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Abstract
Association mapping using crop cultivars allows identification of genetic loci of

direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) culti-

vars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used

for genome-wide association studies (GWAS) using historical phenotypic data for

grain protein content, Hagberg falling number (HFN), test weight, and grain yield.

Power calculations indicated experimental design would enable detection of quanti-

tative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high

power of >80%, falling to 40% for detection of a SNP with an R2≥ .5 with the same

QTL. Genome-wide association studies identified marker-trait associations for all

four traits. For HFN (h2 = .89), six QTL were identified, including a major locus

on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein

content (h2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and

6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one

on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield

(h2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE),

of which five were located within 16 Mbp of genetic regions previously identified

as under breeder selection in European wheat. Our study demonstrates the utility of

exploiting historical crop datasets, identifying genomic targets for independent vali-

dation, and ultimately for wheat genetic improvement.

Abbreviations: GWAS, genome-wide association study; HFN, Hagberg

falling number; HGCA, Home Grown Cereals Authority; LD, linkage

disequilibrium; MAF, minor allele frequency; PCA, principal component

analysis; PHS, preharvest sprouting; QTL, quantitative trait locus; SNP,

single nucleotide polymorphism.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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1 INTRODUCTION

Bread wheat (Triticum aestivum L.) is the world’s most

widely cultivated cereal crop, with global demand projected

to increase by 60% by 2050. Breeding over the last 100 years

has been very successful in increasing wheat yields (e.g.,

Mackay et al., 2021), and the most sustainable way to meet

increased future demand is via faster genetic improvement.
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Accordingly, the development of high yielding wheat cul-

tivars with good bread-making quality is a major focus for

wheat breeders (Reif et al., 2011). Over recent decades, breed-

ing has resulted in steady genetic gains in European wheat

(Mackay et al., 2011). With the aim of further increasing

the rates of wheat genetic improvement, the incorporation

of marker-assisted strategies into breeding pipelines is now

common. In marker-assisted selection (MAS) approaches,

genetic loci must first be identified, and linked or diagnos-

tic markers developed (Adamski et al., 2020). Historically,

biparental mapping populations have predominantly been

used for genetic mapping in wheat. A disadvantage of such

approaches is that such populations capture limited genetic

variation, and that the effects of quantitative trait loci (QTL)

can be overestimated (Cockram & Mackay, 2018). The use of

these QTL in marker-assisted selection often does not give

expected results, as the biparental populations investigated

may not represent breeding germplasm or may not segre-

gate for the targeted QTL (Cockram & Mackay, 2018; Kulwal

et al., 2012). More recently, association mapping, first devel-

oped for human genetics (Bodmer, 1986; Welcome Trust Case

Control Consortium, 2007), has been used for genetic analy-

sis in cereal crops (e.g., Bentley et al., 2014; Cockram et al.,

2008, 2010; Corsi et al., 2020; Mellers et al., 2020; Waugh

et al., 2010). These capture high levels of genetic diversity and

genetic recombination (Cavanagh et al., 2008). Additionally,

historical phenotypic data is often available (Mackay et al.,

2011). A useful source of historical traits of relevance to grow-

ers and users are those collected during the process of cul-

tivar registration (Jamali et al., 2019). In the United King-

dom, four such traits of agronomic or end-use importance

are routinely measured during the process of wheat cultivar

registration for the Agriculture and Horticulture Development

Board Recommended List: grain yield, protein content, Hag-

berg falling number (HFN), and test weight (also known as

‘specific weight’).

Grain yield is the principle agronomic trait for wheat breed-

ers and growers. Yield is often found to be of low to moder-

ate heritability, although it shows clear evidence for genetic

improvement—for example in U.K. wheat yields over a period

of 30 years (Mackay et al., 2011). However, historical datasets

however often cover a far broader range of cultivar yields,

with each cultivar also tested over several years at many loca-

tions, with a consequential and substantial increase in heri-

tability. However, the highly polygenic nature of yield means

identification of QTL remains challenging. At a fundamental

level, grain yield can be described using three major factors:

grain size (e.g., grain length, width, weight, shape), the num-

bers of grains per ear, and the number of ears within a spe-

cific area (Gegas et al., 2010). These are in turn influenced

by other traits, such as accumulation and transport of photo-

synthetic products, flag leaf size, plant height, biomass, and

the rate of plant development across its lifecycle (most com-

Core Ideas
∙ An association mapping panel of 150 genotyped

U.K. winter wheats was assembled.

∙ Data for four grain quality traits was sourced from

cultivar registration records.

∙ Genome-wide association studies (GWAS) identi-

fied at least five QTL for each trait.

∙ A major GWAS hit for Hagberg falling number was

identified on chromosome 7A.

∙ A third of yield GWAS hits co-located with genetic

loci under breeder selection.

monly determined by measurement of flowering time). Addi-

tionally, the postharvest processing of wheat grain for sub-

sequent food use mean that traits that affect milling perfor-

mance, such as the shape, size, density, and uniformity of the

grain, are important for flour yield. In addition to yield, there

are several grain quality characters that are important in deter-

mining end use, and thus the monetary value of the grain. In

the United Kingdom, wheat cultivars are classified into four

quality groups by the National Association of British and Irish

Millers (Nabim, http://www.nabim.org/), based on grain pro-

tein content, HFN (a measure of α-amylase enzymatic activ-

ity in sprout-damaged grain) and test weight (a measure of

grain density, determined by the weight of a set volume of

grain). Nabim Group 1 and Group 2 cultivars are high protein,

hard grained cultivars suitable for bread making and attract a

price premium. Group 3 represents cultivars with lower pro-

tein (∼11%) and soft milling characteristics due to their soft

grain phenotype and are typically used for biscuit making.

Group 4 cultivars have low protein content, can be either hard

or soft grained, and are used predominantly for animal feed

(UK Flour Millers, 2017).

Protein content in wheat determines how flour performs

during baking and is normally measured as percent of dry mat-

ter using near infrared spectrometry (NIR). For bread making

(Nabim Groups 1–2), grain protein content values of ≥13%

are required, whereas for biscuit making (Group 3), grain pro-

tein content levels are typically 11–11.5% (UK Flour Millers,

2017). In addition, protein content represents an important

factor for the nutritional value of the grain or flour: annual

wheat production is estimated to be ∼730 Tg (FAO, 2016),

which translates to ∼73 Tg of protein for human and animal

consumption. Protein is predominantly present in the form of

grain storage proteins, including the high molecular weight

glutenin subunits (HMW-GS), low molecular weight glutenin

subunits (LMW-GS), and the gliadins. Grain quality is deter-

mined by the quantity and quality of the storage proteins

http://www.nabim.org/
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present, as well as the ratio of glutenin to gliadin (Jouanin

et al., 2018).

