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ABSTRACT Unmanned aerial vehicle (UAV) relaying is deemed as a promising solution to enhance
the achievable rate and widespread connectivity in millimeter-Wave (mm-Wave) systems for tomorrow’s
6G wireless networks. In this paper, we study both the performance and user association optimization for
the UAV relay-assisted mm-Wave massive multiple-input multiple-output (MIMO) communication system,
where multiple base stations (BSs) serve their respective users with the help of one beamforming UAV
relay. Both the beamforming and the UAV relay have essential impact on the achievable sum-rate of the
system. Thus, a multi-user hybrid beamforming scheme is designed to mitigate the inter-user interference
issues and achieve a better trade-off between performance and complexity in UAV-enabled communications.
Also, to exploit UAV relay based architecture in serving different ground BS-user pairs, we propose a UAV
relay-assisted multi-BS mm-Wave massive MIMO system with hybrid beamforming architecture, which
prevent sudden link disconnections caused by high path loss and line-of-sight (LOS) blockage in mm-Wave
frequency band. Then, we formulate a user association problem with multiple constraints so that the sum-
rate of the overall UAV relay assisted-mm-Wave massive MIMO system is maximized. Simulation results
are provided to show the effectiveness of the proposed UAV relay-enabled architecture.

INDEX TERMS Unmanned aerial vehicle (UAV) relay, mm-Wave communications, massive MIMO, 6G,
hybrid Beamforming, user association, sum rate maximization.

I. INTRODUCTION1

M ILLIMITER-WAVE (mm-Wave) communications2

have been envisioned as a dominant candidate for3

enhancing the data rate, while supporting a wide variety4

of applications of beyond 5G wireless networks [1]. These5

benefits are mainly due to the huge bandwidth availability6

in their frequency bands, and the great potential they offer7

for antennas miniaturization [2]. However, the biggest chal-8

lenging factor with these high frequencies is the severe path9

loss and the easy blockage by obstacles, especially consid-10

ering the very long transmission distances involved [3], [4].11

This results in substantial system performance losses if the12

network is not configured properly. To combat the afore-13

mentioned issues, researchers have proposed multiple key14

enabling technologies, e.g., massive multiple-input multiple-15

output (MIMO) technology, networks densification, the use16

of the unmanned aerial vehicles (UAVs), etc [5]. Another17

powerful solution to establish high-quality communication18

links and extend coverage of outdoor mm-Wave systems is19

through relay-based beamforming approach [6].20

With regard to its great potential in 5G wireless networks,21

massive MIMO with hybrid beamforming structure is consid-22

ered as an innovative research direction of 5G wireless com-23

munication, where hybrid beamforming plays a paramount24

role [7], [8]. This latter has been recently proposed as25

a practical solution for mm-Wave MIMO communications26

through striking a trade-off between system performance27

and hardware efficiency. Hybrid beamforming approaches28

generally employ few radio frequency (RF) chains to realize29

low dimensional digital beamformers followed by a large30

number of cost-efficient phase shifters to implement high31

dimensional analog beamformers. As a result, the analog32
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beamformers can provide a sufficient beamforming gain to33

