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We present a mathematical method which allows determination of an optimal spectral range for gas
mixture analysis based on theoretical absorption spectra. The resulting center wavelength is particularly
suited for tunable diode laser spectroscopy (TDLS). The procedure contains several steps of numerical cal-
culations which can easily be implemented in almost any programming language. We apply our method
to three exemplary mixtures of hydrocarbons and present and validate the individual results.

© 2022 The Author(s). Published by Elsevier Ltd.
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1. Introduction

Optical spectroscopy is nowadays a well-established method for
the analysis of gaseous mixtures. As soon as a high spectral reso-
lution is required, spectrometers usually apply lasers as radiation
sources [1-3]. In order to be able to probe different absorption
features with a single laser, it is advantageous if its emission wave-
length can be varied. Therefore, semiconductor lasers are predes-
tined for this task, because they can be spectrally tuned via their
operating temperature and current. The tuning range of distributed
feedback interband cascade lasers is, for example, of the order of
10 nm at constant laser temperature with an emission linewidth in
the single-digit megahertz range [4-7].

When designing a laser spectrometer, the definition of the
laser’s emission wavelength or, if tunable, its spectral range is cru-
cial for its potential applications. As a matter of course, all the
components of interest should exhibit absorption within the range.
Furthermore, it is desirable that the absorption strengths of all
components are high in order to achieve high detection sensitivity.
Simultaneously, interferences of the absorbing compounds should
be excluded to the greatest possible extent in pursuance of avoid-
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ing metrological ambiguity and, thus, reach high detection selec-
tivity [1,2].

The identification of the optimal spectral range for a certain ap-
plication, i.e. for the analysis of a certain mixture of gases, is not
trivial. In practice it is usually an educated guess based on the
known spectra [2,8,9]. The spectra evaluation, i.e. the determina-
tion of the concentrations of the individual components, is then
typically carried out using a multivariate calibration such as partial
least squares regression. However, the quality of the results, espe-
cially the selectivity, strongly depends on the selected wavelength
range and the selection becomes increasingly difficult if the single
spectra strongly overlap, and even more so if the single compo-
nents are very similar and their spectra differ only slightly.

In the following we present, to the best of our knowledge,
the first quantitative method to determine a well suited spectral
range for sensitive and selective gas analysis. The procedure is cus-
tomized for lasers of a certain tuning range, such as semiconduc-
tor lasers, and delivers its optimal center wavelength. The follow-
ing section describes the mathematical procedure. After that we
present exemplary application results.

2. Mathematical procedure

For the application of the method, knowledge of the absorption
spectra of all gaseous components in the mixture is required. The

0022-4073/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Fig. 2. Absorption spectra of 2CH, and '*CH, [20].

spectra can be measured beforehand, e.g. with a Fourier Interfer-
ometer, or extracted from databases such as HITRAN [10], GEISA
[11], JPL [12] or NIST [13]. The flow chart of the method is shown
in Fig. 1. The individual steps are explained in the following sub-
sections.

2.1. Calculation of absorption intensity differences

In order to measure the individual gas components selectively
or with least interference, it is necessary to identify the wave-
lengths at which the absorption spectra maximally differ from one
another [14]. To find these spectral regions, all spectra are normal-
ized to 1. A total number n of gases (spectra) results in:

n n!
(2>:2~(n—2)! (1)

dyads of spectra [15]. The individual absorption intensities of each
gas S(A) are then used to calculate the intensity differences for
each pair of gases (i and j) as function of the wavelength A:

AS;j(A) =Si(A) = Sj(A). (2)

2.2. Application of the laser tuning range

Semiconductor lasers exhibit a limited spectral tuning range. In
the case of an interband cascade laser the tuning range AX is typ-
ically of the order of 10 nm [4-7]. This has to be considered for
the determination of best suited spectral range. The influence is
represented by a sliding integral (Q-function) of the individual dif-
ferences:

At Bt
Q(A) = /A_M | A (). (3)

Q;i(2) represents a measure of the spectral deviation of the
species i and j in the wavelength range from (A — %) to (A + AT)‘).
Due to the dependence of the integral limits on the wavelength,
the integral acts like a window function. This window is sliding
over the entire spectral range. Thus, the integral can also be de-
scribed as a sliding integral.

