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a b s t r a c t 

We present a mathematical method which allows determination of an optimal spectral range for gas 

mixture analysis based on theoretical absorption spectra. The resulting center wavelength is particularly 

suited for tunable diode laser spectroscopy (TDLS). The procedure contains several steps of numerical cal- 

culations which can easily be implemented in almost any programming language. We apply our method 

to three exemplary mixtures of hydrocarbons and present and validate the individual results. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Optical spectroscopy is nowadays a well-established method for 

he analysis of gaseous mixtures. As soon as a high spectral reso- 

ution is required, spectrometers usually apply lasers as radiation 

ources [1–3] . In order to be able to probe different absorption 

eatures with a single laser, it is advantageous if its emission wave- 

ength can be varied. Therefore, semiconductor lasers are predes- 

ined for this task, because they can be spectrally tuned via their 

perating temperature and current. The tuning range of distributed 

eedback interband cascade lasers is, for example, of the order of 

0 nm at constant laser temperature with an emission linewidth in 

he single-digit megahertz range [4–7] . 

When designing a laser spectrometer, the definition of the 

aser’s emission wavelength or, if tunable, its spectral range is cru- 

ial for its potential applications. As a matter of course, all the 

omponents of interest should exhibit absorption within the range. 

urthermore, it is desirable that the absorption strengths of all 

omponents are high in order to achieve high detection sensitivity. 

imultaneously, interferences of the absorbing compounds should 

e excluded to the greatest possible extent in pursuance of avoid- 
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ng metrological ambiguity and, thus, reach high detection selec- 

ivity [ 1 , 2 ]. 

The identification of the optimal spectral range for a certain ap- 

lication, i.e. for the analysis of a certain mixture of gases, is not 

rivial. In practice it is usually an educated guess based on the 

nown spectra [ 2 , 8 , 9 ]. The spectra evaluation, i.e. the determina-

ion of the concentrations of the individual components, is then 

ypically carried out using a multivariate calibration such as partial 

east squares regression. However, the quality of the results, espe- 

ially the selectivity, strongly depends on the selected wavelength 

ange and the selection becomes increasingly difficult if the single 

pectra strongly overlap, and even more so if the single compo- 

ents are very similar and their spectra differ only slightly. 

In the following we present, to the best of our knowledge, 

he first quantitative method to determine a well suited spectral 

ange for sensitive and selective gas analysis. The procedure is cus- 

omized for lasers of a certain tuning range, such as semiconduc- 

or lasers, and delivers its optimal center wavelength. The follow- 

ng section describes the mathematical procedure. After that we 

resent exemplary application results. 

. Mathematical procedure 

For the application of the method, knowledge of the absorption 

pectra of all gaseous components in the mixture is required. The 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jqsrt.2022.108216
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2022.108216&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:marc-simon.bahr@haw-hamburg.de
https://doi.org/10.1016/j.jqsrt.2022.108216
http://creativecommons.org/licenses/by/4.0/


M.-S. Bahr, B. Baumann and M. Wolff Journal of Quantitative Spectroscopy & Radiative Transfer 286 (2022) 108216 

Fig. 1. Flowchart of the mathematical procedure. 

Fig. 2. Absorption spectra of 12 CH 4 and 13 CH 4 [20] . 
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pectra can be measured beforehand, e.g. with a Fourier Interfer- 

meter, or extracted from databases such as HITRAN [10] , GEISA 

11] , JPL [12] or NIST [13] . The flow chart of the method is shown

n Fig. 1 . The individual steps are explained in the following sub- 

ections. 

.1. Calculation of absorption intensity differences 

In order to measure the individual gas components selectively 

r with least interference, it is necessary to identify the wave- 

engths at which the absorption spectra maximally differ from one 

nother [14] . To find these spectral regions, all spectra are normal- 

zed to 1. A total number n of gases (spectra) results in: 

n 

2 

)
= 

n ! 

2 · ( n − 2 ) ! 
(1) 

yads of spectra [15] . The individual absorption intensities of each 

as S ( λ) are then used to calculate the intensity differences for 

ach pair of gases ( i and j ) as function of the wavelength λ: 

S i j ( λ) = S i ( λ) − S j ( λ) . (2) 
2 
.2. Application of the laser tuning range 

Semiconductor lasers exhibit a limited spectral tuning range. In 

he case of an interband cascade laser the tuning range �λ is typ- 

cally of the order of 10 nm [4–7] . This has to be considered for

he determination of best suited spectral range. The influence is 

epresented by a sliding integral ( Q -function) of the individual dif- 

erences: 

 i j ( λ) = 

∫ λ+ �λ
2 

λ− �λ
2 

∣∣�S i j 

(
λ′ )∣∣dλ′ . (3) 

Q ij ( λ) represents a measure of the spectral deviation of the 

pecies i and j in the wavelength range from ( λ − �λ
2 ) to ( λ + 

�λ
2 ) .

ue to the dependence of the integral limits on the wavelength, 

he integral acts like a window function. This window is sliding 

ver the entire spectral range. Thus, the integral can also be de- 

cribed as a sliding integral. 

