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Abstract
The performance of Internet of Things (IoT)‐based Wireless Sensor Networks (WSNs)
depends on the routing protocol and the deployment technique in modern applications.
In a plethora of IoT‐WSNs applications, the IoT nodes are essential equipment to
prolong the network lifetime with limited resources. Data similarity‐based clustering
protocols exploit the temporal correlation among the neighbouring sensor nodes through
the subset of data. In bendy supervision, IoT‐based Software Defined WSNs provide an
optimistic resolution by allowing the control logic to be separated from the sensor nodes.
The benefit of this SDN‐based IoT architecture, allows the unified control of the entire
IoT network, making it easier to implement on‐demand network management protocols
and applications. To this end, in this paper, we design a Multi‐hop Similarity‐based
Clustering framework for IoT‐oriented Software‐Defined wireless sensor Networks
(MSCSDNs). In particular, we construct data‐similar application‐aware clusters in order
to minimise the communication overhead. Also, we adapt inter‐cluster and intra‐cluster
multi‐hop communication using adaptive normalised least mean square and merged
them with the proposed MSCSDN framework that helps prolong the network lifespan.
The proposed framework is compared with the state‐of‐the‐art approaches in terms of
network lifespan, stability period, instability period, report delay, report delivery, and
cluster leader nodes generations. The MSCSDN achieves optimal data accuracy con-
cerning the collected data.
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1 | INTRODUCTION

In recent times, the Internet of Things (IoT) has envisioned
low‐power and resource constraint IoT sensor nodes, which
play a vital role in IoT applications [1]. One of the main
characteristics of IoT is that the objects must be context‐aware.
Many IoT applications require that the “things” know their
environmental conditions, and adjust their behaviour to them
and to the other objects that are nearby. In this way, Wireless
Sensor Networks (WSNs) can be considered the extension of
the Internet towards the physical environment in the IoT, and
thus they are one of the most valuable parts of any IoT system

[2–4]. The IoT accommodates extensive applications that
include industry 4.0, advanced parking, healthcare, animal, and
security monitoring applications. Those IoT applications utilise
hundreds‐to‐thousands of IoT nodes to form a wired or
wireless network to design an information collection network
[5]. The deployed IoT nodes sense various network attributes,
such as feeling, hearing, monitoring, and triggering an event
while coordinating with the fellow participated nodes [6]. The
network's collected information is forwarded to the centralised
base Station (BS) through the designated routing protocol [7].
In many applications, the participated IoT nodes are equipped
with the limited resource‐constraint and non‐rechargeable
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battery, which is difficult to replace in dense and rugged en-
vironments [8]. Therefore, the design of an energy‐efficient
routing protocol is a critical issue in IoT applications.

In the past, several energy conversation approaches have
been proposed for those applications, but most of them are
insensitive to the data correlations [9, 10]. Clustering organi-
sation of IoT nodes develops most accurate and suitable
collaboration which allow data compression near the data point
[11]. One of the major research challenge include the negli-
gence of data similarity during clustering formulation. Such
network attributes of data similarity can play a vital role to
construct more suitable clustering formulation. The cluster
leader nodes (CLNs) aggregation can be more efficient if the
data are similar in each cluster [12]. This efficiency can be
further improved through the central control in advanced
networking settings through Software‐Defined controllers.
This central control acts as a network operating system that
maintains the data correlation and data control functions,
including the network topology. This network topology pro-
vides the physical location of IoT nodes within the data plane
arrangements for deployed nodes and their respective report
transmitting tasks to the wireless communication settings [13].
Simultaneously, the operations of these data planes are cen-
trally monitored and managed in the control plane using the
central SDN controller. The network management is carried
out by these new primary controller interventions, enabling
central network reconfiguration via SDN controller global
system settings [14]. Existing work includes trend information
to enhance the integrity of the cluster that lacks a huge control
overhead. To repress the spatial and temporal data redundancy
in the inter‐cluster and intra‐cluster multi‐hop communication,
many data aggregation schemes at the CLNs through the
central controller [15]. This aggregation reduces the data size
by selecting data based on its importance and omit the
remaining data, which may not be recoverable at the BS [16].
These schemes struggle in terms of expensive latency for data
collection, which may not be acceptable for practical imple-
mentation in real‐time data collection environments.

To this end, in this paper, we propose a Multi‐hop
Similarity‐based Clustering framework for IoT‐oriented
Software‐Defined wireless sensor Networks (MSCSDNs). In
detail, the proposed MSCSDN framework works in three folds:
(1) a reliable data‐aware distributed clustering technique is
introduced where the clusters are created based on magnitude
and trend‐similarity, (2) the SDN controllers select a set of
most eligible IoT nodes as the CLNs and multicast the noti-
fication to the member nodes, and (3) a multi‐hop inter‐cluster
and intra‐cluster communication begin among the selected
CLNs and the neighbouring IoT nodes. By exploiting these
three folds, the proposed framework collects the data at every
instant without any latency. The proposed framework can be
mainly effective for continuous data gathering environments
and industrial control systems. The major contributions in this
paper are summarised below:

� The proposed MSCSDN framework introduces the
similarity‐based‐clustering of IoT nodes, where cluster

formulation depends upon the size and trend similarity
between the data series of IoT nodes. The constructed
clusters are comparatively more reliable in terms of data
collection.