compensate for the huge path loss in mm-Wave frequency34

bands, and the digital beamformers can offer the flexibility to35

realize multiplexing techniques [9].36

In addition, communications via UAVs, popularly referred37

to as drones, are one of the most crucial enabling technolo-38

gies for 6G wireless networks to realize a massive amount of39

connections. Recently, UAV communications have attracted40

lots of attention in both industry and academia [10], [11].41

This interest is motivated by their flexibility, low acquisition42

and cost efficiency, and their targeting of potential applica-43

tions such as device to-device (D2D) communications, smart44

city construction, Internet of Things (IoT), public safety, and45

so forth [12]–[14]. In fact, UAV-aided wireless communica-46

tion becomes one promising solution to provide temporary47

wireless connectivity, extended coverage range, and long48

transmission distances for ground users [15].49

A very appealing solution for enhancing the propagation50

performance of the mm-Wave systems and realizing the am-51

bitious goals of future 6G wireless networks, is to use UAVs52

equipped with massive MIMO beamforming [16]. On the one53

hand, UAVs can fly out of blockage zone to establish LOS54

links, which results in overcoming the aforementioned pen-55

etration losses, and hence the low latency communications56

is satisfied [17]. On the other hand, the short wavelength of57

mm-Wave permits massive antennas to be placed into a small58

UAV so that beamforming structure can be carefully designed59

to overcome the drawbacks of mm-Wave communications60

[18], [19]. For instance, in [18], a three-dimensional (3D)61

beamforming approach is explored to achieve flexible cov-62

erage for target areas by designing wide beams in mm-Wave-63

UAV communications. In [19], massive MIMO schemes have64

been integrated in mm-Wave-UAV communication systems65

to enhance network coverage and the system spectrum effi-66

ciency by exploiting the beamforming gains.67

Recently, there has been a growing interest in developing68

UAV relays in the 6G wireless networks aiming for the69

improvement of the connectivity and the coverage of ground70

wireless devices [20]. Compared to the deployment of con-71

ventional terrestrial infrastructures, such as ground relays,72

aerial relay-assisted communications provide effective ways73

to prolong the mm-Wave transmission range, offer a better74

signal quality, and increase the data rate between two or75

multiple terrestrial nodes in the mm-Wave bands [21]. This76

is simply due to the fact that the placement of UAVs at77

elevated altitudes could effectively bypass the obstacles on78

the ground, and which are more likely to have LOS links,79

and consequently a better channel gain. On the other side,80

UAVs can move freely in the 3D space to adapt to the network81

mobility and enhance the system performance [6]. Naturally,82

employing large MIMO antennas in UAV relay-assisted mm-83

Wave networks brings additional challenges in designing 6G84

system architecture, more particularly the ones pertaining to85

the limited power issue, which results in a strict constraint86

on their energy consumption [22]. Theoretically speaking, an87

analog beamforming structure represents the most preferable88

solution to achieve low power consumption for the UAV,89

since it adopts the simplest electronic components and re-90

quires a single RF chain [23]. However, and only because of91

the limited flexibility of analog beamforming, multiple UAVs92

were suggested to provide ubiquitous network coverage to93

ground users, which may incur significant energy consump-94

tion for propulsion. Beside, opting for multiple UAVs could95

be quite challenging in practice since it involves aspects96

pertaining to complex synchronization, altitude control, cost,97

and power optimization, . . . etc [22], [24]. In view of this98

issue, the research community is leaning towards the de-99

velopment of hybrid beamforming configuration for massive100

MIMO system, which enables simultaneous transmission of101

multiple data streams from the same UAV station, and makes102

it possible to reduce the UAV swarm size and its relative103

cost compared to the analog beamforming counterpart [25].104

Inspite of these viable advantages, quite few research works105

have been devoted to incorporation of hybrid beamforming in106

the hot topic of UAV-based relaying communication system.107

In light of these aforementioned benefits of mm-Wave108

communications and UAV relay networks, in this paper we109

consider a mm-Wave massive MIMO network employing110

multiple BSs to serve multiple ground users with the help of111

UAV relay-based hybrid beamforming structure to enhance112

the achievable rate and widespread connectivity in mm-Wave113

communications.114

A. RELATED WORK AND MOTIVATION115

There is a growing number of works that integrates UAV116

into mm-Wave networks due to its promising merits. In117

[26], the authors provided a comprehensive survey on UAV-118

assisted mm-Wave communications and summarized their119

main challenges. In [27], the performance evaluation of UAV-120

assisted mm-Wave networks is investigated, where UAVs121

were deployed as mm-Wave access points communicating122

with ground users. In [28], the authors studied the quality123

of service (QoS)-based performance analysis for a coexisting124

network of sub-6 GHz and mm-Wave UAV-based commu-125

nication. In [29] the outage performance of the mm-Wave126

UAV swarm network is studied, where a multiple UAV BSs127

provide connectivity to a far-distance user in the presence of128

blockages. In [30], a position and attitude prediction-based129

learning algorithm for mm-Wave UAV-to-UAV communica-130

tion is proposed using conventional uniform planar arrays131

(UPA). In [31] the problem of maximizing the achievable132

sum rate of all users in mm-Wave UAV system is investi-133

gated, where the UAV serves as a BS. The authors of [32]134

focused on network coverage and the performance optimiza-135

tion problem in UAV-assisted powered mm-Wave networks.136

Indeed, we only increase the number of BS antennas to137

become massive and exploit hybrid beamforming techniques.138

Different from the previous works, this paper considers139

UAV relay-assisted mm-Wave networks to further improve140

the achievable rate performance and widespread connectivity141

in mm-Wave communications. The potential benefits of de-142

ploying UAV-based relay in mm-Wave networks have been143
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studied by many works [23], [33]–[37]. In [33] a novel UAV-144