The HFN (Hagberg, 1960) is an internationally standard-

ized method to assesses starch properties in wheat flour. The

test measures the time in seconds a stirrer that is placed in

a test tube of heated coarse meal-water mix takes to fall

down through the mixture, thus determining the effects of

α-amylase enzymes on starch properties within the mixture

(Mohler et al., 2014). The HFN is principally determined by

two factors: preharvest sprouting (PHS), a loss of dormancy

resulting in premature germination of the grain while still on

the parent plant, and late-maturity amylase, the untimely syn-

thesis of high levels of high isoelectric point isozymes of α-

amylase during the latter stages of grain development, with-

out sprouting. In both cases, α-amylase activity during the

later stages of grain development lead to starch breakdown

and reduced grain quality (Mares & Mrva, 2008), resulting

in lower HFN values due to reduced viscosity of the mix-

tures used to assess HFN. In the United Kingdom, grain suit-

able for bread making must have a HFN ≥250 s (UK Flour

Millers, 2017). Grain which doesn’t meet this threshold result

in breads with lower volume and a compact, sticky crumb

structure (Gale & Lenton, 1987).

Test weight, also known as specific weight, is a measure-

ment of the weight of a known volume of grain and is an

important indicator of quality. Low test weight can indicate

poorly filled or misshapen grains, and/or high moisture con-

tent. Wheat with a low test weight generally results in low

flour extraction rates. For bread making quality, test weights

of more than 76 kg ha−1 are generally required (UK Flour

Millers, 2017). Relatively few studies reporting QTL for test

weight have been published (e.g., Narasimhamoorthy et al.,

2006), one of the most recent of which identified eight loci

were identified on chromosomes 1D, 2A, 2B, 2D, 3B, 3D, 4D,

and 7A (Cabral et al., 2018). However, test weight is largely

determined by grain weight, shape and volume, and so can be

broken down into its constitutive components and investigated

as separate yield components (e.g., Corsi et al., 2021).

Previous genome-wide association study (GWAS) analysis

in U.K. wheat have used the available historical yield data

to identify QTLs controlling grain yield, identifying QTL

located on chromosomes 1A and 5A (Sharma et al., 2021).

Here, the aim of our study was to use historical grain qual-

ity and yield datasets to identify genetic loci controlling these

traits. To this end, a panel of 150 elite U.K. winter wheat

cultivars genotyped with a 90,000-feature single nucleotide

polymorphism (SNP) genotyping array was used to perform

GWAS for the three grain quality traits measured during

wheat registration in the United Kingdom: grain protein con-

tent, HFN, and test weight. Although our panel overlaps with

to some extent with that recently used by Sharma et al. (2021)

to undertake GWAS on grain yield, we also include yield

in our analysis here, principally to help any direct compar-

isons with marker-trait association made for our analysis of

grain protein content, HFN, and test weight. We discuss the

genetic loci identified in the context of previously published

QTL.

2 MATERIALS AND METHODS

2.1 Wheat germplasm

An association mapping panel of 150 U.K. winter wheat culti-

vars was assembled, consisting of lines released between 1965

and 2004, and that had undergone at least 3 yr of phenotypic

evaluation under Home Grown Cereals Authority (HGCA;

Since termed the ‘Agriculture and Horticulture Development

Board’) National List trials between 1975 and 2007 (Supple-

mental Table S1). Seed of the cultivars was obtained from

seed banks (John Innes Centre, UK; IPK Genebank, Germany;

USDA National Small Grains Collection, USA), or from a ref-

erence seed collection held by NIAB on behalf of Defra, with

the written permission of the relevant breeding companies.

2.2 Historical phenotypic data, estimates of
heritability, and trait correlations

Historical phenotypic data recorded during HGCA Recom-

mended List trials for grain protein content (measured as per-

cent dry matter), HFN (measured in seconds), and test weight

(the weight in grams of seed that can be packed into a 1-L

standard container) from HGCA trials between 1975 and 2007

were sourced, with permission, from HGCA Recommended

List trial data (Table 1). Historical phenotyping followed stan-

dard HGCA National List protocols (http://www.hgca.com/).

Estimates of cultivar effect for each trait were obtained from

historical experimental data originating from UK National

List and Recommended List trials (1950–2004). The vari-

ance structure of the phenotypic data in a mixed effects model

was estimated using REML (Genstat Version v.11, VSN Inter-

national). We estimated best linear unbiased estimates using

the models summarized in Supplemental Table S2. Heritabil-

ity (h2), more strictly defined as repeatability, was estimated

from the random model compromising only main effects, the

denominator of the error term being estimated from the ratio

of stratum variance to variance component for cultivar. Pheno-

typic correlations were investigated using R-package “Hmisc”

and the correlation values highlighted in Microsoft Excel

2016 using conditional formatting. Where possible, Nabim

group (1, 2, 3, or 4) classification was sourced from Agricul-

ture and Horticulture Development Board Recommended List

data, for Year 2004 onwards, available online at https://ahdb.

org.uk/knowledge-library/recommended-lists-archive. Prior

to 2004, data was sourced from nondigitized NIAB Pocket

http://www.hgca.com/
https://ahdb.org.uk/knowledge-library/recommended-lists-archive
https://ahdb.org.uk/knowledge-library/recommended-lists-archive
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T A B L E 1 The volume and structure of historical winter wheat trials data

Averages

Trait No. samples No. years No. vars No. trials
Trial size (no.
vars.)

Trials per
year

Replications per
var.a

Var. years in
trial

Var. replications
per year

Yield 74,332 32 1,219 1,472 50.5 46.0 61.0 2.2 22.0

HFN 21,458 31 1,324 586 36.6 18.9 16.2 2.0 8.1

Protein 17,097 31 1,145 691 24.7 22.3 14.9 1.8 8.4

TW 18,452 31 1,211 546 33.8 17.6 15.2 1.7 9.1

Note. HFN, Hagberg falling number; Protein, protein content; TW, test weight; Var., variety.
aThe average number of estimations of the trait for a cultivar in the database.

Handbooks, and for those cultivars which predated the intro-

duction of formal Nabim group classification in the Recom-

mended List datasets, group was estimated based on the avail-

able quality data.