� The SDN controllers are deployed in a distributed manner
to select the most eligible CLNs for inter‐cluster commu-
nication. The selection process of CLNs is guaranteed an
error tolerance for minimal communication overhead.

� The proposed framework manages the heterogeneity‐aware
data‐similar cluster formation for heterogeneous networks.
The application‐aware property is also introduced that en-
ables IoT nodes to aggregate the sensed information in
multiple applications.

� Extensive simulation experiments are conducted and
compared with the state‐of‐the‐art approaches that prove
the significant performance gain of MSCSDN in various
metrics such as network lifespan, stability period, instability
period, report delay, report delivery, and CLNs generation.

The rest of the paper is organised as follows: in
Section 2, we briefly explain the related work based on IoT‐
oriented software defined WSNs and similarity‐based clus-
tering. In Section 3, we define the overview of the proposed
framework. In Section 4, we present the system models that
serve as a foundation of our framework. In Section 5, we
proposed the MSCSDN framework and explain the whole
execution mechanism. In Section 6, we define the experi-
mental setup and present the performance analysis in Sec-
tion 7. Finally, we conclude our paper and define the future
work in Section 8.

2 | RELATED WORK

In contrast to modern IoT networks, the traditional wired
and wireless networks utilise the classical routing techniques
that are usually based on Internet Protocol, resulting in less
scalability support in the latest IoT architecture [17]. To this
end, several routing mechanisms were implemented that
receive tremendous acceptance to cope with the latest IoT
requirements [18]. In the literature, most of the existing
routing techniques can be divided into three different cate-
gories: data‐centric routing, location‐based routing, and hi-
erarchical routing [19]. The hierarchical routing technique
received more popularity in terms of energy efficiency;
therefore, in this literature review, we only focussed on hi-
erarchical routing. In hierarchical routing, the IoT nodes are
grouped into clusters where one IoT node is selected as a
CLN and acts as a relay node for communication between
member nodes and the BS [20]. In particular, the participants
send their sensed information to their respective CLNs. The
CLNs receive the data through the data collection scheme
and compress it to a single packet and then aggregate it to
the centralised BS. The responsibility of member nodes is to
just sense the data and forward it to CLN, whereas the CLNs
face extra computational responsibilities [21]. Those re-
sponsibilities cause energy consumption and delay issues, and
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the energy delay index for the trade‐off (EDIT) protocol is
proposed [22]. This protocol uses a back‐off timer mecha-
nism to select the CLNs using the objective function that
depends on the residual energy and distance to the BS with
the number of neighbour nodes. However, this protocol does
not guarantee that the selected CLNs are evenly distributed
in the monitoring area, leading to unbalanced energy con-
sumption and longer time‐consumption due to the re‐
selection of all CLNs simultaneously. To solve this issue,
another routing protocol delay‐constrained energy multi‐hop
[23] is proposed to minimise the overhead of the CLNs
selection and delay. In this protocol, the CHs are selected
based on the back‐off timer mechanism according to the
residual energy and distance to BS for the nodes.
However, this protocol has the same problems as the EDIT
protocol.

The existing techniques utilise numerous methods to ach-
ieve energy efficiency in IoT networks. Data aggression is a
critical aspect of delivering only meaningful information to-
wards the control station to control the efficiency of network
resources [24].

Those data reduction techniques exploit temporal data
correlation among the consecutive data observed by the single
IoT node. In DACA [25], the instantaneous information re-
mains critical and vital to measure the data similarity. This
approach shows some success in query‐based clustering
schemes but DACA lacks efficiency for continuous data
gathering applications.

In EEDC [26], the data similarity is determined by
measuring the magnitude similarity and trend similarity among
a lengthy time series's elements. This technique utilises the
efficient similarity estimation; however, EEDC suffers huge
communication overhead due to direct communication with
the BS. In ASAP [27], data similarity indexed is computed by
the correlation coefficient among the time series of sampled
IoT devices which is still lacking in the data size similarity. In
EAST [28], major clustering criteria is latest communicated
data in the previous communication round and computes the
threshold‐based reference value. Temporal correlation is crit-
ical criteria, but the EAST depends upon the data aggregation
instead of temporal correlation. In DSCCF [29], the distributed
similarity is determined through temporal and magnitude data
correlation that conducts significant data reduction and ach-
ieves marginal energy efficiency. However, this technique suf-
fers unbalanced CLNs generation that creates latency in
lengthy data exchange. In DPF [30], the authors proposed a
dual prediction framework that utilises the adaptive filters‐
based least mean square (LMS). This technique is advanta-
geous because of its ability to predict the data without any prior
model. However, this technique suffers from identifying the
appropriate filters.

