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Abstract: The Miocene Zhujiang Formation is the key
horizon for oil and gas exploration in the Pearl River
Mouth basin of northern South China Sea. With the
help of core observation, seismic attributes and various
analytical data, the sedimentary facies marks, distri-
bution of sedimentary facies and depositional model of
forced regression in the Miocene Zhujiang Formation of
the Pearl River Mouth basin, northern South China Sea,
have been studied. Forced regressive deposits were formed
during the period when relative sea level ranged from
highstand to lowstand and the sediments were forced to
undergo progradation so that five sets of foreset delta
deposits are developed in turn. In the early stage of forced
regression, the normal delta where the delta plain, delta
front and prodelta are not absent mainly developed. In the
later stage of forced regression, the shelf edge delta with
only the delta front and the prodelta, the longshore bar
along the shelf break and the turbidite fan in the deep
water of the slope area were developed. The favorable
reservoir of forced regressive deposits are located near
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the upper boundary of the falling stage systems tract
and the basal surface of forced regression, and they are
the sand bodies of shelf edge delta, longshore bar and
turbidite fan. The research results may provide guidance
for reservoir prediction.

Keywords: forced regression, sedimentary characteristics,
depositional model, Zhujiang Formation, Pearl River Mouth
basin, northern South China Sea

1 Introduction

In recent years, the theory of sequence stratigraphy has
been enriched and improved continuously with a wide
application in exploration and development of lithologic
and stratigraphic reservoirs. Hunt and Tucker [1] iden-
tified the forced regressive wedge systems tract on the
basis of the classical division of sequence stratigraphic
systems tract (lowstand systems tract, transgressive sys-
tems tract and highstand systems tract) and described
its sedimentary characteristics. Subsequently, Plint and
Nummedal [2], and Catuneanu [3,4] developed the con-
cept of forced regression wedge systems tract and pointed
out that the falling stage systems tract (FSST) occurs
during the descending stage of base-level when the shore-
line is forced to regress. Generally, if (AV/At) > (AV,/AL),
regressive deposits occur (Vs is sediment supply, V, is
accommodation space and t is time). If AV,/At > 0 and
(AV/AL) > (AV,/At), normal regressive deposits occur. If
AV, /At < 0 and (AVy/At) > (AV,/At), forced regressive
deposits occur. Because accommodation space is lost at
this time, sediments are forced to deposit [5]. Definition
of the FSST has attracted extensive attention, and a lot of
research work has been carried out on forced regressive
deposits [6-11]. Due to the shorter deposition time of the
forced regression, several sets of progradational regressive
sand bodies develop. The sand bodies are relatively thin
and evenly distributed in an isolated and dispersed state.
Therefore, the identification and description of forced
regressive deposits are limited to a certain extent, and

8 Open Access. © 2022 Ye Yu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.


https://doi.org/10.1515/geo-2022-0355
mailto:yuye@hnust.edu.cn

DE GRUYTER

forced regressive deposits may be conformed with wedge-
shaped deposits in lowstand systems tracts [12—-15].

A set of foreset wedge deposits with large thickness
and shelf-edge delta deposits were developed because
the delta was pushed into the shelf margin and slope
area about 21 Ma, as recorded in the Miocene Zhujiang
Formation of the Pearl River Mouth basin (PRMB), northern
South China Sea [16—19]. The foreset wedge deposits have
been interpreted as a wedge or delta of the lowstand sys-
tems tract controlled by the shelf break zone [16-19].
During the 21 Ma period, a large sea level decline occurred
in the PRMB, and the coastline retreated rapidly for several
kilometers and fell below the shelf break, resulting in
forced regression [12,20,21]. Chen et al. [22] and Yu et al.
[23,24] interpreted the forced regressive deposits as pre-
viously mistaken for low stand wedge or low stand delta
because of typical characteristics of forced regressive
deposits such as a shelf-margin delta with high-angle
oblique foresets, U-shaped incised valley perpendicular
to the palaeoflow direction, foreset superimposed sets
and shoreline migration trajectory. The division of the
systems tract of forced regressive deposits and its sequence
framework has been discussed, but there is no clear
description of sedimentary characteristics and comprehen-
sive conclusion for the depositional model.

