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Abstract 91 

The effects of pharmaceuticals on the nitrogen cycle in water and soil have recently become an increasingly 92 

important issue for environmental research. However, a few studies have investigated the direct effects of 93 

pharmaceuticals on the nitrogen cycle in water and soil. Pharmaceuticals can contribute to inhibition and 94 

stimulation of nitrogen cycle processes the environment. Some pharmaceuticals have no observable effect on the 95 

nitrogen cycle in water and soil while others appeared to inhibit or stimulate for it. This review reports on the 96 

most recent evidence of effects of pharmaceuticals on the nitrogen cycle processes by examination of the potential 97 

impact of pharmaceuticals on nitrogen fixation, nitrification, ammonification, denitrification, and anammox. 98 

Research studies have identified pharmaceuticals that can either inhibitor or stimulate nitrification, 99 

ammonification, denitrification, and anammox. Among these, amoxicillin, chlortetracycline, ciprofloxacin, 100 

clarithromycin, enrofloxacin, erythromycin, narasin, norfloxacin, and sulfamethazine had the most significant 101 

effects on nitrogen cycle processes.   This review also clearly demonstrates that some nitrogen transformation 102 

processes such as nitrification show much higher sensitivity to the presence of pharmaceuticals than other nitrogen 103 

transformations or flows such as mineralisation or ammonia volatilisation. We conclude by suggesting that future 104 

studies take a more comprehensive approach to report on pharmaceuticals' impact on the nitrogen cycle process. 105 

 106 

Keywords Pollution, pharmaceuticals. nitrogen transformations. agriculture, antibiotics  107 

 108 

1 Introduction 109 

Societies around the world are placing increasing emphasis on managing and enhancing water soil and air quality 110 

in order to achieve widely shared sustainability goals (Folke et al., 2021). Maintaining water quality in marine 111 

ecosystems has become a critical focus of environmental management (Pashaei et al., 2015) and the importance 112 

of soil quality is rapidly emerging as a key indicator of sustainable land management practices (Sofo et al., 2021). 113 

However, emerging pollutants such as pharmaceuticals pose a significant threat. Pharmaceutical consumption has 114 

increased significantly in recent decades and they are now used for a wide range of therapeutic purposes; however, 115 

pharmaceutical compounds in wastewater, sewage sludge, and manure are transported to terrestrial and aquatic 116 

ecosystems via a range of pathways including disposal, discharge, and use as fertilizer amendments (DeVries & 117 

Zhang, 2016). Within both aquatic and terrestrial environments, pharmaceutical products can have negative 118 

impacts on the nitrogen cycle and therefore impact on soil fertility, crop nutrition and the wider transformations 119 

of nitrogen in our environment. For instance, fluoroquinolones and sulfonamides have been shown to partially 120 

inhibit denitrification in the environment, and the application of swine manure containing the antibiotic tylosin to 121 

soil has been shown to change the nitrogen behaviour mediated by these microbial communities (Grenni et al., 122 

2018; Laverman et al., 2015; Roose-Amsaleg et al., 2016). 123 

Nitrogen is essential for life. Nitrogen is the fourth most abundant element in cellular biomass and is required by 124 

all living organisms, accounting for 1–4% of living cells (Hirsch & Mauchline, 2015; Woodmansee et al., 1978). 125 

Currently, industrial fertilizers are used to produce food for about half of the world's population, and fertilizer use 126 
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and legume cultivation have nearly doubled nitrogen input to terrestrial and marine ecosystems (Galloway et al., 127 

2013; Kuypers et al., 2018). Nitrogen exists in the soil mostly in the form of organic compounds, which plants 128 

require for growth but organic-N cannot be directly utilized by plants because it must first be converted to 129 

ammonium or nitrate ions before it can be absorbed.. The transformations of nitrogen in the environment 130 

collectively known as the nitrogen cycle result from a wide range of transformations including nitrogen fixation, 131 

assimilation, nitrification, and denitrification (Fig. 1). Biologically available or reactive nitrogen is derived from 132 

both abiotic (approximately 3% from lightning and 30% from the fertilizer industry) and biotic inputs via 133 

biological nitrogen fixation mediated by diazotrophic bacteria (approximately 67% from both marine and 134 

terrestrial ecosystems) (Behar et al., 2005; Fowler et al., 2015; Nardi et al., 2002). The transformations of nitrogen 135 

play an important role in the nutrition of organisms and microorganisms. As a result, nitrogen is crucial in 136 

regulating primary production in the biosphere (Gruber & Galloway, 2008). However, nitrogen also represents a 137 

significant threat to the sustainable management of land, air, and water since nitrogen contained in fertilizers and 138 

manures is easily lost to the environment causing a wide range of negative impacts including greenhouse gas 139 

emissions, damage to air quality, water quality and soil quality and a loss of biodiversity (Sutton et al., 2011). 140 

