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19 INTERPRETIVE SUMMARY

20 Natural 15N abundance as a biomarker of milk N use efficiency in dairy cows

21 The improvement of techniques to identify lactating dairy cows differing in its ability to convert dietary N 

22 into milk N, which is referred to as milk N efficiency (MNE), with accurate biomarkers would benefit both the 

23 dairy industry and the society, as MNE is related to farm profitability and environmental footprint. This research 

24 assessed the ability of natural 15N enrichment of animal proteins over the diet (Δ15N) to predict the between-animal 

25 variations in MNE in lactating dairy cows. Our database, including 20 experiments, confirm that Δ15N permits to 

26 discriminate groups of dairy cows with contrasted MNE and thus could be used as a tool for precision feeding.
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27 ABSTRACT

28 Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large-scale is 

29 difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) 

30 between the animal (milk, plasma or tissues) and its diet was proposed as a biomarker of the efficiency of N 

31 utilization on a range of production systems and ruminant species. The aim of this study was to assess the ability 

32 of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 

33 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and 

34 comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation 

35 observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, 

36 sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (MN, 

37 g of N in milk/d) and mean N intake (NI, g of N intake/d) obtained from each sampling period, which lasted 9.0 

38 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were 

39 analyzed for natural 15N abundance (δ15N) and then the N isotopic discrimination between the animal and the 

40 dietary treatment was calculated (Δ15N = δ15Nanimal − δ15Ndiet). Data were analyzed through mixed-effect regression 

41 models considering the experiment, sampling period and dietary treatment as random effects. In addition, 

42 repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when 

43 MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation 

44 artificially increased both MNE and Δ15N leading to a positive rather than negative relationship and this limited 

45 the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE 

46 decreased in a particular experiment (i.e., higher repeatability values) we observed a greater ability of Δ15N to 

47 predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE 

48 in mid and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments 

49 and between-animals. The root mean squared prediction error as a percentage of average observed value was 6.8% 

50 indicating that the model only allowed to differentiate 2 cows in terms of MNE within a CG if they differed by at 

51 least 0.112 g/g of MNE (95% confidence level) and this could represent a limitation to predict MNE at the 

52 individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG 

53 the top 25% from the lowest 25% individuals in terms of MNE was significant indicating that it is possible to 

54 distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group 

55 animals for precision feeding.

56 Key words: meta-analysis, milk nitrogen efficiency, biomarker, individual variability, 15N.
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57

58 INTRODUCTION

59 Dairy products are important sources of food protein along with a range of other essential nutrients 

60 (FAOSTAT, 2017), and their increased consumption is driven by the growth of the world human population and 

61 their average incomes (Scott, 2017). Total food production is a significant contributor to global greenhouse gas 

62 emissions, which are undeniably related to climate change (Clark et al., 2020; Ocko et al., 2021). There are two 

63 main sources of environmental pollution in livestock systems: greenhouse gas emissions per se (carbon dioxide, 

64 methane, and nitrous oxide) (Uwizeye et al., 2020; Ocko et al., 2021) and the negative impact of excreta (mainly 

65 N and P) on the quality of surface and ground water (Castillo et al., 2000; Uwizeye et al., 2020). In this context, 

66 mitigation strategies for the livestock industry are highly needed (Uwizeye et al., 2020).

67 In the lactating cow, the efficiency of N utilization for milk production (MNE; g of milk N/g of N intake) is 

68 commonly used to describe the conversion of feed N inputs into dairy products (Cantalapiedra-Hijar et al., 2016) 

69 and also as an indicator of the N losses to the environment (Jonker et al., 1998; Castillo et al., 2000; Nousiainen 

70 et al., 2004). The main constrain to collect accurate estimations of MNE at the individual cow level is the 

71 determination of feed intake, which is costly and laborious (Hellwing et al., 2015). The identification and 

72 consolidation of techniques to predict MNE accurately from easy-to-collect samples will contribute to the design 

73 feed rations according to nutritional status and to increase the collection of records for breeding programs (Brito 

74 et al., 2021).

75 In the context of animal physiology, a biomarker can be defined as “a naturally occurring molecule, gene, or 

76 characteristic by which a particular pathological or physiological process, disease, etc. can be identified or referred 

77 to” (Oxford Dictionary; https://www.lexico.com). Ruminants have an effective internal N recycling system, where 

78 most of the excess dietary N is converted to urea in the liver through ureagenesis, designed to avoid toxic effects 

79 if ammonia enters the systemic circulation (Lapierre et al., 2005). In turn, urea is transported from the plasma to 

80 other body fluids such as saliva to be recycled as well as to the kidneys to be excreted. Because of its low molecular 

81 weight and neutral charge, urea easily diffuses across cellular membranes where it is incorporated to milk as MUN 

82 (Jonker et al., 1998). On this basis, MUN has been proposed as a biomarker for MNE and N excretion in dairy 

83 cows. However, the evidence regarding the potential of this biomarker to reflect the between-animal variation in 

84 MNE (Spek et al., 2013; Huhtanen et al., 2015) and its association with N partitioning at the individual animal 

85 level (Spek et al., 2013; Beatson et al., 2019) is inconclusive.
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86 Alternatively, the natural 15N abundance (δ15N; 15N/14N ratio relative to atmospheric N2) in animal protein is 

87 a promising biomarker for predicting MNE because of its direct link with the ruminal microbial N metabolism 

88 (Wattiaux and Reed, 1995) and with the catabolism of AA in the liver (Cantalapiedra-Hijar et al., 2016). In short, 

89 it has been demonstrated across a variety of conditions and species, that 15N natural abundance in animal proteins 

90 is higher than in the diet consumed (DeNiro and Epstein, 1981) and that N isotopic discrimination (Δ15N = 

91 δ15Nanimal − δ15Ndiet) is negatively correlated with the N use efficiency (NUE) estimated as g of milk N or retained 

92 body N/g of N intake (Cantalapiedra-Hijar et al., 2018). This discrimination phenomenon was confirmed to differ 

93 at the individual level which could be advantageous in the attempt to rank ruminants reared under similar 

94 conditions for NUE (Cheng et al., 2013; Cantalapiedra-Hijar et al., 2018) or for feed efficiency (Wheadon et al., 

95 2014; Guarnido-Lopez et al., 2021). However, not all studies found a significant negative relationship between 

96 MNE and Δ15N in lactating dairy cows (Cheng et al., 2011; Chen et al., 2020). In a recent study by Chen et al. 

97 (2020), the N isotopic signatures were strongly impacted by protein mobilization occurring during early lactation, 

98 and this resulted in positive, rather than negative associations with MNE. Another explanation for the disparity in 

99 the associations between MNE and Δ15N could be related to a high experimental error associated to the 

100 measurements of N intake, milk N, or N isotopic signatures. This experimental error can be assessed statistically 

101 by analyzing the consistency of repeated measurements (Harper, 1994). Although guidelines and quality standards 

102 for measuring these traits exist, it was hypothesized that higher repeatability values (i.e., lower experimental 

103 errors) of both NUE and Δ15N measurements could lead to improved model MNE prediction.

104 In the present study, we explored the ability of Δ15N to predict the between-animal variability in terms of 

105 MNE in lactating dairy cows and potential factors affecting the prediction ability of Δ15N. In our previous meta-

106 analysis (Cantalapiedra-Hijar et al., 2018), the association between NUE and Δ15N was explored as the proof of 

107 concept from a range of ruminant species and production conditions employing a smaller dataset. The present 

108 study brings an update and refinement of the model, with a larger data set comprised only from lactating dairy 

109 cows.
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110 MATERIALS AND METHODS

111 Experimental Data

112 A database including individual animal measurements was created from experiments proposed by the 

113 partners of the SmartCow project (grant agreement N°730924), a collaborative EU project aiming at the 

114 integration of the research infrastructures for the European cattle sector (https://www.smartcow.eu). Data 

115 originated from 20 dairy milk production experiments (ID1 to ID20) conducted in Belgium (n = 1), England (n = 

116 1), Finland (n = 2), Denmark (n = 6), and France (n = 10). These experiments were conducted as either changeover 

117 (e.g., Latin-square; n = 14) or continuous (n = 6) experiments. The initial data set included multiple observations 

118 from 425 cows (i.e., different sampling period and dietary treatments) representing a total of 1,300 individual 

119 observations of N intake, milk N, MNE, and Δ15N. A summary of studies along with its corresponding design is 

120 presented in Table 1.