In view of this, the sedimentary characteristics of
a forced regressive deposits of the Miocene Zhujiang
Formation have been analyzed using 3D seismic data
and a large number of drilling and logging data. A
depositional model of forced regression from the China
Sea has been reconstructed to provide suggestive infor-
mation for other cases around the world.

2 Geological setting

The PRMB which is located in the southern margin of
South China and in the northern South China Sea is a
Mesozoic and Cenozoic petroleum basin formed on the
Caledonian, Hercynian and Yanshanian fold basement
[25]. It can be divided into five large-scale first-order tec-
tonic units with NE-SW strike, which are the northern
fault terrace belt, the northern depression belt, the cen-
tral uplift belt (including Shenhu uplift, Panyu low uplift
and Dongsha uplift), the southern depression belt, and
the southern uplift belt [26,27] (Figure 1a). During the
Cenozoic, there were six tectonic events when basin
development took place [21,28]. The study area is located
in the south of Panyu low uplift which is in the central
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uplift belt and in the north-central part of Baiyun sag
(Figure 1b). During the Cenozoic, the Wenchang, Enping,
Zhuhai, Zhujiang, Hanjiang, Yuehai and Wanshan Forma-
tions were deposited in the study area from bottom to
top [29,30]. The Shenhu, Wenchang and Enping Forma-
tions are characterized by depositions of fluvial-lacustrine
sandstones, mudstones and coal. The lacustrine mud-
stones and coal layers in Wenchang and Enping Forma-
tions are the main hydrocarbon source rocks of the PRMB
[29,30]. A large shallow shelf delta is developed in Zhuhai
and Zhujiang Formations of the PRMB. The sandstone
deposited at this stage accounts for about 50-60% of
the volume of the rock and covers a large area, so it is
considered to be the most important reservoir rocks in
the PRMB [21]. The deep-water depositional systems domi-
nated by argillaceous sediments are developed in the Han-
jlang, Yuehai and Wanshan Formations of the PRMB
[21,30]. According to the seismic reflection configuration
characteristics of the PRBM, paleontological dating and
the third-order relative sea level change curve, six third-
order sequence boundaries and one maximum flooding
surface in the Zhujiang Formation have been identified
[20,22-24,31-33]. The Zhujiang Formation has been
divided into five third-order sequences: SQ1, SQ2, SQ3,
SQ4 and SQ5. The forced regressive deposits involved in
this article are located in the FSST of SQ1 (Figure 1c).

3 Methods

Both multichannel 2D and high-resolution 3D seismic
data used for this study were provided by Shenzhen
branch of the China National Offshore Oil Corporation
(CNOOC) (Figure 1b). The 3D seismic survey covered
an area of approximately 3,100 km? with a bin size of
12.5m? x 12.5m? in the inline and crossline directions.
The frequency bandwidth of the data ranges from 15 to
70 Hz with a dominant frequency of 50 Hz, and the sam-
pling interval is 2 ms. The seismic velocity of the Zhujiang
Formation is 3,500 m/s, and the vertical resolution is
approximately 15 m. The vertical scale for all the seismic
profiles shown in this article is two-way travel time. There
are 22 wells involved in this study and all of them possess
a complete suite of log and lithology data, including
wells which also have core data (Figure 1b). Furthermore,
15 the wells have been drilled in the forced regressive
deposits, from which 126 thin sections have been iden-
tified and 43 cases have been tested with laser particle
analysis. The Langfang Branch Experimental Center of
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Figure 1: () Location map showing the tectonic compartmentalization of the PRMB in the northern South China Sea. (b) The study area
located in the Panyu low uplift and Baiyun sag. Note that the forced regressive deposits mainly developed in the northern Baiyun sag. Shelf
break at 21 Ma is modified from ref. [12]. (c) Stratigraphic systems of the Baiyun sag. The horizon marked by the red rectangle is the target

horizon of this study. Modified after refs [22,23,31,32].

China Petroleum Exploration and Development Research
Institute was commissioned to test all the samples men-
tioned above by Shenzhen branch of the CNOOC.

Grain size distribution characteristics, sedimentary
structures, lithofacies and microfacies types of the forced
regressive deposits can be determined. Second, aggrada-
tion direction and distribution range of the forced regres-
sive deposits can be determined by detailed correlation of
connecting-well sections and interpretation of seismic
reflection configurations. Then, the distribution charac-
teristics for the forced regression deposits can be deter-
mined and a depositional model of forced regression can
be summarized.