In a distributed similarity estimation, the long‐range data
exchange results in a huge communication overhead. To
overcome this communication overhead, the proposed
framework estimates data similarity among the IoT nodes and
respective CLNs, using only the data series's filtered version.

In this research work, we utilise the data projection with help
of Euclidean distance metric to formulate the data similarity
metric. We analyse that data series's projection is significantly
sufficient as compared to the whole data series. This pro-
posed method provides the more effective implementation in
which the similarity estimation requires much lesser data as
compared to existing solutions. In this, we significantly
reduce the computation overhead. The main advantage of
using this method is that fewer data is enough to hold the
trend information for the lengthy data series. Also, the in-
dustrial demands for effective success in IoT networks insist
the researchers consider the SDN‐based solutions for flexible
management of CLNs generation. The SDN‐based central
management in IoT networks provides massive flexibilities to
exercise and develop network management and applications.
As a result, the IoT nodes become more efficient in terms of
reprogramming the priority operations. Therefore, the pro-
posed framework adopts centralised control through SDN
controllers for efficient CLNs selection that manages the
overall network topology and perform application‐aware
operations.

3 | OVERVIEW OF THE PROPOSED
MULTI‐HOP SIMILARITY‐BASED‐
CLUSTERING FRAMEWORK FOR THE
IOT‐ORIENTED SOFTWARE‐DEFINED
WIRELESS SENSOR NETWORKS
FRAMEWORK

In order to execute the proposed framework, we briefly explain
the whole methodology as follows:

� Overview: The network area is divided into four regions.
There are four types of IoT nodes distributed in each region,
such as user devices, health‐related equipment, temperature
measurement, and home appliances. For constructing the
data similar clusters, each IoT node senses particular data
using the normalized least mean square (nLMS) filter. We
deploy OpenFlow switches in all regions to select the suitable
CLNs among these devices for each cluster. The OpenFlow
switches estimate the residual energy and measure the delay
of each IoT node. The node with the highest strength and
minimum delay decided to become a CLN for the current
round. The member nodes measure the Euclidean distance
between their data projection and the CLN's data projection
and associate themselves with the data similar CLNs. After-
wards, the CLNs find a link‐aware route by identifying mul-
tiple pathways using nLMS‐based multi‐hop routing. Finally,
the route with the most vital link and minimum hops will be
selected, and the CLN's forwards respective data to the
central BS, where the central BS has four SDN controllers.
These SDN controllers are dedicated region‐wise (one for
each region) to manage the network traffic and balance the
load equally. The network architecture of the proposed
framework is given in Figure 1.
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� Data Prediction: The digital filters are declared to measure
the node's data in the time domain. These digital filters
measure the short term linearity of the signal. Also, a linear
combination of data history is used in order to predict
future data. For future data prediction, we use an adaptive‐
nLMS filter that optimally reduces the cost of data
communication while maintaining robustness in the
network. For each communication round, the SDN
controller maintains its region's historical data, either by data
prediction or by data reception.

� Data Aggregation: The data aggregation is carried out
through lossless inter‐cluster and intra‐cluster multi‐hop
routing. In particular, each CLN compares the new data
with the previous round data (gain from the regional SDN
controller) and estimate the difference. Among the differ-
ence, if the value of data is greater than the given threshold,
the data is aggregated through multi‐hop communication.
The lengthy data is aggregated through inter‐cluster
communication, while the short data is aggregated through
intra‐cluster communication.

4 | SYSTEM MODEL

In this section, we briefly explain the system models of the
proposed framework.

4.1 | The network model

In the proposed framework, we create a distributed network
with multi‐type IoT nodes such as user devices, health‐related
equipment, temperature measurement, and home appliances.
The whole network is divided into four regions, and in each
region, we deploy the OpenFlow switch to select a suitable
CLNs for each cluster. The OpenFlow switches are connected
with the central SDN controllers through mesh topology. Each
SDN controller is dedicated to one region to maintain the
traffic and manage the load equally. Each IoT node is equipped
with GPS for its own and its neighbours' location identifica-
tion. The data from these IoT nodes are gathered by CLNs,
which are then aggregated to the central SDN controllers

F I GURE 1 The network architecture of the proposed Multi‐hop Similarity‐based‐Clustering framework for the IoT‐oriented Software‐Defined wireless
sensor Networks (MSCSDNs) framework. Here, the network field is divided into four regions, and in each region, there are four types of IoT nodes distributed
along with the OpenFlow switch. All the sensed data are forwarded to the base Station (BS), where the BS consists of four SDN controllers (one for each type of
IoT nodes)

70 - SHAFIQUE ET AL.



through lossless inter‐cluster and intra‐cluster multi‐hop
communication.