121 Laboratory Analysis and Calculations

122 For both individual animal observations and dietary treatment (DT) means, values of MNE were calculated 

123 as the ratio between milk N (MN, g/d) and N intake (NI, g/d) considering all observations of the corresponding 

124 sampling period (SP) in order to account for daily variability in the observations. Nitrogen intake was calculated 

125 by multiplying dietary N content (g N/100 g DM) by the daily DMI corresponding to each SP for each cow. In 

126 the same manner for those experiments not including MN, this was calculated from average milk yield and the 

127 corresponding milk CP percentage reported for the same SP which ranged from 4 to 42 days and averaged 9 d 

128 (SD = 9.9). The large SD corresponds to the difference in the experimental setup between changeover and 

129 continuous experiments. It was assumed that milk CP contained on average 95% of protein N and thus total N 

130 was estimated with the following equation: [(milk yield × protein percentage)/6.38]/0.95 (DePeters and Ferguson, 

131 1992). Milk composition including fat, protein, and lactose was provided from each independent experimental 

132 data set and determined by infrared spectroscopy.

133 Samples of plasma (696 samples from 13 experiments) or milk (604 samples from 7 experiments) provided 

134 by the SmartCow partners were processed and analyzed for N isotopic signatures at the INRAE laboratory 

135 (INRAE, Saint-Genès-Champanelle, France). Similar relationships with NUE were previously reported when 

136 analyzing Δ15N in either plasma or milk samples (Cantalapiedra-Hijar et al., 2018). Thus, only 1 of the 2 matrices 

137 were analyzed in those occasions where samples of plasma and milk were available for a single observation. 

138 Because the within-sample repeatability of isotopic analysis is always greater when using plasma vs. milk samples, 

139 it was decided to prioritize analyzing samples of plasma over milk. Once thawed, milk and plasma samples were 
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140 vortex-mixed for homogenization and pipetted onto tin capsules and dried for 24h at room temperature before 

141 analysis. Samples were analyzed for the determination of N isotopic signatures (δ15N) using an isotope-ratio mass 

142 spectrometer (Isoprime Vision; Elementar, Manchester, UK) coupled to an elemental analyzer (EA Vario Cube; 

143 Elementar, Langenselbold, Germany) with glutamic acid used as the in-house standard. In the same manner, all 

144 dried feed ingredients or TMR samples received were analyzed in order to obtain their δ15N values for each dietary 

145 treatment and measurement period. For this, subsamples of feed ingredients and TMR were weighed into the tin 

146 capsules (between 2 to 4 mg according to N content). In the case of diets comprised of separated ingredients, the 

147 average δ15N of each ingredient was weighted by the percentage of N the ingredient represents in the diet in order 

148 to obtain a single value of δ15N for each diet and period. To ensure reliable δ15N determinations, 2 replicates for 

149 milk and plasma samples and between 3 to 4 replicates for the dietary ingredients were analyzed in order to obtain 

150 an average value with a SD < 0.2‰. Then, the isotopic discrimination between animal proteins and diet (Δ15N, ‰) 

151 was calculated for each animal as the δ15N in animal proteins minus δ15N of the corresponding diet.

152 Statistical Analysis

153 The primary objective of the present study was to assess the ability of Δ15N to predict the between-animal 

154 variability in MNE of lactating dairy cows. Therefore, the notion of a contemporary group (CG) is defined here 

155 as a set of experimental animals sharing the same DT and SP within a particular experiment (i.e., animals fed the 

156 same diet, at the same time and place). According to this definition, in an experiment with a 4×4 Latin square 

157 design there are 16 CG unless the period effect was not observed significant in which case there would be only 4 

158 CG (further explained). Between-animal variability will be then approached in the present study, through different 

159 statistical approaches, as the variance within-CG, also including the experimental error in addition to the true 

160 animal variance. Consequently, when discussing the between-animal variability or relationships between two 

161 variables at the individual level, we refer to the within-CG level. For the experiments containing CG with 3 or 

162 less observations (10 out of 20), a preliminary adjustment by SP was conducted on MN, NI, Δ15N, and MNE 

163 according to the methodology described by St-Pierre (2001). For this, data were adjusted by SP by using a simple 

164 linear model with SP (within experiment) as fixed factor and then the obtained residuals were added to the mean 

165 value (i.e., intercept) for that experiment. In situations where the period effect was not significant (P > 0.05), all 

166 animals sharing the same dietary treatment within-experiment were considered as a CG. This process allowed us 

167 to include those CG with a limited number of observations (e.g., in the case of experiments with unreplicated 

168 Latin-square design). Otherwise, it would not have been possible to calculate regressions for those conditions with 

169 a low number of observations. For continuous variables, the distribution of values was checked for normality and 
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170 analyzed for outliers (biologically impossible or unlikely values) using the boxplot function in R software (R 

171 Development Core Team, 2009). Observations with a residual beyond ±3 SD were rejected if biological reasons 

172 justified their elimination.

173 Sources of Variation for N Isotopic Discrimination and MNE

174 Estimates of variance components were evaluated using a random intercept model, through the ‘nlme’ 

175 package (version 3.1-153) using the R software with experiment, DT within experiment, and SP within experiment 

176 as grouping random factors. In this analysis, the source of variability for MN, NI, Δ15N, and MNE were separately 

177 analyzed using the following model:

Yij =  β0 +  βi +  eij [1]

178 where  is the observed variable (MN, NI, Δ15N, or MNE) for the observation j on the group i,  is the mean Yij β0

179 value for the population,  is the random variable representing the deviation for the population mean for the ith βi

180 group, and  is the random variable error for the observation j on the group i. The residual error of this model eij

181 represented the within-CG variance and thus including both the between-animal variability and the experimental 

182 error.

183 The repeatability accounts for the contribution of individual animal variability to the total variance not explained 

184 by the known experimental factors. In other words, the repeatability provides an estimate of the correlation 

185 between values from consecutive measurements conducted on the same cow once the known experimental factors 

186 (dietary treatment and experimental period within the same experiment) have been accounted for. The 

187 repeatability of MN, NI, Δ15N, and MNE was calculated for each experiment separately with the following 

188 equation:

Repeatability =  σ2
Cow ⁄ ( σ2

Cow +  σ2
Residual) [2]

189 where  and are the animal variance (between-animal variability) and experimental error (within-σ2
Cow σ2

Residual 

190 animal variability), respectively. Accordingly, we estimated and for each experiment and variable σ2
Cow σ2

Residual 

191 by including the fixed effects of SP and DT and the random effect of the cow. In each case, the confidence intervals 

192 of estimates were checked after fitting the model in order to monitor for potential problems in model definition 

193 (i.e., abnormal wide intervals) (Pinheiro and Bates, 2000).

194 Analysis of the Relationship Between MNE and N Isotopic Discrimination

195 Initially, the ‘lmList’ function of the ‘nlme’ package (Pinheiro and Bates, 2000) was employed to fit linear 

196 regressions relating MNE to Δ15N within-experiment and within-diet and experiment separately. The statistical 
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197 significance of the response of MNE to Δ15N variations was also computed with Pearson correlation coefficients 

198 and declared significant at P ≤ 0.05.