2.3 Genotypic data and principal
component analysis

Genotypic data for the 150 cultivars, generated using the

90,000 feature Illumina SNP array (Wang et al., 2014), was

sourced from https://www.niab.com/pages/id/326/Resources.

Principal component analysis (PCA) was undertaken using

16,801 genetically mapped markers as well as a set of 463

skimmed markers parsed using TASSEL (Bradbury et al.,

2007) and further thinned to a minimum distance between

markers of 10 cM. Information on the presence or absence of

the 1B/1R wheat/rye chromosomal translocation (which has

been widely used in wheat breeding programs as a source of

beneficial traits such as disease resistance; Rabinovich, 1998)

in the varietal panel was overlaid onto PCA plots.

2.4 GWAS, bioinformatics, and power
analysis

The SNPs were parsed based on minor allele frequency

(MAF) ≥0.05 and R2 ≥ .2. The GWAS was undertaken

using a mixed linear model to fit a linear mixed model with

cultivars treated as random and SNPs effects as fixed. To

account for population substructure in the association map-

ping panel, centered identity by state (IBS) based kinship was

used. For the kinship matrix generation, a subset of mark-

ers was selected based on linkage disequilibrium (LD) imple-

mented in the R-package SNPRelate (Zheng et al., 2012).

The following equation was fitted in the mixed linear model:

𝐲 = 𝐗β + 𝐙𝐮 + 𝐞, where y is a vector representing traits val-

ues; β is the fixed effect of the SNP under test; u refers to

a vector of random additive genetic effects for the 150 lines;

e is the vector of error terms; and X and Z represents known

design matrices. More details are provided by Yu et al. (2006).

Analysis was performed using options optimum compression

level and P3D variance component estimation as implemented

using the mixed linear model (MLM) method within the soft-

ware TASSEL version 5.2.54 (Bradbury et al., 2007). Addi-

tionally, MLM method with both population structure and kin-

ship relationship (MLM-PCA-K) was employed. In the Man-

hattan plots, SNPs are arranged in genetic map order (Wang

et al., 2014), with unmapped markers excluded from the plots.

An arbitrary significance threshold of −log10P = 3 was used

to report marker-trait associations. This threshold was sup-

ported by our power calculations, which estimated a false

positive rate of 0.001 (i.e., −log10 = 3). Significant markers

within a conservatively defined 15-cM interval of each other

were treated as identifying the same QTL. For each trait, the

percentage of variation explained (PVE) was determined in

two ways: (a) via the outputs of the software TASSEL; and (b)

specifically just for the QTL detected by GWAS, calculated

in R (R Core Team, https://www.rproject.org/contributors.

html) using the regression lm function without population

structure adjustments. The positions of selected SNPs on

the wheat reference genome of ‘Chinese Spring’ (genome

assembly RefSeq v1.0; IWGSC, 2018) were identified using

the Triticeae Toolbox database via https://triticeaetoolbox.

org/wheat/, which anchors SNPs based on nucleotide basic

local alignment search tool (BLASTn) homology. Where

an SNP was anchored to a different homoeologous chro-

mosome to that identified in the genetic map (Gardner

et al., 2016), physical map location was based on man-

ual BLASTn analysis using Ensembl Plants (Yates et al.,

2020). For cross-comparison of our GWAS hits with pub-

lished QTL, other genetic marker types were anchored in

a similar way, after extraction of available sequence data

from GrainGenes (https://wheat.pw.usda.gov/GG3/) or in the

case of Diversity Array Technology (DArT) markers, from

information downloaded from https://www.diversityarrays.

com/technology-and-resources/sequences/. Power calcula-

tions were performed using the custom R-scripts detailed in

Supplemental Text S1, which implemented the power cal-

culation functions described by Wang and Xu (2019). For

https://www.niab.com/pages/id/326/Resources
https://www.rproject.org/contributors.html
https://www.rproject.org/contributors.html
https://triticeaetoolbox.org/wheat/
https://triticeaetoolbox.org/wheat/
https://wheat.pw.usda.gov/GG3/
https://www.diversityarrays.com/technology-and-resources/sequences/
https://www.diversityarrays.com/technology-and-resources/sequences/
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T A B L E 2 Variance components and trait heritability

Variance
components Mean square (VarMS − ResMS)/Vg Vg ResMS/ nv Vg/(Vg + Ve)

Trait Vg Cultivar Residual nv Ve

Trait h2 using all
data

Yield 0.393 10.265 0.400 24.89 0.393 0.020 0.950

Protein 0.226 2.017 0.287 7.67 0.226 0.037 0.858

HFN 1591 13,287 1,437 7.45 1591 192.89 0.892

TW 2.580 20.150 2.020 7.03 2.580 0.287 0.899

Note. h2, heritability; HFN, Hagberg falling number; nv, average replication per cultivar; Protein, protein content; ResMS, residual mean square; TW, test weight VarMS,

varieties mean square; Vg, genetic variance; Ve, environmental variance.

this, the kinship matrix was decomposed into eigenvalues

and their corresponding eigenvectors. The eigenvalues were

subsequently used to compute power using functions pro-

vided in the power calculations scripts published by Wang and

Xu (2019). Power was calculated for QTL heritability values

ranging from .01 to .4 and for linkage disequilibrium ranging

from R2 = .011 to R2 = 1.

2.5 Associations with Nabim classifications

To test whether the classification of cultivars into Nabim

quality groups accounted for any population structure, we

used multiple regression of cultivar loadings of each of the

first two principal components onto the Nabim classifications,

with chromosome 1B/1R translocation, protein content, test

weight, HFN, and grain hardness traits included as additional

covariates. The importance of the Nabim classification was

estimated by statistical significance in analysis of variance

(ANOVA), with the factor for Nabim fitted both before and

after the other covariates.

3 RESULTS

3.1 Analysis of phenotypic and genotypic
data

Phenotypic data for protein content, HFN, and test weight

were extracted from historical HGCA National List datasets.