This review investigates the effects of pharmaceuticals on the nitrogen cycle in water and soil  and associated 141 

environmental issues. 142 

 143 

Fig. 1 Nitrogen cycle process 144 

 145 

2 Nitrogen cycle  146 

The aquatic and terrestrial environments are the two most important reservoirs of reactive nitrogen. At a global 147 

scale the main inputs to reservoirs of reactive nitrogen are biological N fixation and the industrial manufacture of 148 

fertilizer nitrogen. These processes contribute to an annual addition of reactive N to the biosphere of fixed N of 149 

over 450 Tg N per year (Fowler et al. 2015). The residence time of this nitrogen in terrestrial and aquatic 150 

environments varies considerably, but the return of dinitrogen to the atmosphere from these environments is 151 

achieved by the microbial reduction of nitrate in soils and water to dinitrogen gas. The large uncertainties 152 

associated with estimates of biological N fixation and denitrification at a global scale make it difficult to determine 153 

whether these processes are currently balanced (Galloway et al., 2004; Vitousek et al., 2013).   154 

 155 

2.1 Nitrogen cycle in water 156 

The availability of inorganic and organic nitrogen compounds, primarily nitrate, ammonium, and dissolved 157 

organic nitrogen (DON), drives primary production in the oceans to a large extent (Voss et al., 2013). The nitrogen 158 

cycle in water is driven by complex biogeochemical transformations mediated by microorganisms, such as 159 

nitrogen fixation, denitrification, and assimilation, as well as anaerobic ammonia oxidation (Zehr & Kudela, 160 

2011). Nitrogen reduction to ammonia is one of the most remarkable reactions catalysed by living organisms (a 161 

process known as nitrogen fixation) and a critical reaction in the nitrogen cycle (Rosca et al., 2009). The magnitude 162 
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of biological nitrogen fixation and denitrification in the ocean, as well as the corollary question of how well these 163 

two processes balance each other, are currently hotly debated (Gruber & Galloway, 2008). Biological Nitrogen 164 

Fixation (BNF) is carried out by free living prokaryotes (bacteria) and a specialized group of symbiotic 165 

prokaryotes associated with leguminous plants. 166 

 167 

2.2 Nitrogen cycle in soil 168 

Nitrogen is a key nutrient needed by plants and, as a result, we use around 120 Tg of synthetically produced N 169 

fertilizers on an annual basis to support crop production (Gerten et al., 2020). This is supplemented by inputs of 170 

nitrogen provided by 88 Tg from BNF which in terrestrial environments is largely produced by leguminous plants 171 

(Davies-Barnard & Friedlingstein, 2020). The recent realization that the response of ecosystems to global 172 

environmental change will be heavily reliant on nitrogen dynamics has sparked renewed interest in the soil 173 

nitrogen cycle (Luo et al., 2011; Van Groenigen et al., 2006; Van Groenigen et al., 2015). Three characteristics 174 

of reactive nitrogen are of particular relevance to processes of transformation in soils: (1) the abundance of protein-175 

based compounds in plants and soils, (2) the nature of the C–N bond in organic matter, litter and soil, and (3) the 176 

stoichiometry of various groups of organisms within ecosystems (Vitousek et al., 2002). 177 

 178 

2.3  The characteristics of pharmaceuticals  that impact on the nitrogen cycle 179 

The nitrogen cycle in water and soil is being altered by pharmaceutical compounds, which are emerging pollutants. 180 

Many drugs, owing to their widespread human and veterinary usage, are being continuously added to ecosystems 181 

and can exhibit pseudo-persistence (Radke et al., 2010), and recently, widespread pharmaceutical detection in 182 

terrestrial and aquatic systems has sparked significant scientific and regulatory concern (Caracciolo et al., 2015; 183 

Cardoso et al., 2014; Zuccato et al., 2010). During this time, pharmaceuticals consumption, particularly during 184 

the COVID-19 epidemic, such as chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, 185 

oseltamivir, ribavirin, teicoplanin, umifenovir, etc., have increased, which has potentially significant implications 186 

for the nitrogen cycle process (Fig. 2). Pharmaceuticals differ from other chemical contaminants in the following 187 

ways: (1) they can be formed by an infinite number of complex molecules that differ in molecular weight, 188 

structure, functionality, and form, (2) they have the ability to pass through cellular membranes and, as a result, 189 

are relatively persistent if they are not inactivated before achieving the desired therapeutic effect, (3) they are 190 

polar molecules with more than one ionizable group, and their degree of ionization, among other things, is affected 191 

by the medium's pH, (4) they are lipophilic and some are water-soluble, (5) drugs such as erythromycin, naproxen, 192 