199 The relationship between MNE and Δ15N at the individual animal level was explored following different 

200 statistical approaches. In the first approach, the between-animal variability in Δ15N was assessed separately along 

201 with that of MNE once the random effect of the experiment, SP and DT (i.e., between CG variability) were 

202 removed from the actual values (i.e., MNE and Δ15N) according to equation [1] and thus to assess the ability of 

203 Δ15N to predict the between-animal variation. If a relationship between Δ15N and MNE was still significant once 

204 the between-CG variability was removed from actual values, their residuals, the ability of the biomarker to capture 

205 between-animal variation in MNE would be demonstrated (Cantalapiedra-Hijar et al., 2018). In addition, a one-

206 way ANOVA on the Δ15N residuals of the 25% highest and 25% lowest cows in terms of MNE within-CG was 

207 conducted to test on half of the population whether the Δ15N allowed us to differentiate these 2 contrasting groups 

208 of animals.

209 The second approach involved fitting mixed-effects models (St-Pierre, 2001) using the ‘nlme’ package in the 

210 R software to test the ability of Δ15N to predict MNE variations at 2 levels. For this purpose, 2 tiers of equations 

211 were developed: predictions of MNE variations across-dietary conditions within experiment by using mean 

212 dietary values (Tier 1) and the prediction of the within-CG variability of MNE by using individual observations 

213 (Tier 2). Whereas Tier 1 models were tested only at the superior grouping factor (i.e., experiment level), Tier 2 

214 models were tested across all grouping factors proposed (i.e., experiment, period within experiment and CG 

215 random effects). The random effects of these structures were tested on the intercept, slope or both. A general 

216 positive-definite matrix was employed as variance-covariance structure. These variance-covariance structures 

217 obtained from the candidate models were evaluated with the Akaike Information Criterion (AIC) in order to 

218 identify the best random effect structure to predict MNE (lowest AIC and RMSPE). Random-effect structures 

219 were always compared using the restricted maximum likelihood method. The general form of the mixed-effect 

220 model was:

Yij =  (β0 +  b0i) +  (β1 +  b1i) Xij +  eij [3]

221 where  is the MNE observed, corresponds to the observed values of Δ15N,  and  are the fixed effects for Yij Xij β0 β1

222 the intercept and the slope, respectively;  are the random effects of experimental factors; and  is the identically bi eij

223 distributed within-group error, assumed to be independent of the random effects. The coefficient of determination 

224 (R2) was determined for all candidate models via the ‘r.squaredGLMM’ function of the ‘MuMIN’ package 

225 (version 1.43.17) in the R software. Residuals were checked for homoscedasticity (i.e., the dependent variable 
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226 exhibits similar variance across the range of values for an independent variable). The models derived from this 

227 section were evaluated against the same developmental database (observed vs. predicted). This evaluation focused 

228 on evaluating the performance of Δ15N to capture the between-animal variation in MNE from the selected models 

229 based on their best random effect structure. For this evaluation, the concordance correlation coefficient (CCC; 

230 Lin, 1989) was employed which was calculated as:

CCC =  r ×  Cb [4]

231 where  is the Pearson correlation coefficient and  is the bias correction factor. The CCC indicates how far the r Cb

232 best fit line deviates from the concordance or unity line of the observed values predicted values plot. The CCC 

233 ranges from 0 to 1, with greater values indicating better model performance. While the  value provides a measure r

234 of precision, the CCC is an indicative of the model accuracy. In addition, the ratio of the root mean square 

235 prediction error (RMSPE) and standard deviation of observed values (RSR) was computed to compare the 

236 prediction performance of models.

237 How the Repeatability of Evaluated Traits Impacts Model Fit

238 In the present study, the hypothesis that better repeatability values of both dependent and independent 

239 variables would enhance the model prediction performance was tested. The selected mixed-effects model of Δ15N 

240 to predict MNE resulting from the mixed-effects meta-analysis in the Tier 2 was then evaluated for each 

241 experiment separately. Then, the coefficients of regression obtained during this model evaluation analysis were 

242 regressed on the repeatability values of MNE and of Δ15N obtained separately for each experiment (according to 

243 equation [2]). These relationships were computed with Pearson correlation coefficients and declared significant 

244 at P ≤ 0.05. If the repeatability of MNE and Δ15N values significantly correlated with the model fitting, our 

245 hypothesis about the impact of the measurement precision on the ability of Δ15N to predict MNE was accepted.

246

247 RESULTS

248 Description of the Data Set

249 Descriptive statistics for animal performances and diet composition are shown in Table 2. There was 

250 consistency in the number of observations across animal performance data, however, fewer records were available 

251 for some of the feed chemical composition variables. Only 13% of the data set (165 out of 1,300 observations) 

252 were from experiments conducted with cows in early lactation (< 50 DIM on average) and the remaining 87% 

253 observations corresponding to the mid and late lactation stages (DIM  50). Most of the experiments were 

254 conducted using Holstein Friesian cows and only ID11 and ID12 were conducted using Nordic Red cows. From 
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255 a total of 490 cows, 71% were multiparous. A wide range of DT (n = 74) was included in the initial data set. Corn 

256 silage, grass silage, and grass hay were the main forage ingredients used, but they were not present in all diets 

257 from all experiments. Feed chemical composition varied widely as a result of the heterogeneity of the experimental 

258 diets used in each independent experiment. Crude protein and NDF concentrations, measured in all experimental 

259 diets, averaged 157 and 379 g/kg of DM, respectively, and ranged from 110 to 268 and from 202 to 607 g/kg of 

260 DM, respectively. Large variation was also observed in ADF content, which ranged from 131 to 351 g/kg of DM. 

261 Based on the available information on chemical composition of diets, net energy content for lactation averaged 

262 1.56 with a range of 1.44 to 1.70 Mcal/kg of DM.

263 Data Editing for Model Development

264 In the exploratory analysis of the initial data set, it was observed that the relationship between MNE and 

265 Δ15N in early lactation (DIM < 50) was different compared to those observed in mid and late lactation (Figure 1). 

266 For instance, a strong and positive correlation (r = 0.88; P < 0.01) between Δ15N and NUE was observed in 1 of 

267 the experiments (ID20) conducted with high producing dairy cows during the first 50 d of the lactation. Therefore, 

268 in the present meta-analysis it was decided to restrict the analysis of MNE to mid and late lactation stages (DIM 

269  50) in order to improve modelling quality in terms of MNE prediction accuracy by using Δ15N. This resulted in 

270 the exclusion of experiment ID20 dedicated to examine the performance of 8 cows on 2 diets in the peripartum 

271 period (n = 32 observations), and the removal of some observations corresponding to cows in experiments 

272 transiting the declared early lactation period (Figure 2).

273 Table 3 describes statistics and repeatability values for MN, NI, MNE, and Δ15N for the experiments included 

274 in this meta-analysis. A large variation in these traits was expected due to the contrasting experimental methods 

275 and designs. For instance, NI ranged from 271 (ID4) to 1,152 g of N/d (ID5), and average MN ranged from 19 

276 (ID9) to 291 g of N/d (ID8). As a result of this, the data set covered a large range of MNE values (from 0.04 to 

277 0.47 g/g) and showed a moderate variability (CV = 13%) in relation to its mean value (0.30 g/g). The difference 

278 in 15N natural abundance between the cow and its diet (Δ15N) averaged 2.143‰ and ranged from 0.101‰ (ID1) 

279 to 4.457‰ (ID8) across diets and experiments.