relaying method for mm-Wave system is proposed in order145

to overcome shadowing and NLOS conditions by adjusting146

their optimal location automatically. In [34], a new energy-147

efficient modulation scheme associated with free space opti-148

cal (FSO) communications is developed for the UAV relay in149

order to improve its battery life. The authors in [35] deployed150

a UAV as an Amplify-and-Forward (AF) relay using mm-151

Wave concurrently in backhaul and access links. Authors152

in [36] proposed to deploy UAVs as aerial relay nodes to153

enable dynamic routing in mm-Wave backhaul links, thereby154

mitigating blockage due to random mobility of blocking155

users. Very recently, the authors in [37] proposed a hybrid156

beamforming-NOMA approach to improve the achievable157

rate of downlink mm-Wave half-duplex UAV relay-assisted158

massive multi-user MIMO networks. Additionally, in [23],159

the full duplex UAV relay is employed to improve the160

achievable rate performance of mm-Wave communications,161

in which an analog beamforming is utilized to mitigate the162

self interference.163

The research works in [23], [33]–[37] can provide us with164

a good picture about employing UAV relaying to enhance165

the performance of mm-Wave networks. Nonetheless, some166

crucial points in the prior works are not yet adequately167

addressed in the more recent studies. For example, most168

of them mainly focus on single-antenna UAV relay-assisted169

mm-Wave communications except in the mentioned contri-170

butions in [23], [37]. Moreover, the UAV relay-enabled mm-171

Wave networks for multiple BSs, which is investigated in this172

paper, has not yet been considered. Also, all the prior works173

on UAV networks using the mm-Wave band are still minimal174

and there seem to be no prior works focusing on the users175

association problem in UAV mm-Wave relaying networks176

with hybrid beamforming architecture.177

Considering the scope of our work, the process of as-178

sociating users and BSs is another critical issue for mm-179

Wave networks. This issue becomes more challenging for180

multi-BS massive MIMO systems since each user receives181

not only the desired signal but also interference from many182

antennas of several BSs at different locations. The problem183

of users’ association in mm-Wave networks and massive184

MIMO deployment has been widely investigated [38]–[46].185

In the context of HetNets, with the goal of maximizing the186

sum backhaul rate, an efficient association and placement of187

the backhaul hubs have been studied in [38], [39], where188

the UAVs are used as backhaul aerial hubs between small-189

cells and core network and are connected via FSO links.190

Similarly in [40], a genetic algorithm for the joint optimal191

placement of UAV-hubs and the association of small-cell base192

stations (SCBSs) is proposed such that the sum-rate of the193

overall system can be maximized. In [41], authors used the194

idea of employing UAVs using the unsupervised learning195

based k-means clustering algorithm and then the associa-196

tion of SCBSs with UAVs is performed, which resulted in197

consuming less bandwidth while achieving high sum-rate.198

In the context of mm-Wave networks, several studies have199

been proposed [42]–[46]. In [42], the BS placement and user200

association problem with the objective of minimizing the201

outage probability in mm-Wave networks are analyzed. In202

[43], a user association problem in mm-Wave backhaul small203

cell networks with the objective of maximizing the network204

energy and spectrum efficiency is investigated. In [44], a205

joint coordinated user association and spectrum allocation206

problem in 5G HetNets that use mm-Wave bands is studied.207

In [45], a joint beamforming and cell association optimiza-208

tion problem in mm-Wave cellular networks is investigated209

with the objective of maximizing the throughput of the users.210

In [46], an association problem in a two tier network with211

massive MIMO deployment both at the macro and femto212

tiers is investigated. Besides, the work addressed in [38]–213

[46], the user association in UAV relay-assisted mm-Wave214

massive MIMO systems, which is investigated in this paper,215

has not yet been considered. To the best of our knowledge,216

despite the orientation towards the exploitation of the mm-217

Wave bands, this is the first article which provides both the218

achievable rate performance and user association optimiza-219

tion problem while maximizing the sum-rate of the overall220

UAV relay assisted mm-Wave massive MIMO communica-221

tion systems. In addition, the positive impact of UAV relay-222

based hybrid beamforming structure on both user associa-223

tion and sum-rate performance has not been considered in224

prior work for any user association scheme for mm-Wave225

networks. Nonetheless, the benefit of massive MIMO for226

sub-6 GHz was a result of channel hardening and favorable227

propagation properties [47]. However, the mm-Wave and228

Terahertz (THz) frequency bands are characterized by sparse229

and low rank channels, where the number of NLoS links230

decreases as we increase the carrier frequency of operation231

[17], [48]. Recall that the work in [17] addressed the open232

issues of UAV mm-Wave channels and their specific charac-233

teristics, scenarios, and challenges. Hence, as a result of the234

specific UAV channels at high frequency bands, our ability235

to leverage the channel hardening and favorable propagation236

condition of massive MIMO is still questionable [47], [48].237

Therefore, no channel hardening and favorable propagation238

properties have been used.239

B. CONTRIBUTIONS240

In this paper, we consider a UAV relay-assisted multi-BS241

multi-user mm-Wave massive MIMO system through hybrid242

beamforming structure, wherein the source is a set of mul-243

tiple distributed BSs and the destination is a set of multi-244

ple single-antenna users. The key feature of the considered245

system is to equip the UAV relay with massive MIMO an-246

tennas to overcome the severe propagation loss of mm-Wave247

signals and exploit the hybrid beamforming design, with the248

goal of achieving a performance comparable to fully digital249

beamforming, but with much reduced complexity and power250

consumption. Moreover, we define the association problem251

of users and BSs, and present its performance. To summarize,252

our contributions can be described as follows:253

• To fully exploit the advantages of distributed BSs and254
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improve communication quality under severe path loss255

and blockage drawbacks usually occurring in mm-Wave256

communications, we consider a UAV relay-assisted257

mm-Wave massive MIMO system with hybrid beam-258

forming architecture. Specifically, UAV based relaying259

can significantly improve the sum rate performance as260

well as extend the coverage area. Simulation results261

demonstrate that UAV relay-based architecture can sig-262

nificantly enhance the achievable sum data rate over263

the alternative one without UAV relaying for mm-Wave264

communications.265

• To achieve a better trade-off between performance and266

complexity in UAV enabled communications, a multi-267

user hybrid beamforming scheme is designed, which268

significantly reduces the implementation overhead, and269

effectively mitigates the inter-user interference. The cor-270

responding performance is very close to that obtained271

by the full digital beamforming, and outperforms the272

existing scheme proposed in [49].273

• To formulate an optimization problem that find the274

best user association scenario such that the sum-rate275

of the overall UAV relay assisted mm-Wave massive276

MIMO system can be maximized under a multiple277

communication-related constraints, i.e., quality of ser-278

vice, maximum available bandwidth that each BS can279

support, maximum number of links, power limit at280

which a BS can transmit the initialization signal and281

maximum data rate constraints are considered. We show282

through simulations that our proposed solution perform283

nearly optimal.284

The rest of the paper is organized as follows. Section II intro-285

duces the system and channel models. The multi-user hybrid286

beamforming design is described in Section III. By consid-287

ering different communication constraints, the optimization288

problem formulation is derived in Section IV. In Section289

V, we present some results to validate the effectiveness of290

the UAV relay-enabled architecture. Finally, we conclude the291

paper in Section VI.292

II. SYSTEM AND CHANNEL MODELS293

In this section, we first introduce the UAV relay-assisted294

multi-user mm-Wave massive MIMO system model followed295

by the 3D geometry based-UAV mm-Wave channel model.296

A. THE SYSTEM MODEL297

As shown in Fig. 1, we consider a UAV relay assisted-298

mm-Wave massive MIMO network consisting of NBS BSs,299

U single antenna users, and one UAV relay working in a300

half-duplex mode. In this system, there is no direct link301

between the source nodes (BSs) and their destinations (users)302

since mm-Wave signals are sensitive to severe blockages.303

To ensure a wide coverage area, we assume massive MIMO304

deployment both at the BSs and UAV relay with Nt and305

Nre antennas, respectively. It should be noted that while306

allowing a user to be served by multiple BSs may require307

more overhead to implement, and hence it is more difficult308

FIGURE 1. Graphical illustration of UAV relay-enabled architecture for
multi-BS mm-Wave massive MIMO multi-user system.

to implement multiple-BS association than single-BS associ-309

ation [50], [51]. Therefore, even though the performances of310

multiple BSs association schemes are close to optimal [52],311

we have chosen to focus on one BS at a time where all BSs312

have to be associated in the end of the association cycle and313

leave the case of multi-BS association scheme to future work.314

This assumption is supported by it practical purposes, thus315

it simplifies the beamforming /combining procedure at the316

UAV relay and user association. In this paper, we assume317

that All BSs are connected to a central controller, able to318

decide which particular BS serve their associated users based319

on the information provided by the users. Upon receiving the320

association information from the central controller, all BSs321

will transmit information data to their associated users.322

In order to reduce the hardware cost of the massive an-323

tennas deployment in UAV relay-enabled architecture, hybrid324

beamforming structure is applied between the multiple BSs,325

the UAV relay, and the ground users as illustrated in Fig. 2.326

Specifically, both BSs and the UAV hold the same number327

of RF chains, denoted as NRF, where Nt ≥ Nre � NRF,328

and to achieve full multiplexing gains, we assume NRF = U329

[53]. Similarly, the total number of transmitted streams are330

Ns = U . Furthermore, each user is equipped with one RF331

chain, which can reduce the processing complexity of the332

destination. Without loss of generality, we assume that the333

channel state information (CSI) is perfectly known at the334

BSs and UAV relay, which corroborates the assumptions in335

(as done in many related references such as) [31], [54]. CSI336

acquisition at UAV-aided mm-Wave systems is currently a337

topic of active research. Recently, imperfect CSI has been338

brought into the context of mm-Wave systems by exploiting339

the sparsity of mm-Wave channels to embed compressed340

sensing (CS) techniques for the estimation of the these chan-341

nels [55]–[57].342
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FIGURE 2. UAV relay based-hybrid beamforming architecture.