Differences �S i j ( λ) of com ponents with weak absorption can 

ead to inaccurate results in the following steps and, therefore, 

eed to be suppressed. In order to do this, an auxiliary value D ij 

s defined: 

 i j = 

∫ λ1 

λ

∣∣�S i j ( λ) 
∣∣dλ. (4) 
0 
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Fig. 3. Evaluation of the mixture 12 CH 4 and 13 CH 4 , all quantities are normalized to “one”. 
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Here, λ0 and λ1 are the lower and the upper boundary of the 

avelength range under evaluation. Subsequently, a parameter 0 < 

 � 1 has to be determined empirically, which is related to the 

hreshold values of the individual Q -functions: 

 i j,th = p · D i j . (5) 

The threshold values are needed to obtain an unambiguous re- 

ult for the optimal laser wavelength. The parameter p is chosen 

ptimally if Eq. (9) provides only a single range – the absolute 

aximum. Q ij,th is applied to Q ij ( λ) according to: 

˜ 
 i j ( λ) = { Q i j ( λ) , i f Q i j ( λ) > Q i j,th 

0 , else 
. (6) 

In a next step the Q -functions are multiplied by the difference 

pectra: 

S i j,Q ( λ) = �S i j ( λ) · ˜ Q i j ( λ) . (7) 

�S ij,Q ( λ) can be considered to be the difference spectrum for 

he gas pair i and j filtered by the Q -functions. 

.3. Combining the results of all component pairs 

The “filtered” difference �S ij,Q ( λ) is large for wavelength re- 

ions, in which the spectra of a certain gas pair differs and, at the 

ame time, absorption is strong. In order to consider the contribu- 

ion of all possible gas pairs, all filtered differences are multiplied: 

 ( λ) = 

n ∏ 

i, j=1 

�S i j,Q ( λ) , where i < j. (8) 

The product P ( λ) is large if the previous conditions are satisfied 

or all gas component dyads. For absorption-weak wavelengths or 

avelengths at which the spectra of the species do not differ sig- 

ificantly, the product P ( λ) is small. Thus, wavelength ranges with 
3 
arge values of P ( λ) mark the regions preferable for a sensitive 

nd selective measurement. In order to consider the limited tun- 

ng range of semiconductor lasers an integral parameter equivalent 

o Eq. (3) is introduced: 

 int ( λ) = 

∫ λ+ �λ
2 

λ− �λ
2 

∣∣P (λ′ )∣∣dλ′ . (9) 

.4. Center wavelength determination 

The wavelength region around the maximum of P int ( λ) indicates 

he spectral range in which the center wavelength of the semicon- 

uctor laser should ideally be located. We chose the median of 

 int as center wavelength since it considers all values of P int and 

s therefore “well-balanced”. 

In general, the median m of a function f ( x ) is defined as [16] : 
 m 

−∞ 

f ( x ) dx = 

1 

2 

∫ + ∞ 

−∞ 

f ( x ) dx. (10) 

The application of this definition leads to the optimal center 

avelength λc of the laser: 

 λc 

λ0 

P int ( λ) d λ = 

1 

2 

∫ λ1 

λ0 

P int ( λ) d λ. (11) 

With the aid of software like MATLAB [17] it is easy to extract 

c from this equation. 

. Exemplary results 

The mathematical procedure described above was programed 

n MATLAB and applied to assumptive gas mixtures. The absorp- 

ion spectra of the single components were measured beforehand 

r extracted from the HITRAN database, respectively [18–20] . 
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Fig. 4. Normalized P int (λ) of the mixture 12 CH 4 and 13 CH 4 for different values of p . 
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according to Eq. (9) ). 
The algorithm was tested on combinations of gaseous, i.e. short- 

hained, hydrocarbons. Their strongest absorption is associated 

ith the fundamental vibrations and occurs in the mid-infrared 

avelength region, typically between 3 and 4 μm [21] . The lower 

nd the upper boundary of the wavelength range under evaluation 

 λ0 and λ1 ) are 30 0 0 nm and 360 0 nm, respectively. Since the ab-

orption spectra strongly overlap, it is often not possible to visually 

dentify the optimal spectral range for the analysis. 

.1. Mixture of 12 CH 4 and 13 CH 4 

In a first test, we investigated a mixture of the two main iso- 

opologues of methane, 12 CH 4 and 

13 CH 4 . Fig. 2 shows both ab- 

orption spectra normalized to one. The graph of the 12 CH 4 iso- 

opologue does not reach intensity “one” because downsampling 

ad to be performed after normalization so that the described 

omputational operations can be applied to both isotopologues. 

The two gases were selected because the spectral positions of 

he single rotational lines in the respective P- and R-branch are 

lmost identical, but the positions of the Q-branches clearly differ. 

he 12 CH 4 Q-branch is approximately located between 3310 and 

320 nm; the 13 CH 4 one between 3320 and 3330 nm. Since the Q- 

ranches additionally exhibit relatively high absorption strength, it 

ould be expected that the laser of a perfectly suited spectrometer 

tunability: 10 nm) covers a large part of these regions. 

