing the upper bound c(G) 6 (null(G) + 1)d given in
Theorem 3.2 with the Aldred-Thomassen bound c(G) 6 15

162null(G) (Theorem 3.1)
or the bound in Kiraly’s conjecture easily shows that in certain classes of graphs
(mostly those with small VC-dimensions of the cycle hypergraphs comparing to their
nullities), our bound given in Theorem 3.2 is sharper (as we will see in the following
examples). For example, for a given d and for every graph with VC-dimension of
the cycle hypergraph equal to d and large enough nullity, our bound is sharper than
the other mentioned bounds. Note that for every given d, there are graphs with
arbitrary large nullities but with the VC-dimension of their cycle hypergraphs equal
to d. For instance, in each of the classes of graphs we consider in the following two
examples, the VC-dimension of the cycle hypergraph is fixed while the nullity can
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be arbitrary large in the class.

The class of the friendship graphs

The friendship graph Ft (see Definition 2.3) has 2t+ 1 vertices and 3t edges. So
we have null(Ft) = t. Also it has exactly t cycles. Moreover, it is easy to see that
d := V C(E(Ft), CYC(Ft)) = 1 for every t > 2. In this case, the upper bound given
in Aldred-Thomassen theorem (Theorem 3.1) for the number of cycles would be
15
162t. On the other hand, our bound using the VC-dimension given in Theorem 3.2
would be (null(Ft)+1)d = null(Ft)+1, which is equal to t+1. Therefore, our upper
bound is almost sharp in the class of friendship graphs and is much sharper than
the bound given by Aldred-Thomassen theorem. Also, in this case it is a sharper
bound than the one in Kiraly’s conjecture.

In the following statement, we generalize the situation of friendship graphs dis-
cussed above and show that the bound given in Theorem 3.2 for the number of
cycles is almost sharp for every connected graph with the VC-dimension of the
cycle hypergraph equal to 1.

Proposition 3.2. The bound (null(G) + 1)d given in Theorem 3.2 for c(G) is ei-
ther equal to c(G) or to c(G)+1 for every connected graph G with V C(E(G), CYC(G))
= 1.

Proof. Let G be a connected graph with n vertices, m edges and assume that
V C(E(G), CYC(G)) = 1. It is easily seen that G has at least m− n+ 1(= null(G))
cycles, since if we consider any spanning tree of G, then G has m − n + 1 many
fundamental cycles with respect to that spanning tree. On the other hand, in
this case the bound given in Theorem 3.2 would be (null(G) + 1)1 = null(G) + 1.
Therefore, we have null(G) 6 c(G) 6 null(G) + 1. The result follows.

The class of the wheel graphs

In the following, we will show that in the class of the wheel graphs, the bounds
given in this paper for the number of cycles are sharper than bounds from several
earlier results in the literature. It is easy to see that in the wheel graph Wn with n
vertices, the number of edges is m = 2n−2. It follows that null(Wn) = m−n+1 =
n−1. In the following statement, we find the VC-dimension of the cycle hypergraph
of the wheel graphs. Then, using that we can compute our bound given in Theorem
3.2 for the number of cycles and compare that bound with the earlier bounds in the
literature as well as the exact number of cycles.

Proposition 3.3. For every n > 5, the VC-dimension of the cycle hypergraph of
Wn is 3.

Proof. Fix some n > 5. By the star edges of the wheel graph Wn we mean those
edges connected to the center of Wn. Also we call the rest of the edges the outer
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edges. Denote the set of the star edges and outer edges in Wn by E1 and E2

respectively. Denote the cycle of Wn with the edge set E2 by C0. Note that any
cycle of G is either the cycle C0 or has exactly two edges from E1 and the rest of
the edges from E2. Assume that S ⊆ E(Wn) is shattered by the cycle hypergraph
of Wn. So, there exists some cycle C such that E(C) ∩ S = S. Thus, S ⊆ E(C).
It follows that [S] is either a cycle or a vertex disjoint union of some paths. So S
contains at most two edges of E1. We show that |S| 6 3. We distinguish three
cases.

Case (i): In this case we assume that S has exactly two edges of E1, say edges
e1 and e2. It is easily seen that there are exactly two cycles in Wn containing both
e1 and e2. Since S is shattered by the cycle hypergraph, for each subset X ⊆ S∩E2

there exists a cycle C such that E(C) ∩ S = X ∪ {e1, e2}. Hence, every such C
contains {e1, e2}. So, there are at most two such C’s. It follows that there are at
most two subsets X ⊆ S ∩ E2. Therefore, |S ∩ E2| 6 1. It follows that |S| 6 3.