280 The repeatability of all traits across experiments varied widely. For instance, repeatability values averaged 

281 from 36.1% (for NI in ID14) to 95.3% (for MN in ID14). The high overall repeatability values obtained for MNE 

282 (63.0%) was mainly due to the overall MN high mean repeatability observed across experiments. Removing 

283 observations from the early lactation (column 3 of Table 3) period led to greater repeatability estimates for all the 

284 variables analyzed when compared to the initial data set (columns 2 of Table 3).
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285 Sources of Variation for Nitrogen Partitioning and N Isotopic Discrimination

286 This analysis showed that the effect of experiment (ID) was the main grouping factor explaining the total 

287 variance for all traits included (Table 4). For instance, more than one third of the variability observed in values 

288 for MNE and Δ15N was explained by the between-experiment variability. Around half of the variability observed 

289 in MN was explained by the experiment effect and the largest source of variation for NI was captured by the 

290 dietary treatment effect. Approximately 20% of the variance was captured by the dietary treatment (diets within 

291 each sampling period and experiment) in MNE, and Δ15N. In the same manner, the random effect of experimental 

292 period further captured around 13% of the variability in Δ15N and in MNE. Furthermore, the resulting residuals 

293 for the variables analyzed were mainly due to the between-animal variation and to the unidentified random sources 

294 of error (within-animal variation).

295 Relationship Between MNE and N Isotopic Discrimination

296 The response of MNE to Δ15N variation (slope) was negative within-experiment for observations from 18 

297 out of 19 experiments (Figure 3b and Table 3), and was different from 0 (P < 0.05) for 14 out of 19 experiments. 

298 Likewise, although most slopes were negative within-diet (67 out of 72 diets; Figure 3c) only slopes for 29 out of 

299 72 diets were different (P < 0.05) from 0, likely because the number of observations within diet was rather small 

300 (mode = 4 observations per condition). A high variability in the response of MNE to Δ15N variation among 

301 experiments and dietary treatments was thus evident, suggesting the need for different response (slope) 

302 coefficients across experimental conditions in our model.

303 Relationships Between MNE and N Isotopic Discrimination at the Individual Level

304 When individual data for MNE and Δ15N were independently adjusted by the random effects of experiment, 

305 sampling period (within-experiment), and dietary treatment (within-period and experiment), their residuals were 

306 still negatively correlated with each other (P < 0.001) with a moderate fit (R2 = 0.29; Figure 4). Moreover, the 

307 one-way ANOVA performed to test the ability of Δ15N to differentiate the top 25% from the lowest 25% 

308 individuals in terms of MNE within-CG was statistically significant (P < 0.001; Figure 5) indicating that it is 

309 possible to distinguish extreme animals in terms of MNE from their N isotopic signature in a given CG.

310 Tier 1 and 2 Models. Table 5 presents the mixed-effect regression predictive models of MNE from Δ15N. 

311 These models are displayed according the data employed for their development: on the dietary treatment means 

312 (Tier 1) and on the individual observations (Tier 2). Whereas the overall slope obtained with the different models 

313 of MNE prediction from Δ15N were all negative and highly significant (P < 0.001), the slope of model 4 was more 

314 pronounced and had a slightly lower error in comparison with the others (models 2 and 3). Additionally, model 4 
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315 had a better modelling fit than the model obtained from the dietary treatment mean observations (model 1). Based 

316 on the AIC criteria, the best mixed-effects model for Δ15N included the random effects of all known experimental 

317 factors defining the CG level (i.e., experiment, sampling period, and dietary treatment) on both the intercept and 

318 the slope; that is the most complex model structure (model 4).

319 Models Evaluation. The overall fit statistics of the selected Tier 2 model for Δ15N are presented for each 

320 experiment in Table 6. In line with the fluctuating overall correlation between MNE and Δ15N observed form one 

321 experiment to another (Table 3), it was observed that the modelling performance, this time at the CG level, varied 

322 widely between experiments. Correlation coefficients (r) between actual and predicted MNE ranged between 0.20 

323 and 0.91 but increases in these correlations did not necessarily result in lower RMSPE in a given experiment. For 

324 instance, ID9 had the highest r but also had the highest RMPSE. The inclusion of RSR, which includes the SD of 

325 the observed MNE at the CG level, allowed us to evaluate the fitness of the selected model on contrasting subsets 

326 (experiments). 

327 Analysis of Repeatability for Explaining Variations in MNE Prediction Across Studies

328 A significant correlation was found between the coefficients of regression obtained during model evaluation 

329 analysis (observed vs. predicted correlation coefficient) and the repeatability values of MNE (R2 = 0.49, P = 0.06; 

330 Figure 6a) or Δ15N (R2 = 0.54, P = 0.03; Figure 6b) obtained separately for each experiment. In other words, 

331 increases in repeatability of either MNE or Δ15N enhanced the prediction fitness of the model.

332

333 DISCUSSION

334 The compilation of experiments conducted across 5 countries in Europe and resulting in a data set comprised 

335 of 1,300 individual observations of MNE in lactating dairy cows allowing us to explore the ability of Δ15N as a 

336 candidate biomarker to predict the between-animal variability of MNE across a wide range of experimental 

337 conditions. In line with previous research, we observed that on average Δ15N was negatively and significantly 

338 correlated with MNE at the individual level (Wheadon et al., 2014; Cantalapiedra-Hijar et al., 2018), but in 

339 agreement with the recent study by Chen et al. (2020) this association could not be confirmed in early lactation 

340 given the considerable body protein mobilization occurring at this stage. Finally, we identified that higher 

341 repeatability estimates for both dependent (MNE) and independent variables (Δ15N) resulted in models with better 

342 prediction fitness.

343 Associations Between MNE and N Isotopic Discrimination in Periparturient Dairy Cows
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344 In the peripartum, dairy cows often undergo a period of negative energy balance because of the inability to 

345 increase energy intake at the same rate as the energy requirements for milk production increase (de Vries and 

346 Veerkamp, 2000; Xu et al., 2018). Body reserves are used (mobilized) to compensate for the resulting energy 

347 deficit and this could alter the estimations of MNE if this phenomenon is not properly accounted for (McNamara 

348 et al., 2016; Daniel et al., 2017). Unless body mobilizations is adequately measured (Friggens and Newbold, 2007), 

349 it is difficult to ascertain how much of the feed N intake is actually contributing to the total N supply for milk 

350 synthesis.

351 In the same way as MNE measurements, N isotopic signatures are affected by protein mobilization occurring 

352 during early lactation. Recently, a study by Chen et al. (2020) tested the ability of milk isotopic signatures (15N 

353 and 13C) to predict MNE, energy balance, and milk production of early lactation cows. Our results support theirs 

354 conclusions and suggest that the natural 15N enrichment of animal proteins relative to the diet (Δ15N) could have 

355 some drawbacks and limitations when dairy cows are experiencing net protein mobilization. Indeed, it is well 

356 demonstrated from ecophysiological research and human longitudinal studies that protein mobilization and body 

357 weight loss may lead to a greater 15N enrichment of animal pools relative to the diets received (Fuller et al., 2005; 

358 Barboza and Parker, 2006). This is because organisms are using their own already 15N enriched proteins in addition 

359 to N from the diet for maintenance or functional purposes. The study by Chen et al. (2020) observed a positive 

360 and linear correlation of 0.55 between Δ15N and MNE in healthy cows from 4 to 11 wk postpartum. In the present 

361 study, a strong and positive correlation between Δ15N and MNE was observed in one of the experiments (ID20) 

362 conducted with high producing dairy cows in early lactation stage (Correa-Luna et al., 2021). Moreover, the 

363 coefficient of determination (R2) between MNE and Δ15N in the present study for the observations across all 

364 experiments in the first 50 d of lactation was lower (R2 = 0.02) and non-significant when compared to the R2 

365 obtained from the mid and late lactation stages (Figure 1). In early lactation, body protein mobilization contributes 

366 to alterations in natural 15N enrichment of milk (or plasma) over the diet, which in turn affects the response in 

367 Δ15N due to MNE variation.