To deal with the frequency selective fading, the mm-Wave343

massive MIMO system normally uses orthogonal frequency-344

division multiplexing (OFDM) scheme. We assume that the345

number of OFDM sub-carriers is K. It is important to em-346

phasize here that the RF beamforming matrix is the same347

for all sub-carriers, because the RF beamformer cannot be348

implemented separately for each sub-carrier [6]. The trans-349

mission process from the sources to the destinations takes350

place during two sequential phases.351

During phase-I, each BS node applies aNt×U beamform-
ing F j to transmit a symbol for each user. The transmitted
signal from the jth BS using the kth sub-carrier can be
expressed as:

xj(k) = F j(k)sj(k), (1)

where F j(k) = F j
RFF

j
BB(k) is the hybrid beamform-352

ing matrix for the jth BS, with F
(j)
RF ∈ CNt×NRF353

being the analog RF with constant magnitudes while354

F j
BB(k)=[f

(1,j)
BB (k), ...,f

(U,j)
BB (k)] ∈ CNRF×U is the baseband355

beamforming matrix, and sj(k) = [s(1,j)(k), ..., s(U,j)(k)]T356

represents the transmitted symbols from the jth BS node,357

such that E[sj(k)(sj(k))H ]=IU . The received signal at the358

UAV relay in the kth sub-carrier could then be represented359

as:360

y(k) =

NBS∑
j=1

Hj
1(k)

U∑
i=1

F j
RFf

(i,j)
BB (k)s(i,j)(k) +w(k), (2)

where s(i,j) is the transmit symbol which BS j intends to361

transmit to user i, Hj
1(k) ∈ CNre×Nt is the frequency362

domain channel matrix between the jth BS and the UAV363

relay, and w(k) is the additive noise vector at the UAV relay364

with (0, σ2
r) elements.365

In phase-II, the transmitted signal from the BSs travels366

through the U ×Nre analog receive matrix GRF2 at the relay,367

then is amplified by theNRF×U baseband matrix Gr(k), and368

is subsequently forwarded to all users through the Nre×NRF369

analog transmit matrix GRF1. The received signal at the ith370

user can be modeled as:371

Yi(k) = HH
2,i(k)

NBS∑
j=1

G(k)Hj
1(k)F

j
RFf

(i,j)
BB (k)s(i,j)(k)+

U∑
i′ 6=i

NBS∑
j=1

HH
2,i(k)G(k)Hj

1(k)F
j
RFf

(i′,j)
BB (k)s(i

′,j)(k) + Wi(k),

where
∑NBS
j=1 G(k)Hj

1(k)F
j
RFf

(i,j)
BB (k)s(i,j)(k) is the super-372

position of desired signals that user i receives from the373

BSs, H2,i(k) is the frequency domain channel between374

the UAV relay and the ith user, G(k)=GRF1Gr(k)GRF2375

represents the overall relay processing matrix, and376

Wi(k)=HH
2,i(k)G(k)w(k) encompasses the equivalent377

noise vector. For the UAV relay-assisted mm-Wave com-378

munications involved herein, both channels Hj
1 and H2,i379

are the Fourier transforms of temporal channels, which are380

represented using a 3D geometric model.381

B. THE CHANNEL MODEL382

In the considered scenario, we assume that the BSs and383

the ground users are distributed randomly using stochastic384

geometry approach and following aMatern type-I hard-core385

process over the same geographical area, with an intensity of386

λs per m2, and a minimum separation of dmin
BS and dmin

U from387

the neighbours, respectively [58]. Without loss of generality,388

we define the 3D coordinates vectors of the UAV relay by389

(xu,yu,hu). Equivalently, we refer by (xj ,yj ,zj) to the 3D390

position of the jth BS, and with (xi, yi) to the 2D location391

of the ith user. Herein, we describe the UAV relay-assisted392

mm-Wave communications channel model between the jth393

BS node and the UAV relay. This model assumes that there394

are multiple paths between the BSs nodes and the UAV395

relay node, and each of these paths have different angles of396

departure (AoDs) and angles of arrival (AoAs). In frequency397

domain, the channel Hj
1 can be expressed as:398

Hj
1(k) =

N−1∑
t=0

L∑
l=1

αjl
[Dj ]ν

e(−j2πfdTs cosϕ
j
l+γ

j
l )ajt (φ

j,t
l , θ

j,t
l )

ar(φ
r
l , θ

r
l )e
−j 2πkt

K , k = 1, ...,K (3)

where αjl is the small-scale fading coefficient associated399

with the lth propagation path of the jth BS, Dj is the400

distance between the jth BS and the UAV relay, L is the401

number of multi-paths, ν is the path-loss exponent, fd is402

the maximum Doppler frequency, Ts is the system sampling403

period, ϕjl is the angle between the transmitted signal and404

the motion direction of the UAV relay, and γjl refers to405

the initial phase. Moreover, φj,tl , θj,tl , φrl , θ
r
l represent the406

azimuth AoD, the elevation AoD, the azimut AoA, and the407

elevation AoA of the jth BS and the UAV relay, respectively.408
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The vectors ajt ∈ CNt×1 and ar ∈ CNre×1 are the array409

response vectors at the jth BS source and the receiving UAV410

relay respectively. For a uniform square planar array (USPA)411

with
√
Nx ×

√
Nx(x ∈ BSs or relay) antenna elements, the412

reponse vector can be defined as:413

ajx = [1, ..., ej
2πδj
λc

(p−1) sin(θj,xl ) sin(φj,xl )+q cos(φj,xl )]T , (4)

where x may be either t or r indicating the transmit or the414

receive sides, d represents the antenna elements spacing, λc415

is the carrier wavelength, and 0 ≤ p, q ≤
√
Nx are the416

antenna indices in the 2D plane where
√
Nx is the number417

of antennas. According to basic geometry, we obtain the418

distance between the UAV relay and the jth BS as:419

Dj =
√
(xj − xu)2 + (yj − yu)2 + (zj − hu)2, (5)

The corresponding angles pertaining to the LOS path in (4)420

are retrieved as:421

ϕj0 = arccos

√
(xj − xu)2 + (zj − hu)2

Dj
, (6)

and422

θj0 = arcsin
√
(yj − yu)2/Dj , (7)

φj0 = arccos(
hu
Dj

), (8)

The channel from the UAV relay to the ith user can also be423

generated in a similar way. According to the system model424

introduced in (3), the signal to interference-and-noise ratio425

(SINR) of user i is evaluated as follows:426

SINRi =

∣∣∣∑NBS
j=1 H

H
2,i(k)G(k)Hj

1(k)F
j
RFf

(i,j)