and sulfamethoxazole can remain in the environment for more than a year; others, such as clofibric acid, can 193 

remain in the environment for several years and become biologically active due to accumulation, (6) following 194 

administration, the molecules are absorbed, distributed, and subjected to metabolic reactions that can change their 195 

chemical structure (Quesada et al., 2019), (7) plastic particles can be absorbed by pharmaceutical compounds, 196 

increasing toxicity. Antibiotics are one of the most common pharmaceutical types found in high concentrations in 197 

water and soil. Antibiotic concentrations in natural environments, such as soil or water, range from a few 198 

nanograms per litre or kg soil to hundreds of nanograms per litre or kg soil, and the highest concentrations are 199 
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typically found in areas subjected to high anthropogenic pressures, such as hospital effluents, wastewater 200 

influents, and effluents, and soils treated with manure or soils used for livestock (Grenni et al., 2018; Kay et al., 201 

2004; Orya et al., 2016; Patrolecco et al., 2015; Verlicchi et al., 2015). 202 

 203 

Fig. 2 The negative impact of pharmaceuticals on the nitrogen cycle process in water and soil 204 

 205 

3 Nitrogen fixation  206 

Biological N fixation (BNF) is a microbial process that converts molecular N2 gas to reactive, biologically 207 

available nitrogen forms (Marino & Howarth, 2009). Nitrogen fixation occurs when atmospheric nitrogen is 208 

converted to ammonia by nitrogenase, a pair of bacterial enzymes found in a few bacteria species, including 209 

cyanobacteria. However, most BNF is undertaken by Rhizobium bacteria which form a symbiotic relationship 210 

with leguminous plants (Herridge et al., 2008). Legumes are widely cultivated crop plants but also exist 211 

extensively in all ecosystems. The nitrogen fixed by biological fixation is first used to create ammonium (NH4
+) 212 

ions which are subsequently incorporated into amino acids (Abu Shmeis, 2018). 213 

 214 

3.1 Nitrogen fixation in water 215 

Most of the reactive nitrogen in inland aquatic ecosystems comes from diffuse sources within the landscape 216 

ecosystems (via nitrate leaching), usually originating either directly or indirectly from the use of fertilizers or 217 

manures. However, BNF can also provide significant nitrogen inputs (Marino & Howarth, 2014). In aquatic 218 

environments, a wide range of prokaryotic organisms capable of nitrogen fixation exist, including bacteria that 219 

use organic carbon (heterotrophs), photosynthetic bacteria that fix inorganic carbon into biomass (autotrophs), 220 

and cyanobacteria (photoautotrophs) (Marino & Howarth, 2009). Although heterotrophs constitute a significant 221 

sink for primary production and thus an essential component of the marine nitrogen cycle (Berges & Mulholland, 222 

2008) autotrophs while cyanobacteria also play a unique ecological role in aquatic ecosystems because they are 223 

the only organisms on Earth capable of fixing both inorganic carbon and nitrogen in an oxic (oxygen-containing) 224 

environment (Marino & Howarth, 2009). Marino & Howarth, (2014) found that heterotrophic bacteria and 225 

cyanobacteria are responsible for most nitrogen fixation in inland waters. Nitrogen fixation in reef ecosystems is 226 

a good example of nitrogen fixation in aquatic environments. Nitrogen fixation has since been proposed as a 227 

prominent component of the nitrogen cycle on coral reefs that may relieve N limitation and contribute significantly 228 

to overall marine N inputs (O'Neil & Capone, 2008). 229 

 230 

3.2 Nitrogen fixation in soil 231 

Nitrogen fixation in the soil can occur in a variety of ways, including anthropogenic processes, bacteria, etc. 232 

Biological nitrogen fixation is carried out by some free living microorganisms known as diazothrops, such as 233 
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Clostridium bacteria, which can be found in anaerobic soil environments, and oxygenic bacteria such as the 234 

cyanobacteria that are able to both fix nitrogen and carbon through photosynthesis.  However, more important in 235 

most soils are the inputs of biologically fixed N by the Rhizobium bacteria which exist in symbiotic relationships 236 

within root nodules leguminous plant species (Sprent et al., 2017). In more intensively managed agricultural soils 237 

the inputs of synthetic fertilisers has been used to replace biological inputs for the production of food crops and 238 

forage (Van den Berg & Ashmore, 2008). Pharmaceutical contamination that is related to human activities can 239 

however inhibit BNF in soil. According to Gomes et al., (2018), rates of photosynthesis, nitrogen-fixation, and 240 

assimilation were reduced with, increased hydrogen peroxide accumulation, by the presence of ciprofloxacin in 241 

the plants. 242 

 243 

3.3 Effects of pharmaceuticals on the nitrogen fixation 244 

Pharmaceuticals, temperature, and light, as well as soil acidity, alkalinity, salinity, phosphorus, and water content 245 

status, all have a significant impact on BNF (Nandanwar et al., 2020). The potential impact of antibiotics on 246 

environmental bacteria is of significant concern, both from the perspective of enhancing the environmental 247 

reservoir of antibiotic resistance (the resistome) and through the inhibition of microorganisms that carry out 248 

important ecosystem services (Boxall, 2004; Brandt et al., 2015; Durso & Cook, 2014; Finley et al., 2013; Gaze 249 

et al., 2013; Griffiths & Philippot, 2013; Kumar et al., 2005; Revellin et al., 2018), especially for nitrogen fixation. 250 