368 Mobilization of body reserves has been associated with dairy cow milk production and reproduction 

369 performance (Buckley et al., 2003), and with health status (de Vries and Veerkamp, 2000; Xu et al., 2018). The 

370 alteration of the isotopic signatures due to body reserves mobilization might provide additional evidence towards 

371 indirect or proximal detection for health events. More studies ideally based on larger databases generated from 

372 real-world farming conditions are required to confirm if Δ15N is suitable for these purposes.

373 N Isotopic Discrimination as a Predictive Biomarker of MNE
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374 In line with the results by Cantalapiedra-Hijar et al. (2018), our analysis confirmed that the most important 

375 variance-component for MNE (NUE in their study) was the between experiment variation. The contribution of 

376 experiment to the variance of MNE in the present study was around a third lower when compared to Cantalapiedra-

377 Hijar et al. (2018), probably due to the differences between diets and production systems employed in both meta-

378 analyses (dairy cows vs. multiple ruminant systems). Similarly, experiment was the main grouping factor for the 

379 total variance of Δ15N and it was observed that the reduced mean MNE was associated with higher mean Δ15N 

380 (Cantalapiedra-Hijar et al., 2018). Although on average, a negative association between MNE and Δ15N was 

381 observed in the present study the responses were not the same across experiments and diets. The use of mixed-

382 effects models on individual observations allowed the effects of experiment, sampling period, and diet to be 

383 removed, and thus, to evaluate the overall association between this biomarker and MNE at the individual level.

384 Residual standard error of models obtained in this present study and those reported by Cantalapiedra-Hijar 

385 et al. (2018) are comparable and ranged from 0.020 to 0.030 g/g of NUE or MNE, respectively. The differences 

386 in the slopes obtained between this study and those obtained by Cantalapiedra-Hijar et al. (2018), could be due to 

387 the contrasting set of diets employed by them. In their study, diets corresponded to different production systems 

388 including beef cattle, dairy goats, and non-lactating sheep and in this present study, diets were only from dairy 

389 production systems. Also, the larger intercepts obtained for the models of this present study are probably related 

390 to employing observations from only lactating cows specifically in mid-late lactation. A meta-analysis to evaluate 

391 the ability of MUN to predict MNE at the individual level was conducted by Huhtanen et al. (2015). In their study, 

392 the model residual error reported as residuals was in the range of what was obtained in this study and represented 

393 a slightly larger RMSPE% (8.1% vs. 6.8%). In the same way, the error obtained by Jonker et al. (1998) when 

394 using MUN for predicting MNE at the individual level was higher than ours (14.7% vs. 6.8%). In the study 

395 conducted by Huhtanen et al. (2015), they showed that employing MUN was not robust enough as a predictive 

396 biomarker of N partitioning at the individual level, and that the systematic addition of animal factors such as milk 

397 yield, BW, stage of lactation, dietary CP, and DMI had to be considered in order to achieve better characterizations 

398 of the between-animal variability in N partitioning. The lack of response of MUN to predict MNE at the between-

399 cow variations could be due to the diurnal variation in MUN (Spek et al., 2013), and that some of this variation 

400 depends on the time of feeding and on the milking time with respect to the milk sampling (Gustafsson and 

401 Palmquist, 1993; Broderick and Clayton, 1997). Another factor of variation in MUN could depend on the method 

402 of analysis. A recent study by Portnoy et al. (2021) identified the need to perform regular calibrations for the mid-

403 infrared spectroscopy method as there is considerable within- and between-laboratory variation in the reference 
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404 values for MUN that can improve the precision of its determination. Alternatively, mid-infrared spectra of milk 

405 has been proposed as a proxy to predict animal variation in MNE in early-lactation dairy cows (Grelet et al., 2020), 

406 but this methodology could be also conditioned to calibrations in order to achieve precise determinations, 

407 especially when the determination of mid-infrared spectra is done in different laboratories. Compared to the 

408 selected model at the individual level in this study, the RMSPE% of the predictive model by Grelet et al. (2020) 

409 was more than two-fold larger (6.8 vs. 17%). The large error obtained by Grelet et al. (2020) was considered not 

410 suitable to discriminate between low- and high-NUE cows and, in this case, this was attributed to the artificially 

411 high MNE observed in early lactation related to the severe mobilization of body reserves in this period of the 

412 lactation. In this last study mentioned, and same as Huhtanen et al. (2015), they had to include additional 

413 parameters such as parity and milk production to reduce the residual error in the predictions. In our case, the 

414 significant association between MNE and Δ15N across different experiments and dietary treatments confirmed the 

415 suitability of this biomarker to significantly discriminate two cows randomly selected from the same CG if they 

416 differ by at least 0.112 g/g of MNE (±1.96 × RMSEP at 95% confidence level). At this stage, even though 15N 

417 signature in plasma has been proven to be a moderate heritable trait in ruminants (Guarnido-Lopez et al., 2021), 

418 the minimum detectable difference of MNE here found (0.112 g/g) is considered too high for being proposed as 

419 a tool to assist genetic selection on MNE. Further studies are warranted to confirm this point.

420 Model Evaluation and Trait Repeatability

421 Based on different criteria employed to evaluate Δ15N as a biomarker of MNE at the within-CG, we observed 

422 a contrasting performance across experiments (Table 6). The different modelling data set sizes from one 

423 experiment to another could have influenced some of these results (Fuentes-Pila et al., 2003). The RSR is a useful 

424 tool to compare the performance of models when different data is employed. Ideally this indicator should be less 

425 than 0.70 for satisfactory prediction models (Moriasi et al., 2007). Moreover, the different prediction fitness 

426 between experiments may also be a consequence of the diets employed in each experiment. For instance, 

427 Cantalapiedra-Hijar et al. (2016) identified that the association between Δ15N and NUE could be compromised 

428 when diets are high in rumen degradable N. If the parallel between NUE and feed efficiency is permitted, 

429 Guarnido-Lopez et al. (2021) observed that feed conversion efficiency was poorly correlated to Δ15N when 

430 employing diets high in fiber relative to diets high in starch, and attributed this to the rumen protein balance. 

431 Greater rumen ammonia concentration will increase fractionation of N isotopes at the rumen level (Wattiaux and 

432 Reed, 1995). Although beyond the objectives of this present study, mean increases in grass silage at the experiment 
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433 level resulted in poorer prediction fitness (lower r and higher RSR; data not shown) due to the increased RDP in 

434 diets with higher proportion of grass silage relative to more starchy diets (Cantalapiedra-Hijar et al., 2018).

435 The consistency of a trait or phenotype across time (i.e., repeatability) is of upmost importance for genetic 

436 studies (Friggens and Newbold, 2007). For instance, in genetic evaluations repeatability models based on test-

437 days are used for production traits in order to differentiate the genetic from the phenotypic variance (Berry et al., 

438 2014). In the present study, the mean repeatability estimate for Δ15N across experiments was higher than that 

439 observed by Wheadon et al. (2014) in growing heifers over a 3-month period (0.62 vs. 0.56). Across experiments, 

440 the mean repeatability estimate for MNE was higher in the present study when compared to another study 

441 (Ariyarathne et al., 2020) in two grazing herds with contrasting farming management in New Zealand. In their 

442 study, they observed that the repeatability for efficiency of crude protein utilization (CP in milk divided by CP 

443 intake) fluctuated from 0.60 to 0.13 according to the stage of the lactation throughout the grazing season, but their 

444 mean repeatability was still lower than our mean repeatability estimate for MNE across studies (0.38 vs. 0.65). 

445 While both studies had access to individual records of milk N (often generated from calibrated milk-meters), the 

446 observations of the present study were generated in housed conditions with individual records of N intake, and in 

447 the study by Ariyarathne et al. (2020), the repeatability was computed based on estimations of N intake on herd 

448 level calculated from pasture disappearance and this might resulted in lower figures (Berry et al., 2014). 