4.2 | The energy model

In the proposed MSCSDN framework, we use the log‐distance
path loss model (LDPLM), a well‐known IoT application
model [31]. The LDPLM is used with multiple log regions split
at a distance Rd. The expression of this path loss at a distance
d can be formalised as

PlossðdÞ ¼
Ploss dxð Þ þ 10 i logðdÞ þ ρω1

if d ≤ Rd
Ploss dy

� �
þ 10 j logðdÞ þ ρω2

if d > Rd

(

ð1Þ

where Ploss(d) is the log region spilt at the distance Rd, and
Ploss(dx) and Ploss(dy) represent the path loss from the reference
distance dx and dy close to the transmitter. i and j are the path
loss exponents and ρω1

; ρω2
represents the random variable of

zero‐mean Gaussian with the standard deviation of ω1 and ω2,
respectively.

The IoT nodes are adaptive to control the radius of
transmission by controlling the power levels [43]. The power of
the signal at the receiver‐end S(rx,d), for a transmitted signal at
power P from a distance d is expressed as

Sðrx;dÞ ¼ StxðPÞ − PlossðdÞ: ð2Þ

The receiver successfully receives the data packets as

Sðrx;dÞ ¼ Rs ð3Þ

where Rs represents the sensitivity of reception at IoT node.
The dissipation energy for transmitting the data packets Dp
from a distance d at power P is expressed as

Etx P;Dp
� �

¼ RECtxðPÞTtx Dp
� �

ð4Þ

where REC is the radio energy consumption for the total
transmission (Ttx) of data packets (Dp) for mica2 IoT node at
various energy levels as mentioned in Ref. [44]. Similarly, the
dissipation energy for receiving those data packets can be
computed as

Erx Dp
� �

¼ RECrxTtx Dp
� �

: ð5Þ

4.3 | Multi‐type data and heterogeneity‐
aware clustering model

In IoT applications, clusters are constructed to achieve the
optimal energy efficiency in the network. This efficiency is
influenced by the spatial correlation between the IoT nodes
[32]. In the case of similar sensed data, the transmission can be

reduced by eliminating the same information. In the proposed
MSCSDN framework, we use four different types and IoT
nodes: user devices, health‐related equipment, temperature
measurement, and home appliances to sense the heteroge-
neous data. Initially, the IoT nodes obtain the information
from SDN controllers and measure the historical round data.
Afterwards, the CLNs selection process begins, where the IoT
nodes with higher energy and minimum delay will be selected
as CLNs. Finally, the member nodes measure the Euclidean
distance and obtain the data projection reports by comparing
their data and CLNs data. If the similarity is greater than the
threshold value, then the member associates themselves with
the perspective CLNs. This communication between the
member nodes and CLNs for multi‐type data is captured in
Figure 2.

5 | PROPOSAL OF THE PROPOSED
MULTI‐HOP SIMILARITY‐BASED‐
CLUSTERING FRAMEWORK FOR IOT‐
ORIENTED SOFTWARE‐DEFINED
WIRELESS SENSOR NETWORKS
FRAMEWORK

In this section, we explain the complete execution of the
proposed framework.

5.1 | Measuring the data projection reports

In the proposed MSCSDN framework, the IoT nodes measure
the data projection reports using the adaptive LMS filter [33].
The LMS filter create the samples of data stream G on the
length l at an instant m. The data stream samples are denoted
as G[m], which computes the prediction Q[m] using a linear
combination from the existing samples through the corre-
sponding weight vector η[m].

Q½m� ¼ η½m� �G½m�: ð6Þ

The result Q[m] is finally compared to the given threshold
T[m]. The error ϖ generated during the prediction can be
expressed as

ϖ½m� ¼Q½m� − T ½m�: ð7Þ

The adaptation algorithm utilise the merger of the above
computed error, which plays a key role to adjust the weights
of filters of every instant m in the packet size φ to reduce the
error of mean square. The adaptation of this error is
expressed as

η½mþ 1� ¼ η½m� þ φG½m�ϖ½m�: ð8Þ

After the multiple rounds, the prediction is finalised to
make aforementioned rigorous prediction and weight adapta-
tion. The data is projected with the integration of relevant
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element of the data series and the filter coefficients of LMS.
The element represents the data series's current magnitude,
and LMS coefficients reflect the data series trends. To estimate
both data series and trend similarity, the IoT nodes calculate
the distance between its data series and CLN data series.