4 Sedimentary characteristics of
forced regression

4.1 Sedimentary facies’ features
4.1.1 Petrological characteristics

Core observations from 6 core holes and identification
of 126 thin sections together show that the clastic consti-
tuents of the forced regressive sandstone of the Zhujiang
Formation in this area are mainly quartz and lithics. Rock
types of the forced regressive sandstone are mainly
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Figure 2: Diagram of sandstone compositional type of forced
regressive deposits in Zhujiang Formation of Panyu low uplift and
Baiyun sag. The data were collected from 7 wells, 126 thin sections.
Note: I-quartz sandstone, llI-feldspathic quartz sandstone, llI-lithic
quartz sandstone, IV-feldspar lithic quartz sandstone, V-feldspar
sandstone, VI-feldspar sandstone with rock fragments, Vll-lithic
sandstone with feldspar, VIlI-lithic sandstone.

feldspathic quartz sandstone, lithic quartz sandstone,
feldspar detritus quartz sandstone and lithic sandstone
(Figure 2). The content of stable minerals is relatively
high and the compositional maturity is medium. The
quartz content ranges from 45 to 96%, with an average
of 69.25%. The quartz/(feldspar + lithics) ranges from
0.82 to 24%, with an average of 2.96%. The distribution
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range of rock grain size is relatively narrow, with medium
sand grain size and poor to medium sorting. The grains
are primarily sub-angular and sub-rounded. Weathering
degree is moderate and sediment maturity is above
middling.

4.1.2 Grain size distribution characteristics

Based on core observations, the grain size distribution
characteristics were investigated and show that the lithology
is mainly fine and medium sandstone, with a small
amount of fine conglomerate, coarse sandstone and silt-
stone, and most of the particles are greater than 0 ®@. The
grain size accumulation probability curves of the forced
regressive deposits are typical two segments or three
segments (Figure 3), which are similar to that of the river
sediments [34]. The grain size accumulation probability
curves of distributary channel deposits in delta plain are
mainly two segments (Figure 3a: 3355.07 m) and three
segments (Figure 3a: 3359.07 m). The intercept point of
saltation population and suspension population is between
1.8 @ and 3.0 @. The content of suspension population is
mostly between 15 and 35%, and the content of saltation
population is above 65% (Figure 3a). Sedimentary charac-
teristics of traction currents and relatively strong hydro-
dynamic conditions can be inferred because of a large
number of saltation population and a small amount of
rolling population. The grain size accumulation prob-
ability curves of subaqueous distributary channel deposits
in delta front are mainly two segments (Figure 3a, 3372.02 m
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Figure 3: (a) Grain size accumulation probability curves of the forced regressive deposits in well P1. (b) Grain size accumulation probability

curves of the forced regressive deposits in well B4.
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and 3374.52m, and Figure 3b, 3750.28, 3754.28, 3755.28
and 3758.28 m). The content of saltation population of
the subaqueous distributary channel is mostly between
70 and 75% (Figure 3b). The suspension population of
the subaqueous distributary channel are less and only
account for about 25% (Figure 3b). Due to the complex
hydrodynamic conditions in estuary area, the grain size
accumulation probability curves of mouth bar are two
segments with transition section and the transition sec-
tion generally accounts for 10-15% (Figure 3a, 3382.7
and 3384.02m). That is, when the river enters the sea,
the flow velocity decreases and the carrying capacity
decreases so that the sands influenced by the resistance
of sea water accumulate rapidly. The grain size accumu-
lation probability curves of sheet sand are two segments
with double saltation population. The saltation popula-
tion accounts for 70-80% and are well sorted (Figure 3b,
746.28 and 3756.28 m). It shows that sheet sand is influ-
enced by two-way flow and indicates the sedimentary
characteristics of repeated elutriation by wave.