Summary data for each trait (including the number of sam-

ples, years, cultivars, and trials, as well as mean values) are

listed in Table 1. Estimation of the variance structure of the

phenotypic data is shown in Table 2. Random main effects

were fitted for years, sites within years, management regimes,

and cultivars. Residual variance was estimated from a model

fitting random main effects for years, sites within years, man-

agement regimes, and cultivars. Average replication per culti-

var was taken from the table of stratum variances. Estimates of

F I G U R E 1 Pearson correlation between grain yield (Yield), the

presence or absence of the wheat/rye chromosome 1B/1R translocation,

grain protein content (PRT), Hagberg falling number (HFN), and test

weight (TW)

h2 for all traits was ≥.86, with grain yield showing the highest

value (.95), followed by test weight (.90), HFN (.89), and pro-

tein content (.86). These high values are inevitable given the

high average numbers of years of testing, locations, replica-

tion number, and high genetic variances. Explicitly for yield,

in addition to far higher replication of locations and years

in comparison to almost all contemporary experiments, the

genetic variation is substantially inflated by inclusion of old

and modern cultivars, spanning 40 years, during which period

yield was increased substantially by genetics alone. Best lin-

ear unbiased estimates were estimated for all four traits and are

listed in Supplemental Table S1. Traits showed broadly nor-

mal distributions, although yield was notable skewed towards

higher values (Figure 1). Analysis of correlation between our

three target traits, as well yield, found showed strong negative

correlation between yield and protein content (P > .0001), as

well as significant negative correlations between the 1B/1R
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F I G U R E 2 Population subsubstructure in the association mapping panel of 150 accessions, based on (a) all markers (n = 16,801), and (b)

skimmed markers (n = 463; linkage disequilibrium threshold R2 = .2). Markers with a minor allele frequency >0.05 were used for both analyses. The

presence or absence of the chromosome 1B/1R wheat/rye chromosomal substitution is indicated by red circles and blue triangles, respectively. PC,

principal component

translocation and protein (P = .0003) and HFN (P = .0183)

(Figure 1; Supplemental Table S3). Significant positive cor-

relations were found between the 1B/1R translocation and

yield (P = .0004), and between test weight and both HFN

(P = .0002) and yield (P = .0124).

3.2 Population structure and power
calculations

Genetic population substructure was investigated using a

matrix of similarity between cultivars for PCA (Figure 2). The

PCA using 16,801 polymorphic genetically mapped mark-

ers revealed a clear division in the first principal compo-

nent. Overlaying data for the presence or absence of the

1B/1R wheat/rye chromosomal translocation indicated that

the division based on Principal Component 2 was largely

due to this chromosomal rearrangement (Figure 2). While

PCA analysis after removal of one of each pair of highly

correlated (R2
> .98) markers removed much of this dis-

tinction (Figure 2), the presence of further genetic substruc-

ture indicated statistical correction would likely be necessary

for genome-wide association studies. To determine whether

classification of cultivars into the four Nabim end-use grain

quality groups could explain significant amounts of PCA

space, we undertook analysis of variance. Nabim was found to

explain a modest amount of the variation for each of the two

PCA components (16% of PCA1, p = .0017**; 8% of PCA2,

p= .0306*). However, Nabim group is a man-made ‘trait’, and

is determined by a number of underlying quality traits. When

such component traits (1B/1R translocation, protein content,

test weight, HFN, grain hardness) were fitted before Nabim

classification, then Nabim classification no longer identified

significant variation in either PCA1 or PCA2 space.

To estimate the power of the experimental design to detect

QTL, we undertook power analyses. These found that despite

low number of accessions of this study (n = 150) this associ-

ation mapping panel was predicted to be able to detect QTL

of reasonable effects (Supplemental Table S4). For example,

the analysis predicts us to be able to identify QTL with a heri-

tability of ≥20% with high power of >80%, with power falling

to 40% for a SNP in LD of R2 ≥ .5 with a given QTL. With the

relatively high density of markers in this panel, it is likely that

most QTL will be in high LD with one or more markers (data

not shown)—at least on the A and B subgenomes which have

much higher marker density than the D subgenome (6,188,

8,488, and 2,125 genetically mapped markers, respectively).

3.3 Genome-wide association studies

After removal of markers with MAF ≤0.05, the final data-

matrix for GWAS consisted of 150 cultivars and 20,921

SNPs (including 5,515 unmapped SNPs). After accounting

for population substructure using a Kinship matrix, the results

of GWAS identified significant (−log10P >3) marker-trait

associations for all four of the phenotypes investigated. The

GWAS results are displayed as Manhattan plots in Figure 3,

histograms of the phenotypic trait expression are shown in

Figure 4, and the genomic hits are summarized in Table 3,

with the GWAS outputs for all markers used listed in Sup-

plemental Table S5. The adoption of a significance thresh-

old of −log10P = 3 was arbitrary, but an excess of low P-

values for all four traits is apparent from the Q-Q plots and

histograms of P-values shown in Supplemental Figure S1.

For HFN, 39 significant genetic markers with −log10P-values

ranging from 3.10 to 3.00 were identified, which when mod-

elled together explained 49.0% of the phenotypic variance.
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T A B L E 3 Summary of the quantitative trait loci (QTL) identified by genome wide association studies (GWAS) for Hagberg falling number

(HFN), protein content (PRT), test weight (TW), and grain yield (YLD)

Trait QTL Chr Peak SNP cM bp −log10P
Marker
R2a Effectb

Allele
Freq

HFN HFN_1B.1 1B Jagger_c5878_119 0 1,254,498 3.10 0.079 28.42 0.58

HFN HFN_3A.1c 3A RAC875_c99055_69 283.735979 728,322,627 4.08 0.114 −30.65 0.47

HFN HFN_3B.1 3B BS00099738_51 227.3745367 759,168,681 3.04 0.077 −31.32 0.73

HFN HFN_6A.1c 6A Kukri_c29110_360 88.77758706 Un 3.83 0.103 −31.56 0.61

HFN HFN_6A.2c 6A BS00082104_51 192.8384162 581,841,966 3.69 0.098 32.95 0.38

HFN HFN_7B.1c 7B RAC875_c525_202 261.6310052 750,082,927 4.78 0.134 −44.19 0.19

PRT PRT_1A.1 1A BS00086680_51 71.0976257 281,657,026 3.26 0.087 0.39 0.52

PRT PRT_1A.2 1A Excalibur_c13489_867 96.6018344 452,020,371 3.03 0.079 −0.36 0.38

PRT PRT_1A.3 1A RAC875_c5882_307 231.6429733 589,054,742 3.01 0.079 −0.33 0.34

PRT PRT_2A.1 2A RAC875_rep_c69619_78 207.5522799 734,352,032 3.15 0.083 −0.33 0.56

PRT PRT_2B.1 2B BS00046165_51 260.7730538 697,510,384 3.04 0.080 0.44 0.19

PRT PRT_3A.1c 3A wsnp_Ku_c30545_40369365 107.2210875 363,458,708 3.34 0.090 −0.35 0.52

PRT PRT_3B.1c 3B wsnp_Ex_c20652_29734133 112.6476302 292,024,034 3.39 0.091 −0.44 0.79