 251 

4 Nitrification  252 

Nitrification takes place in soils, sediments, and aquatic environments (Butterbach-Bahl et al., 2011) and it is an 253 

oxidation process of converting ammonia (NH3) to nitrite (NO2
-) and then to nitrate (NO3

-) (Casciotti et al., 2011). 254 

Ammonia oxidation (NH3 → NO2
-) and nitrite oxidation (NO2

- → NO3
-) are two consecutive nitrification 255 

steps, undertaken by two physiologically distinct clades of ammonia-oxidizing bacteria (AOB) and nitrite-256 

oxidizing bacteria (NOB), whose close collaboration is required for complete ammonia-to-nitrate conversion (Hu 257 

& He, 2017). The ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria are all 258 

autotrophic microorganisms that perform the nitrification process as well as nitrification, unlike ammonification 259 

and denitrification, is performed by a small number of organisms (Prosser, 2007). 260 

NH4
+ + O2 + H+  → NH2OH + H2O 261 

NH2OH + H2O → NO2
− + 5H+ 262 

 263 

4.1 Nitrification in water 264 

Nitrification has particular importance in aquatic environments. Nitrification reduces the demand for nitrogenous 265 

oxygen in wastewater effluents and nitrification is essential in wastewater treatment because it aids in the removal 266 

of ammonia, which is toxic to many fish (Ergas & Aponte-Morales, 2014). Nitrification is the final step in the 267 
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regeneration of inorganic nitrogen from organic matter decomposition in the ocean, and it is tightly linked to 268 

organic matter flux in the water column and the majority of nitrification takes place near the surface layer namely 269 

the euphotic zone (Ward & Zafiriou, 1988; Ward, 2011). Nitrification rates in aquatic environments are 270 

determined by environmental factors such as salinity, temperature, oxygen, and pH. Nitrification in the water 271 

relies heavily on ammonia oxidation. Because many pharmaceuticals are often compounds that are resistant to 272 

biodegradation, their presence in raw sewage may have an impact on the performance of sensitive sewage 273 

treatment plant (STP) processes such as nitrification (Dokianakis et al., 2004). Ammonia-oxidizing bacteria 274 

(AOB) can be used for the removal of pharmaceutical residues which have become an emerging threat to the 275 

aquatic system in the last decades (Soliman & Eldyasti, 2018). Another study found that N. europaea and mixed 276 

ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge could degrade triclosan and bisphenol A, but 277 

only mixed cultures could degrade ibuprofen, demonstrating that ammonia-oxidizing bacteria (AOB) can remove 278 

pharmaceutical residues whether in pure or mixed cultures (Roh et al., 2009; Soliman & Eldyasti, 2018). An 279 

important example of the negative impact of pharmaceuticals on the nitrogen cycle is related to nitrification and 280 

denitrification. Caracciolo et al., (2015) determined that at 250 mg/L concentrations, acetaminophen had a 281 

significant inhibitory effect (>25%) on nitrification and denitrification rates. 282 

 283 

4.2 Nitrification in soil 284 

Nitrification, or the oxidation of NH4
+ to NO3

-, occurs readily in oxic environments such as well-drained soils due 285 

to the activity of nitrifying prokaryotes, and this process is important for soil fertility because nitrate is easily 286 

assimilated by plants (Ergas & Aponte-Morales, 2014; Zhu et al., 2019). A range of conditions, such as soil 287 

temperature, moisture, and pH, influence rates of nitrification to occur in the soil (Izaurralde et al., 2012). 288 

However, nitrification in soil with low pH can occur (Hu et al., 2014). Soil, oxygen status and ammonium 289 

concentrations, play important role in rates of nitrification (Baggs et al., 2010; Butterbach-Bahl et al., 2013; Zhu 290 

et al., 2019). The ammonia oxidation pathway is the first and rate-limiting step in nitrification, converting 291 

ammonia to nitrite and it is the primary contributor to the ammonium:nitrate balance in the soil (Kowalchuk & 292 