4.1.3 Sedimentary structures

Through detailed core observation and description of six
coring wells, a large number of typical sedimentary struc-
tures such as plant rhizome fossils, nodules, large-scale
oblique bedding (trough cross bedding, tabular cross
bedding and wedge cross bedding), small cross bedding,
horizontal bedding, scouring structure, biological dis-
turbance structure and contemporaneous deformation
structure can be found in the forced regressive deposits
(Table 1 core photo). Oblique bedding, parallel bedding
and scouring structures indicate the strong hydrodynamic
mechanism of a traction current. Above the scouring
surface, there are gray-white elliptical fine gravels and
gray-green flat claystone gravel which are formed by
strong erosion under strong hydrodynamic conditions,
indicating the channel sedimentary environment domi-
nated by a high-energy traction current. The small-scale
cross bedding which is not well developed in the study
area reveals a sedimentary environment under the inter-
action of waves and currents. Horizontal bedding which
are formed by deposition of suspended matter indicates a
stable sedimentary environment with a weak hydrody-
namic force [34]. The horizontal bedding is generally
formed in interdistributary bays and prodelta, and occa-
sionally can be found in the upper part of the abandoned
channel deposits. Bioturbation structures are mainly devel-
oped in siltstone and mudstone. The original bedding
characteristics are not clear due to strong bioturbation.

DE GRUYTER

Horizontal burrows are abundant, which represent a sedi-
mentary environment with relatively deep water and weak
energy [34]. The contemporaneous deformation structures
which usually occur in the slope area under the shelf break
of forced regressive deposits mainly include rumpled
structures, slump structures, water escape structures
and muddy strip deformation. It is an indication not
only for the rapid accumulation of siltstone and mud-
stone but also for the instability of sedimentary body
under rapid regression.

4.1.4 Lithofacies and lithofacies’ associations

According to core observations and lithological statistics,
its lithology mainly includes fine sandstone, siltstone,
argillaceous siltstone, siltstone mudstone and mudstone.
Conglomerate and medium-coarse sandstone are also
relatively abundant. According to rock fabric, the litho-
facies can be divided into 4 types: conglomerate, sand-
stone, siltstones and mudstone, and further divided into
11 subtypes. The specific characteristics and genesis are
shown in Table 1.

Lithofacies is the sum of rock characteristics formed
under certain energy conditions, also known as energy
unit. It mainly reflects the hydrodynamic conditions in
the process of sand body formation of each sedimentary
genetic unit based on the characteristics of lithology and
sedimentary structure. It is the basic material entity to
understand the sedimentary environment and analyze
the hydrodynamic conditions of sedimentary water [35-37].
Based on the analysis of the lithofacies characteristics, com-
bined with the core description of the coring interval, six
types of lithofacies’ associations have been summarized
(Figure 4): (1) the distributary channel microfacies are domi-
nated by large oblique bedding and its lithology are mainly
gravel-bearing coarse sandstones and medium sandstones.
The thickness of the sand body is 15-30 m, and the mud
gravel is visible at the bottom. The natural gamma-ray curve
is of cylinder shape. The lithofacies are massive bedded
conglomerate, trough cross bedded conglomerate, tab-
ular cross bedded conglomerate and parallel bedded
sandstone. (2) The floodplain microfacies are dominated
by massive bedding and its lithology is mainly mud-
stone and argillaceous siltstone. The natural gamma-
ray curve is linear shape and the lithofacies are massive
bedded mudstone and horizontal bedded siltstone. (3)
The subaqueous distributary channel microfacies are
dominated by oblique bedded medium and fine sand-
stone. The grain size gradually becomes fine upward.
The natural gamma-ray curve is cylinder or bell shaped.
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Table 1: Lithofacies division of forced regressive deposits in Zhujiang Formation of the PRMB
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Lithofacies types

Sedimentary characteristics

Core photo

Genetic interpretation

Conglomerate
facies

Sandstone facies

Siltstone facies

Mudstone facies

Conglomerate facies of
massive bedding (Gm)

Conglomerate facies of
oblique bedding (Go)

Sandstone facies of
massive bedding (Sm)

Sandstone facies of
oblique bedding (So)

Sandstone facies of
parallel bedding (Sp)

Sandstone facies of
small cross
bedding (Ssc)

Sandstone facies of
deformation
structure (Sd)

Siltstone facies of
horizontal
bedding (Slh)

Siltstone facies of
bioturbation (Slb)

Mudstone facies of
massive bedding (Mm)

Mudstone facies of
horizontal
bedding (Mh)

Granule conglomerate with mixed
grain size is arranged in
orientation

Granule conglomerate, tabular
cross bedding or trough cross
bedding, grain with directional
arrangement