BB (k)
∣∣2∑U

i′ 6=i

∣∣Is∣∣∣2 + σ2
i (k)

, (9)

where we define
∣∣∑NBS

j=1 H
H
2,i(k)G(k)Hj

1(k)F
j
RFf

(i,j)
BB (k)

∣∣2427

as the summation of desired signal powers sent to user i via428

the UAV relay, σ2
i (k) is the noise power at the ith user, and429

Is=
∑NBS
j=1 H

H
2,i(k)G(k)Hj

1(k)F
j
RFf

(i′,j)
BB (k) denotes the to-430

tal interference to user i from all BSs via UAV relay. In431

the considred system model, the hybrid beamforming will be432

designed at each BS to cancel out the multi-user interference.433

Let SINRij be the SINR of the ith user, when potentially434

associated with BS j. Its formulation can be written as:435

SINRij =

∣∣∣HH
2,i(k)G(k)Hj

1(k)F
j
RFf

(i,j)

BB (k)
∣∣2∑U

i′ 6=i

∣∣Iu∣∣∣2 + σ2
i (k)

(10)

where
∑U
i′ 6=i Iu=

∑U
i′ 6=iH

H
2,i(k)G(k)Hj

1(k)F
j
RFf

(i′,j)
BB (k)436

denotes the inter-user interference component. According to437

(10), the achievable rate of user i receiving from BS j via a438

channel with a bandwidth bij is given as:439

Rij = bij [log2(1 + SINRij)], (11)

Let introduce aij ∈ {0, 1} as the entries of association
matrix A, which is equal to 1 when the association between
BS j and user i is active and 0 otherwise, ∀i ∈ U , ∀j ∈ NBS.
Based on this, the total data rate of all users in the mm-Wave
network can be expressed as follows:

r =

U∑
i=1

NBS∑
j=1

aijRij (12)

The major goal of this work is to maximize the sum-data440

rate of the overall network by controlling the user association441

and different communication constraints.442

III. MULTI-USER HYBRID BEAMFORMING DESIGN443

For the considered UAV relay-assisted multi-user mm-Wave444

massive MIMO system, it is costly to connect each antenna445

to a separate RF chain, more particularly at a relay level. This446

is mainly due to the limited power, low profile and intended447

cost of the UAV relay. Thus, hybrid beamforming scheme448

is suitable for the UAV-enabled mm-Wave network since it449

allows to meet the power consumption and hardware com-450

plexity requirements [16]. Throughout this section, a multi-451

user hybrid beamforming algorithm is designed to suppress452

the interference of the users at the destination. The main idea453

of the hybrid beamforming algorithm is to divide the calcu-454

lation of the beamformers into two phases. In the first phase,455

we aim to design the analog RF beamforming and combining456

matrices F j
RF, GRF2, and GRF1 in order to maximize the457

desired signal power and the digital beamforming GBB(k)458

to manage the interference between BSs, while in the second459

phase, the digital beamforming of the UAV relay Gr(k) is460

designed to manage the resulting multi-user interference.461

• During phase I, each BS and the UAV relay find the462

analog beamforming and combining vectors g?m and (f jm)?463

that solve the following optimization problem:464

{
g?m, (f

j
m)
?
}
= arg max

gm∈Sr−rel,fjm∈Sjt

∥∥∥∥gHm Hj
1(k)f

j
m

∥∥∥∥,m = 1, ..., NRF,

(13)

where gm and f jm denote the mth row of Sr−rel and the mth
465

column of Sjt , respectively. Here Sr−rel ∈ CNRF×Nre and466

Sjt ∈ CNt×NRF are the sets of all NRF array response vectors467

with the highest power (LoS path), which can be expressed468

as:469

{
Sr−rel = [a1

r(φ
r
0, θ

r
0), ...,a

NRF
r (φr0, θ

r
0)]

T ,

Sjt = [aj,1t (φj,t0 , θj,t0 ), ...,aj,NRF
t (φj,t0 , θj,t0 )],

(14)

We can then assign g?m and (f jm)? to the analog matrices470

as:471

{
GRF2(m, :) = g?m, m = 1, ..., NRF

(F j
RF)(:,m) = (f jm)?, m = 1, ..., NRF

(15)
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Algorithm 1 Hybrid beamforming relaying design

Inputs: St−rel, Sr−rel, S
j
t

Phase 1
1: The jth BS and the UAV relay select g?m and (f jm)? that

solve:{
g?m, (f

j
m)?
}

= arg max
gm∈Sr−rel,fjm∈Sjt

∥∥∥∥gHm Hj
1(k)f

j
m

∥∥∥∥,

m = 1, ..., NRF,
2: BS sets F j

RF = [(f j1 )
?, (f jm2)?, ..., (f jNRF

)?],
3: UAV relay sets GRF2 = [(g1)

?, (g2)
?, ..., (gNRF)

?],
4: The UAV relay feeds Hj

e (k) = GRF2H
j
1(k)F

j
RF back to

each BS node
5: The jth BS designs

F j
BB(k) = Hj

e (k)
H(Hj

e (k)H
j
e (k)

H)−1 and normalizes
F j

BB(k) =
F jBB(k)

‖F jRFF
j
BB(k)‖F

Phase 2
6: For each user, the UAV relay select g?t that solve:

g?t = arg max
gt∈St−rel

∥∥∥∥H2,i(k)gt

∥∥∥∥, t = 1, ..., U,

7: UAV relay sets GRF1 = [(g1)
?, (g2)

?, ..., (gU)
?],

8: For each user i, the user feeds Hef (k) = H2,i(k)GRF1
back to the UAV relay

9: The relay designs
Gr(k)= Hef (k)

H(Hef (k)Hef (k)
H)−1,

finally normalizes Gr(k) =
Gr(k)

‖GRF1Gr(k)‖F

The effective channel can be utilized to mitigate the inter-472

ference among BS, and is defined as:473

Hj
e (k) = GRF2H

j
1(k)F

j
RF (16)

Then, the zero-forcing (ZF) digital beamforming is com-474

puted based on the effective channel Hj
e (k), which has a475

form of:476

F j
BB(k) = Hj

e (k)
H(Hj

e (k)H
j
e (k)

H)−1 (17)