449 Moreover, the repeatability can also be referred as the consistency of repeated measurements (Harper, 1994). In 

450 other words, a repeatability of 1 indicates that the measurement is perfectly consistent with no experimental error. 

451 The present study confirmed the hypothesis that better repeatability values of both dependent (MNE) and 

452 independent variables (Δ15N) would enhance model prediction performance as we observed a positive and strong 

453 correlation along with the fitness prediction of the selected model (Figure 6a and 6b). This strong association 

454 observed highlights the importance of measurement precision for the identification of proxies for phenotyping 

455 animals.

456 Although in the present study we managed to establish and confirm the negative association of MNE with 

457 Δ15N over a range of experimental conditions, some potential limitations of the predictive ability for MNE of this 

458 biomarker must be highlighted. The fact that in some particular CG the negative association of MNE with Δ15N 

459 was not observed could be attributable to the uncertainly of reaching a new isotopic equilibrium when animals 

460 shifted from one dietary treatment to another, especially for those experiments with a changeover design. 

461 Nonetheless, in this study strong correlations were observed in two changeover studies (ID9 and ID15) which 

462 means that even if the isotopic equilibrium had not reached at 100%, the biomarker is still working to predict 
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463 MNE at the individual level if cows differed in at least 0.112 g/g. It was suggested that the transitioning period 

464 between a diet shift should be no less than 27 d in order to reach a new isotopic equilibrium to ensure appropriate 

465 analyzing of Δ15N data (Cantalapiedra-Hijar et al., 2015). Moreover, the determination of the isotopic signatures 

466 of diets could also be a limitation. Even though it is more feasible to pipette liquid subsamples (milk or plasma) 

467 to a higher level of accuracy and consistency onto the tin capsules, it is difficult to accurately collect minuscule 

468 portions of homogenous dried feed ingredients. Although samples were ground after drying, those feed ingredients 

469 represent a combination of large and small particles, such as silages of pasture or corn, represented a major 

470 challenge considering that the tiny fraction subsampled could substantially change from one portion to another. 

471 To avoid this, several repetitions had to be undertaken in order to reduce the CV aiming to achieve reliable δ15Ndiet 

472 determinations. Nonetheless, our results show that Δ15N is still a powerful biomarker for discriminating within-

473 CG a group of extreme cows in terms of MNE (Figure 5). This approach was recently employed to distinguish 

474 Brahman steers in terms of feed efficiency from isotopic signatures measured from tail hair and fed a low quality 

475 senesced C4 grasses (Costa et al., 2021). In line with our results, the steers with lower δ15N had higher feed 

476 efficiency, less N excreted in the urine, and higher NUE in comparison with steers having higher δ15N. Also, δ15N 

477 of the 20% highest feed efficiency steers resulted statistically different from the δ15N of the 20% lowest feed 

478 efficiency steers indicating that N isotopic signatures could be used as a tool to identify animals with contrasting 

479 NUE. In our case N isotopic signatures of milk or plasma could not differentiate all cows in terms of MNE in a 

480 given CG, but this biomarker permitted to significantly differentiate the highest from the lowest quartile of 

481 lactating cows fed the same diet at the same place and time in terms of MNE without the necessity of measuring 

482 feed intake. In the context of precision feeding, the implementation of nutritional grouping aims at providing 

483 different diets to different groups of animals to better fulfill their nutrient requirements. For instance, N isotopic 

484 signatures could be used as a tool to sub-groups cows with the highest Δ15N values (recognized as of having less 

485 MNE) and assigned diets with enzyme and/or inoculant additives to protect CP from rumen degradation or fed 

486 restricted-CP diets aiming to increase their MNE and to reduce their N excreta. Hence, cluster sub-groupings 

487 towards more precise feeding without compromising the farm management would improve the overall feed 

488 efficiency while reducing the environmental footprint which should be translated into economic and social 

489 benefits (Cabrera and Kalantari, 2016). 

490

491 CONCLUSIONS
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492 In the present study, we have confirmed the negative and significant correlation between Δ15N and MNE in 

493 lactating dairy cows regardless of experimental site, sampling period, and dietary treatment in mid and late 

494 lactation stages. However, the obtained prediction error of the developed model (0.028 g/g) exposes that Δ15N 

495 only allows to differentiate extreme cows in terms of MNE. Hence, Δ15N can be implemented as a tool to group 

496 animals (25% highest vs. 25% lowest MNE) for precision feeding. In early lactation both MNE and Δ15N values 

497 might be artificially increased because of the considerable protein mobilization of body reserves. This was 

498 confirmed by observing a positive (rather than negative) association of Δ15N along with MNE in early lactation. 

499 Increases in repeatability of either MNE and Δ15N improved the prediction fitness of the model to differentiate 

500 cows in terms of MNE when fed the same diet at the same time. This emphasizes the need to identify best sampling 

501 protocols and to monitor the accuracy of measurements towards the identification and improvement of proxies to 

502 phenotype animals.
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698 Table 1. Description of experiments included in the present meta-analysis study
Experiment Design Sampling periods Dietary treatments Reference1

ID1 Changeover 4 2 Saro et al., 2019
ID2 Changeover 2 2 Herremans et al., 2020
ID3 Continuous 36 3 Reynolds et al., 2021
ID4 Continuous 3 4 Pourazad et al., 2021
ID5 Changeover 4 8 Johansen et al., 2017
ID6 Changeover 4 6 Damborg et al., 2019
ID7 Changeover 4 4 Unpublished data
ID8 Changeover 4 6 Giagnoni et al., 2021
ID9 Changeover 4 4 Unpublished data
ID10 Changeover 4 4 Martin et al., 2019
ID11 Continuous 4 3 Unpublished data
ID12 Continuous 13 1 Wallace et al., 2019
ID13 Changeover 2 2 Guyader et al., 2016
ID14 Changeover 2 2 Guyader et al., 2017
ID15 Changeover 4 8 Mendowski et al., 2019
ID16 Changeover 4 4 Mendowski et al., 2020
ID17 Changeover 4 4 Edouard et al., 2018
ID18 Changeover 4 2 Unpublished data
ID19 Continuous 1 3 Coppa et al., 2020
ID20 Continuous 4 2 Bahloul et al., 2021

699 1Detail of references included in the Appendix.
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700 Table 2. Description of animal performances and diets from experimental studies
Item n Mean SD Minimum Maximum
Production data

Days in milk 1,300 139 83 4 1,074
DMI, kg/d 1,300 22.4 3.5 12.0 35.4
BW, kg 1,300 663 79 394 1,033
Milk yield, kg/d 1,300 32.8 8.05 3.5 60.1
Milk fat concentration, g/kg 1,300 39.8 5.9 21.1 61.9
Milk protein concentration, g/kg 1,300 33.5 3.6 25.2 50.6
Milk lactose concentration, g/kg 1,219 48.5 2.6 37.4 57.1
Fat:Protein ratio 1,300 1.19 0.16 0.70 1.93
Fat yield, kg/d 1,300 1.30 0.35 0.13 2.79
Protein yield, kg/d 1,300 1.09 0.28 0.12 1.96
Lactose yield, kg/d 1,219 1.58 0.40 0.13 3.05

Feed composition data
Diet composition1

Concentrate, % of DM 74 37.28 15.27 8.79 82.64
Corn silage, % of DM 55 30.77 17.66 4.63 75.76
Grass silage, % of DM 45 42.90 17.17 16.50 70.00
Grass hay, % of DM 28 22.44 8.88 3.03 35.78
Urea, % of DM 6 1.40 0.19 0.78 1.78