PRT PRT_3B.2 3B RAC875_c58159_989 155.9566423 564,248,743 3.10 0.081 −0.46 0.83

PRT PRT_3B.3c 3B GENE_1618_780 279.0622821 820,894,420 3.02 0.079 −0.33 0.52

PRT PRT_6B.1c 6B BS00009795_51 12.20934913 4,876,473 3.36 0.090 -0.35 0.44

TW TW_1B.1c 1B RAC875_rep_c95069_54 81.49097047 336,647,904 3.12 0.080 −1.24 0.21

TW TW_3B.1c 3B GENE_1771_541 57.06175117 32,458,901 3.60 0.095 1.20 0.36

TW TW_3B.2c 3B RAC875_c58159_989 155.9566423 571,753,368 3.20 0.083 −1.43 0.86

TW TW_3B.3c 3B Excalibur_c33274_498 207.7302565 738,752,902 3.21 0.083 2.04 0.05

TW TW_3B. 3B BS00073480_51 269.7509427 812,721,677 3.41 0.089 −1.91 0.91

YLD YLD_1A.1c 1A RAC875_rep_c105092_114 72.6102779 304,040,711 4.03 0.109 0.62 0.50

YLD YLD_1A.2c 1A wsnp_CAP8_c4785_2322876 166.3032581 544,054,745 3.28 0.085 0.56 0.79

YLD YLD_2A.1c 2A RAC875_c48625_182 22.63785838 18,636,671 4.30 0.118 0.57 0.53

YLD YLD_2A.2c 2A RAC875_c16993_839 245.2533379 774,815,015 4.57 0.127 −0.73 0.38

YLD YLD_2B.1 2B BS00002660_51 38.40853424 16,025,160 3.09 0.079 0.50 0.57

YLD YLD_2B.2c 2B BS00091099_51 221.2304675 578,601,402 3.97 0.107 −0.55 0.54

YLD YLD_2B.3c 2B BS00046165_51 260.7730538 697,510,384 3.45 0.090 −0.70 0.19

YLD YLD_2B.4c 2B Kukri_c34553_188 319.3174469 766,234,466 5.56 0.161 −1.00 0.17

YLD YLD_2D.1c 2D wsnp_Ex_c1668_3169623 35.64284331 Un 3.94 0.106 0.59 0.70

YLD YLD_3A.1 3A wsnp_Ex_c8884_14841846 179.8202073 625,239,797 3.13 0.08027 −0.51 0.73

YLD YLD_5B.1c 5B CAP8_rep_c5825_165 3.286161131 15,054,913 3.27 0.0847 0.5 0.4

YLD YLD_6A.1c 6A BS00082812_51 0.502519793 639,383 4.22 0.11534 0.73 0.78

YLD YLD_6A.2c 6A wsnp_Ku_c3354_6228393 132.9525631 430,933,984 3.43 0.09203 −0.71 0.24

YLD YLD_6B.1c 6B Kukri_c21405_2131 15.73078008 166,814 3.8 0.10161 −0.73 0.19

Note. The most significant marker at each QTL is listed. Genetic (Gardner et al., 2016) and physical (IWGSC, 2018) map positions for peak single nucleotide polymorphisms

(SNPs) at each QTL are indicated. Where SNPs were anchored to physical map regions currently not allocated to a chromosome designation in the wheat reference genome

assembly, the bp position is recorded as unknown (Un). SNP effect at each QTL were determined via two methods (defined below).
aSNP effects determined via the outputs of the software TASSELL.
bSNP effects determined via modeling the effects considering just those QTL identified for a specific trait.
cGWAS hits identified using both kinship and kinship+PCA to correct for population structure. The remaining hits were identified using kinship correction only.
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F I G U R E 3 Manhattan plots of genome-wide

association studies for Hagberg falling number (HFN; a),

protein content (PRT; b), test weight (TW; c), and grain

yield (Yield; d). Markers are shown in genetic map order,

according to the genetic map published by Wang et al.

(2014). Unmapped markers are not shown here but are listed

in Supplemental Table S5. The significance threshold

(−log10P = 3) is indicated by the horizontal red line

Of these, 24 were genetically mapped and defined six genetic

loci on chromosomes 1B (locus HFN_1B.1), 3A (HFN_3A.1),

3B (HFN_3B.1), 6A (HFN_6A.1, HFN_6A.2), and 7B

(HFN_7B.1). The GWAS for protein content identified 151

significant marker-trait associations (−log10P from 4.99 to

3.01) with the 41 genetically mapped markers, coalescing into

nine genetic locations on chromosomes 1A (locus PRT_1A.1,
PRT_1A.2, PRT_1A.3), 2A (PRT_2A.1), 2B (PRT_2B.1), 3A

(PRT_3A.1), 3B (PRT_3B.1, PRT_3B.2, PRT_3B.3), and 6B

(PRT_6B.1). Together, these QTL were modelled to explain

48.9% of the phenotypic variance. The GWAS for test weight

identified 39 significant marker-trait associations (−log10P
from 3.63 to 3.06), defining five genetic loci located on

chromosomes 1B (SW_1B.1) and 3B (SW_3B.1, SW_3B.2,
SW_3B.3, SW_3B.4), plus two unmapped markers. When

modelled together, these QTL explained 26.3% the pheno-

typic variance. Finally, GWAS for yield identified 533 signif-

icant SNPs (−log10P from 6.42 to 3.00). Of these, 351 were

unmapped with the remaining 182 genetically mapped SNPs

identifying 14 genetic loci on chromosomes 1A (YLD_1A.1,

YLD_1A.2), 2A (YLD_2A.1, YLD_2A.2), 2B (YLD_2B.1,
YLD_2B.2, YLD_2B.3, YLD_2B.4), 2D (YLD_2D.1), 3A

(YLD_3A.1), 5B (YLD_5B.1), 6A (YLD_6A.1, YLD_6A.2),

and 6B (YLD_6B.1) which when modelled together explained

68.1% of the phenotypic variance. We also undertook GWAS

after adjusting for population structure using kinship + PCA

(Supplemental Table S6). Overall, the results remained much

the same, although some hits were lost (as indicated in

Table 6) and some were gained.