Stephen, 2001; Beeckman et al., 2018).  293 

 294 

4.3 Effects of pharmaceuticals on the nitrification 295 

To explain the impact of pharmaceuticals on nitrification, several examples can be reviewed (Table 1). The 296 

inhibitory effect of drugs on nitrifying microorganisms, in addition to being important for treatment plant 297 

efficiency, is relevant as a signal of potential negative effects on aquatic organisms when pharmaceutical-298 

containing wastewater is discharged to a receiving water body (Carucci et al., 2006). In addition, at 250 mg/L 299 

concentrations, acetaminophen had a significant inhibitory effect (>25%) on nitrification and denitrification 300 

rates (Barra Caracciolo et al., 2015). On the other hand, the nitrification process is an important part of the 301 

removal process of pharmaceuticals. Various mechanisms are used to remove pharmaceuticals from water 302 

including photodegradation, sorption, biodegradation, and phytoremediation (Hijosa-Valsero et al., 2016). 303 

According to some studies, pharmaceuticals can be removed through the nitrification process (autotrophic 304 



10 
 

biodegradation) (Peng et al., 2019). Indeed, it is known that nitrification can enhance pharmaceuticals removal 305 

(He et al., 2018). For example, there was high removal of diclofenac, ibuprofen, paracetamol, and metoprolol 306 

(60–100%), and partial removal of trimethoprim and carbamazepine (30 and 60%) (Köpping et al., 2020). Many 307 

studies also found that some pharmaceuticals had no effects on nitrification, such as tetracycline on nitrification 308 

(Jiang, et al, 2021). 309 

 310 

 311 

Table 1 List of observed effects of pharmaceuticals on the nitrification rate 312 

 313 

5 Ammonification  314 

Ammonification is defined as any chemical reaction that converts NH2 groups into ammonia or its ionic form, 315 

ammonium (NH4
+), as an end product, and it is the final step of the nitrogen cycle that involves an organic 316 

compound and serves as a link between the depolymerization of large organic molecules and the nitrification step. 317 

In other words, the production of ammonium from organic matter is known as mineralization, which is sometimes 318 

referred to as ammonification (Kendall et al., 2013). Mineralization is known to be important in marine and 319 

terrestrial environments. Mineralization of bacteria and phytoplankton in sea water column can be an important 320 

source of nutrients in the water (Kendall et al., 2013). 321 

 322 

5.1 Ammonification in water 323 

The intensity of bacterial ammonification in water bodies is proportional to the amount of organic matter present 324 

(Billen & Fontigny, 1987; Podgórska & Mudryk, 2007). Because biological ammonium assimilation by bacteria, 325 

biofilms, and aquatic plants is preferable to nitrate assimilation, ammonification of organic nitrogen is an 326 

important process in water. When a plant or animal dies or an animal expels waste, the initial form of nitrogen is 327 

organic. Bacteria or fungi convert organic nitrogen from organic substrates back to ammonium (NH4
+), in a 328 

process called ammunition or mineralization. The enzymes involved are: Glutamine synthetase (cytosolic and 329 

plastic); Glutamine 2-oxoglutarate aminotransferase (Ferredoxin and NADH-dependent) and Glutamine 330 

dehydrogenase, which have a minor role in the assimilation of ammonium, but are important in the catabolism of 331 

amino acids (Butnariu & Butu, 2019a). In this first stage of ammonification, nitrogenous organic residues are 332 

transformed into ammonia derivatives. This is done by bacteria such as Bacillus, Bacterium, or Micrococcus. In 333 

water, ammonia derivatives exist in two chemical forms (Butnariu & Butu, 2019b). The first is free molecular 334 

ammonia (NH3), a rarefied gas that is formed especially if the pH of the water is greater than or equal to 7. At a 335 

pH of less than 7, ammonia associates with a water molecule and forms ammonium hydroxide (NH4OH) 336 

(Vardanian et al., 2018). Ammonification starts right from the moment we introduce water into the aquarium 337 

because this environment is never 100% pure. The concentration of ammonia derivatives then increases 338 

progressively. Now, these derivatives are broken down by bacteria, present in large numbers. A recent study found 339 

that after 11 days, the ammonia concentration was already close to zero (Butu et al., 2020). 340 
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5.2 Ammonification in soil 341 

Nitrogenous organic substances, which account for 99% of total N reserves of most soils (Butterbach-Bahl et al. 342 

2011), are made up of humic reserves and other compounds that naturally accumulate in the soil as a result of the 343 

biological fixation of N2 and the degradation of plant and animal organic residues, and manure. The bacterial cells 344 

themselves represent a mass of organic substance, predominantly protein, of about 6 tons/ha, to which are added 345 

about 20 tons represented by the rest of the microflora and microfauna. If this organic N remained unchanged, the 346 

N reserves available to plants would diminish year after year, eventually ceasing to allow plant growth. Normally, 347 

however, these substances undergo a mineralization process, at the end of which they are brought to the state of 348 