Because this mixture contains only two gases, the measure of 

he spectral deviation filtered with the Q -function, �S ij,Q ( λ), equals 

he product parameter P ( λ) according to Eq. (8) which is displayed 

n Fig. 3 . P int ( λ), the integral of P ( λ) over the 10 nm laser tuning

ange according to Eq. (9) , is shown as well. 

Fig. 3 shows P int ( λ) for p = 8.5% on the larger scale whereas the

ark grey vertical line represents its median which corresponds to 

he optimal center wavelength of the laser according to Eq. (11) . 
4 
he laser exhibits a center wavelength of 3320.7 nm and reaches 

rom 3315.7 to 3325.7 nm. Since this covers a large part of the 

-branches of 12 CH 4 and 

13 CH 4 as it would have been expected, 

he test represents an evidentiary confirmation of the mathemati- 

al procedure. 

The parameter p according to Eq. (8) determines the quality of 

he result to a large extent. Fig. 4 shows P int ( λ) around its absolute

axima at 3315 and 3326 nm for values of p between 1 and 9%. 

he individual curves are shifted by 0.5 relative to each other in 

ertical direction so that the progress can be clearly seen. With 

ncreasing p the secondary maxima between 3200 and 3300 nm 

nd between 3350 and 3450 nm successively disappear whereas 

he main maximum remains almost unaffected. From 8.5% on only 

he absolute maximum remains, and for that reason this value was 

hosen in the previous paragraph. 

.2. Mixture of 12 CH 4 , 
12 C 2 H 6 and 12 C 2 H 4 

The second test of the algorithm was performed on a (simula- 

ive) mixture of methane, ethane and ethylene (all carbon atoms 

ith the mass number 12). Fig. 5 displays the three absorption 

pectra normalized to one. This combination was chosen, because 

t is apparently not possible to visually identify the most suited 

avelength range for a spectroscopic analysis with a single laser 

tunability 10 nm). 

Fig. 6 displays the evaluation results. It shows: 

- The �S ij,Q ( λ) according to Eq. (7) for the three possible gas 

dyads 12 CH 4 – 12 C 2 H 6 , 
12 CH 4 – 12 C 2 H 4 and 

12 C 2 H 6 – 12 C 2 H 4 . 

- P ( λ) (the product of all filtered differences according to Eq. (8) )

and 

- P int ( λ) (the integral of P ( λ) over the 10 nm laser tuning range
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Fig. 5. Absorption spectra of 12 CH 4 , 
12 C 2 H 6 and 12 C 2 H 4 [18–20] . 

Fig. 6. Evaluation of the mixture 12 CH 4 , 
12 C 2 H 6 , and 12 C 2 H 4 all quantities are normalized to "one". 
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[

The resulting optimal center wavelength of the laser according 

o Eq. (11) equals 3347.3 nm. It is marked in Fig. 6 with a dark

rey vertical line. The laser allows spectral tuning from 3342.3 to 

352.3 nm. It covers the characteristically high 

12 C 2 H 4 line at ca. 

346 nm as well as the two strongest rotational lines of 12 C 2 H 6 

nd one relatively strong and discrete line of 12 CH 4 . The range is 

arked in Fig. 5 (yellow box). The result of this evaluation is very 

lausible and represents another confirmation for the applicability 

f the mathematical procedure. 

. Conclusion 

We presented, to our knowledge, the first quantitative method 

o determine the optimal spectral range for a sensitive and se- 

ective analysis of a gaseous mixture. The method is particularly 

uitable for spectrometers based on tunable diode lasers. A pre- 

equisite for its application is that absorption spectra of all gases 

n the mixture are known. The mathematical procedure identifies 

avelength regions, in which the spectra of the single gases signif- 

cantly differ and, at the same time, the absorption is strong. The 

efinition of a threshold ensures that the best suited spectral re- 

ion is found. The median of the optimal spectral range is selected 

s the laser’s center wavelength. 

The procedure was tried on two simulative gas mixtures. A 

rst test was carried out on a mixture that allowed it to iden- 

ify the perfect region through educated guessing. That the algo- 

ithm yielded the expected region is a convincing confirmation of 

he method. The second test of the algorithm was performed on 

 mixture where it was obviously not possible to visually identify 

he most suited wavelength range. The result of this evaluation is 

ery plausible and represents another confirmation for the method. 

Finally, it should be mentioned that the applicability depends 

rimarily on the available spectra and that the number of com- 

onents in the mixture is theoretically limited only by the avail- 

ble computing power. In practice, a spectrometer based on a sin- 

le diode laser will probably never be applied to mixtures of more 

han 10 gases. 

A limitation of the practical applicability is the fact that the 

lgorithm is based on perfect spectra. Noise and other aspects of 

etrological reality are not taken into account. Only under these 

onditions are the results independent of the concentration of the 

ndividual components and their ratios. 
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