• In phase II, we design the RF beamforming GRF1 to max-477

imize the desired signal power for user i, while neglecting the478

other users’ interference, the problem can be expressed as:479

g?t = arg max
gt∈St−rel

∥∥∥∥H2,i(k)gt

∥∥∥∥, t = 1, ..., U (18)

where gt is the tth column of St−rel, which is also selected
from the set of all array response vectors of the U users as:

St−rel = [a1
t (φ

t
0, θ

t
0), ...,a

U
t (φ

t
0, θ

t
0)] (19)

Subsequently, the analog beamforming matrix GRF1 can be480

expressed as:481

GRF1(:, t) = g?t , t = 1, ..., U (20)

The effective channel of the ith user is then given as:482

Hef (k) = H2,i(k)GRF1 (21)

Finally, we utilize the ZF digital beamforming, Gr, to483

suppress the inter-user interference, which can be expressed484

as:485

Gr(k) = Hef (k)
H(Hef (k)Hef (k)

H)−1 (22)

Then, we normalize the digital beamforming to guarantee486

transmit power constraints. It is worth mentioning that in487

the case of full digital beamforming design, the F j
BB(k) and488

Gr(k) are calculated directly from the propagation channels489

Hj
1(k) and HH

2,i(k), respectively. The multi-user hybrid490

beamforming relaying design for the considered system is491

summarized in Algorithm 1.492

IV. PROBLEM FORMULATION493

In the considered UAV relay assisted mm-Wave massive494

MIMO architecture, the 3D location of the UAV relay is495

fixed and both the users and BSs are randomly distributed496

in the same area following Matern type-I hard-core process497

[58]. Our objective is to find the best association of the498

users to the BSs in order to maximize the sum rate of the499

entire network. Clearly, the optimization problem (26) is a500

Binary Integer Linear Program (BILP) that is NP-hard. To501

tackle this difficulty, a greedy solution based iterative method502

is designed for solving the user-BS association problem,503

including a number of factors such as, maximum bandwidth504

Bj of each BS, number of linksNl that every BS can support,505

minimum SINR, maximum transmit power, and data rate506

limit constraints. It is worth mentioning that, to deliver a507

promised QoS to the users, while consuming as little power508

as possible, the beamforming constraint is included in the509

optimization problem. Here, it is considered that the UAV510

relay position remains unchanged (or that the UAV speed511

is sufficiently low) during a certain time interval in order512

to serve the ground users. Nevertheless, power-limited con-513

straint, which affects the flight time can be taken into account514

for futur studies, and there are some related works can be515

found in [59], [60]. Throughout this paper, we assume that516

problem (26) is always feasible when the QoS requirement517

of each user will be satisfied if aij = 1. To simplify518

the hybrid beamforming design-based UAV relay and user519

association process in practical systems, we assume that each520

user can only be associated with only one BS at a time [51].521

Before modeling the association problem, let us introduce the522

following communication constraints:523

• User scheduling constraint: each user can only associate
with one BS at a time. Thus, we have:

NBS∑
j=1

aij ≤ 1, i ∈ U (23)
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• Power constraint: we assume that there exists a maxi-
mum transmit power for each BS j, which is given by:

U∑
i=1

‖F j(k)‖22 ≤ Pj , ∀j, (24)

This constraint is satisfied for every BS, where Pj is the524

maximum transmit power on the jth BS.525

• QoS constraint for users:

SINRijaij ≥ SINRmin, ∀i, j, (25)

where SINRmin denotes the minimum received SINR526

of the system, which can play an important role in the527

distribution of bandwidth, and it is assumed to be given.528

Aiming at maximizing the total sum data rate, the user529

association problem can be formulated as:530

max
{aij}∈{0,1}

U∑
i=1

NBS∑
j=1

Rij .aij (26a)

Subject to
U∑
i=1

aij .bij ≤ Bj , ∀j, (26b)

SINRij .aij ≥ SINRmin, ∀i, j, (26c)
U∑
i=1

‖F j(k)‖22 ≤ Pj ,∀j (26d)

‖‖Gr(k)‖22‖0 ≤ aij .U, (26e)
U∑
i=1

aij ≤ Nl, ∀j, (26f)

NBS∑
j=1

aij ≤ 1, ∀i, (26g)

U∑
i=1

NBS∑
j=1

Rijaij ≤ R, (26h)

The function in (26a) represents the total achieved sum-531

rate from the overall network, with the objective of max-532

imizing the user-BS association and their data rate. Note533

that constraint (26b) limits the bandwidth resource of each534

BS, constraint (26c) satisfies a minimum SINR requirement535

between each BS-user pair, and (26d) shows the power con-536

straint of each BS. Moreover, the constraint (26e) represents537

the power amplifier at the UAV relay to several users in538

the system. In such constraint, setting the power allocated,539

‖Gr(k)‖22, to the non associated users (if aij = 0) equal to540

zero means that the other BSs j′ 6= j are not equipped541

with UAV relay. However, if there is an association between542

the BS j and the user i then power amplifier of UAV relay543

supports U users. We make use of (26e) to enforce the impact544

of the association variable on the beamforming-based UAV545

relay. Constraint (26f) assures that each BS can serve at546

most Nl users, and constraint (26g) restricts each user to be547

FIGURE 3. An example of our proposed association scheme in the case with
3 BSs and 10 users, NA not available links, Nl = 3.

associated with one particular BS. Additionally, constraint548

(26h) ensures that the sum of the data rate provided to the549

associated users is limited by the maximum data rate of the550

entire network, thereby including the total communication551

traffic from the users or the BSs. To solve the problem in (26),552

an efficient two-level association approach is summarized553

in Algorithm 2. This algorithm is based on the maximum554

SINR criterion for the user associated with each BS, which555

is designed among two network nodes including users and556

BSs, communicating through one UAV relay link. In the first-557

level, the user selects the LOS BS which provides the highest558

SINR without taking into consideration the interference fac-559

tor due the multi-user hybrid beamforming scheme, and at the560

second-level, each BS controls their users with an admission561

control based on the spectrum resource conditions. Finally an562

association decision is computed at a central controller which563

is connected to all BSs using wireless links. An example of564

our association solution scheme is illustrated in Fig. 3.565

• First-level: users selection procedure: this level is
performed for each user individually, in which the users
select the corresponding BSs one-to-one. During this
level, the BSs send a broadcast initialization signal using
hybrid beamforming, along with the information regard-
ing the transmit power of the BSs satisfying constraint
(26d), and following the "max SINR" rule, the ith user
pre-selects the LOS BS which provides the highest
SINR by calculating the SINR with all available BSs ac-
cording to Eq. (10) (e.g. user 1 with BS1 in the example
in Fig. 3). Next, a user verifies the constraint (26c) by
comparing their SINR with the minimum SINR. Based
on the obtained temporal association, we define the set
of vectors as:

V =
[
V1, ...,Vj , ...,VNBS

]
, (27)

where V denotes the set of all possible users-BSs as-566

signments, whereas each vector Vj from V represents567
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Algorithm 2 Two-level association algorithm
Inputs: NBS, U , bij , Rij , B, Nl, SINRij , R, Pj , SINRmin
Output: Association matrix A.