NH3 (Jarvis et al. 2011). The ammonification process itself is preceded by the decomposition of protein molecules 349 

by hydrolysis, using extracellular proteases released by numerous species of aerobic and anaerobic 350 

microorganisms according to the general formula: 351 

Protein → peptone peptides → amino acid under the influence of enzymes: proteinase, peptonase, peptidase and 352 

with the elimination of water. 353 

The amino acids resulting from this degradation enter the bacterial cells, where they undergo a deamination 354 

process, which results in NH3 and the corresponding organic acid. There are several types of deamination, namely: 355 

(1) hydrolytic deamination, (2) hydrolytic and decarboxylation deamination, (3) reducing deamination, (4) 356 

reducing decarboxylation deamination (anaerobic), (5) oxidative deamination with decarboxylation, and (6) 357 

desaturation with desaturation . 358 

Such reactions, in addition to N mineralisation, result in organic acid formation: acetic, formic, propionic, butyric, 359 

valerian. Depending on the environmental conditions and the nature of the microflora, these acids can be 360 

completely oxidized to CO2 and H2O (in the aerobic environment), accumulated as such, transformed into 361 

alcohols. Ammonification in the strict sense can therefore be defined as a biological process in which NH3 is 362 

released into the soil, as a result of the action of soil microflora on amino acids resulting from the decomposition 363 

of protein substances (Butterbach-Bahl et al. 2011). In this sense, the release of NH3 under the action of temporary 364 

root mycoflora is not included in the ammonification. In this process NH3 can be reused as such by a whole range 365 

of microorganisms. Most of it still undergoes a transformation absolutely necessary for life in the soil, in forms 366 

accessible to plants, and the rest can be fixed in the soil, especially in acid soils or evaporate into the atmosphere. 367 

The microflora capable of producing ammonification of protein substances is numerous and diverse, and it acts 368 

as follows over time: aerobic bacteria enter the picture early on in the process, such as Bacillus cereus var. 369 

micoides, B. subtilis, B. thermoproteolyticus, unsporulate species such as Serratia marcescens, Arthrobacter, etc, 370 

and facultatively anaerobic species such as Proteus vulgaris, Pseudomonas fluorescens, Escherichia coli, Sarcina 371 

lutea, etc. After 2-3 days, anaerobic species such as Clostridium putrefaciens, C. perfringens, and some 372 

actinomycetes such as Streptomyces violaceus, and Micromonospora chaleea come into action, which begin to 373 

predominate and make the release of NH3 to be maximum. Moulds invade the environment and the release of NH3 374 

decreases because they use NH3 for protein synthesis and produce a lot of acids that neutralize the ammonia. Urea 375 

hydrolysis is performed by a large group of microorganisms capable of producing the enzyme urease (Mekonnen 376 

et al., 2021). In this group we find species of the genera: Achromobacter sp., Bacillus sp., Clostridium sp., 377 

Corynebacterium sp., Pseudomonas sp., Actinomycetes, and filamentous microfungi. To these is added the 378 
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urobacteria group, which is distinguished by resistance to high concentrations of urea and alkaline pH, as well as 379 

the ability to release large amounts of NH3. Urobacteria include Bacillus (Urobacillus) pastures, Micrococcus 380 

ureae, Planosarcina ureae, and others. The ammonifying activity of urobacteria is very important because urea 381 

contains 47% N2 - which would otherwise be unused by plants.  382 

 383 

5.3 Effects of pharmaceuticals on the ammonification 384 

The nitrification process is more sensitive to different chemicals such as pharmaceuticals than the ammonification 385 

process partly because of the diversity of organisms associated with ammonification (Cycon et al., 2016). Various 386 

pharmaceuticals have a negative impact for instance, Cycon et al., (2016) reported that stimulation happened in 1 387 

mg·kg−1 soil of naproxen and ketoprofen after 1, 15, and 30 days, while diclofenac and ibuprofen had no effect 388 

on the rate of ammonification (Table 2). 389 

 390 

Table 2 List of observed effects of pharmaceuticals on the ammonification rate 391 

 392 

 393 

6 Denitrification  394 

Denitrification is the microbial process of converting nitrate and nitrite to gaseous nitrogen forms, primarily 395 

nitrous oxide (N2O) and nitrogen (N2). The availability of N oxides, nitrite (NO2
-), or nitrate (NO3

-), which are 396 

formed from the autotrophic nitrification pathway substrate, ammonia (NH3), which is derived from ammonium 397 