Medium-fine sandstone, with
graded bedding and most
calcareous cements

Fine sandstone, tabular cross
bedding or wedge cross bedding
with uniform grain size

Fine sandstone with uniform
grain size

Siltstone-fine sandstone with
uniform grain size

Siltstone-fine sandstone,
argillaceous strip with rumpled
structure and slump structure

Siltstone or argillaceous siltstone
with argillaceous strip

Siltstone or siltstone-fine
sandstone, heavily bioturbated

Gray or red-brown mudstone with
iron nodules, charcoal chips and
sandy strips

Gray-black or black mudstone
with charcoal chips

Lag deposits at the bottom
of the channel

Filling deposits in large
distributary channels

Sediments accumulate
rapidly in high-energy
unidirectional flow

Formation of sand dune
migration in high-energy
unidirectional flow

High flow regime, shallow
flow and rapid formation,
mainly vertical accretion

Formation of sand dune
migration in unidirectional
medium-low energy flow

Formed in the subaqueous
instability environment of
delta front

Flat terrain conditions,
products of low-energy
unidirectional flow

Relatively low flow regime or
low hydrodynamic
environment

Formed in low-energy or
shallow water environments
such as floodplain

Formed in low-energy
environment of static water
such as distributary bay
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Figure 4: Lithofacies association of forced regressive deposits in Zhujiang Formation of Panyu low uplift and Baiyun sag. Abbreviations:
Gm - conglomerate facies of massive bedding; Gt — conglomerate facies of trough cross bedding; Gb — conglomerate facies of tabular cross
bedding; Sp — sandstone facies of parallel bedding; Sm — sandstone facies of massive bedding; St — sandstone facies of tabular cross
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Mm - mudstone facies of massive bedding; Mh — mudstone facies of horizontal bedding; Sub. — subaqueous; Dis. — distributary.

Lithofacies are massive bedded sandstone, trough cross
bedded sandstone, tabular cross bedded sandstone, wedge
cross bedded sandstone, parallel bedded sandstone and
horizontal bedded siltstone. (4) The microfacies of the
mouth bar whose grain size gradually coarsens from
bottom to top are dominated by parallel bedded silt-
stone and fine sandstone. The natural gamma-ray curve
is of funnel shape. Lithofacies are biologically disturbed
siltstone, horizontal bedded siltstone, small cross bedded
sandstone and parallel bedded sandstone. (5) The sheet
sand microfacies are dominated by small cross bedded
siltstone and fine sandstone. The natural gamma-ray
curve shows egg shape. Lithofacies are small cross
bedded sandstone, deformed sandstone and horizontal
bedded siltstone. (6) The distributary bay microfacies
are dominated by horizontal bedded mudstone and argil-
laceous siltstone. The natural gamma-ray curve is of
linear shape. Lithofacies are horizontal bedded mud-
stone, massive bedded mudstone and horizontal bedded
siltstone.

4.1.5 Seismic facies characteristics

Seismic facies are not only the 3D spatial seismic reflec-
tion units which are defined by specific external geo-
metry, internal structural characteristics and top-bottom
contact relations, but also the seismic responses of spe-
cific sedimentary facies or geological bodies [38]. The
external geometry of the forced regressive deposits in
the west of the study area is a mound according to the
seismic profile (Figure 5). The thickness of the seismic
facies unit of forced regression changes from thin to thick
and then to thin in the palaeoflow direction. The seismic
facies unit present a progradational reflection configura-
tion in the palaeoflow direction (Figure 5). In the early
stage of forced regression, the internal structure is char-
acterized by low-angle S-type progradational reflections,
and features indication of topset, foreset and bottomset
beds can be identified (® and ® in Figure 5). In the
later stage of forced regression, the internal structure
is characterized by high-angle oblique progradational
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(SB21) shows a toplap and the boundary is characterized
by exposure and erosion of the sequence boundary.
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Figure 5: Seismic reflection characteristics of forced regressive deposits in Zhujiang Formation of the western Panyu low uplift and Baiyun

sag. (location of section is given in Figure 1b). BSFR-basal surface of forced regression.

reflections, and lacks topsets and develops only foresets
and bottomsets, showing the characteristics of the shelf-
edge delta (®, ® and ® in Figure 5). The seismic

Figure 6: Seismic reflection characteristics of forced regressive deposits in Zhujiang formation of the eastern Panyu low uplift and Baiyun

sag (location of section is given in Figure 1b).
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Figure 7: Sedimentary facies of forced regressive deposits in Zhujiang Formation of Panyu low uplift and Baiyun sag. Note the well P1 is
above the shelf break at 21 Ma and landward, the well B5 is below the shelf break at 21 Ma and seaward.