Initialization : A = ∅;
First-level: Selection process

1: for i from 1 to U , do
2: idx = argmax{SINRij} ;
3: validates if it satisfies the constraint (26c);
4: V idx = V idx

⋃
i ; indices of V idx sorted in decreasing

order.
5: end for

Second-level: Control condition
6: for j = 1 : NBS do
7: Initialize counters: CNl= 0, CB = 0
8: while CNl < Nl ∧ CB < B do
9: Find min. bij with max. Rij ,

10: if CB + bij ≤ B then
11: update aij = 1,CNl=CNl−1 andCB = CB+bij
12: end if
13: end while
14: end for

Decision process
15: Initialize: Ta as total sum-rate of associated users;
16: while Ta < R limit do
17: Select users with max data rate,
18: Associates the request BS-user pair as aij = 1
19: Update total data rate Ta = Ta +Rij
20: end while

a list of the users associated with only one BS; thus,568

satisfying constraint (26g). The list of users is created569

by adding the ith user to the vector Vj corresponding to570

the serving BS j. Then, we generate indices for every571

vector from V and arrange them in a descending order572

according to their corresponding SINR value (i.e., the573

user with the highest SINR is selected first as shown in574

the example of Fig. 3; V1 = {user 1, user 4, user 8}).575

Later on, a user sends the feedback 1 to the selected BS576

corresponding to the maximum SINR, and null vector to577

the remaining BSs (which corresponds to non-selected578

BS). Otherwise, it sends a feedback of 0 to all the579

BSs by considering constraint (26e). Then, based on the580

association, we decide which BSs should be turned off,581

as those BSs do not satisfy the users requirement. It is582

noted that for our association scenario, the number of583

RF chains of both BS and UAV relay limit the number584

of users it can serve in practice.585

• Second-level: control and decision: based on the users586

selection procedure, each BS receives a number of asso-587

ciation requests from a list of users. However, due to the588

limited spectrum resources, not all of them can eventu-589

ally get associated with the BSs, so an admission control590

is required. To do that, each BS j, on its turn, chooses591

among the requesting users, the ones with minimum592

bandwidth bij that results in maximum sum-rate and593

rejects the remaining users by modifying their requests594

to zero, since they do not satisfy the constraint (26c).595

In this case, each rejected user attempts to connect to596

his second most preferred BS (based on the ordered597

set of indices), if no more bandwidth is left on this598

BS. It is important to note that BS j firstly allocates599

bandwidth to the user with the highest data rate. Before600

associating the retained users, the user should connect to601

the BSs that maintains only Nl links which is included602

in constraint (26f) then the association matrix A is603

updated.604

Since the objective function aims at maximizing the605

sum-rate of the overall mm-Wave network, each BS606

searches for users with maximum demanded rate and as-607

sociates its request. This means that the user calculates608

the resultant data rate with each BS pair, and verifies if609

the achieved sum-rate is within the rate limit or not (con-610

straint 26h), then the association algorithm completes.611

Once the association is computed at the centralised612

controller, BSs then start in the data transmission phase.613

V. SIMULATION RESULTS614

In this section, simulation results are presented and discussed615

to demonstrate the effectiveness of the UAV relay-assisted616

multi-BS massive MIMO multi-user mm-Wave communica-617

tion system by comparing its performance with the alterna-618

tive system where there is no UAV relay. The studied scenario619

consists of three BSs, U = 28 users, and one UAV relay620

working at mm-Wave frequencies with a carrier frequency of621

28 GHz. In particular, we consider a 4 × 4 km2 area, where622

both BSs and users are randomly distributed over a square623

region usingMatern type-I hardcore process, with a density624

of λa = 2 ×10−6 per m2, such that the distance between625

any two BSs and users is at least dmin
BS = 300 m and dmin

U =100626

m, respectively. Also, each BS is assumed to hold Nt = 64627

antennas and 28 RF chains while there is only one RF chain628

at each user. All BSs are assumed to transmit Ns = 28 data629

streams to the destination via the assistance of the UAV relay,630

which is equipped with Nre = 32 antennas and NRF = 28 RF631

chains. The height of each BS is set to zj = 10 m, while that632

of UAV relay is set to hmin=100 m. Additional simulation633

parameters are listed in Table 1. All results are averaged over634

N runs of Monte-Carlo simulations and at each run both635

BSs and users’ positions are randomly reset. The achievable636

sum-rate has been formulated in the case of perfect channel637

estimation process.638

In Fig. 4, we investigate the total achieved sum-rate per-639

formance of UAV relay-assisted mm-Wave massive MIMO640

system when using the analog, the hybrid, and the full digital641

beamforming structures, along with the impingement of the642

incorporation of UAV relay on its performance. To confirm643

the effectiveness of our hybrid beamforming (Algorithm644

1), the performance of hybrid beamforming proposed in645

[49] is also portrayed in the simulation. From this figure,646

it appears clearly that our hybrid beamforming scheme can647

perform much better than both the analog beamforming and648
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TABLE 1. SIMULATIONS PARAMETERS

Parameter Value
Bandwidth 500 MHz

Data rate limit 6 Gbps
Power transmission 20 dBm

Nl 7
zj 10 m

SINRmin −5 dB
Multi-paths L 2
Sub-carriers K 64

Number of Monte-Carlo simulations N 500
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FIGURE 4. Achievable rates performance using the analog beamforming, the
hybrid beamforming in [49], the hybrid beamforming (Algorithm 1), and the
optimal full digital beamforming for the considered UAV relay-assisted
mm-Wave massive MIMO and the conventional systems, when the UAV relay
altitude is hu= 100 m.