Differences AS;(A) of components with weak absorption can
lead to inaccurate results in the following steps and, therefore,
need to be suppressed. In order to do this, an auxiliary value Dj;
is defined:

M
D; :/A | AS;(3) |di. (4)
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Fig. 3. Evaluation of the mixture '2CH, and >CH,, all quantities are normalized to “one”.

Here, Ay and A are the lower and the upper boundary of the
wavelength range under evaluation. Subsequently, a parameter 0 <
p < 1 has to be determined empirically, which is related to the
threshold values of the individual Q-functions:

Qijen= P-Djj. (5)

The threshold values are needed to obtain an unambiguous re-
sult for the optimal laser wavelength. The parameter p is chosen
optimally if Eq. (9) provides only a single range - the absolute
maximum. Q;;, is applied to Q;(A) according to:
5oy _ Qi) i Qij(A) > Qijen
Qi) ={ 0, else ) (6)

In a next step the Q-functions are multiplied by the difference
spectra:

ASijo(A) = AS;i(R) - Qi (). (7)

ASjjo(2) can be considered to be the difference spectrum for
the gas pair i and j filtered by the Q-functions.

2.3. Combining the results of all component pairs

The “filtered” difference AS;o(A) is large for wavelength re-
gions, in which the spectra of a certain gas pair differs and, at the
same time, absorption is strong. In order to consider the contribu-
tion of all possible gas pairs, all filtered differences are multiplied:

n
P() =[] ASijo(r). where i< j. (8)
i j=1
The product P()) is large if the previous conditions are satisfied
for all gas component dyads. For absorption-weak wavelengths or
wavelengths at which the spectra of the species do not differ sig-
nificantly, the product P()) is small. Thus, wavelength ranges with

large values of P(A) mark the regions preferable for a sensitive
and selective measurement. In order to consider the limited tun-
ing range of semiconductor lasers an integral parameter equivalent
to Eq. (3) is introduced:

+3
P,»m(x):/H_A IP(1)|dx" 9)

2
2.4. Center wavelength determination

The wavelength region around the maximum of P;,(A) indicates
the spectral range in which the center wavelength of the semicon-
ductor laser should ideally be located. We chose the median of
P;,r as center wavelength since it considers all values of P;,, and
is therefore “well-balanced”.

In general, the median m of a function f(x) is defined as [16]:

/_ r; Fx)dx = % /_ :O Fxydx. (10)

The application of this definition leads to the optimal center
wavelength A of the laser:

Ac 1 M
[ Puodn =5 [ Pt (1)
Ao Ao

With the aid of software like MATLAB [17] it is easy to extract
Ac from this equation.

3. Exemplary results

The mathematical procedure described above was programed
in MATLAB and applied to assumptive gas mixtures. The absorp-
tion spectra of the single components were measured beforehand
or extracted from the HITRAN database, respectively [18-20].
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Fig. 4. Normalized P, (1) of the mixture '2CH, and *CH, for different values of p.

The algorithm was tested on combinations of gaseous, i.e. short-
chained, hydrocarbons. Their strongest absorption is associated
with the fundamental vibrations and occurs in the mid-infrared
wavelength region, typically between 3 and 4 pm [21]. The lower
and the upper boundary of the wavelength range under evaluation
(Ag and Aq) are 3000 nm and 3600 nm, respectively. Since the ab-
sorption spectra strongly overlap, it is often not possible to visually
identify the optimal spectral range for the analysis.

3.1. Mixture of ?CH, and 3CH,4

In a first test, we investigated a mixture of the two main iso-
topologues of methane, 2CH, and '3CH,4. Fig. 2 shows both ab-
sorption spectra normalized to one. The graph of the 2CH, iso-
topologue does not reach intensity “one” because downsampling
had to be performed after normalization so that the described
computational operations can be applied to both isotopologues.

The two gases were selected because the spectral positions of
the single rotational lines in the respective P- and R-branch are
almost identical, but the positions of the Q-branches clearly differ.
The '2CH, Q-branch is approximately located between 3310 and
3320 nm; the *CH, one between 3320 and 3330 nm. Since the Q-
branches additionally exhibit relatively high absorption strength, it
would be expected that the laser of a perfectly suited spectrometer
(tunability: 10 nm) covers a large part of these regions.