However, the seismic termination for the basal surface of
forced regression (BSFR) shows a downlap and the sur-
face is characterized by stratigraphic integrity (Figure 5).
The upper part of the forced regressive deposits has a
high amplitude seismic reflection which infers delta plain
and front sediments with a high sand content, while the
middle-lower part presents disordered and low ampli-
tude seismic reflections which infer prodelta sediments
dominated by argillaceous sediments. In addition, high
amplitude reflection structures can be seen at the bottom
and its external geometry is fan type, which infers gravity
flow turbidite fan deposition (Figure 5).

The external geometry of the forced regressive deposits
is a mound in the east of the study area, but the internal

reflection structure changes significantly (Figure 6). In
the early stage of forced regression, due to the rapid
decline in relative sea level, the depositional thickness
is relatively thin, so the low-angle S-type progradational
reflections are absent. Foresets are merged into a very
thin layer, and the seismic resolution cannot be differ-
entiated. In the later stage of forced regression, high-
angle imbricate progradational reflections are seen,
topsets are absent, and the bottomsets are not obvious.
This is different in the sedimentary characteristics of
the shelf-edge delta in the west part of the study area.
The foreset is presumed to reflect longshore bar deposits
because it is only 3 km long in the palaeoflow direction
(Figure 6).
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4.2 Sedimentary microfacies composition and longshore bar have not been met during drilling, sedi-
and sedimentary characteristics of mentary microfacies analysis has not been carried out and
cross-well correlation section only seismic characteristics have been examined. Further,

the typical subfacies of the shelf-margin delta are delta

The information revealed by core observation of 6 wells, front and prodelta, while the delta plain which only exists

logging data of 22 wells and 3D seismic data is as follows. in the early stage of forced regression is not well developed.

The forced regression deposits in the Zhujiang Formation =~ The main microfacies types are distributary channel, flood-

are mainly shelf-margin deltas, followed by turbidite fan plain, subaqueous distributary channel, mouth bar, sheet

and longshore bar deposits. Because both the turbidite fan sand, distributary bay and prodelta mud (Figure 7).
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On the basis of analysis of sedimentary microfacies of
single well and the identification and division of foresets
in seismic profile, two well-connected sedimentary facies
profiles (one parallel to the palaeoflow direction and the
other perpendicular to it) have been compiled with the
help of cuttings logging data and logging curve data. In
the early stage of forced regression, delta plain, delta
front and prodelta deposits are developed in turn in the
palaeoflow direction and the seismic profiles are charac-
terized by low-angle S-type progradational reflections (®
and @ of Figure 8). In the later stage of forced regression,
delta front and prodelta deposits are developed in the
palaeoflow direction and seismic profiles present high-
angle oblique progradational reflections. Turbidite fan
high amplitude reflections are developed in the direction
of downdip of the delta front (®, ®, and ® of Figure 8).
Perpendicular to the palaeoflow, the profile is located in
the landward direction of the shelf break where it is rela-
tively close to the source and its sediments are mainly
formed in the early stage of forced regression (Figure 9).
Two sets of foreset deposits were developed. Foreset @ is
mainly a delta front in this profile, and prodelta is devel-
oped near the lower part of well P4 which is in the middle
of the profile. Foreset @ is mainly a delta plain in the

profile and is transitional to a delta front on both sides
(Figure 9). During the 21 Ma period of Zhujiang Formation
in the PRMB, 5 sets of foreset were developed, which
showed the superposition process of 5 sets of shelf edge
deltas retreating to the sea in turn.