5.2 | Selection of optimal cluster leader
nodes

In general, CLNs are required to perform extra communica-
tion and computational responsibilities than normal IoT nodes
[34]. Therefore, the IoT nodes with higher energy can effi-
ciently balance the energy cost. In the proposed framework, all
the IoT nodes in a particular region claim to become a CLN,
and then the OpenFlow switches measure the residual energy

and latency of each IoT node in their respective region. The
latency (Td) of IoT node can be measured as

Td ¼ E
T
ηi

ð9Þ

where T represents the total time for optimal CLN selection, E
is a constant, and ηi is the weight of node i. To select optimal
CLNs, each IoT node broadcasts a first message containing
primary information to the OpenFlow switch as shown in
Figure 3. In particular, the message contains the node ID,
remaining energy, transmission power, and location. In detail,
the node ID is used to identify the node, residual energy, and
transmission power is used to select the most effective CLNs,
and location is used to identify the neighbouring member
nodes.

F I GURE 2 Multi‐type data received region‐wise at central SDN controllers through adaptive‐nLMS inter‐cluster and intra‐cluster multi‐hop
communication in the proposed Multi‐hop Similarity‐based‐Clustering framework for IoT‐oriented Software‐Defined wireless sensor Networks (MSCSDNs)
framework

F I GURE 3 Each IoT node broadcast
the first message to their respective
OpenFlow switch in order to become a
cluster leader node (CLN). Once the CLNs
are selected, they will broadcast the second
message with projection reports in order to
identify the member nodes with similar data
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After receiving the first message from each IoT node, the
OpenFlow switch compares the remaining energy and latency
of each IoT node. The node with the highest energy and
minimum latency will be selected as CLN. Afterwards, selected
CLN nodes broadcast the second message as shown in
Figure 3. By hearing this message, the member nodes associate
themselves with their respective CLNs based on data similar to
projection reports. The projection report in Figure 3 is used to
choose the member nodes with more similar data.

5.3 | Measuring the data similarity

The neighbouring nodes identify the CLN nodes with nearly
similar data. In particular, the neighbouring nodes receive the
broadcasted message from the CLNs. After the reception of
these notifications, the indigenous IoT devices compare the
own CLNs projection reports with arrived data projection
reports. The indication of this similarity is measured through
the Euclidean distance between the data projections of two‐
time series. If the similarity is greater than the similarity
threshold, the node adds this CLN to its perspective CLN list.
A brief data similarity measure is shown in Algorithm 1. The
process continues until all the neighbouring nodes associate
themselves with their perspective CLNs.

Algorithm 1: Association with the Data Similar
CLNs

Input: Neighbouring IoT Nodes, CLNs ID,
and Data Projection Reports

Output: Data Similar Association
1 Initialisation:
2 for 8 IoT non-CLN Nodes
3 if Similarity(CLNx) ≥ SimilarityNodei
4 then
5 return (Associate Nodei → CLNx)
6 else return (Find other CLN)
7 end

Furthermore, the proposed MSCSDN framework utilises
the attraction score, where each non‐CLN IoT node computes
the attraction score for all the available CLNs. This attraction
score is measured by the information broadcasted by CLNs,
and the CLN with the highest score will become the CLN of
that particular IoT node. Considering the aforementioned
metrics and attraction score, the non‐CLN nodes associate
themselves with the most appropriate CLNs. In order to
measure this attraction score, we compute

ASCLNx ¼
Ere CLNxð Þ

Etx CLNxð Þ
CLNx ∈ CLN8 ð10Þ

Etx CLNxð Þ ¼ Eelec þ Eampd
α¼2
Node i to CLNx ð11Þ

where ASCLNx is the attraction score for the CLNx, Ere is the
remaining energy of IoT node, Etx is the transmission energy

for CLN, Eelec is the consumed energy by the radio, Eamp is the
energy of amplifier and dα¼2

Node i to CLNx represents the distance
between IoT node i to CLN x. Once the IoT nodes associate
themselves with their perspective CLNs, they send an associ-
ation message containing LMS projections' information based
on the nodes' recent data history. Afterwards, member nodes
start sensing the environment and generate the new reports for
the current running round.

5.4 | Link selection for routing

In general settings of IoT energy‐efficient routing schemes
consider either the direct transmission or the one‐hop neigh-
bour for transmitting the sensed data and ignores the whole
path, which mostly harms the network lifetime [35–37]. The
strength of the whole path lies on the weakest link, where one‐
hop might be more energetic while the other hops are weaker.
In this case, the weaker nodes are pressurised to aggregate the
data and ignores a comparatively better available alternative
path [38]. In the proposed framework, we utilise link‐aware
routing in order to find the most suitable path for multi‐hop
transmission. Before going into details, below we define the
terminologies used in the proposed MSCSDN's link‐aware
routing.

� Transmitting node is the one who is sending the reports to
the BS.

� Strong node is the one who has enough energy resources
for transmitting or receiving the reports for the next couple
of rounds.

� Moderate node is the one who has enough energy resource
for transmitting or receiving the reports for the current
round.

� Weak node is the one who has not enough energy resource
for transmitting or receiving the reports for the current
round.