Chemical composition2

CP, g/kg of DM 74 157 25 110 268
NDF, g/kg of DM 74 379 94 202 607
ADF, g/kg of DM 36 241 66 131 351
Starch, g/kg of DM 52 186 56 92 293
Net energy for lactation, Mcal/kg DM 48 1.56 0.06 1.44 1.70
OM, g/kg of DM 62 861 94 653 955

701 1According to diet formulation.
702 2According to data availability.
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703      Table 3. Mean, variability and repeatability values for milk N, N intake, N isotopic discrimination (Δ15N), and milk N efficiency (MNE) from experimental studies used in the mixed-effect model analysis

Item Initial 
data set

Data set 
for Δ15N 

modelling
ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

n 1,300 1,135 52 12 71 167 140 128 138 87 17 32 22 100 16 10 31 32 12 23 45
Milk N, g/d

Average 173.4 168.5 175.3 103.5 163 116.1 174.8 203.3 188.5 180 128.3 152.8 213.6 188.4 144.8 125.8 140.9 157.4 153.1 178.4 182.8
SD 42.4 40.1 26.4 7.7 29 17.2 24.2 34.4 38.1 31 54 18.4 21 28.8 27.6 31.8 17.5 17.4 15.6 14.9 30.2
Minimum 19 19 94 93.8 112 70.7 120.7 133.1 46.6 116.6 19 117.8 176.3 115.6 105.3 73.6 105.9 127 122.2 139.5 112.8
Maximum 323.8 291.4 222.1 116.8 240 154.8 233.2 276.3 251.5 291.4 216.2 189.3 254.9 247.8 189.3 198 174.8 183.7 170.2 203.6 230
Repeatability1, % 70 72.4 69.8 79.8 58.6 87.2 82.1 80.1 93.5 81.4 88.8 69.6 68.9 - - 95.3 79.7 60.3 87.6 71.6 -

N intake, g/d
Average 565.8 570.3 489.3 412.5 558.6 423.1 646.6 615 627.1 666.5 533.7 541.5 630.8 615.8 486.6 481.2 490.5 653.5 463.5 499.5 559.9
SD 122.9 123.4 53 18.5 101 59.4 168.5 92.9 81.6 73.7 56.8 49.2 108.7 76.7 86.7 79.7 59.2 39.1 72.3 22.1 74
Minimum 271.1 271.1 397.8 390.6 369 271.1 397.1 412.9 445.4 493.2 442.8 449.5 496.9 464.1 347.3 399.1 410.6 538.6 372.9 457.1 362.1
Maximum 1151.8 1151.8 623.5 437 819 689.6 1151.8 856.4 801.8 826.9 672.1 645.1 851.3 822.3 635 672.5 618.6 734.6 564.1 545.5 724.2
Repeatability, % 67.6 74.8 46.9 87.2 56.1 85.7 76.9 65.7 86.8 85.8 56.5 61.1 68.7 - - 36.1 80.9 50 91.8 60.1 -

Δ15N, ‰
Sample type2 Milk Milk Plasma Milk Milk Milk Plasma Plasma Milk Milk Plasma Plasma Plasma Plasma Plasma Plasma Plasma Plasma Plasma
Average 2.209 2.239 1.104 2.928 1.983 2.041 2.713 1.999 2.112 3.164 2.286 2.023 2.653 2.818 1.558 2.018 2.298 2.775 1.384 1.362 1.497
SD 0.747 0.667 0.502 0.189 0.511 0.31 0.406 0.38 0.55 0.441 0.663 0.397 0.369 0.226 0.382 0.357 0.215 0.276 0.565 0.115 0.691
Minimum 0.038 0.101 0.101 2.626 1.122 1.297 1.82 0.943 0.763 2.208 1.562 1.307 2.079 2.303 1.06 1.503 1.843 2.15 0.584 1.131 0.2
Maximum 4.553 4.457 2.55 3.257 2.941 2.984 3.556 3.055 3.82 4.457 4.048 2.936 3.464 3.364 2.103 2.475 2.654 3.335 2.193 1.544 2.269
Repeatability, % 37.2 56.1 56.8 65.3 59.6 60 40.1 36.5 79.2 55.9 56.1 62.6 69.8 - - 93.7 75.8 63.7 59.1 41.8 -

MNE, g/g
Average 0.31 0.3 0.36 0.25 0.31 0.28 0.28 0.33 0.3 0.27 0.24 0.28 0.36 0.31 0.3 0.26 0.29 0.24 0.34 0.36 0.33
SD 0.06 0.05 0.05 0.01 0.04 0.03 0.05 0.04 0.05 0.04 0.09 0.03 0.03 0.03 0.03 0.04 0.04 0.02 0.05 0.02 0.02
Minimum 0.04 0.04 0.2 0.23 0.24 0.14 0.16 0.23 0.09 0.18 0.04 0.23 0.3 0.21 0.24 0.17 0.24 0.2 0.24 0.32 0.28
Maximum 0.69 0.47 0.47 0.28 0.39 0.36 0.39 0.44 0.38 0.38 0.32 0.35 0.43 0.36 0.35 0.31 0.35 0.27 0.41 0.39 0.39
Repeatability, % 51.7 67.5 69.8 45.4 37.4 84.3 65.7 65.9 89.5 73.1 89.9 52.8 54.4 - - 45.6 87.9 58.8 37.5 49.7 -

Correlation3 of 
MNE with Δ15N - - -0.55* -0.40NS -0.81* -0.48* -0.47* -0.41* -0.61* -0.29* -0.87* -0.45* -0.50** -0.33* -0.24NS -0.43NS -0.76* -0.07NS -0.84* -0.48** 0.44*

704 1Repeatability values were calculated as  /(  + ), where  and  are cow within a single experiment and residual variances, respectively.σ2
Cow σ2

Cow σ2Residual σ2
Cow σ2

Residual
705 2The N isotopic signatures (δ15N) of cows was determined either from milk or plasma samples.
706 3Within-study linear regressions between milk N efficiency and Δ15N: *P ≤ 0.001; **P ≤ 0.05; NSnon-significant.

Page 30 of 39

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

BIOMARKERS FOR MILK N USE EFFICIENCY IN DAIRY COWS

29

707 Table 4. Variance-component estimates of animal performances, N isotopic discrimination (Δ15N), and milk N efficiency 
708 (MNE) from experimental studies used in the mixed-effect model analysis

Item1 Mean value ± SD Estimate 95% CI2 ICC3 (%)
Milk N, g/d (n = 1,135) 168.5 ± 40.1

ID 29.1 20.7 - 41.0 45.3%
SP 0.9 0.1 - 5.8 1.3%
DT 6.8 4.6 - 10.1 10.6%
Residual 27.5 26.3 - 28.7 42.7%

N intake, g/d (n = 1,135) 560.7 ± 128.4
ID 75.8 48.7 - 117.9 34.3%
SP 5.8 0.3 - 98.9 2.6%
DT 73.8 60.1 - 90.5 33.4%
Residual 65.6 62.6 - 68.7 29.7%

Δ15N, ‰ (n = 1,135) 2.239 ± 0.667
ID 0.558 0.386 - 0.806 42.6%
SP 0.177 0.150 - 0.209 13.3%
DT 0.286 0.225 - 0.364 21.8%
Residual 0.289 0.276 - 0.303 22.1%

MNE, g/g (n = 1,135) 0.30 ± 0.05
ID 0.067 0.039 - 0.083 41.0%
SP 0.019 0.015 - 0.024 13.7%
DT 0.024 0.019 - 0.032 17.5%
Residual  0.039 0.037 - 0.041 27.8%

709 1ID = experiment; SP = sampling period within experiment; DT = dietary treatment within period and experiment.
710 2Confidence interval.
711 3Intra-class correlation coefficient = total variance explained by the corresponding random variable. For instance, for the nested 
712 random variables of DT it refers to the proportion of variance explained only by the dietary treatment from the total variance.
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713 Table 5. Mixed-effect regression models of milk N efficiency (g/g) on the N isotopic discrimination (Δ15N) using either dietary treatment means or individual observations in mid and late lactating 
714 dairy cows