(NH4
+), is the key to denitrification as defined (Martens, 2004). The nitrate ion acts as a terminal electron acceptor 398 

in the absence of oxygen during the process of respiration, leading to a sequence of reduction reactions which 399 

ultimately produce N2: 400 

NO3
− → NO2

− → NO → N2O → N2 401 

 402 

Denitrification is a process that occurs in all of our terrestrial and aquatic ecosystems, including tropical and 403 

temperate soils, natural and intensively managed ecosystems, marine and freshwater environments, wastewater 404 

treatment plants, manure storage facilities, and aquifers. The factors that determine the rate of denitrification are 405 

nitrate availability, the availability of an oxidisable organic substrate, and the oxygen concentration (indirectly 406 

determined by soil water content) (Butterbach-Bahl et al., 2011). 407 

 408 

6.1 Denitrification in water 409 

An increase in nitrate concentrations in groundwater observed worldwide as a result of fertilizer use and industrial 410 

wastewater raises concerns due to the serious consequences for human health (Park et al., 2005). One of the most 411 



13 
 

important applications of denitrification is in water treatment. For many years, denitrification has been utilized 412 

for treatment in aquatic environments especially for wastewater (Gayle et al., 1989). Moreover, nitrification and 413 

denitrification are the two most common items for removing inorganic nitrogen from wastewater (Zhu et al., 414 

2016). 415 

 416 

6.2 Denitrification in soil 417 

Nitrates accumulated in the soil, as a result of the nitrification process or by application of fertilizers, are partly 418 

consumed by higher plants, and a variable amount is washed away by infiltration and runoff. Microorganisms can 419 

use nitrates in two ways: they can be assimilated during protoplasm synthesis (assimilation of nitrites) or they can 420 

be reduced to oxidize an organic or mineral substance (Butnariu & Butu, 2020). Denitrification is a process that 421 

closes the circuit by returning molecular N2 to nature. The reduction of nitrates in the denitrification process 422 

creates either N2 or NH3, releases intermediate compounds such as the greenhouse gas N2O. Optimal production 423 

conditions are achieved in water-saturated soils and in deep structures in which the following groups of 424 

microorganisms can react (Butu et al., 2021). The actual denitrifying bacteria that reduce NO3
- to N2 are 425 

Pseudomonas stutzeri and Pseudomonas denitrificans. Bacillus megaterium, Escherichia coli, Pseudomonas 426 

aeruginosa, and other microorganisms in the general soil flora are capable of reducing NO3
- to NO2

-, as are some 427 

sulfurous bacteria such as Thiobacillus denitrificans. It is certain that the reduction of nitrates to gaseous N2 428 

represents for the soil a real loss that can reach up to 120 kg N2/ha/year, although some of the released N2 can be 429 

taken up by anaerobic N2 fixatives such as Clostridium pasteurianum (Bagiu et al., 2020a). It also is of 430 

environmental concern given that N2O is a greenhouse gas with nearly 300 times the warming potential of CO2. 431 

At the same time, incomplete reduction, up to the intermediate stages, of nitrites and NH3 is less detrimental to 432 

the soil fertility, as NH3 can be used by some heterotrophic microorganisms, while nitrites are taken up by nitrate 433 

bacteria and nitrate reoxidations (Bagiu et al., 2020b). 434 

 435 

6.3 Effects of pharmaceuticals on the denitrification 436 

The conversion of nitrates to gaseous nitrogen occurs in the production of alkalinity, leading to an increase of pH. 437 

The optimum values of pH are in 7-8 domain with different optimal values for different bacterial populations 438 

(Simek et al., 2002). In case that for the denitrification process is not enough organic substrate for his ensuring it 439 

can be used different organic compounds as: methanol, ethanol, acetic acid, residues of organic materials. Most 440 

used sources as electron donors are the organic matter from waste water and methanol. Their choosing is made 441 

having regard the economic part and the local availability. Table 3 combines several types of research that 442 

examined how pharmaceuticals affect denitrification in water and soil. 443 

The widespread nature of denitrification in soils reflect the underlying diversity of soil microorganisms that are 444 

responsible (Butterbach-Bahl et al. 2013). This diversity of organisms is likely to mean that individual 445 

pharmaceutical products are unlikely to completely inhibit the denitrification process since in cases where 446 

jnhibition of individual species or genera occurs as there are usually other species that can take over the 447 
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denitrifying role.  For this reason the denitrification process appears to be less sensitive to the presence of 448 

pharmaceutical substrates than other N cycle processes. 449 

 450 

Table 3 List of observed effects of pharmaceuticals on the denitrification rate451 
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7 Anammox  452 

The anammox process accounts for a significant portion of nitrogen conversion in the oceans (Chen et al., 2019). 453 

There appear to be some enzymatic similarities between anammox and aerobic NH3 oxidation, and anammox has 454 

the same ecological significance as denitrification, i.e., the loss of fixed nitrogen in anoxic environments (Ward, 455 