In this link‐aware routing, the transmitting node is well
aware of its neighbouring nodes, and the neighbouring nodes
are aware of their neighbours. When a transmitting node
announces for transmission, each neighbour node shares its
transmission path with the transmitting node. The transmitting
node compares the path strength and forwards the data to the
neighbour with the strongest link.

In Figure 4, we present the link‐aware routing scheme used
in the proposed MSCSDN framework. The sensed informa-
tion of node one can reach to the central SDN controller
through 2, 5, 9, and 11 or through 3, 4, 7, and 8 or through 3,
6, 10, and 8. Considering only the neighbours' energy level, it
seems obvious to choose 2, 5, 9, and 11. In this link, 9 and 11
are the weak nodes, and they may be pressured to forward the
data, which results in poor latency.

In this regard, the proposed framework offers the best link
path. In particular, node two offers two strong links and two
weak links, whereas node three offers two routes, one with three
moderate links and one strong link and the second route with
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one strong link, two moderate links, and one weak link. This
complete information of neighbouring nodes helps select the
most suitable path, where the transmitting node chooses 3, 4, 7,
and 8 route, which is comparatively better than the other route.

5.5 | Prediction‐based reports generation

The proposed framework is leveraged with the prediction‐based
reporting for intra‐cluster data sensing. The prediction‐based
reporting helps to prolong the lifespan of the IoT node. As
the nodes are kept sensing the environment, the high sampling
of data frequency leads to a temporal correlation, resulting in
redundant data [39]. The proposed framework minimises this
data redundancy using prediction‐based reporting, where the
node only transmits the subset of sensed data. Based on this
transmitted data, the remaining data is predicted. In this regard,
we use an adaptive nLMS prediction filter for the prediction
reports. The prediction of data reports is made at the CLN and
non‐CLN nodes. The structure of the adaptive nLMS prediction
system is given in Figure 5.

The CLN and non‐CLN nodes both utilise identical filters
for prediction‐based reporting. At each instant m of a data
sample, the CLN‐members transmits the sensed reports to the
CLN in the initial mode. At the same time, the source prediction
engine updates its coefficients to converge based on variance. If
this variance is less than the error threshold et, then the pre-
diction is converged for T consecutive predictions. Afterwards,
the CLN‐member nodes switch their status to the standalone
mode and communicate only the prediction model with their
respective CLNs. In this mode, at each instant m of the data
sample, the CLNs and non‐CLNs predict the reports using the
prediction model. To verify the prediction reports, CLNs
compare the model's predicted report with the actual sensed
report. For each instant m, the CLN consider the predicted
report as et approximation of the CLN‐member nodes.

The current trend cannot be repeated consistently by a
model built using historical data as communication pattern
show fluctuation over the network operation. Based on the
particular higher threshold of prediction deviates et, the IoT
devices update the prediction deviates more than the et peri-
odically. Otherwise, the CLN‐member node switches from
standalone to the normal mode. During current communica-
tion mode, the sensed reports are delivered to CLNs. After
that, the prediction model CLNs adjusts the weight to
comprehend the prediction report with on‐demand value.
Hence, after the current prediction, the CLN‐member diverts
to the standalone mode. After receiving the prediction reports,
the CLNs aggregate these reports to the local OpenFlow
switch, which is responsible for forwarding them to the central
SDN controllers.

6 | EXPERIMENTAL SETUP

In this section, we conduct extensive simulation experiments to
evaluate the performance of the proposed Multi‐hop
Similarity‐based Clustering for IoT Oriented Software‐

F I GURE 4 Link aware routing for multi‐hop inter‐cluster and intra‐cluster communication

F I GURE 5 Adaptive normalized least mean square (nLMS) based
prediction filter
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Defined WSNs (MSCSDNs). The main reason to implement
MSCSDN is to obtain energy efficiency in a highly dense
network. In order to evaluate the performance, we consider the
state‐of‐the‐art approaches such as DACA [25], EEDC [26],
ASAP [27], EAST [28], and DSCCF [29]. In all of our ex-
periments, the proposed framework outperforms the existing
techniques with marginal delay. All of our experiments are
conducted in a MATLAB environment [40]. To investigate the
performance, we consider a large set of system parameters
where we deploy the various number of nodes in different sizes
of network dimensions. The considered metrics for evaluation
are network lifespan, report delivery to CLNs and SDN con-
trollers, end‐to‐end delay, packet delivery ratio, and CLN
generations. The benchmark system parameters are defined in
Table 1.

7 | PERFORMANCE ANALYSIS

In this subsections, we provide a detailed performance analysis
on aforementioned metrics.