Fit statistics variables1
Item§ Model no. Intercept Slope AIC2

RMSPE (g/g) RMSPE (%) R2 CCC RSR
Tier 1: dietary treatment means

Δ15N, ‰ (n = 72)
Experiment random effects 1 0.378* ± 0.017 -0.037* ± 0.007 -289 0.034 8.9 0.28 0.478 0.822

Tier 2: individual observations
Δ15N, ‰ (n = 1,135)
  Experiment random effects 2 0.403* ± 0.014 -0.049* ± 0.007 -4,313 0.036 8.8 0.30 0.380 0.882
  Experiment and period random effects 3 0.407* ± 0.013 -0.050* ± 0.007 -4,316 0.035 8.7 0.32 0.381 0.883
  Contemporary group random effects$ 4 0.417* ± 0.013 -0.056* ± 0.007 -4,498 0.028 6.8 0.36 0.400 0.851

715 1RMSPE = square root of the mean square prediction error expressed in g/g and RMSPE% as a percentage of mean observed MNE; R2 = coefficient of determination calculated for equations 
716 according to the experimental factor nesting level included in each case; CCC = concordance correlation coefficient; RSR = square root of the mean square prediction error to standard deviation 
717 of observed values ratio.
718 §At the treatment means level, the model was tested with random effects on the intercept and at the individual observations level, all models were tested with random effects on the intercept, slope 
719 or both.
720 2AIC = Akaike information criterion.
721 $Best random structure model based on the AIC criterion.
722 *P ≤ 0.001; **P ≤ 0.05; NSnon-significant.
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723 Table 6. Fit statistics of the models obtained to predict milk N efficiency (MNE) from N isotopic discrimination (Δ15N) at the individual level for each experiment used in the mixed-effect model 
724 analysis

Item Modelling 
data set ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19

Fit statistics variables1

n 1,135 52 12 71 167 140 128 138 87 17 32 22 100 16 10 31 32 12 23 45
RMSPE, g/g 0.026 0.044 0.011 0.021 0.028 0.019 0.028 0.035 0.032 0.056 0.025 0.023 0.027 0.025 0.026 0.026 0.021 0.026 0.018 0.018
RMSPE, % 8.8 12.2 4.4 6.7 10.2 6.8 8.4 11.5 11.6 23.6 8.8 6.4 8.8 8.3 9.8 8.9 8.7 7.7 4.9 5.6
CCC 0.391 0.433 0.510 0.389 0.340 0.172 0.262 0.483 0.394 0.604 0.453 0.345 0.245 0.322 0.541 0.452 0.227 0.283 0.237 0.339
r 0.52 0.55 0.61 0.43 0.45 0.20 0.40 0.72 0.49 0.91 0.51 0.40 0.33 0.45 0.71 0.80 0.25 0.45 0.43 0.41
RSR 0.857 0.829 0.764 0.922 0.891 1.044 0.914 0.767 0.866 0.653 0.855 0.906 0.945 0.867 0.710 0.762 1.035 0.860 0.893 0.911

725 1Fit statistics variables: n = observations; RMSPE = square root of the mean square prediction error expressed in g/g and RMSPE% as a percentage of mean observed MNE; CCC = concordance 
726 correlation coefficient; r = correlation coefficient; RSR = square root of the mean square prediction error to standard deviation of observed values ratio.
727 $Selected mixed-effect regression models obtained based on best random structure model based on AIC criteria (Table 5).
728 Calculations of observed and predicted for modelling evaluation at the highest contemporary group reached in the modelling stage:
729 Observed between-animal variability MNE = MNEcontemporary group – MNEindividual.
730 Predicted MNE = (Δ15Ncontemporary group – Δ15Nindividual) × -0.056 [Model 4].
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Figure 1. Relationship between milk N efficiency (MNE, g/g) and N isotopic discrimination (Δ15N, ‰) in lactating
cows using individual values (n = 1,300) for early (solid line and closed circles), mid (dashed line and open circles),
and late lactation (dotted line and open triangles). Overall relationships:
MNEEARLY = 0.408 − 0.011 × Δ15N (n = 165; R2 = 0.02; RSE = 0.08; P = 0.08);

MNEMID = 0.388 − 0.035 × Δ15N (n = 610; R2 = 0.25; RSE = 0.04; P < 0.001);

MNELATE = 0.374 − 0.039 × Δ15N (n =525; R2 = 0.28; RSE = 0.04; P < 0.001).
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Figure 2. Diagram illustrating the experiment (ID) compilation, data screening, and model development with its
evaluation. AIC = Akaike Information Criterion; RMSPE = root mean square prediction error; CCC =
concordance correlation coefficient; RSR = square root of the mean square prediction error to standard deviation
of observed values ratio.
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Independent experiments including individual data of efficiency of N 
utilization for milk production (MNE) and N isotopic discrimination (Δ15N)

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10

ID11 ID12 ID13 ID14 ID15 ID16 ID17 ID18 ID19 ID20

Initial data set
n = 1,300

First screening: 
stages of the 

lactation

Early lactation
(DIM ≤ 50)

n = 165

Mid lactation
(50 < DIM ≤ 150)

n = 610

Late lactation
(DIM > 150)

n = 525

Exclude from modelling data 
set: remove ID20 plus 133 

observations from 10 
different ID

Development of mixed-effects models to predict 
the variability in MNE of dairy cows sharing the 

same diet and period (CG)

Data set for Δ15N 
modelling
n = 1,135

Selected model (lowest AIC) was 
evaluated at the CG level

(RMSPE, CCC, RSR)

For the entire data set For each experiment

R2 = 0.02
P > 0.05

R2 = 0.25
P < 0.001

R2 = 0.28
P < 0.001
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Figure 3. Relationship between milk N efficiency (MNE) and N isotopic discrimination (Δ15N) in lactating cows using individual values (n = 1,135): (a) Simple linear regression analysis
[overall relationship: MNE = 0.385 − 0.038 × Δ15N (n = 1,135; R2 = 0.26; RSE = 0.04; P < 0.001)] where open triangles represent multiparous cows and closed circles represent primiparous
cows; (b) simple linear regression for each independent study (n = 19; within-study regression) (c) simple linear regression analysis for each independent diet (n = 72; within-diet regression).
In (b) and (c) solid lines represents negative slopes and dashed lines represents positive slopes. Correlations coefficients (and statistical significances) between MNE and Δ15N are presented in
Table 3.

BIOMARKERS FOR MILK N USE EFFICIENCY IN DAIRY COWS

34

Page 36 of 39

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

BIOMARKERS FOR MILK N USE EFFICIENCY IN DAIRY COWS

35

Figure 4. Simple linear regression between residuals of milk N efficiency (MNE) in lactating dairy cows and N
isotopic discrimination (Δ15N). Residuals were obtained when variables were independently adjusted for the random
effects of the study, period (within-study), and diet (within-period and study). Equation: MNE = −0.067 (± 0.003) ×
Δ15N, ‰ (n = 1,135; R2 = 0.29; RSE = 0.028; P < 0.001).
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Figure 5. Within-contemporary group (CG) values for N isotopic discrimination (Δ15N) in the top 25% highest and
lowest efficient animals within-CG according to milk N efficiency (MNE).
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Figure 6. Relationship between mixed-effects model of milk N efficiency (MNE) from N isotopic discrimination (Δ15N) (MNE = 0.415 − 0.052 × Δ15N) model evaluation (correlation
coefficient between observed vs. predicted MNE) at the within-study level (Table 5) and repeatability of either (a) MNE (R2 = 0.49; P = 0.06) or (b) Δ15N (R2 = 0.54; P = 0.03).
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