4 DISCUSSION

4.1 Exploiting historical phenotypic data

Recent advances in molecular marker technologies in Trit-

iceae species, such as Diversity Array Technology (DArT)

markers, SNP arrays (e.g., Close et al., 2009; Wang et al.,

2014), and Kompetitive Allele Specific Polymerase chain

reaction (KASP) assays (e.g., Cockram et al., 2012) have
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F I G U R E 4 Histogram of Hagberg falling number (HFN; a), protein content (PRT; b), test weight (TW; c), grain yield (YLD; d) in the

association mapping panel

meant that phenotyping capacity and capability is now widely

recognized as having replaced genotyping as the major bot-

tleneck for genetic studies (Furbank & Tester, 2011). A

central feature of this study is that the yield and quality phe-

notypes investigated were obtained from historical databases.

Such data have been accumulated in many countries as a

normal part of cultivar testing, either by breeders or testing

authorities under the internationally recognized protocols

established by the Union for the Protection of plant Varieties

(UPOV) and are increasingly used in association mapping

studies (e.g., Cockram et al., 2010; Wang et al., 2012) and

the development of molecular approaches for use in cultivar

testing and registration (Cockram et al., 2009, 2012; Jones,

Norris, Smith et al., 2013; Jones, Norris, Cockram, & Lee,

2013; Saccomanno et al., 2020). Historic analyses of trends

in cultivars over time have used regression models to infer

year, site, and treatment effects to allow the genetic potential

of cultivars to be compared, even when the two cultivars were

never in the same field trial (Mackay et al., 2011; Silvey,

1978, 1981, 1986). While year-to-year variability (which

includes the joint effect of differences in management, cli-

mate, and noise over the years) is accounted for in our models

(Supplemental Table S2), here we focus on genetic effects,

as used in our GWAS analyses. A key advantage of using

historical phenotypic data collected as part of cultivar reg-

istration is that the resulting panel consists of elite material.

This is of benefit as QTL identified are more likely to be of

direct relevance to ongoing breeding programs. Additionally,

elite panels are more useful than those consisting of exotic

or diverse materials for traits strongly influenced by biotic
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or abiotic stresses and differences in maturity (and therefore

limiting meaningful phenotypic data collection; Kulwal et al.,

2012).

4.2 Characteristics of the association
mapping panel used

Association mapping panels consisting of collections of cul-

tivars, landraces, or breeder’s lines are likely to have hid-

den kinship and population structures (White et al., 2008).

Thus, kinship and population structure are likely to be strong

predictors of many traits (e.g., Cockram et al., 2008). In

this study, major genetic stratification was found due to the

presence of the wheat/rye chromosome 1B/1R translocation.

Parsing marker sets on MAF and R2 removed much of this

substructure, with residual effects of relationships among cul-

tivars removed though incorporation of a relationship matrix

in the linear mixed model. The dataset analyzed encompasses

all the trait data available to us. While a larger dataset would

have been preferable, our power calculations taken in con-

junction with the Q-Q plots of −log10P and histograms of

P-values demonstrate that despite the relatively small sam-

ple size of n = 150, a substantial proportion of our signifi-

cant results are genuine. The data we use is ‘the best of the

best’ in the sense that the lines have already been selected

by the breeders, leading to potential selection bias in QTL

discovery. We do not believe this is a problem for two rea-

sons. First, it should be accounted for by inclusion of the

genomic relationship matrix in the GWAS. Second, the heri-

tabilities of our line means are very high, so the opportunity

for selection of cultivars to bias the results or QTL segre-

gating among those cultivars is low. Within this study, there

is potential for selection bias arising from selection of lines

being advanced from assessment Year 1 to Year 2 and so on.

This may result in some “regression to the mean” of culti-

var estimates. Laidig et al. (2014) discussed this source of

bias in relation to estimating genetic and agronomic trends,

finding only a slight bias in trend estimation. However, we

are not aware of discussion of the consequences of varietal

selection bias on the effect of QTL estimation in GWAS.

Our expectation is it will be small compared with the effect

of selection bias resulting from the imposition of a signifi-

cance threshold on QTL detection (the ‘Beavis effect’; Beavis,

1994), since both increasing and decreasing alleles for QTL

of small effect will be approximately randomized across lines,

and the bias for QTL of large effect will be lower whatever

their distribution across cultivars. However, we are not aware

that this potential source of bias, which will affect almost all

GWAS studies in crops, has been studied and merits further

investigation.

4.3 QTL detection, phenotypic correlations,
and comparison with previous studies

While a relatively limited number of studies in investigating

the genetics of HFN have been undertaken to date, HFN

QTL have been detected on numerous wheat chromosomes

(e.g., Börner et al., 2018; Fofana et al., 2009; Gooding

et al., 2012; Guo et al., 2020; Kunert et al., 2007; Li et al.,

2020; Martinez et al., 2018; Mohler et al., 2014; Tang et al.,

2017; Zanetti et al., 2020; Zhang et al., 2014). Based on

the interconnection between HFN, PHS, and late-maturity

amylase phenotypes, these traits likely share QTL in common

(Kulwal et al., 2010). The PHS QTL have been mapped to all

21 wheat chromosomes (reviewed by Kulwal et al., 2010),

and the most commonly reported loci are on the Group 2

chromosomes (2B, 2D), the Group 3 chromosomes (3A, 3B,

3D, associated with the wheat VIVIPAROUS1 gene TaVP1,

and the red kernel color R genes), as well as Pre-harvest
sprouting 1 (Phs1, synonym: Phs-A1) on the long arm of

chromosome 4A (Flintham, 2000; Groos et al., 2002; Jaiswal

et al., 2012; Kulwal et al., 2012; Mares et al., 2005; Mori

et al., 2005; Munkvold et al., 2009; Shorinola et al., 2016).

Similarly, QTL for late-maturity α-amylase have been found

on chromosomes 3B, 6B, and 7B (Emebiri et al., 2010; Mrva

& Mares, 2001; 2002). In our study, six genetic loci control-

ling HFN were identified, the majority of which were located

within genetic intervals spanning previously identified QTL

related to the HFN phenotype (Supplemental Table S6). The

most significant locus we identified was on the long arm of

chromosome 7B (located at 725–750 Mbp; peak at 750 Mbp),

for which favorable alleles increased HFN by 44 s. The QTL

for HFN have previously been identified around this region in

at least four biparental populations, with high falling number

alleles contributed by the wheat cultivars Rubens (QTL peak

at 709 Mbp; Börner et al., 2018), Dream (no SNP sequence

data available), W332-84 (744 Mbp), Format (744 Mbp;

Mohler et al., 2014), and the winter spelt cultivar Oberkulmer

(741 Mbp; Zanetti et al., 2020), resulting in an increase of

between 18 and 75 s, depending on the population and test

environment. Our 7B locus is in a similar genomic region to

a QTL for high-isoelectric point α-amylase content which is

used as a measure of late maturity α-amylase activity (Mrva &

Mares, 2001; Emebiri et al., 2010) (Supplemental Table S6).