Case (ii): In this case we assume that S contains exactly one edge of E1, say e1.
It is sufficient to show that |S∩E2| 6 2. Assume for contradiction that |S∩E2| > 2.
Let v0 be the common vertex of the edge e1 and the cycle C0. Also let e2 and e3 be
the first and the last edges of S ∩E2 appearing when we start moving on the cycle
C0 from v0 in one direction (clockwise or counter-clockwise) until again we get back
to v0. Since we assumed that |S ∩E2| > 2, S ∩E2 has at least one other edge, say
e4, distinct from e2 and e3. Now it is not difficult to observe that each cycle of G
containing e1 and e4 must contain e2 or e3 too. It follows that the set {e1, e2, e3, e4}
is not shattered by the cycle hypergraph. Hence, since {e1, e2, e3, e4} ⊆ S, the set
S is not shattered by the cycle hypergraph, which is a contradiction. So, we have
|S ∩ E2| 6 2. Therefore, in this case we conclude that |S| 6 3.

Case (iii): In this case we assume that S does not have any edge of E1. It is
sufficient to show that no subset of E2 consisting of four edges is shattered by the
cycle hypergraph. Let e1, e2, e3 and e4 be four arbitrary edges of E2 in the clockwise
ordering of the cycle C0. It is not hard to see that there is not any cycle C of G
with E(C)∩ {e1, e2, e3, e4} = {e2, e4}. So the set {e1, e2, e3, e4} is not shattered by
the cycle hypergraph. It follows that in this case we have |S| 6 3.

So far, by the above analysis we have V C(E(Wn), CYC(Wn)) 6 3. It is not
hard to see that every subset of E2 of size 3 is shattered by (E(Wn), CYC(Wn)). It
follows that for every n > 5, V C(E(Wn), CYC(Wn)) > 3. Combining these facts we
have that V C(E(Wn), CYC(Wn)) = 3 for every n > 5.

Corollary 3.2. For the class of wheel graphs, the upper bound given in Theorem
3.2 is sharper than the bounds given in the Aldred-Thomassen Theorem and Kiraly’s
conjecture.

Proof. By Proposition 3.3 and our upper bound given in Theorem 3.2 for the
number of cycles, we have c(Wn) 6 (null(Wn) + 1)3 = n3 (and even stronger,
c(Wn) 6 φ3(null(Wn)) = 1

6 (n3 − 3n2 + 8n)), while the upper bound given by
Aldred-Thomassen (Theorem 3.1) is 15

162n−1. Obviously, for large enough n, the
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bound given in Theorem 3.2 is sharper. Also in this case our bound is asymptoti-
cally sharper than the bound in Kiraly’s conjecture.

Note that it is known that the number of cycles of the wheel graph Wn is
n2 − 3n+ 3 (see the sequence A002061 in OEIS [12]). It is obvious that our bound
in this case is much closer than earlier bounds to the exact number.

3.3. Improving Kiraly’s bound for some classes of dense graphs

In the previous subsection, we gave some examples of graph classes in which the
bounds given in Subsection 3.1. for the number of cycles are sharper than many
earlier bounds. In this subsection, we aim to improve the bound mentioned in
Kiraly’s conjecture in some more graph classes. These classes possess a density
condition defined below. Our methods rely on using the upper bounds given in our
result in Theorem 3.2.

In the following definition, we introduce some classes of graphs which are dense
in the sense that, roughly speaking, the number of their edges are large (in the
following sense) comparing to the number of their vertices.

Definition 3.2. Let r > 1 be a real number. We define the class of graphs Ur as
follows. A graph G with n vertices and m edges belongs to Ur if and only if it is
connected and m > 2n logr n.

Lemma 3.1. For every r > 1 and each graph G ∈ Ur with n vertices and m edges
we have null(G) 6 r

m
n − 1. Moreover, c(G) 6 rm.

Proof. Fix some r > 1 and let G ∈ Ur with n vertices and m edges. So, by definition,
we have m > 2n logr n. Also since m 6

(
n
2

)
, we have m − n + 2 6 n2. Combining

these, we have n 6 m
logr n2 6 m

logr (m−n+2) . Therefore, n logr (m− n+ 2) 6 m.

Thus, (m − n + 2)n 6 rm, which implies that null(G) 6 r
m
n − 1. This establishes

the first part of the lemma. Since the length of the longest cycle is at most n, it is
easily seen that d 6 n where d := V C(E(G), CYC(G)). So, by using Theorem 3.2
and the result of the first part of the this lemma, we have

c(G) 6 (null(G) + 1)d 6 (null(G) + 1)n 6 rm.

This completes the proof.

The following statement improves the upper bound for the number of cycles
mentioned in Kiraly’s conjecture for the graphs in the class of graphs Ur for each r,
1 < r < 1.4. Also it gives a short proof for the Kiraly’s conjecture restricted to the
class of graphs Ur for r = 1.4.

Proposition 3.4. 1. For every r, 1 < r < 1.4 and G ∈ Ur with m edges,
we have c(G) 6 rm (this is a sharpening of the bound mentioned in Kiraly’s
conjecture for the particular class of graphs Ur).
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2. Kiraly’s conjecture holds for graphs in the class of graphs U1.4 with α = 1 in
the statement.

Proof. 1) The result is clear by Lemma 3.1.

2) Letting r = 1.4 in Lemma 3.1 implies that the bound in Kiraly’s conjecture
holds (with letting α = 1) for every graph in U1.4.
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