7.1 | Network lifespan

The most important metric to measure the energy‐efficient
data collection system is the network lifespan. Two terms
can measure the network lifespan: the overall network lifetime
and network stability. The network lifetime counts the total
number of communication rounds until the last IoT node dies.
In contrast, the network stability counts the total number of
communication rounds until the first IoT node's death. The
proposed framework extends network efficiency by reducing
the number of data per communication. We deploy 100 IoT
nodes in the network dimensions of 100 � 100m and run the
experiments for 5000 communication rounds in experiments.
The rest of the system parameters are the same as defined in
Table 1. Figure 6 shows the network lifetime and network
stability concerning the number of alive and dead nodes for the

communication rounds, respectively. In particular, DACA,
ASAP, DSCCF lose their IoT nodes in the early communica-
tion rounds, while EEDC and EAST try to compete with the
proposed MSCSDN for a longer period. The first graph of
Figure 6 shows the network lifetime. The proposed MSCSDN
has lower performance than EAST in early communication
rounds but outperforms EAST in later communication rounds
and keeps alive until 4457 rounds, where EAST dies after
around 3200 rounds. The remaining schemes DACA, EEDC,
ASAP and DSCCF die after 1300, 2980, 2890, 3021 rounds,
respectively.

Similarly, in the second graph of Figure 6, the proposed
scheme outperforms the existing schemes in terms of network
stability. In particular, the proposed scheme has better network
stability than DACA, EEDC, ASAP, and DSCCF, where it
secure at least 2% more stability than other schemes. The
EAST performs better in terms of network stability due to the
centralised data collection and static nature of deployed IoT
nodes.

7.2 | Reports delivery to cluster leader nodes
and SDN controllers

As the proposed framework exploits the temporal correlation
in the sensed reports, therefore the inter‐cluster and intra‐
cluster communication cost is reduced. We extend our ex-
periments and measure the communicated number of data
reports from member‐CLNs to CLNs and CLNs to SDN
controllers to prove this performance. In Figure 7, we present
the number of transmitted reports to CLNs and SDN con-
trollers, respectively. In particular, in the first graph of
Figure 7, the proposed framework obtains 40%, 25%, 35%,
30% and 20% better reports delivery to CLNs than DACA,
EEDC, ASAP, EAST, and DSCCF, respectively. In DSCCF,
the authors also use the temporal correlation and used
compressed forwarding to achieve better performance.
Despite the compressed forwarding, the proposed framework
MSCSDN beats the DSCCF. In the case of delivery to SDN
controllers, the proposed framework is leveraged with the
OpenFlow switches that maintain the highest delivery
compared with existing approaches. The second graph of
Figure 7 shows the number of reports delivered to SDN
controllers. It can be seen that the proposed framework
achieves better performance due to regional OpenFlow
switches in the network.

7.3 | Delay and report delivery ratio

The reliability of an energy‐efficient system depends on the
latency. In the proposed work, we use nLMS system to mini-
mise this latency. For this evaluation, we compare the end‐to‐
end delay and report delivery ratio. Here, we consider DACA,
ASAP, and DSCCF for the comparison with the proposed
MSCSDN. In Figure 8, we present the end‐to‐end delay and
report delivery ratio, respectively. The results in Figure 8 prove

TABLE 1 Parameters used in simulation

Parameter Value

Network size 1002, 2502, and 5002

Number of nodes 100, 200, 300, and 500

Adaptive nLMS length 5

Initial energy 0.5, 1.0, and 2.5

P 0.1

Data aggregation energy cost 50pj/bit j

Packet size 200 bit

Transmitter electronics ETX 50nj/bit

Receiver electronice ERX 50nj/bit

Transmit amplifier Efs 10pj/bit/m2
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F I GURE 7 Number of reports delivered to cluster leader nodes (CLNs) and centralised SDN controllers, where we deploy 100 IoT nodes in 100 � 100
network dimensions with the initial energy Eo = 0.5 in graph 1 and 2, respectively

F I GURE 6 Network lifetime and network stability, where we deploy 100 IoT nodes in 100 � 100 network dimensions with the initial energy Eo = 0.5 in
graph 1 and 2, respectively

F I GURE 8 End‐to‐End Delay and Packet Delivery Ratio where, N = 100 deployed in ND = 100 � 100 with the initial energy Eo = 0.5 in graph 1 and 2,
respectively
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that the proposed framework has a minimum delay and
maximum delivery ratio.

7.4 | Large scale network

To prove the performance in large scale networks, here we
consider huge network dimensions with a more dense
deployment of IoT nodes. In particular, we consider two
scenarios for dense deployment. In scenario one, we consider
the 250 � 250m size of network area and deploy 200 IoT
nodes and run the network simulations for 7000 communica-
tion rounds with the initial energy of 1.0. Figure 9 shows the
energy efficiency in terms of network lifetime and network
stability in scenario one. The graph in Figure 9 demonstrates
that the proposed framework works smoothly and achieves
higher energy efficiency in a more extensive network than the
existing approaches. In particular, the IoT nodes in the

proposed framework are still alive and communicating until the
6800 communication rounds, while DACA, EEDC, ASAP,
EAST, and DSCCF die after 1921, 5129, 4260, 6341, 5212
communication rounds, respectively.