Because this mixture contains only two gases, the measure of
the spectral deviation filtered with the Q-function, AS;,(2), equals
the product parameter P(A) according to Eq. (8) which is displayed
in Fig. 3. Py, (A), the integral of P(A) over the 10 nm laser tuning
range according to Eq. (9), is shown as well.

Fig. 3 shows P;, (1) for p = 8.5% on the larger scale whereas the
dark grey vertical line represents its median which corresponds to
the optimal center wavelength of the laser according to Eq. (11).

The laser exhibits a center wavelength of 3320.7 nm and reaches
from 3315.7 to 3325.7 nm. Since this covers a large part of the
Q-branches of 2CH, and 3CH,4 as it would have been expected,
the test represents an evidentiary confirmation of the mathemati-
cal procedure.

The parameter p according to Eq. (8) determines the quality of
the result to a large extent. Fig. 4 shows P;, (1) around its absolute
maxima at 3315 and 3326 nm for values of p between 1 and 9%.
The individual curves are shifted by 0.5 relative to each other in
vertical direction so that the progress can be clearly seen. With
increasing p the secondary maxima between 3200 and 3300 nm
and between 3350 and 3450 nm successively disappear whereas
the main maximum remains almost unaffected. From 8.5% on only
the absolute maximum remains, and for that reason this value was
chosen in the previous paragraph.

3.2. Mixture of 12CHy, 2C,Hg and 2C,H,

The second test of the algorithm was performed on a (simula-
tive) mixture of methane, ethane and ethylene (all carbon atoms
with the mass number 12). Fig. 5 displays the three absorption
spectra normalized to one. This combination was chosen, because
it is apparently not possible to visually identify the most suited
wavelength range for a spectroscopic analysis with a single laser
(tunability 10 nm).

Fig. 6 displays the evaluation results. It shows:

- The AS;o(4) according to Eq. (7) for the three possible gas
dyads 12CH4 - 12C2H6, 12CH4 - 12C2H4 and 12C2H6 - ]2C2H4.

- P()) (the product of all filtered differences according to Eq. (8))
and

- Py(A) (the integral of P(A) over the 10 nm laser tuning range
according to Eq. (9)).
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The resulting optimal center wavelength of the laser according
to Eq. (11) equals 3347.3 nm. It is marked in Fig. 6 with a dark
grey vertical line. The laser allows spectral tuning from 3342.3 to
3352.3 nm. It covers the characteristically high 2C,H, line at ca.
3346 nm as well as the two strongest rotational lines of 2C,Hg
and one relatively strong and discrete line of 2CH,. The range is
marked in Fig. 5 (yellow box). The result of this evaluation is very
plausible and represents another confirmation for the applicability
of the mathematical procedure.

4. Conclusion

We presented, to our knowledge, the first quantitative method
to determine the optimal spectral range for a sensitive and se-
lective analysis of a gaseous mixture. The method is particularly
suitable for spectrometers based on tunable diode lasers. A pre-
requisite for its application is that absorption spectra of all gases
in the mixture are known. The mathematical procedure identifies
wavelength regions, in which the spectra of the single gases signif-
icantly differ and, at the same time, the absorption is strong. The
definition of a threshold ensures that the best suited spectral re-
gion is found. The median of the optimal spectral range is selected
as the laser’s center wavelength.

The procedure was tried on two simulative gas mixtures. A
first test was carried out on a mixture that allowed it to iden-
tify the perfect region through educated guessing. That the algo-
rithm yielded the expected region is a convincing confirmation of
the method. The second test of the algorithm was performed on
a mixture where it was obviously not possible to visually identify
the most suited wavelength range. The result of this evaluation is
very plausible and represents another confirmation for the method.

Finally, it should be mentioned that the applicability depends
primarily on the available spectra and that the number of com-
ponents in the mixture is theoretically limited only by the avail-
able computing power. In practice, a spectrometer based on a sin-
gle diode laser will probably never be applied to mixtures of more
than 10 gases.

A limitation of the practical applicability is the fact that the
algorithm is based on perfect spectra. Noise and other aspects of
metrological reality are not taken into account. Only under these
conditions are the results independent of the concentration of the
individual components and their ratios.
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