4.3 Distribution characteristics of
sedimentary systems via seismic
attribute analysis

The root mean square amplitude attribute can differ-
entiate the sand zone and shale zone, and is helpful for
demarcating the transitional boundary of different sedi-
mentary facies zones [36,39,40]. In order to confirm the
existence of longshore bar perpendicular to the source
area and further determine the distribution characteristics
of shelf-edge delta and gravity flow turbidite fans, root
mean square amplitude attributes are extracted 30ms
downward from the SB21 which is the upper interface of
falling stage systems tract (Figure 10b), 30 ms upward
from the basal surface of forced regression (Figure 10c),
and top and bottom of the whole falling stage systems tract
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Figure 11: Depositional model of forced regression in the Miocene Zhujiang Formation of the PRMB, northern South China Sea.

(Figure 10d). It can be seen from Figure 10b that the
root mean square amplitude is higher in the landward
margin of the shelf break at 21 Ma, and the drilling
reveals delta plain deposit. There are two large high
amplitude lobe bodies and a long strip-shaped high
amplitude anomaly (length 15km, width 3 km) in the
seaward margin of the shelf break at 21 Ma, and two
shelf-edge delta fronts and longshore bar deposits are
present. It can be seen from Figure 10c that the root
mean square amplitude ranges from high to low at the
landward margin of the shelf break at 21 Ma, which
infers the sedimentary characteristics of the delta plain
and delta front. There is a zone with a low amplitude
in the seaward margin of the shelf break at 21 Ma. Where
the two shelf-edge delta fronts develop, two lobate areas
with relatively higher amplitudes are located. The place
where delta plain sand bodies developed in the early
stage of forced regression are linked to incised canyon
channels (Figure 10a). The lower part of the foreset near
the bottom of the forced regression deposit is the pro-
delta argillaceous deposit, while the upper part of the
foreset near the top of the forced regressive deposit is
the sand-rich delta front deposit, and the gravity flow
turbidite fan deposit often develops in the front of the
shelf-edge delta which is close to the center of the basin
(Figure 10e).

5 Depositional model of forced
regression

Based on the sedimentary background, development pro-
cess, sedimentary characteristics and sedimentary facies
types, a depositional model of forced regressive deposits
can be established (Figure 11). (1) As relative sea level
descends from highstand to lowstand, the sediment is
forced to undergo progradation, and five sets of foreset
delta deposits are developed in turn. (2) The forced
regression is affected by a slow decline in sea level in
the early stage, resulting in deposition of the delta plain,
delta front and prodelta. (3) In the later stage of forced
regression, due to a rapid decline in sea level, shelf-edge
deltas with only delta front and prodelta and longshore
bars constructed by waves are developed. (4) Gravity flow
turbidite fans develop in a downdip direction on the front
of the shelf-edge delta because of rapid sediment accu-
mulation and instability. (5) The gravity flow turbidite fan
communicates with the sand-rich source area in the delta
plain in the edge of the continental shelf through an
incised canyon channel. This model reveals the distribu-
tion role of sand bodies of the shelf-edge delta and long-
shore bar and the basal surface of forced regression (the
sand bodies of the gravity flow turbidite fan). The sand
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bodies formed by the falling stage systems tract are
directly covered on the shallow sea mudstone of the high-
stand systems tract, and then covered by the dark mud-
stone formed by the transgressive and highstand systems
tract of the later sequence. It has favorable oil generation
conditions, reservoir sites and caprock plugging, and is a
favorable place for the formation of large oil and gas
reservoirs.

6 Conclusion

The sedimentary characteristics and depositional model
of forced regression of the Miocene Zhujiang Formation
in the PRMB, northern South China Sea, were analyzed
systematically with the help of core, slice and particle
size analysis test data of 6 wells, logging data of 22 wells
and 3D seismic data of about 3,100 km?. The major con-
clusions of this study about forced regressive deposits are
as follows:

(1) The forced regressive deposits of the Zhujiang Formation
developed when relative sea level ranged from high-
stand to lowstand, and five sets of foreset delta
deposits were developed in turn.

(2) In the early stage of forced regression, normal delta
deposits of the topsets, foresets and bottomsets
developed.

(3) In the later stage of forced regression, the shelf-edge
delta, longshore bar and turbidite fan deposits were
developed. Further, the shelf-edge delta developed
only the delta front and prodelta but not the delta
plain.

(4) The favorable reservoir sand bodies are located
near the top and bottom interfaces of the sedimen-
tary body. They are shelf-edge delta front sand-
stones, longshore bar sand bodies along the shelf
break, and turbidite fan sand bodies on the lower
slope.
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