2008). Anammox (anaerobic ammonium oxidation), a reaction that oxidizes ammonium to dinitrogen gas under 456 

anoxic conditions using nitrite as the electron acceptor, was a significant discovery in the nitrogen cycle. Nitrite 457 

and ammonium are converted into dinitrogen gas in this process: 458 

NH4
+ + NO2

− → N2 + 2H2O 459 

 460 

7.1 Anammox in water 461 

Anaerobic ammonium-oxidizing (anammox) bacteria are one of the most recent additions to the biogeochemical 462 

nitrogen cycle and can produce more than half of the N2 gas released (Jetten et al., 2009). There are five types of 463 

anammox bacteria: (1) Ca. Brocadia, (2) Ca. Jettenia, (3) Ca. Kuenenia, (4) Ca. Anammoxoglobus, and (5) Ca. 464 

Scalindua (Kartal et al., 2007; Kartal et al., 2008; Kuypers et al., 2005; Quan et al., 2008; Schmid et al., 2000; 465 

Schmid et al., 2003; Strous et al., 1999; Wu et al., 2019). Anammox bacteria exist in a variety of natural habitats, 466 

including anoxic marine sediments and water columns, freshwater sediments, water columns, freshwater marshes, 467 

rivers, meromictic lakes, and river estuaries (Dale et al., 2009; Humbert et al., 2010; Kuypers et al., 2005; Lam et 468 

al., 2009; Long et al., 2013; Philipot et al., 2007; Rich et al., 2008; Schmid et al., 2007; Schubert et al., 2006; 469 

Thamdrup et al., 2006; Trimmer et al., 2003; Zhang et al., 2007). Indeed, the anammox process offers an appealing 470 

alternative to current wastewater treatment systems for ammonia-nitrogen removal (Jetten et al. 2009). Moreover, 471 

anammox research has primarily focused on its role in the oceanic nitrogen cycle, with anammox contributing 472 

more than 50% of N2 loss in some marine environments (Arrigo, 2005; Devol, 2015; Xi et al., 2016). 473 

 474 

7.2 Anammox in soil 475 

Anammox bacteria have also been detected in permafrost soils, reductisol, agricultural soils, peat soils, and rice 476 

paddy soils (Humbert et al., 2010; Long et al., 2013; Philipot et al., 2007; Zhu et al., 2011) and anammox bacteria 477 

were detected to be more common and phylogenetically diverse in terrestrial ecosystems than in most other 478 

environments (Humbert et al., 2010; Moore et al., 2011; Humbert et al., 2012; Zhu et al., 2011). For instance, 479 

anammox activity accounts for 1 to 37% of total N2 loss from paddy soils (Sato et al., 2012; Xi et al., 2016; Zhu 480 

et al., 2011). 481 

 482 

7.3 Effects of pharmaceuticals on the anammox 483 
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Several studies have found that pharmaceuticals have a negative effect on anammox bacteria (Table 4). 484 

Environmental factors such as temperature, heavy metals, nanomaterials, and antibiotics limit the growth of 485 

anammox bacteria (Li et al., 2019; Zhang et al., 2019; Zhang et al., 2021).  486 

 487 

Table 4 List of observed effects of pharmaceuticals on the anammox rate 488 

 489 

8 Conclusions 490 

This review has demonstrated that pharmaceuticals can exert a wide range of stimulatory and inhibitory effects 491 

on nitrogen cycle processes in different environments, which may be modified by different concentrations and 492 

types of pharmaceuticals. Even at low concentrations, nitrification and denitrification appear sensitive to 493 

pharmaceuticals (μg·L−1). However, inadequate information exists regarding how pharmaceuticals can affect 494 

nitrogen fixation and ammonification or how they interact in the environment. It is likely that a range of 495 

mechanisms is responsible for the observed impacts of pharmaceutical products   including direct stimulation or 496 

inhibition of microbial populations, alterations of rates of chemical reactions (through impacts on enzyme 497 

controlled metabolic pathways) indirect actions (such as reactions with substrates influencing to microbial 498 

activity, and other indirect  impacts of  pharmaceutical products. Such information is critically important if we are 499 

develop more sustainable use of nitrogen as a critical component of our food production systems. Future 500 

investigations will need to take a more systematic and comprehensive approach to address these concerns. We 501 

need to know more about the source, the pathways of transport and longevity of pharmaceuticals in the 502 

environment to fully understand their impact.  The process of decomposition of biologically active molecules can 503 

also lead to the production of intermediate products that can have impacts on the environment. There is evidence 504 

that the effects of pharmaceutical exposure may not manifest themselves for as long as one year after initial 505 

exposure, underscoring the need for long-term studies that replicate pharmaceutical applications over time or 506 

deliver continuous exposure (DeVries & Zhang, 2016). Thus, future investigations will need to take a more 507 

systematic and comprehensive approach to address these concerns. 508 
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