In the second scenario, we further extend the network
dimensions to 500 � 500m network area and deploy 300 IoT
nodes for a more dense network and run the simulations for
10,000 communication rounds with the initial energy of 2.5.
Figure 10 shows the simulation results in terms of network
lifetime and network stability for the second scenario. The
graph in Figure 9 proves that the proposed framework achieves
higher efficiency than the other approaches. In particular, the
IoT nodes are still active until the end of 9103 communication
rounds, while the existing approaches DACA EEDC, ASAP,
EAST, and DSCCF are active only until 3811, 7460, 6102,
8200, 4921 communication rounds. We attribute this higher
efficiency to the regional deployment of OpenFlow switches,
similarity‐based clustering and the prediction‐based reporting

F I GURE 9 Network lifetime and network stability, where we deploy 200 IoT nodes in 250 � 250 network dimensions with the initial energy Eo = 1.0 in
graph 1 and 2, respectively

F I GURE 1 0 Network lifetime and network stability, where we deploy 300 IoT nodes in 500 � 500 network dimensions with the initial energy Eo = 2.5 in
graph 1 and 2, respectively
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which reduces the communication load from the IoT nodes.
Further, the adaptive nLMS system also helps minimise the
communication load through link aware routing.

7.5 | Generation of cluster leader nodes

In Section 3.5, we show the optimal selection of CLNs in the
proposed framework. Here, we prove the efficiency of this
selection criteria in comparison with existing approaches. We
consider the approaches mentioned above and compare the
CLNs generation in three different scenarios. In particular, we
consider three sizes of network area {100 � 100, 250 � 250
and 500 � 500}, where we deploy 100, 200 and 300 IoT nodes
and run the simulation for 5000, 7000, and 10,000 communi-
cation rounds with the initial energy of 0.5, 1.0, and 2.5,
respectively. The graphs in Figure 11 show the CLNs genera-
tions for each scenario, respectively. The x‐axis indicates the
fluctuation of CLNs generation, while the y‐axis represents the
latency period per round. It is demonstrated clearly that the
proposed framework MSCSDN has more fluctuation with
minimum latency than the existing approaches. We attribute
this higher performance to the involvement of OpenFlow
switches to select the optimal IoT nodes for CLNs operations.

To remove the noise from the above graphs, we show the
number of CLNs generated per round of all three scenarios in

Figure 12 for MSCSDN. In particular, the box plot in Figure 12
shows the number of CLNs, where the blue line in each box
shows the average number of CLNs generated in a particular
round.

7.6 | Lifespan in heterogeneous settings

We further prove the network performance in heterogeneous
settings. Here, we consider network lifetime, network stability,
and network instability to prove the performance of the pro-
posed framework in heterogeneous settings. In particular, we
set the initial energy to several levels, such as 3, 4, 5, 6, 7, 8, 9,
and 10, and measure the network performance for a huge
number of communication rounds. Here, we choose the
DSCCF approach for comparison as the said approach has the
same criteria for cluster creation. The only difference is that
DSCCF is deployed with normal sensor nodes while the
proposed framework is leveraged with smart IoT nodes and
regional OpenFlow switches with central SDN controllers.
Figure 13 shows the performance comparison in terms of
network lifetime, network stability, and network instability
period concerning multiple heterogeneity levels. It is demon-
strated that the proposed framework has a great advantage of
Open switches and central SDN controllers that helps to
maintain higher network performance.

F I GURE 1 1 CLNs generation in three different scenarios where, we deploy {100, 200, 300} IoT nodes in the network dimensions of {100 � 100, 250 �
250, 500 � 500} with the initial energy of {0.5, 1.0, 2.5} in graph 1, 2 and 3, respectively

F I GURE 1 2 CLNs generations of Multi‐hop Similarity‐based‐Clustering framework for IoT‐oriented Software‐Defined wireless sensor Networks
(MSCSDN) in three different scenarios where, we deploy {100, 200, 300} IoT nodes in the network dimensions of {100 � 100, 250 � 250, 500 � 500} with the
initial energy of {0.5, 1.0, 2.5} in graph 1, 2 and 3, respectively
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8 | CONCLUSION

This paper proposes a novel multi‐hop similarity‐based‐
clustering for IoT‐oriented software defined WSNs
(MSCSDN) framework. The network is leveraged with regional
OpenFlow switches which are directly connected to the four
centralised SDN controllers. The CLN selection and member
association is based on similar data that reduce the clustering
overhead. The prediction based reporting minimises the
communication overhead. Further, the adaptive nLMS‐ based
route decision minimises the inter‐cluster and intra‐cluster
communication cost. The experimental evaluation on various
network settings with multiple system parameters prove that
the proposed framework performs better than the existing
solutions in terms of energy efficiency. In the future work, we
plan to extend the proposed framework to reduce data reports
size through compressed forwarding.
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