As HFN and α-amylase activity are genetically correlated

and inversely related, it suggests that the same locus likely

underlies the 7B QTL for these traits. Our chromosome 1B

HFN locus (located at 1.254 Mbp) was associated with the

1BL/1RS wheat/rye chromosomal translocation, for which

analysis of exome capture sequence coverage and nonrefer-

ence allele frequency relative to the wheat genome assembly

for Chinese Spring found to be located on chromosome 1B
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between 0 and 220 Mbp (Scott et al., 2021). The inclusion of

the 1B/1R translocation as a covariate in the GWAS analysis

resulted in the markers at the 1B HFN locus becoming non-

significant (−log10P = 2.01), consistent with the HFN locus

HFN_1B.1 being located on the translocation itself (although

this result does not rule out HFN_1B.1 being in high linkage

disequilibrium with the translocation). The indication that the

1B HFN locus may present on the translocation is in agree-

ment with previous studies (Mohler et al., 2014; Tang et al.,

2017) and reflects the strong negative correlation between

HFN and the presence of the 1B/1R translocation identified

in our association mapping panel (Figure 1). Therefore, in

our analysis, the absence of the 1B/1R translocation was pre-

dicted to result in an HFN increase of 28 s. Previous analysis

of near isogenic lines has shown that gibberellic insensitive

semidwarf lines that lack the 1B/1R translocation require a

cool temperature shock during grain filling for the expression

of late maturity α-amylase activity while the presence of the

translocation results in constitutive expression (Mrva et al.,

2008). In both classes of response, late maturity α-amylase

activity is due to the synthesis of high-isoelectric point

α-amylase encoded by genes at the α-Amylase1 (α-Amy1)

locus at 554–564 Mbp on the long arm of chromosome

6A, at which at least three genes are present (RefSeq v1.1

gene models TraesCS6A02G319300, TraesCS6A02G334100,

TraesCS6A02G334200; Ju et al., 2019). Interestingly, we

also identified a QTL for HFN on chromosome 6A at 581

Mbp (second only to the 7B locus in its effect on HFN),

indicating this GWAS hit could be due to allelic variation

at the Amy1 locus. Indeed, a QTL at a similar location

on chromosome 6A has been reported in German winter

wheat (Mohler et al., 2014; Supplemental Table S6). Lastly,

while our HFN loci on chromosomes 3A (728 Mbp) and 3B

(759 Mbp) were identified at approximately homoeologous

locations on the long arms of the Group 3 chromosomes, they

were not located close to VP-1A (660 Mbp) or VP-1B (693

Mbp). Neither did our 3B QTL appear to correspond to the

QTL QFn.crc-3B previously reported to be located between

markers barc77 and wmc307 (3B: 78–430 Mbp; Fofana

et al., 2009). However, they were located relatively close to

the wheat MYB gene TaMYB10-A1 located on chromosome

3A at 704 Mbp, and its homologue TaMYB10-B1 on 3B at

571 Mbp. TaMYB-A1 has previously been identified as a

candidate gene for both PHS and grain color via GWAS in

U.S. winter wheat (Lin et al., 2016). Similarly, a study of

European winter wheat has recently identified genetic loci for

PHS close to both TaMYB10-A1 and TaMYB-B1 (Scott et al.,

2021). While the correlation between grain color and PHS

has been often reported, how the R genes controlling grain

color might pleiotropically influence PHS remains unknown

(Lin et al., 2016) and could be due to linkage. While two

genes in the HFN/PHS/late-maturity amylase phenotypic trait

complex have been map-based cloned, Phs1 on chromosome

4A (Torada et al., 2016) and TaPHS1 on chromosome 3A

(Liu et al., 2013), we did not find GWAS hits at these

locations indicating that natural genetic variation at these

genes does not play a major role in controlling HFN in U.K.

wheat.

Protein content QTL have previously been discovered on

all wheat chromosomes (reviewed by Kumar et al., 2018),

with major QTL encoding for clusters of for high molecular

weight glutenin genes located at the Glu-A1, -B1, and –D1
loci on the long arms of the Group 1 chromosomes (e.g.,

Zhang et al., 2011). Although we identified three genetic loci

for protein content were identified on chromosome 1A, none

of them are predicted to be located near the Glu-A1 locus

(based on gene model TraesCS1A02G317311 at 509 Mbp).

The GRAIN PROTEIN CONTENT-B1 (GPC-B1) locus on

the short arm of chromosome 6B controlling protein content

in tetraploid wheat has been shown to be encoded by a NAC

transcription factor (NAM-B1; Uauy et al., 2006). While we

found a locus on chromosome 6B controlling protein content,

its position at 5 Mbp placed it far from NAM-B1 (gene

model TraesCS6B02G207500LC at 134 Mbp), supporting

reports that most hexaploid bread wheat lines do not possess

the wild-type functional form of the gene (Mellers et al.,

2020; Uauy et al., 2006). Our finding that grain protein

content and grain yield are strongly negatively correlated

with each other is in agreement with many previous studies

(e.g., Groos et al., 2003; Scott et al., 2021). Indeed, of

the 10 genetic loci we identified for protein content, three

were also found to putatively co-locate with hits for yield:

PRT_1A.1/YLD_1A.1 on chromosome 1A at 4-30 Mbp,

PRT_2B.1/YLD_2B.3 on chromosome 2B at 698 Mbp, and

PRT_6B.1/YLD_6B.1 on chromosome 6B at 1-4 Mbp. Inter-

estingly, the PRT_1A.1/YLD_1A.1 region has previously been

identified as being located within a putative introgression

(Sharma et al., 2021). For the PRT_2B.1/YLD_2B.3 QTL pair

controlling grain protein content and grain yield, previous

studies have identified a multitrait QTL on chromosome 2B

just 4 Mbp away at 694 Mbp (Qmt.tamu.2B.1.1, for grain

yield, spikes per m2, 1,000-grain weight, and test weight.

Peak marker: RFL_Contig3172_1752; Assanga et al., 2017;

Supplemental Table S6). Additionally, two other protein

content QTL, both on chromosome 3B, co-located with

GWAS hits for test weight. The first was QTL pair PRT_3B.2
(at 564 Mbp)/ TW_3B.2 (at 567–574 Mbp). A relatively large

effect QTL for test weight has previously been reported that

spans this interval on chromosome 3B (Cabral et al., 2018;

Supplemental Table S6). The second QTL pair was PRT_3B.3
(819–826 Mbp)/TW_3B.4 (812–816 Mbp), located further

towards the distal end of the long arm of chromosome 3B.