the existing hybrid beamforming scheme [49] over the whole649

SNR range in consideration. Besides, the achievable rate of650

the proposed hybrid beamforming is very close to the fully651

digital beamforming case. On the other hand, when analog652

beamforming scheme based system is used, the penalty of653

the path losses on the considered system is significant such654

that the cooperative diversity system becomes inferior in655

performance to the one of the counterpart without a relaying656

device. At the same time, we observe that the benefit of657

the relying enriched with the UAV relay based architecture658

scheme finds its great efficiency at quite reasonable SNR659

values, since 20 bits/s/Hz performance gain is noted over the660

alternative system with no relaying, when SNR is 10 dB.661

Fig. 5 illustrates the effect of the UAV relay altitude on the662

achievable sum rates calculated by three different beamform-663

ing designs, when SNR =- 5 dB. It can be seen clearly that664

the achievable sum-rate performance of the different beam-665

forming design schemes increases when the UAV’s altitude666

increases from the ground to 100 m. This might be due to667

the dual effects of higher LOS probability in the network668

when the altitude increases and to the efficient beamforming669

performed between the BSs and the UAV relay to a certain670

value of the altitude. Beyond those altitudes, the achievable671
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0
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10

15

20

25
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35

40

FIGURE 5. Achievable rate performance versus the altitude of the UAV relay
in the mm-Wave massive MIMO system under different beamforming
structures.

sum-rate starts to decrease, due to the path loss effect related672

to the increasing distance between the UAV and the BSs. This673

means that, at a sufficient altitude, beamforming signals are674

propagated far away from their BSs, thereby causing serious675

performance losses. The performance of hybrid beamforming676

in [49] is worse than those of the other two approaches by677

about 6.67 dB bits/s/Hz compared to the proposed hybrid678

beamforming scheme. This is because beam gains may not679

concentrate on user directions of the strongest multipath680

components. The UAV relay altitude is set as 100 m in the681

remaining simulations.682

Fig. 6 shows the users’ association results at a particular683

iteration, as an example. The relay is assumed to be located684

at a horizontal position of xu= yu = 2.5 km. For comparison,685

we use Branch and Bound (B&B) method [61], as an optimal686

benchmark solution as shown in Fig. 6b. Each user is marked687

with the same color as its associated BS. For the same688

scenario, it can be observed by comparing Fig. 6a and Fig.689

6b that B&B and the proposed solution scheme (Algorithm690

2) associate 21 and 20 users, respectively. The performance691

is close but the difference is mainly because of the data rate692

constraint. In this case, the UAV relay is mainly used to693

enhance the quality of the direct links between the users and694

their respective serving BSs.695

Fig. 7 presents the impact of the proposed association696

solution on mm-Wave massive MIMO system without UAV697

relay, in which the hybrid beamforming is designed between698

the BSs and multiple user nodes (Algorithm 1). We first note699

that the proposed association solution is unable to associate700

all users with the their BSs, which is due to the stringent701

mm-Wave communication constraints. In particular, in the702

surroundings of BS 3, only 4 users are associated due to703

its adverse channel conditions (low SINR criteria (constraint704

(26c)). Also, the unassociated users are not served by other705

BSs due to bandwidth limitations (constraint (26b)). Further,706
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FIGURE 6. Comparison of user association schemes in UAV relay assisted-mm-Wave massive MIMO system.

by comparing Fig. 7 and Fig. 6, it can be concluded that707

the UAV relay-based architecture allows to serve a higher708

number of associated users for all BSs. In particular, 20709

users are served in the considered scenario with the proposed710

association solution, whereas only 14 users are connected711

in the alternative system without relay. Furthermore, it is712

observed from Fig. 6 that all BSs serve the users that are713

closest to them. This is because the SINR of each user is714

mainly determined by its direct links with BSs ( i.e., users-715

BS2 in Fig. 7a). In contrast, thanks to the UAV relay based716

hybrid beamforming deployment, it is observed that BSs 2717

and 3 serve users that obtain better signal quality instead of718

the nearest users as in Fig. 6(a). In this way, the effective link719

between BS and users can be stronger than the direct link720

between them.721

With the same distribution and parameters as in the previ-722

ous simulation, Fig. 8 compares the total sum data rate versus723

the number of associated users of the proposed association724

solution with the one achieved by the optimal B&B method,725

to provide more straightforward results and demonstrate726

the performance of mm-Wave massive MIMO system with727

and without UAV relay. It is worth mentioning that due to728

the UAV relay, the proposed association solution and B&B729

schemes both achieve a higher communication rate gain, and730

also provide the same sum data rate and thus have the same731

performance. In contrast, the total sum rate in the alternative732

system without UAV relay result in lower rates due to the733

communication between users and BSs which is greatly734

affected by obstacles in mm-Wave bands. For instance, our735

algorithm achieves a sum-rate of 22.8 Mbps for maximum736

number of sources. Note that the number of connections in737

each BS also plays an important role in the sum data rate738

performance.739

VI. CONCLUSION740

In this paper, we have developed an efficient design of741

UAV deployment in which UAV operates as a beamforming742

relay in mm-Wave massive MIMO communication context,743

thereby mitigating the drawbacks of link blockage encoun-744

tered in mm-Wave networks. Subsequently, a good link745

reliability between every BS and multiple ground users is746

maintained. In particular, by considering the impact of UAV747

relay based beamforming aproach, an association of users748

problem is formulated so that the sum-rate of the overall749

UAV relay-assisted mm-Wave massive MIMO system can750

be maximized. Furthermore, in order to mitigate the interfer-751

ence impediment and decrease the massive MIMO hardware752

complexity, hybrid beamforming relay scheme is designed753

between the multiple BSs, the relay, and the ground users,754

merging the spatial processing and the amplify-forward op-755

eration. Simulation results demonstrated the substantial per-756

formance gains achieved by the deployment of UAV relay757

assisted mm-Wave massive MIMO system with our hybrid758

beamforming design as compared to the conventional sys-759

tem, and highlight the effect of the UAV altitude on the760

achievable rates performance. It is also revealed that the761

user-BS association achieve satisfactory utility performance762

compared to B&B method in terms of associated users and763

achieve the same sum-rate performance. More importantly,764

the performance achieved by this approach is significantly765

higher with the presence of the UAV relay. In future work,766

we will investigate possible UAV relaying schemes with767

the impact of channel estimation, while taking care of the768

computational complexity issue.769
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