Interestingly, beneficial alleles at the first of these pairs of

loci increased both protein content and test weight. While no

grain yield QTL were identified at this location, it is possible

that increased test weight comes at a cost of yield, as fewer but
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larger grain are formed with a higher protein content. How-

ever, our analysis of phenotypic correlations found test weight

to be weakly positively correlated with protein content, but to

have a stronger positive correlation with grain yield. Further

studies are needed to determine whether favorable alleles at

the PRT_3B.2/ SW_3B.2 locus can improve both protein and

test weight without affecting yield. The remaining five grain

protein GWAS hits were located on chromosomes 1A, 2A, 3A,

and 3B. Previously identified grain protein content QTL have

been identified on all of these chromosomes, with for example

a robust QTL identified on the long arm of chromosome 1A

in a biparental population of tetraploid wheat (Blanco et al.,

2012) estimated to be in a similar location to our GWAS

hit PRT_1A.3 (peak at 598 Mbp) based on anchoring the

simple sequence repeat marker wmc254 to the wheat physical

map at 569 Mbp. However, the large genetic and physical

intervals of the majority of these hinders further meaningful

comparison. As discussed above, two of the five GWAS hits

for test weight co-located with hits for grain protein content.

Of the three remaining test weight QTL, SW_1B.1 does not

appear to be present on the wheat/rye 1B/1R translocation,

based on the interval determined by Scott et al. (2021). The

remaining two GWAS hits, SW_3B.1 and SW_3B.3, are

both located on chromosome 3B, with the latter having the

largest effect on test weight of all the genetic loci identified

in our panel. Notably, we did not identify GWAS hits at

the Glu-D1 locus encoding high molecular weight glutenin

genes. Cross-referencing the cultivars in our panel with

those previously genotyped for Glu-D1 (data sourced from

CerealsDB, https://www.cerealsdb.uk.net/cerealgenomics/)

found that of the 20 cultivars that overlapped, the high ‘5+10′

Glu-D1 allele was present in a quarter of these lines (data not

shown). The wheat D subgenome has low genetic diversity,

and this is reflected in the low D subgenome SNP coverage

of the 90k array (Wang et al., 2014; Mellers et al., 2020).

Accordingly, as allelic variation at the Glu-D1 locus appears

likely to be present at sufficient minor allele frequency to be

detected via GWAS, we assume that the Glu-D1 locus was

not identified in our GWAS for protein content due to lack of

SNPs in sufficiently close linkage disequilibrium.

Of the four traits investigated here, the largest number of

significant genetic loci were identified for grain yield. Many

studies have reported QTL have been identified for yield and

yield components (e.g., Gegas et al., 2010; Corsi et al., 2021;

Liu et al., 2020; Suliman et al., 2021), and to date just two

yield component genes have been identified via map-based

approaches: Grain Number Increase 1 (GNI-A1; Sakuma

et al., 2019) and WHEAT ORTHOLG OF APO1 (WAPO1;

Kuzay et al., 2019; Muqaddasi et al., 2019). While we did

not identify GWAS hits for yield at either of these genes,

YLD_6A.2 (defined within a 3-cM interval that corresponds

to a large physical interval spanning the centromere on chro-

mosome 6A of around 440 Mbp from 101 to 438 Mbp), spans

the wheat gene GRAIN WIDTH 2, termed TaGW2-A. Located

at 238 Mbp, TaGW2-A and has previously been associated

with the control of grain size characters via both forward

(e.g., Zhai et al., 2018; Corsi et al., 2021) and reverse genetic

studies (Simmonds et al., 2016; Wang et al., 2018; Zhang

et al., 2018). The most significant yield QTL identified in our

panel, YLD_2B.4 (−log10P = 5.56), was located towards the

end of the long arm of chromosome 2B at 766 Mbp. To our

knowledge, no yield QTL has been reported in this location,

and no wheat orthologues of yield or yield component map-

based cloned genes from the related cereal species rice are

located nearby. Recently, Fradgley et al. (2019) used gene-

dropping simulations on a panel of genotyped northwestern

European wheat cultivars that overlaps with the panel we

investigate here, finding evidence of breeder selection at 15

genetic loci across the wheat genome. Interestingly, a third of

these loci either co-locate or are ≤16 Mbp of GWAS hits for

yield we identify here, indicating they have been under strong

breeder selection: YLD_1A.2 (GWAS location= chromosome

1A at 544 Mbp, gene-dropping location = 1A at 557 Mbp

based on SNP BS00032825_51), YLD_2A.1 (GWAS = 2A

at 12-24 Mbp, gene-dropping = 16 Mbp based on SNP

Excalibur_rep_c110303_320), YLD_2A.2 (GWAS = 2A at

763-774 Mbp, gene-dropping = 751 Mbp based on SNP

BS00023202_5), YLD_2B.1 (GWAS = 2B at 16 Mbp,

gene-dropping = 25 Mbp based on SNP BS00064706_51),

and YLD_3A.1 (GWAS = 3A at 625-627 Mbp, gene-

dropping = 643 Mbp based on SNP BS00038663_51).Further

investigation and independent validation would be required to

further study the yield loci identified.

5 CONCLUSIONS

Evaluation of seed quality traits from field grown samples is

expensive and time consuming. Therefore, the identification

of molecular markers linked to these traits in elite wheat cul-

tivars provides valuable information for further research and

ultimately for the development of appropriate genetic markers

for marker-assisted breeding. A key limitation of our study

is the relatively small size of the association mapping panel

(n = 150). However, our finding that (a) all four traits had rel-

atively high heritability (h2 ≥ .86); (b) power analysis showed

we had reasonable power to detect most of the underlying

major QTL and at least a proportion of the smaller-effect

QTL; (c) we detected at least one previously described genetic

locus per trait; and (d) co-localizing GWAS hits between

related traits agreed with a priori assumptions about their

genetic control (e.g., the PRT_2B.1/YLD_2B.3 QTL pair for

protein and yield) provides support for the validity of the

results and approaches used. Finally, the demonstration of the

utility of historic datasets collected during statutory varietal

testing paves the way for similar analyses of for wheat and

https://www.cerealsdb.uk.net/cerealgenomics/
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other crops across the many Union for the Protection of plant

Varieties signatory countries.
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